a84ff763ac399b72778ed8e6f7a3571676ac5ffa
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / mm / mmu.c
1 /*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 #include <asm/mach/pci.h>
35
36 #include "mm.h"
37 #include "tcm.h"
38
39 /*
40 * empty_zero_page is a special page that is used for
41 * zero-initialized data and COW.
42 */
43 struct page *empty_zero_page;
44 EXPORT_SYMBOL(empty_zero_page);
45
46 /*
47 * The pmd table for the upper-most set of pages.
48 */
49 pmd_t *top_pmd;
50
51 #define CPOLICY_UNCACHED 0
52 #define CPOLICY_BUFFERED 1
53 #define CPOLICY_WRITETHROUGH 2
54 #define CPOLICY_WRITEBACK 3
55 #define CPOLICY_WRITEALLOC 4
56
57 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
58 static unsigned int ecc_mask __initdata = 0;
59 pgprot_t pgprot_user;
60 pgprot_t pgprot_kernel;
61 pgprot_t pgprot_hyp_device;
62 pgprot_t pgprot_s2;
63 pgprot_t pgprot_s2_device;
64
65 EXPORT_SYMBOL(pgprot_user);
66 EXPORT_SYMBOL(pgprot_kernel);
67
68 struct cachepolicy {
69 const char policy[16];
70 unsigned int cr_mask;
71 pmdval_t pmd;
72 pteval_t pte;
73 pteval_t pte_s2;
74 };
75
76 #ifdef CONFIG_ARM_LPAE
77 #define s2_policy(policy) policy
78 #else
79 #define s2_policy(policy) 0
80 #endif
81
82 static struct cachepolicy cache_policies[] __initdata = {
83 {
84 .policy = "uncached",
85 .cr_mask = CR_W|CR_C,
86 .pmd = PMD_SECT_UNCACHED,
87 .pte = L_PTE_MT_UNCACHED,
88 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
89 }, {
90 .policy = "buffered",
91 .cr_mask = CR_C,
92 .pmd = PMD_SECT_BUFFERED,
93 .pte = L_PTE_MT_BUFFERABLE,
94 .pte_s2 = s2_policy(L_PTE_S2_MT_UNCACHED),
95 }, {
96 .policy = "writethrough",
97 .cr_mask = 0,
98 .pmd = PMD_SECT_WT,
99 .pte = L_PTE_MT_WRITETHROUGH,
100 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
101 }, {
102 .policy = "writeback",
103 .cr_mask = 0,
104 .pmd = PMD_SECT_WB,
105 .pte = L_PTE_MT_WRITEBACK,
106 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
107 }, {
108 .policy = "writealloc",
109 .cr_mask = 0,
110 .pmd = PMD_SECT_WBWA,
111 .pte = L_PTE_MT_WRITEALLOC,
112 .pte_s2 = s2_policy(L_PTE_S2_MT_WRITEBACK),
113 }
114 };
115
116 /*
117 * These are useful for identifying cache coherency
118 * problems by allowing the cache or the cache and
119 * writebuffer to be turned off. (Note: the write
120 * buffer should not be on and the cache off).
121 */
122 static int __init early_cachepolicy(char *p)
123 {
124 int i;
125
126 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
127 int len = strlen(cache_policies[i].policy);
128
129 if (memcmp(p, cache_policies[i].policy, len) == 0) {
130 cachepolicy = i;
131 cr_alignment &= ~cache_policies[i].cr_mask;
132 cr_no_alignment &= ~cache_policies[i].cr_mask;
133 break;
134 }
135 }
136 if (i == ARRAY_SIZE(cache_policies))
137 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
138 /*
139 * This restriction is partly to do with the way we boot; it is
140 * unpredictable to have memory mapped using two different sets of
141 * memory attributes (shared, type, and cache attribs). We can not
142 * change these attributes once the initial assembly has setup the
143 * page tables.
144 */
145 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
146 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
147 cachepolicy = CPOLICY_WRITEBACK;
148 }
149 flush_cache_all();
150 set_cr(cr_alignment);
151 return 0;
152 }
153 early_param("cachepolicy", early_cachepolicy);
154
155 static int __init early_nocache(char *__unused)
156 {
157 char *p = "buffered";
158 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
159 early_cachepolicy(p);
160 return 0;
161 }
162 early_param("nocache", early_nocache);
163
164 static int __init early_nowrite(char *__unused)
165 {
166 char *p = "uncached";
167 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
168 early_cachepolicy(p);
169 return 0;
170 }
171 early_param("nowb", early_nowrite);
172
173 #ifndef CONFIG_ARM_LPAE
174 static int __init early_ecc(char *p)
175 {
176 if (memcmp(p, "on", 2) == 0)
177 ecc_mask = PMD_PROTECTION;
178 else if (memcmp(p, "off", 3) == 0)
179 ecc_mask = 0;
180 return 0;
181 }
182 early_param("ecc", early_ecc);
183 #endif
184
185 static int __init noalign_setup(char *__unused)
186 {
187 cr_alignment &= ~CR_A;
188 cr_no_alignment &= ~CR_A;
189 set_cr(cr_alignment);
190 return 1;
191 }
192 __setup("noalign", noalign_setup);
193
194 #ifndef CONFIG_SMP
195 void adjust_cr(unsigned long mask, unsigned long set)
196 {
197 unsigned long flags;
198
199 mask &= ~CR_A;
200
201 set &= mask;
202
203 local_irq_save(flags);
204
205 cr_no_alignment = (cr_no_alignment & ~mask) | set;
206 cr_alignment = (cr_alignment & ~mask) | set;
207
208 set_cr((get_cr() & ~mask) | set);
209
210 local_irq_restore(flags);
211 }
212 #endif
213
214 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
215 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
216
217 static struct mem_type mem_types[] = {
218 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
219 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
220 L_PTE_SHARED,
221 .prot_l1 = PMD_TYPE_TABLE,
222 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
223 .domain = DOMAIN_IO,
224 },
225 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
226 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
227 .prot_l1 = PMD_TYPE_TABLE,
228 .prot_sect = PROT_SECT_DEVICE,
229 .domain = DOMAIN_IO,
230 },
231 [MT_DEVICE_CACHED] = { /* ioremap_cached */
232 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
233 .prot_l1 = PMD_TYPE_TABLE,
234 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
235 .domain = DOMAIN_IO,
236 },
237 [MT_DEVICE_WC] = { /* ioremap_wc */
238 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
239 .prot_l1 = PMD_TYPE_TABLE,
240 .prot_sect = PROT_SECT_DEVICE,
241 .domain = DOMAIN_IO,
242 },
243 [MT_UNCACHED] = {
244 .prot_pte = PROT_PTE_DEVICE,
245 .prot_l1 = PMD_TYPE_TABLE,
246 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
247 .domain = DOMAIN_IO,
248 },
249 [MT_CACHECLEAN] = {
250 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
251 .domain = DOMAIN_KERNEL,
252 },
253 #ifndef CONFIG_ARM_LPAE
254 [MT_MINICLEAN] = {
255 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
256 .domain = DOMAIN_KERNEL,
257 },
258 #endif
259 [MT_LOW_VECTORS] = {
260 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
261 L_PTE_RDONLY,
262 .prot_l1 = PMD_TYPE_TABLE,
263 .domain = DOMAIN_USER,
264 },
265 [MT_HIGH_VECTORS] = {
266 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
267 L_PTE_USER | L_PTE_RDONLY,
268 .prot_l1 = PMD_TYPE_TABLE,
269 .domain = DOMAIN_USER,
270 },
271 [MT_MEMORY] = {
272 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
273 .prot_l1 = PMD_TYPE_TABLE,
274 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
275 .domain = DOMAIN_KERNEL,
276 },
277 [MT_ROM] = {
278 .prot_sect = PMD_TYPE_SECT,
279 .domain = DOMAIN_KERNEL,
280 },
281 [MT_MEMORY_NONCACHED] = {
282 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
283 L_PTE_MT_BUFFERABLE,
284 .prot_l1 = PMD_TYPE_TABLE,
285 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
286 .domain = DOMAIN_KERNEL,
287 },
288 [MT_MEMORY_DTCM] = {
289 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
290 L_PTE_XN,
291 .prot_l1 = PMD_TYPE_TABLE,
292 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
293 .domain = DOMAIN_KERNEL,
294 },
295 [MT_MEMORY_ITCM] = {
296 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
297 .prot_l1 = PMD_TYPE_TABLE,
298 .domain = DOMAIN_KERNEL,
299 },
300 [MT_MEMORY_SO] = {
301 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
302 L_PTE_MT_UNCACHED | L_PTE_XN,
303 .prot_l1 = PMD_TYPE_TABLE,
304 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
305 PMD_SECT_UNCACHED | PMD_SECT_XN,
306 .domain = DOMAIN_KERNEL,
307 },
308 [MT_MEMORY_DMA_READY] = {
309 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
310 .prot_l1 = PMD_TYPE_TABLE,
311 .domain = DOMAIN_KERNEL,
312 },
313 };
314
315 const struct mem_type *get_mem_type(unsigned int type)
316 {
317 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
318 }
319 EXPORT_SYMBOL(get_mem_type);
320
321 /*
322 * Adjust the PMD section entries according to the CPU in use.
323 */
324 static void __init build_mem_type_table(void)
325 {
326 struct cachepolicy *cp;
327 unsigned int cr = get_cr();
328 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
329 pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
330 int cpu_arch = cpu_architecture();
331 int i;
332
333 if (cpu_arch < CPU_ARCH_ARMv6) {
334 #if defined(CONFIG_CPU_DCACHE_DISABLE)
335 if (cachepolicy > CPOLICY_BUFFERED)
336 cachepolicy = CPOLICY_BUFFERED;
337 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
338 if (cachepolicy > CPOLICY_WRITETHROUGH)
339 cachepolicy = CPOLICY_WRITETHROUGH;
340 #endif
341 }
342 if (cpu_arch < CPU_ARCH_ARMv5) {
343 if (cachepolicy >= CPOLICY_WRITEALLOC)
344 cachepolicy = CPOLICY_WRITEBACK;
345 ecc_mask = 0;
346 }
347 if (is_smp())
348 cachepolicy = CPOLICY_WRITEALLOC;
349
350 /*
351 * Strip out features not present on earlier architectures.
352 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
353 * without extended page tables don't have the 'Shared' bit.
354 */
355 if (cpu_arch < CPU_ARCH_ARMv5)
356 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
357 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
358 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
359 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
360 mem_types[i].prot_sect &= ~PMD_SECT_S;
361
362 /*
363 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
364 * "update-able on write" bit on ARM610). However, Xscale and
365 * Xscale3 require this bit to be cleared.
366 */
367 if (cpu_is_xscale() || cpu_is_xsc3()) {
368 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
369 mem_types[i].prot_sect &= ~PMD_BIT4;
370 mem_types[i].prot_l1 &= ~PMD_BIT4;
371 }
372 } else if (cpu_arch < CPU_ARCH_ARMv6) {
373 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
374 if (mem_types[i].prot_l1)
375 mem_types[i].prot_l1 |= PMD_BIT4;
376 if (mem_types[i].prot_sect)
377 mem_types[i].prot_sect |= PMD_BIT4;
378 }
379 }
380
381 /*
382 * Mark the device areas according to the CPU/architecture.
383 */
384 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
385 if (!cpu_is_xsc3()) {
386 /*
387 * Mark device regions on ARMv6+ as execute-never
388 * to prevent speculative instruction fetches.
389 */
390 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
391 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
392 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
393 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
394 }
395 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
396 /*
397 * For ARMv7 with TEX remapping,
398 * - shared device is SXCB=1100
399 * - nonshared device is SXCB=0100
400 * - write combine device mem is SXCB=0001
401 * (Uncached Normal memory)
402 */
403 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
404 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
405 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
406 } else if (cpu_is_xsc3()) {
407 /*
408 * For Xscale3,
409 * - shared device is TEXCB=00101
410 * - nonshared device is TEXCB=01000
411 * - write combine device mem is TEXCB=00100
412 * (Inner/Outer Uncacheable in xsc3 parlance)
413 */
414 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
415 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
416 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
417 } else {
418 /*
419 * For ARMv6 and ARMv7 without TEX remapping,
420 * - shared device is TEXCB=00001
421 * - nonshared device is TEXCB=01000
422 * - write combine device mem is TEXCB=00100
423 * (Uncached Normal in ARMv6 parlance).
424 */
425 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
426 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
427 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
428 }
429 } else {
430 /*
431 * On others, write combining is "Uncached/Buffered"
432 */
433 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
434 }
435
436 /*
437 * Now deal with the memory-type mappings
438 */
439 cp = &cache_policies[cachepolicy];
440 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
441 s2_pgprot = cp->pte_s2;
442 hyp_device_pgprot = s2_device_pgprot = mem_types[MT_DEVICE].prot_pte;
443
444 /*
445 * ARMv6 and above have extended page tables.
446 */
447 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
448 #ifndef CONFIG_ARM_LPAE
449 /*
450 * Mark cache clean areas and XIP ROM read only
451 * from SVC mode and no access from userspace.
452 */
453 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
454 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
455 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
456 #endif
457
458 if (is_smp()) {
459 /*
460 * Mark memory with the "shared" attribute
461 * for SMP systems
462 */
463 user_pgprot |= L_PTE_SHARED;
464 kern_pgprot |= L_PTE_SHARED;
465 vecs_pgprot |= L_PTE_SHARED;
466 s2_pgprot |= L_PTE_SHARED;
467 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
468 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
469 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
470 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
471 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
472 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
473 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
474 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
475 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
476 }
477 }
478
479 /*
480 * Non-cacheable Normal - intended for memory areas that must
481 * not cause dirty cache line writebacks when used
482 */
483 if (cpu_arch >= CPU_ARCH_ARMv6) {
484 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
485 /* Non-cacheable Normal is XCB = 001 */
486 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
487 PMD_SECT_BUFFERED;
488 } else {
489 /* For both ARMv6 and non-TEX-remapping ARMv7 */
490 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
491 PMD_SECT_TEX(1);
492 }
493 } else {
494 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
495 }
496
497 #ifdef CONFIG_ARM_LPAE
498 /*
499 * Do not generate access flag faults for the kernel mappings.
500 */
501 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
502 mem_types[i].prot_pte |= PTE_EXT_AF;
503 if (mem_types[i].prot_sect)
504 mem_types[i].prot_sect |= PMD_SECT_AF;
505 }
506 kern_pgprot |= PTE_EXT_AF;
507 vecs_pgprot |= PTE_EXT_AF;
508 #endif
509
510 for (i = 0; i < 16; i++) {
511 pteval_t v = pgprot_val(protection_map[i]);
512 protection_map[i] = __pgprot(v | user_pgprot);
513 }
514
515 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
516 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
517
518 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
519 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
520 L_PTE_DIRTY | kern_pgprot);
521 pgprot_s2 = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
522 pgprot_s2_device = __pgprot(s2_device_pgprot);
523 pgprot_hyp_device = __pgprot(hyp_device_pgprot);
524
525 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
526 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
527 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
528 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
529 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
530 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
531 mem_types[MT_ROM].prot_sect |= cp->pmd;
532
533 switch (cp->pmd) {
534 case PMD_SECT_WT:
535 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
536 break;
537 case PMD_SECT_WB:
538 case PMD_SECT_WBWA:
539 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
540 break;
541 }
542 printk("Memory policy: ECC %sabled, Data cache %s\n",
543 ecc_mask ? "en" : "dis", cp->policy);
544
545 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
546 struct mem_type *t = &mem_types[i];
547 if (t->prot_l1)
548 t->prot_l1 |= PMD_DOMAIN(t->domain);
549 if (t->prot_sect)
550 t->prot_sect |= PMD_DOMAIN(t->domain);
551 }
552 }
553
554 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
555 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
556 unsigned long size, pgprot_t vma_prot)
557 {
558 if (!pfn_valid(pfn))
559 return pgprot_noncached(vma_prot);
560 else if (file->f_flags & O_SYNC)
561 return pgprot_writecombine(vma_prot);
562 return vma_prot;
563 }
564 EXPORT_SYMBOL(phys_mem_access_prot);
565 #endif
566
567 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
568
569 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
570 {
571 void *ptr = __va(memblock_alloc(sz, align));
572 memset(ptr, 0, sz);
573 return ptr;
574 }
575
576 static void __init *early_alloc(unsigned long sz)
577 {
578 return early_alloc_aligned(sz, sz);
579 }
580
581 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
582 {
583 if (pmd_none(*pmd)) {
584 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
585 __pmd_populate(pmd, __pa(pte), prot);
586 }
587 BUG_ON(pmd_bad(*pmd));
588 return pte_offset_kernel(pmd, addr);
589 }
590
591 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
592 unsigned long end, unsigned long pfn,
593 const struct mem_type *type)
594 {
595 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
596 do {
597 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
598 pfn++;
599 } while (pte++, addr += PAGE_SIZE, addr != end);
600 }
601
602 static void __init map_init_section(pmd_t *pmd, unsigned long addr,
603 unsigned long end, phys_addr_t phys,
604 const struct mem_type *type)
605 {
606 #ifndef CONFIG_ARM_LPAE
607 /*
608 * In classic MMU format, puds and pmds are folded in to
609 * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
610 * group of L1 entries making up one logical pointer to
611 * an L2 table (2MB), where as PMDs refer to the individual
612 * L1 entries (1MB). Hence increment to get the correct
613 * offset for odd 1MB sections.
614 * (See arch/arm/include/asm/pgtable-2level.h)
615 */
616 if (addr & SECTION_SIZE)
617 pmd++;
618 #endif
619 do {
620 *pmd = __pmd(phys | type->prot_sect);
621 phys += SECTION_SIZE;
622 } while (pmd++, addr += SECTION_SIZE, addr != end);
623
624 flush_pmd_entry(pmd);
625 }
626
627 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
628 unsigned long end, phys_addr_t phys,
629 const struct mem_type *type)
630 {
631 pmd_t *pmd = pmd_offset(pud, addr);
632 unsigned long next;
633
634 do {
635 /*
636 * With LPAE, we must loop over to map
637 * all the pmds for the given range.
638 */
639 next = pmd_addr_end(addr, end);
640
641 /*
642 * Try a section mapping - addr, next and phys must all be
643 * aligned to a section boundary.
644 */
645 if (type->prot_sect &&
646 ((addr | next | phys) & ~SECTION_MASK) == 0) {
647 map_init_section(pmd, addr, next, phys, type);
648 } else {
649 alloc_init_pte(pmd, addr, next,
650 __phys_to_pfn(phys), type);
651 }
652
653 phys += next - addr;
654
655 } while (pmd++, addr = next, addr != end);
656 }
657
658 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
659 unsigned long end, unsigned long phys, const struct mem_type *type)
660 {
661 pud_t *pud = pud_offset(pgd, addr);
662 unsigned long next;
663
664 do {
665 next = pud_addr_end(addr, end);
666 alloc_init_pmd(pud, addr, next, phys, type);
667 phys += next - addr;
668 } while (pud++, addr = next, addr != end);
669 }
670
671 #ifndef CONFIG_ARM_LPAE
672 static void __init create_36bit_mapping(struct map_desc *md,
673 const struct mem_type *type)
674 {
675 unsigned long addr, length, end;
676 phys_addr_t phys;
677 pgd_t *pgd;
678
679 addr = md->virtual;
680 phys = __pfn_to_phys(md->pfn);
681 length = PAGE_ALIGN(md->length);
682
683 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
684 printk(KERN_ERR "MM: CPU does not support supersection "
685 "mapping for 0x%08llx at 0x%08lx\n",
686 (long long)__pfn_to_phys((u64)md->pfn), addr);
687 return;
688 }
689
690 /* N.B. ARMv6 supersections are only defined to work with domain 0.
691 * Since domain assignments can in fact be arbitrary, the
692 * 'domain == 0' check below is required to insure that ARMv6
693 * supersections are only allocated for domain 0 regardless
694 * of the actual domain assignments in use.
695 */
696 if (type->domain) {
697 printk(KERN_ERR "MM: invalid domain in supersection "
698 "mapping for 0x%08llx at 0x%08lx\n",
699 (long long)__pfn_to_phys((u64)md->pfn), addr);
700 return;
701 }
702
703 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
704 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
705 " at 0x%08lx invalid alignment\n",
706 (long long)__pfn_to_phys((u64)md->pfn), addr);
707 return;
708 }
709
710 /*
711 * Shift bits [35:32] of address into bits [23:20] of PMD
712 * (See ARMv6 spec).
713 */
714 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
715
716 pgd = pgd_offset_k(addr);
717 end = addr + length;
718 do {
719 pud_t *pud = pud_offset(pgd, addr);
720 pmd_t *pmd = pmd_offset(pud, addr);
721 int i;
722
723 for (i = 0; i < 16; i++)
724 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
725
726 addr += SUPERSECTION_SIZE;
727 phys += SUPERSECTION_SIZE;
728 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
729 } while (addr != end);
730 }
731 #endif /* !CONFIG_ARM_LPAE */
732
733 /*
734 * Create the page directory entries and any necessary
735 * page tables for the mapping specified by `md'. We
736 * are able to cope here with varying sizes and address
737 * offsets, and we take full advantage of sections and
738 * supersections.
739 */
740 static void __init create_mapping(struct map_desc *md)
741 {
742 unsigned long addr, length, end;
743 phys_addr_t phys;
744 const struct mem_type *type;
745 pgd_t *pgd;
746
747 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
748 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
749 " at 0x%08lx in user region\n",
750 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
751 return;
752 }
753
754 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
755 md->virtual >= PAGE_OFFSET &&
756 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
757 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
758 " at 0x%08lx out of vmalloc space\n",
759 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
760 }
761
762 type = &mem_types[md->type];
763
764 #ifndef CONFIG_ARM_LPAE
765 /*
766 * Catch 36-bit addresses
767 */
768 if (md->pfn >= 0x100000) {
769 create_36bit_mapping(md, type);
770 return;
771 }
772 #endif
773
774 addr = md->virtual & PAGE_MASK;
775 phys = __pfn_to_phys(md->pfn);
776 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
777
778 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
779 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
780 "be mapped using pages, ignoring.\n",
781 (long long)__pfn_to_phys(md->pfn), addr);
782 return;
783 }
784
785 pgd = pgd_offset_k(addr);
786 end = addr + length;
787 do {
788 unsigned long next = pgd_addr_end(addr, end);
789
790 alloc_init_pud(pgd, addr, next, phys, type);
791
792 phys += next - addr;
793 addr = next;
794 } while (pgd++, addr != end);
795 }
796
797 /*
798 * Create the architecture specific mappings
799 */
800 void __init iotable_init(struct map_desc *io_desc, int nr)
801 {
802 struct map_desc *md;
803 struct vm_struct *vm;
804 struct static_vm *svm;
805
806 if (!nr)
807 return;
808
809 svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
810
811 for (md = io_desc; nr; md++, nr--) {
812 create_mapping(md);
813
814 vm = &svm->vm;
815 vm->addr = (void *)(md->virtual & PAGE_MASK);
816 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
817 vm->phys_addr = __pfn_to_phys(md->pfn);
818 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
819 vm->flags |= VM_ARM_MTYPE(md->type);
820 vm->caller = iotable_init;
821 add_static_vm_early(svm++);
822 }
823 }
824
825 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
826 void *caller)
827 {
828 struct vm_struct *vm;
829 struct static_vm *svm;
830
831 svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
832
833 vm = &svm->vm;
834 vm->addr = (void *)addr;
835 vm->size = size;
836 vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
837 vm->caller = caller;
838 add_static_vm_early(svm);
839 }
840
841 #ifndef CONFIG_ARM_LPAE
842
843 /*
844 * The Linux PMD is made of two consecutive section entries covering 2MB
845 * (see definition in include/asm/pgtable-2level.h). However a call to
846 * create_mapping() may optimize static mappings by using individual
847 * 1MB section mappings. This leaves the actual PMD potentially half
848 * initialized if the top or bottom section entry isn't used, leaving it
849 * open to problems if a subsequent ioremap() or vmalloc() tries to use
850 * the virtual space left free by that unused section entry.
851 *
852 * Let's avoid the issue by inserting dummy vm entries covering the unused
853 * PMD halves once the static mappings are in place.
854 */
855
856 static void __init pmd_empty_section_gap(unsigned long addr)
857 {
858 vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
859 }
860
861 static void __init fill_pmd_gaps(void)
862 {
863 struct static_vm *svm;
864 struct vm_struct *vm;
865 unsigned long addr, next = 0;
866 pmd_t *pmd;
867
868 list_for_each_entry(svm, &static_vmlist, list) {
869 vm = &svm->vm;
870 addr = (unsigned long)vm->addr;
871 if (addr < next)
872 continue;
873
874 /*
875 * Check if this vm starts on an odd section boundary.
876 * If so and the first section entry for this PMD is free
877 * then we block the corresponding virtual address.
878 */
879 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
880 pmd = pmd_off_k(addr);
881 if (pmd_none(*pmd))
882 pmd_empty_section_gap(addr & PMD_MASK);
883 }
884
885 /*
886 * Then check if this vm ends on an odd section boundary.
887 * If so and the second section entry for this PMD is empty
888 * then we block the corresponding virtual address.
889 */
890 addr += vm->size;
891 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
892 pmd = pmd_off_k(addr) + 1;
893 if (pmd_none(*pmd))
894 pmd_empty_section_gap(addr);
895 }
896
897 /* no need to look at any vm entry until we hit the next PMD */
898 next = (addr + PMD_SIZE - 1) & PMD_MASK;
899 }
900 }
901
902 #else
903 #define fill_pmd_gaps() do { } while (0)
904 #endif
905
906 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
907 static void __init pci_reserve_io(void)
908 {
909 struct static_vm *svm;
910
911 svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
912 if (svm)
913 return;
914
915 vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
916 }
917 #else
918 #define pci_reserve_io() do { } while (0)
919 #endif
920
921 #ifdef CONFIG_DEBUG_LL
922 void __init debug_ll_io_init(void)
923 {
924 struct map_desc map;
925
926 debug_ll_addr(&map.pfn, &map.virtual);
927 if (!map.pfn || !map.virtual)
928 return;
929 map.pfn = __phys_to_pfn(map.pfn);
930 map.virtual &= PAGE_MASK;
931 map.length = PAGE_SIZE;
932 map.type = MT_DEVICE;
933 create_mapping(&map);
934 }
935 #endif
936
937 static void * __initdata vmalloc_min =
938 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
939
940 /*
941 * vmalloc=size forces the vmalloc area to be exactly 'size'
942 * bytes. This can be used to increase (or decrease) the vmalloc
943 * area - the default is 240m.
944 */
945 static int __init early_vmalloc(char *arg)
946 {
947 unsigned long vmalloc_reserve = memparse(arg, NULL);
948
949 if (vmalloc_reserve < SZ_16M) {
950 vmalloc_reserve = SZ_16M;
951 printk(KERN_WARNING
952 "vmalloc area too small, limiting to %luMB\n",
953 vmalloc_reserve >> 20);
954 }
955
956 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
957 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
958 printk(KERN_WARNING
959 "vmalloc area is too big, limiting to %luMB\n",
960 vmalloc_reserve >> 20);
961 }
962
963 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
964 return 0;
965 }
966 early_param("vmalloc", early_vmalloc);
967
968 phys_addr_t arm_lowmem_limit __initdata = 0;
969
970 void __init sanity_check_meminfo(void)
971 {
972 int i, j, highmem = 0;
973
974 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
975 struct membank *bank = &meminfo.bank[j];
976 *bank = meminfo.bank[i];
977
978 if (bank->start > ULONG_MAX)
979 highmem = 1;
980
981 #ifdef CONFIG_HIGHMEM
982 if (__va(bank->start) >= vmalloc_min ||
983 __va(bank->start) < (void *)PAGE_OFFSET)
984 highmem = 1;
985
986 bank->highmem = highmem;
987
988 /*
989 * Split those memory banks which are partially overlapping
990 * the vmalloc area greatly simplifying things later.
991 */
992 if (!highmem && __va(bank->start) < vmalloc_min &&
993 bank->size > vmalloc_min - __va(bank->start)) {
994 if (meminfo.nr_banks >= NR_BANKS) {
995 printk(KERN_CRIT "NR_BANKS too low, "
996 "ignoring high memory\n");
997 } else {
998 memmove(bank + 1, bank,
999 (meminfo.nr_banks - i) * sizeof(*bank));
1000 meminfo.nr_banks++;
1001 i++;
1002 bank[1].size -= vmalloc_min - __va(bank->start);
1003 bank[1].start = __pa(vmalloc_min - 1) + 1;
1004 bank[1].highmem = highmem = 1;
1005 j++;
1006 }
1007 bank->size = vmalloc_min - __va(bank->start);
1008 }
1009 #else
1010 bank->highmem = highmem;
1011
1012 /*
1013 * Highmem banks not allowed with !CONFIG_HIGHMEM.
1014 */
1015 if (highmem) {
1016 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1017 "(!CONFIG_HIGHMEM).\n",
1018 (unsigned long long)bank->start,
1019 (unsigned long long)bank->start + bank->size - 1);
1020 continue;
1021 }
1022
1023 /*
1024 * Check whether this memory bank would entirely overlap
1025 * the vmalloc area.
1026 */
1027 if (__va(bank->start) >= vmalloc_min ||
1028 __va(bank->start) < (void *)PAGE_OFFSET) {
1029 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1030 "(vmalloc region overlap).\n",
1031 (unsigned long long)bank->start,
1032 (unsigned long long)bank->start + bank->size - 1);
1033 continue;
1034 }
1035
1036 /*
1037 * Check whether this memory bank would partially overlap
1038 * the vmalloc area.
1039 */
1040 if (__va(bank->start + bank->size - 1) >= vmalloc_min ||
1041 __va(bank->start + bank->size - 1) <= __va(bank->start)) {
1042 unsigned long newsize = vmalloc_min - __va(bank->start);
1043 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1044 "to -%.8llx (vmalloc region overlap).\n",
1045 (unsigned long long)bank->start,
1046 (unsigned long long)bank->start + bank->size - 1,
1047 (unsigned long long)bank->start + newsize - 1);
1048 bank->size = newsize;
1049 }
1050 #endif
1051 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
1052 arm_lowmem_limit = bank->start + bank->size;
1053
1054 j++;
1055 }
1056 #ifdef CONFIG_HIGHMEM
1057 if (highmem) {
1058 const char *reason = NULL;
1059
1060 if (cache_is_vipt_aliasing()) {
1061 /*
1062 * Interactions between kmap and other mappings
1063 * make highmem support with aliasing VIPT caches
1064 * rather difficult.
1065 */
1066 reason = "with VIPT aliasing cache";
1067 }
1068 if (reason) {
1069 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1070 reason);
1071 while (j > 0 && meminfo.bank[j - 1].highmem)
1072 j--;
1073 }
1074 }
1075 #endif
1076 meminfo.nr_banks = j;
1077 high_memory = __va(arm_lowmem_limit - 1) + 1;
1078 memblock_set_current_limit(arm_lowmem_limit);
1079 }
1080
1081 static inline void prepare_page_table(void)
1082 {
1083 unsigned long addr;
1084 phys_addr_t end;
1085
1086 /*
1087 * Clear out all the mappings below the kernel image.
1088 */
1089 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1090 pmd_clear(pmd_off_k(addr));
1091
1092 #ifdef CONFIG_XIP_KERNEL
1093 /* The XIP kernel is mapped in the module area -- skip over it */
1094 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1095 #endif
1096 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1097 pmd_clear(pmd_off_k(addr));
1098
1099 /*
1100 * Find the end of the first block of lowmem.
1101 */
1102 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1103 if (end >= arm_lowmem_limit)
1104 end = arm_lowmem_limit;
1105
1106 /*
1107 * Clear out all the kernel space mappings, except for the first
1108 * memory bank, up to the vmalloc region.
1109 */
1110 for (addr = __phys_to_virt(end);
1111 addr < VMALLOC_START; addr += PMD_SIZE)
1112 pmd_clear(pmd_off_k(addr));
1113 }
1114
1115 #ifdef CONFIG_ARM_LPAE
1116 /* the first page is reserved for pgd */
1117 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1118 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1119 #else
1120 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1121 #endif
1122
1123 /*
1124 * Reserve the special regions of memory
1125 */
1126 void __init arm_mm_memblock_reserve(void)
1127 {
1128 /*
1129 * Reserve the page tables. These are already in use,
1130 * and can only be in node 0.
1131 */
1132 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1133
1134 #ifdef CONFIG_SA1111
1135 /*
1136 * Because of the SA1111 DMA bug, we want to preserve our
1137 * precious DMA-able memory...
1138 */
1139 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1140 #endif
1141 }
1142
1143 /*
1144 * Set up the device mappings. Since we clear out the page tables for all
1145 * mappings above VMALLOC_START, we will remove any debug device mappings.
1146 * This means you have to be careful how you debug this function, or any
1147 * called function. This means you can't use any function or debugging
1148 * method which may touch any device, otherwise the kernel _will_ crash.
1149 */
1150 static void __init devicemaps_init(struct machine_desc *mdesc)
1151 {
1152 struct map_desc map;
1153 unsigned long addr;
1154 void *vectors;
1155
1156 /*
1157 * Allocate the vector page early.
1158 */
1159 vectors = early_alloc(PAGE_SIZE);
1160
1161 early_trap_init(vectors);
1162
1163 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1164 pmd_clear(pmd_off_k(addr));
1165
1166 /*
1167 * Map the kernel if it is XIP.
1168 * It is always first in the modulearea.
1169 */
1170 #ifdef CONFIG_XIP_KERNEL
1171 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1172 map.virtual = MODULES_VADDR;
1173 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1174 map.type = MT_ROM;
1175 create_mapping(&map);
1176 #endif
1177
1178 /*
1179 * Map the cache flushing regions.
1180 */
1181 #ifdef FLUSH_BASE
1182 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1183 map.virtual = FLUSH_BASE;
1184 map.length = SZ_1M;
1185 map.type = MT_CACHECLEAN;
1186 create_mapping(&map);
1187 #endif
1188 #ifdef FLUSH_BASE_MINICACHE
1189 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1190 map.virtual = FLUSH_BASE_MINICACHE;
1191 map.length = SZ_1M;
1192 map.type = MT_MINICLEAN;
1193 create_mapping(&map);
1194 #endif
1195
1196 /*
1197 * Create a mapping for the machine vectors at the high-vectors
1198 * location (0xffff0000). If we aren't using high-vectors, also
1199 * create a mapping at the low-vectors virtual address.
1200 */
1201 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1202 map.virtual = 0xffff0000;
1203 map.length = PAGE_SIZE;
1204 map.type = MT_HIGH_VECTORS;
1205 create_mapping(&map);
1206
1207 if (!vectors_high()) {
1208 map.virtual = 0;
1209 map.type = MT_LOW_VECTORS;
1210 create_mapping(&map);
1211 }
1212
1213 /*
1214 * Ask the machine support to map in the statically mapped devices.
1215 */
1216 if (mdesc->map_io)
1217 mdesc->map_io();
1218 fill_pmd_gaps();
1219
1220 /* Reserve fixed i/o space in VMALLOC region */
1221 pci_reserve_io();
1222
1223 /*
1224 * Finally flush the caches and tlb to ensure that we're in a
1225 * consistent state wrt the writebuffer. This also ensures that
1226 * any write-allocated cache lines in the vector page are written
1227 * back. After this point, we can start to touch devices again.
1228 */
1229 local_flush_tlb_all();
1230 flush_cache_all();
1231 }
1232
1233 static void __init kmap_init(void)
1234 {
1235 #ifdef CONFIG_HIGHMEM
1236 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1237 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1238 #endif
1239 }
1240
1241 static void __init map_lowmem(void)
1242 {
1243 struct memblock_region *reg;
1244
1245 /* Map all the lowmem memory banks. */
1246 for_each_memblock(memory, reg) {
1247 phys_addr_t start = reg->base;
1248 phys_addr_t end = start + reg->size;
1249 struct map_desc map;
1250
1251 if (end > arm_lowmem_limit)
1252 end = arm_lowmem_limit;
1253 if (start >= end)
1254 break;
1255
1256 map.pfn = __phys_to_pfn(start);
1257 map.virtual = __phys_to_virt(start);
1258 map.length = end - start;
1259 map.type = MT_MEMORY;
1260
1261 create_mapping(&map);
1262 }
1263 }
1264
1265 /*
1266 * paging_init() sets up the page tables, initialises the zone memory
1267 * maps, and sets up the zero page, bad page and bad page tables.
1268 */
1269 void __init paging_init(struct machine_desc *mdesc)
1270 {
1271 void *zero_page;
1272
1273 memblock_set_current_limit(arm_lowmem_limit);
1274
1275 build_mem_type_table();
1276 prepare_page_table();
1277 map_lowmem();
1278 dma_contiguous_remap();
1279 devicemaps_init(mdesc);
1280 kmap_init();
1281 tcm_init();
1282
1283 top_pmd = pmd_off_k(0xffff0000);
1284
1285 /* allocate the zero page. */
1286 zero_page = early_alloc(PAGE_SIZE);
1287
1288 bootmem_init();
1289
1290 empty_zero_page = virt_to_page(zero_page);
1291 __flush_dcache_page(NULL, empty_zero_page);
1292 }