Merge branches 'audit', 'delay', 'fixes', 'misc' and 'sta2x11' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / mm / mmu.c
1 /*
2 * linux/arch/arm/mm/mmu.c
3 *
4 * Copyright (C) 1995-2005 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34
35 #include "mm.h"
36
37 /*
38 * empty_zero_page is a special page that is used for
39 * zero-initialized data and COW.
40 */
41 struct page *empty_zero_page;
42 EXPORT_SYMBOL(empty_zero_page);
43
44 /*
45 * The pmd table for the upper-most set of pages.
46 */
47 pmd_t *top_pmd;
48
49 #define CPOLICY_UNCACHED 0
50 #define CPOLICY_BUFFERED 1
51 #define CPOLICY_WRITETHROUGH 2
52 #define CPOLICY_WRITEBACK 3
53 #define CPOLICY_WRITEALLOC 4
54
55 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
56 static unsigned int ecc_mask __initdata = 0;
57 pgprot_t pgprot_user;
58 pgprot_t pgprot_kernel;
59
60 EXPORT_SYMBOL(pgprot_user);
61 EXPORT_SYMBOL(pgprot_kernel);
62
63 struct cachepolicy {
64 const char policy[16];
65 unsigned int cr_mask;
66 pmdval_t pmd;
67 pteval_t pte;
68 };
69
70 static struct cachepolicy cache_policies[] __initdata = {
71 {
72 .policy = "uncached",
73 .cr_mask = CR_W|CR_C,
74 .pmd = PMD_SECT_UNCACHED,
75 .pte = L_PTE_MT_UNCACHED,
76 }, {
77 .policy = "buffered",
78 .cr_mask = CR_C,
79 .pmd = PMD_SECT_BUFFERED,
80 .pte = L_PTE_MT_BUFFERABLE,
81 }, {
82 .policy = "writethrough",
83 .cr_mask = 0,
84 .pmd = PMD_SECT_WT,
85 .pte = L_PTE_MT_WRITETHROUGH,
86 }, {
87 .policy = "writeback",
88 .cr_mask = 0,
89 .pmd = PMD_SECT_WB,
90 .pte = L_PTE_MT_WRITEBACK,
91 }, {
92 .policy = "writealloc",
93 .cr_mask = 0,
94 .pmd = PMD_SECT_WBWA,
95 .pte = L_PTE_MT_WRITEALLOC,
96 }
97 };
98
99 /*
100 * These are useful for identifying cache coherency
101 * problems by allowing the cache or the cache and
102 * writebuffer to be turned off. (Note: the write
103 * buffer should not be on and the cache off).
104 */
105 static int __init early_cachepolicy(char *p)
106 {
107 int i;
108
109 for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
110 int len = strlen(cache_policies[i].policy);
111
112 if (memcmp(p, cache_policies[i].policy, len) == 0) {
113 cachepolicy = i;
114 cr_alignment &= ~cache_policies[i].cr_mask;
115 cr_no_alignment &= ~cache_policies[i].cr_mask;
116 break;
117 }
118 }
119 if (i == ARRAY_SIZE(cache_policies))
120 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
121 /*
122 * This restriction is partly to do with the way we boot; it is
123 * unpredictable to have memory mapped using two different sets of
124 * memory attributes (shared, type, and cache attribs). We can not
125 * change these attributes once the initial assembly has setup the
126 * page tables.
127 */
128 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
129 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
130 cachepolicy = CPOLICY_WRITEBACK;
131 }
132 flush_cache_all();
133 set_cr(cr_alignment);
134 return 0;
135 }
136 early_param("cachepolicy", early_cachepolicy);
137
138 static int __init early_nocache(char *__unused)
139 {
140 char *p = "buffered";
141 printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
142 early_cachepolicy(p);
143 return 0;
144 }
145 early_param("nocache", early_nocache);
146
147 static int __init early_nowrite(char *__unused)
148 {
149 char *p = "uncached";
150 printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
151 early_cachepolicy(p);
152 return 0;
153 }
154 early_param("nowb", early_nowrite);
155
156 #ifndef CONFIG_ARM_LPAE
157 static int __init early_ecc(char *p)
158 {
159 if (memcmp(p, "on", 2) == 0)
160 ecc_mask = PMD_PROTECTION;
161 else if (memcmp(p, "off", 3) == 0)
162 ecc_mask = 0;
163 return 0;
164 }
165 early_param("ecc", early_ecc);
166 #endif
167
168 static int __init noalign_setup(char *__unused)
169 {
170 cr_alignment &= ~CR_A;
171 cr_no_alignment &= ~CR_A;
172 set_cr(cr_alignment);
173 return 1;
174 }
175 __setup("noalign", noalign_setup);
176
177 #ifndef CONFIG_SMP
178 void adjust_cr(unsigned long mask, unsigned long set)
179 {
180 unsigned long flags;
181
182 mask &= ~CR_A;
183
184 set &= mask;
185
186 local_irq_save(flags);
187
188 cr_no_alignment = (cr_no_alignment & ~mask) | set;
189 cr_alignment = (cr_alignment & ~mask) | set;
190
191 set_cr((get_cr() & ~mask) | set);
192
193 local_irq_restore(flags);
194 }
195 #endif
196
197 #define PROT_PTE_DEVICE L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
198 #define PROT_SECT_DEVICE PMD_TYPE_SECT|PMD_SECT_AP_WRITE
199
200 static struct mem_type mem_types[] = {
201 [MT_DEVICE] = { /* Strongly ordered / ARMv6 shared device */
202 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
203 L_PTE_SHARED,
204 .prot_l1 = PMD_TYPE_TABLE,
205 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_S,
206 .domain = DOMAIN_IO,
207 },
208 [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
209 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
210 .prot_l1 = PMD_TYPE_TABLE,
211 .prot_sect = PROT_SECT_DEVICE,
212 .domain = DOMAIN_IO,
213 },
214 [MT_DEVICE_CACHED] = { /* ioremap_cached */
215 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
216 .prot_l1 = PMD_TYPE_TABLE,
217 .prot_sect = PROT_SECT_DEVICE | PMD_SECT_WB,
218 .domain = DOMAIN_IO,
219 },
220 [MT_DEVICE_WC] = { /* ioremap_wc */
221 .prot_pte = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
222 .prot_l1 = PMD_TYPE_TABLE,
223 .prot_sect = PROT_SECT_DEVICE,
224 .domain = DOMAIN_IO,
225 },
226 [MT_UNCACHED] = {
227 .prot_pte = PROT_PTE_DEVICE,
228 .prot_l1 = PMD_TYPE_TABLE,
229 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
230 .domain = DOMAIN_IO,
231 },
232 [MT_CACHECLEAN] = {
233 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
234 .domain = DOMAIN_KERNEL,
235 },
236 #ifndef CONFIG_ARM_LPAE
237 [MT_MINICLEAN] = {
238 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
239 .domain = DOMAIN_KERNEL,
240 },
241 #endif
242 [MT_LOW_VECTORS] = {
243 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
244 L_PTE_RDONLY,
245 .prot_l1 = PMD_TYPE_TABLE,
246 .domain = DOMAIN_USER,
247 },
248 [MT_HIGH_VECTORS] = {
249 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
250 L_PTE_USER | L_PTE_RDONLY,
251 .prot_l1 = PMD_TYPE_TABLE,
252 .domain = DOMAIN_USER,
253 },
254 [MT_MEMORY] = {
255 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
256 .prot_l1 = PMD_TYPE_TABLE,
257 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
258 .domain = DOMAIN_KERNEL,
259 },
260 [MT_ROM] = {
261 .prot_sect = PMD_TYPE_SECT,
262 .domain = DOMAIN_KERNEL,
263 },
264 [MT_MEMORY_NONCACHED] = {
265 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
266 L_PTE_MT_BUFFERABLE,
267 .prot_l1 = PMD_TYPE_TABLE,
268 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
269 .domain = DOMAIN_KERNEL,
270 },
271 [MT_MEMORY_DTCM] = {
272 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
273 L_PTE_XN,
274 .prot_l1 = PMD_TYPE_TABLE,
275 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
276 .domain = DOMAIN_KERNEL,
277 },
278 [MT_MEMORY_ITCM] = {
279 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
280 .prot_l1 = PMD_TYPE_TABLE,
281 .domain = DOMAIN_KERNEL,
282 },
283 [MT_MEMORY_SO] = {
284 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
285 L_PTE_MT_UNCACHED,
286 .prot_l1 = PMD_TYPE_TABLE,
287 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
288 PMD_SECT_UNCACHED | PMD_SECT_XN,
289 .domain = DOMAIN_KERNEL,
290 },
291 [MT_MEMORY_DMA_READY] = {
292 .prot_pte = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
293 .prot_l1 = PMD_TYPE_TABLE,
294 .domain = DOMAIN_KERNEL,
295 },
296 };
297
298 const struct mem_type *get_mem_type(unsigned int type)
299 {
300 return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
301 }
302 EXPORT_SYMBOL(get_mem_type);
303
304 /*
305 * Adjust the PMD section entries according to the CPU in use.
306 */
307 static void __init build_mem_type_table(void)
308 {
309 struct cachepolicy *cp;
310 unsigned int cr = get_cr();
311 pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
312 int cpu_arch = cpu_architecture();
313 int i;
314
315 if (cpu_arch < CPU_ARCH_ARMv6) {
316 #if defined(CONFIG_CPU_DCACHE_DISABLE)
317 if (cachepolicy > CPOLICY_BUFFERED)
318 cachepolicy = CPOLICY_BUFFERED;
319 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
320 if (cachepolicy > CPOLICY_WRITETHROUGH)
321 cachepolicy = CPOLICY_WRITETHROUGH;
322 #endif
323 }
324 if (cpu_arch < CPU_ARCH_ARMv5) {
325 if (cachepolicy >= CPOLICY_WRITEALLOC)
326 cachepolicy = CPOLICY_WRITEBACK;
327 ecc_mask = 0;
328 }
329 if (is_smp())
330 cachepolicy = CPOLICY_WRITEALLOC;
331
332 /*
333 * Strip out features not present on earlier architectures.
334 * Pre-ARMv5 CPUs don't have TEX bits. Pre-ARMv6 CPUs or those
335 * without extended page tables don't have the 'Shared' bit.
336 */
337 if (cpu_arch < CPU_ARCH_ARMv5)
338 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
339 mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
340 if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
341 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
342 mem_types[i].prot_sect &= ~PMD_SECT_S;
343
344 /*
345 * ARMv5 and lower, bit 4 must be set for page tables (was: cache
346 * "update-able on write" bit on ARM610). However, Xscale and
347 * Xscale3 require this bit to be cleared.
348 */
349 if (cpu_is_xscale() || cpu_is_xsc3()) {
350 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
351 mem_types[i].prot_sect &= ~PMD_BIT4;
352 mem_types[i].prot_l1 &= ~PMD_BIT4;
353 }
354 } else if (cpu_arch < CPU_ARCH_ARMv6) {
355 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
356 if (mem_types[i].prot_l1)
357 mem_types[i].prot_l1 |= PMD_BIT4;
358 if (mem_types[i].prot_sect)
359 mem_types[i].prot_sect |= PMD_BIT4;
360 }
361 }
362
363 /*
364 * Mark the device areas according to the CPU/architecture.
365 */
366 if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
367 if (!cpu_is_xsc3()) {
368 /*
369 * Mark device regions on ARMv6+ as execute-never
370 * to prevent speculative instruction fetches.
371 */
372 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
373 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
374 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
375 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
376 }
377 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
378 /*
379 * For ARMv7 with TEX remapping,
380 * - shared device is SXCB=1100
381 * - nonshared device is SXCB=0100
382 * - write combine device mem is SXCB=0001
383 * (Uncached Normal memory)
384 */
385 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
386 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
387 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
388 } else if (cpu_is_xsc3()) {
389 /*
390 * For Xscale3,
391 * - shared device is TEXCB=00101
392 * - nonshared device is TEXCB=01000
393 * - write combine device mem is TEXCB=00100
394 * (Inner/Outer Uncacheable in xsc3 parlance)
395 */
396 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
397 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
398 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
399 } else {
400 /*
401 * For ARMv6 and ARMv7 without TEX remapping,
402 * - shared device is TEXCB=00001
403 * - nonshared device is TEXCB=01000
404 * - write combine device mem is TEXCB=00100
405 * (Uncached Normal in ARMv6 parlance).
406 */
407 mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
408 mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
409 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
410 }
411 } else {
412 /*
413 * On others, write combining is "Uncached/Buffered"
414 */
415 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
416 }
417
418 /*
419 * Now deal with the memory-type mappings
420 */
421 cp = &cache_policies[cachepolicy];
422 vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
423
424 /*
425 * Enable CPU-specific coherency if supported.
426 * (Only available on XSC3 at the moment.)
427 */
428 if (arch_is_coherent() && cpu_is_xsc3()) {
429 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
430 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
431 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
432 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
433 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
434 }
435 /*
436 * ARMv6 and above have extended page tables.
437 */
438 if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
439 #ifndef CONFIG_ARM_LPAE
440 /*
441 * Mark cache clean areas and XIP ROM read only
442 * from SVC mode and no access from userspace.
443 */
444 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
445 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
446 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
447 #endif
448
449 if (is_smp()) {
450 /*
451 * Mark memory with the "shared" attribute
452 * for SMP systems
453 */
454 user_pgprot |= L_PTE_SHARED;
455 kern_pgprot |= L_PTE_SHARED;
456 vecs_pgprot |= L_PTE_SHARED;
457 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
458 mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
459 mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
460 mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
461 mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
462 mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
463 mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
464 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
465 mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
466 }
467 }
468
469 /*
470 * Non-cacheable Normal - intended for memory areas that must
471 * not cause dirty cache line writebacks when used
472 */
473 if (cpu_arch >= CPU_ARCH_ARMv6) {
474 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
475 /* Non-cacheable Normal is XCB = 001 */
476 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
477 PMD_SECT_BUFFERED;
478 } else {
479 /* For both ARMv6 and non-TEX-remapping ARMv7 */
480 mem_types[MT_MEMORY_NONCACHED].prot_sect |=
481 PMD_SECT_TEX(1);
482 }
483 } else {
484 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
485 }
486
487 #ifdef CONFIG_ARM_LPAE
488 /*
489 * Do not generate access flag faults for the kernel mappings.
490 */
491 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
492 mem_types[i].prot_pte |= PTE_EXT_AF;
493 if (mem_types[i].prot_sect)
494 mem_types[i].prot_sect |= PMD_SECT_AF;
495 }
496 kern_pgprot |= PTE_EXT_AF;
497 vecs_pgprot |= PTE_EXT_AF;
498 #endif
499
500 for (i = 0; i < 16; i++) {
501 unsigned long v = pgprot_val(protection_map[i]);
502 protection_map[i] = __pgprot(v | user_pgprot);
503 }
504
505 mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
506 mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
507
508 pgprot_user = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
509 pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
510 L_PTE_DIRTY | kern_pgprot);
511
512 mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
513 mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
514 mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
515 mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
516 mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
517 mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
518 mem_types[MT_ROM].prot_sect |= cp->pmd;
519
520 switch (cp->pmd) {
521 case PMD_SECT_WT:
522 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
523 break;
524 case PMD_SECT_WB:
525 case PMD_SECT_WBWA:
526 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
527 break;
528 }
529 printk("Memory policy: ECC %sabled, Data cache %s\n",
530 ecc_mask ? "en" : "dis", cp->policy);
531
532 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
533 struct mem_type *t = &mem_types[i];
534 if (t->prot_l1)
535 t->prot_l1 |= PMD_DOMAIN(t->domain);
536 if (t->prot_sect)
537 t->prot_sect |= PMD_DOMAIN(t->domain);
538 }
539 }
540
541 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
542 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
543 unsigned long size, pgprot_t vma_prot)
544 {
545 if (!pfn_valid(pfn))
546 return pgprot_noncached(vma_prot);
547 else if (file->f_flags & O_SYNC)
548 return pgprot_writecombine(vma_prot);
549 return vma_prot;
550 }
551 EXPORT_SYMBOL(phys_mem_access_prot);
552 #endif
553
554 #define vectors_base() (vectors_high() ? 0xffff0000 : 0)
555
556 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
557 {
558 void *ptr = __va(memblock_alloc(sz, align));
559 memset(ptr, 0, sz);
560 return ptr;
561 }
562
563 static void __init *early_alloc(unsigned long sz)
564 {
565 return early_alloc_aligned(sz, sz);
566 }
567
568 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
569 {
570 if (pmd_none(*pmd)) {
571 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
572 __pmd_populate(pmd, __pa(pte), prot);
573 }
574 BUG_ON(pmd_bad(*pmd));
575 return pte_offset_kernel(pmd, addr);
576 }
577
578 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
579 unsigned long end, unsigned long pfn,
580 const struct mem_type *type)
581 {
582 pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
583 do {
584 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
585 pfn++;
586 } while (pte++, addr += PAGE_SIZE, addr != end);
587 }
588
589 static void __init alloc_init_section(pud_t *pud, unsigned long addr,
590 unsigned long end, phys_addr_t phys,
591 const struct mem_type *type)
592 {
593 pmd_t *pmd = pmd_offset(pud, addr);
594
595 /*
596 * Try a section mapping - end, addr and phys must all be aligned
597 * to a section boundary. Note that PMDs refer to the individual
598 * L1 entries, whereas PGDs refer to a group of L1 entries making
599 * up one logical pointer to an L2 table.
600 */
601 if (type->prot_sect && ((addr | end | phys) & ~SECTION_MASK) == 0) {
602 pmd_t *p = pmd;
603
604 #ifndef CONFIG_ARM_LPAE
605 if (addr & SECTION_SIZE)
606 pmd++;
607 #endif
608
609 do {
610 *pmd = __pmd(phys | type->prot_sect);
611 phys += SECTION_SIZE;
612 } while (pmd++, addr += SECTION_SIZE, addr != end);
613
614 flush_pmd_entry(p);
615 } else {
616 /*
617 * No need to loop; pte's aren't interested in the
618 * individual L1 entries.
619 */
620 alloc_init_pte(pmd, addr, end, __phys_to_pfn(phys), type);
621 }
622 }
623
624 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
625 unsigned long end, unsigned long phys, const struct mem_type *type)
626 {
627 pud_t *pud = pud_offset(pgd, addr);
628 unsigned long next;
629
630 do {
631 next = pud_addr_end(addr, end);
632 alloc_init_section(pud, addr, next, phys, type);
633 phys += next - addr;
634 } while (pud++, addr = next, addr != end);
635 }
636
637 #ifndef CONFIG_ARM_LPAE
638 static void __init create_36bit_mapping(struct map_desc *md,
639 const struct mem_type *type)
640 {
641 unsigned long addr, length, end;
642 phys_addr_t phys;
643 pgd_t *pgd;
644
645 addr = md->virtual;
646 phys = __pfn_to_phys(md->pfn);
647 length = PAGE_ALIGN(md->length);
648
649 if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
650 printk(KERN_ERR "MM: CPU does not support supersection "
651 "mapping for 0x%08llx at 0x%08lx\n",
652 (long long)__pfn_to_phys((u64)md->pfn), addr);
653 return;
654 }
655
656 /* N.B. ARMv6 supersections are only defined to work with domain 0.
657 * Since domain assignments can in fact be arbitrary, the
658 * 'domain == 0' check below is required to insure that ARMv6
659 * supersections are only allocated for domain 0 regardless
660 * of the actual domain assignments in use.
661 */
662 if (type->domain) {
663 printk(KERN_ERR "MM: invalid domain in supersection "
664 "mapping for 0x%08llx at 0x%08lx\n",
665 (long long)__pfn_to_phys((u64)md->pfn), addr);
666 return;
667 }
668
669 if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
670 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
671 " at 0x%08lx invalid alignment\n",
672 (long long)__pfn_to_phys((u64)md->pfn), addr);
673 return;
674 }
675
676 /*
677 * Shift bits [35:32] of address into bits [23:20] of PMD
678 * (See ARMv6 spec).
679 */
680 phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
681
682 pgd = pgd_offset_k(addr);
683 end = addr + length;
684 do {
685 pud_t *pud = pud_offset(pgd, addr);
686 pmd_t *pmd = pmd_offset(pud, addr);
687 int i;
688
689 for (i = 0; i < 16; i++)
690 *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
691
692 addr += SUPERSECTION_SIZE;
693 phys += SUPERSECTION_SIZE;
694 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
695 } while (addr != end);
696 }
697 #endif /* !CONFIG_ARM_LPAE */
698
699 /*
700 * Create the page directory entries and any necessary
701 * page tables for the mapping specified by `md'. We
702 * are able to cope here with varying sizes and address
703 * offsets, and we take full advantage of sections and
704 * supersections.
705 */
706 static void __init create_mapping(struct map_desc *md)
707 {
708 unsigned long addr, length, end;
709 phys_addr_t phys;
710 const struct mem_type *type;
711 pgd_t *pgd;
712
713 if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
714 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
715 " at 0x%08lx in user region\n",
716 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
717 return;
718 }
719
720 if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
721 md->virtual >= PAGE_OFFSET &&
722 (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
723 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
724 " at 0x%08lx out of vmalloc space\n",
725 (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
726 }
727
728 type = &mem_types[md->type];
729
730 #ifndef CONFIG_ARM_LPAE
731 /*
732 * Catch 36-bit addresses
733 */
734 if (md->pfn >= 0x100000) {
735 create_36bit_mapping(md, type);
736 return;
737 }
738 #endif
739
740 addr = md->virtual & PAGE_MASK;
741 phys = __pfn_to_phys(md->pfn);
742 length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
743
744 if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
745 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
746 "be mapped using pages, ignoring.\n",
747 (long long)__pfn_to_phys(md->pfn), addr);
748 return;
749 }
750
751 pgd = pgd_offset_k(addr);
752 end = addr + length;
753 do {
754 unsigned long next = pgd_addr_end(addr, end);
755
756 alloc_init_pud(pgd, addr, next, phys, type);
757
758 phys += next - addr;
759 addr = next;
760 } while (pgd++, addr != end);
761 }
762
763 /*
764 * Create the architecture specific mappings
765 */
766 void __init iotable_init(struct map_desc *io_desc, int nr)
767 {
768 struct map_desc *md;
769 struct vm_struct *vm;
770
771 if (!nr)
772 return;
773
774 vm = early_alloc_aligned(sizeof(*vm) * nr, __alignof__(*vm));
775
776 for (md = io_desc; nr; md++, nr--) {
777 create_mapping(md);
778 vm->addr = (void *)(md->virtual & PAGE_MASK);
779 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
780 vm->phys_addr = __pfn_to_phys(md->pfn);
781 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
782 vm->flags |= VM_ARM_MTYPE(md->type);
783 vm->caller = iotable_init;
784 vm_area_add_early(vm++);
785 }
786 }
787
788 #ifndef CONFIG_ARM_LPAE
789
790 /*
791 * The Linux PMD is made of two consecutive section entries covering 2MB
792 * (see definition in include/asm/pgtable-2level.h). However a call to
793 * create_mapping() may optimize static mappings by using individual
794 * 1MB section mappings. This leaves the actual PMD potentially half
795 * initialized if the top or bottom section entry isn't used, leaving it
796 * open to problems if a subsequent ioremap() or vmalloc() tries to use
797 * the virtual space left free by that unused section entry.
798 *
799 * Let's avoid the issue by inserting dummy vm entries covering the unused
800 * PMD halves once the static mappings are in place.
801 */
802
803 static void __init pmd_empty_section_gap(unsigned long addr)
804 {
805 struct vm_struct *vm;
806
807 vm = early_alloc_aligned(sizeof(*vm), __alignof__(*vm));
808 vm->addr = (void *)addr;
809 vm->size = SECTION_SIZE;
810 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
811 vm->caller = pmd_empty_section_gap;
812 vm_area_add_early(vm);
813 }
814
815 static void __init fill_pmd_gaps(void)
816 {
817 struct vm_struct *vm;
818 unsigned long addr, next = 0;
819 pmd_t *pmd;
820
821 /* we're still single threaded hence no lock needed here */
822 for (vm = vmlist; vm; vm = vm->next) {
823 if (!(vm->flags & VM_ARM_STATIC_MAPPING))
824 continue;
825 addr = (unsigned long)vm->addr;
826 if (addr < next)
827 continue;
828
829 /*
830 * Check if this vm starts on an odd section boundary.
831 * If so and the first section entry for this PMD is free
832 * then we block the corresponding virtual address.
833 */
834 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
835 pmd = pmd_off_k(addr);
836 if (pmd_none(*pmd))
837 pmd_empty_section_gap(addr & PMD_MASK);
838 }
839
840 /*
841 * Then check if this vm ends on an odd section boundary.
842 * If so and the second section entry for this PMD is empty
843 * then we block the corresponding virtual address.
844 */
845 addr += vm->size;
846 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
847 pmd = pmd_off_k(addr) + 1;
848 if (pmd_none(*pmd))
849 pmd_empty_section_gap(addr);
850 }
851
852 /* no need to look at any vm entry until we hit the next PMD */
853 next = (addr + PMD_SIZE - 1) & PMD_MASK;
854 }
855 }
856
857 #else
858 #define fill_pmd_gaps() do { } while (0)
859 #endif
860
861 static void * __initdata vmalloc_min =
862 (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
863
864 /*
865 * vmalloc=size forces the vmalloc area to be exactly 'size'
866 * bytes. This can be used to increase (or decrease) the vmalloc
867 * area - the default is 240m.
868 */
869 static int __init early_vmalloc(char *arg)
870 {
871 unsigned long vmalloc_reserve = memparse(arg, NULL);
872
873 if (vmalloc_reserve < SZ_16M) {
874 vmalloc_reserve = SZ_16M;
875 printk(KERN_WARNING
876 "vmalloc area too small, limiting to %luMB\n",
877 vmalloc_reserve >> 20);
878 }
879
880 if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
881 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
882 printk(KERN_WARNING
883 "vmalloc area is too big, limiting to %luMB\n",
884 vmalloc_reserve >> 20);
885 }
886
887 vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
888 return 0;
889 }
890 early_param("vmalloc", early_vmalloc);
891
892 phys_addr_t arm_lowmem_limit __initdata = 0;
893
894 void __init sanity_check_meminfo(void)
895 {
896 int i, j, highmem = 0;
897
898 for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
899 struct membank *bank = &meminfo.bank[j];
900 *bank = meminfo.bank[i];
901
902 if (bank->start > ULONG_MAX)
903 highmem = 1;
904
905 #ifdef CONFIG_HIGHMEM
906 if (__va(bank->start) >= vmalloc_min ||
907 __va(bank->start) < (void *)PAGE_OFFSET)
908 highmem = 1;
909
910 bank->highmem = highmem;
911
912 /*
913 * Split those memory banks which are partially overlapping
914 * the vmalloc area greatly simplifying things later.
915 */
916 if (!highmem && __va(bank->start) < vmalloc_min &&
917 bank->size > vmalloc_min - __va(bank->start)) {
918 if (meminfo.nr_banks >= NR_BANKS) {
919 printk(KERN_CRIT "NR_BANKS too low, "
920 "ignoring high memory\n");
921 } else {
922 memmove(bank + 1, bank,
923 (meminfo.nr_banks - i) * sizeof(*bank));
924 meminfo.nr_banks++;
925 i++;
926 bank[1].size -= vmalloc_min - __va(bank->start);
927 bank[1].start = __pa(vmalloc_min - 1) + 1;
928 bank[1].highmem = highmem = 1;
929 j++;
930 }
931 bank->size = vmalloc_min - __va(bank->start);
932 }
933 #else
934 bank->highmem = highmem;
935
936 /*
937 * Highmem banks not allowed with !CONFIG_HIGHMEM.
938 */
939 if (highmem) {
940 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
941 "(!CONFIG_HIGHMEM).\n",
942 (unsigned long long)bank->start,
943 (unsigned long long)bank->start + bank->size - 1);
944 continue;
945 }
946
947 /*
948 * Check whether this memory bank would entirely overlap
949 * the vmalloc area.
950 */
951 if (__va(bank->start) >= vmalloc_min ||
952 __va(bank->start) < (void *)PAGE_OFFSET) {
953 printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
954 "(vmalloc region overlap).\n",
955 (unsigned long long)bank->start,
956 (unsigned long long)bank->start + bank->size - 1);
957 continue;
958 }
959
960 /*
961 * Check whether this memory bank would partially overlap
962 * the vmalloc area.
963 */
964 if (__va(bank->start + bank->size) > vmalloc_min ||
965 __va(bank->start + bank->size) < __va(bank->start)) {
966 unsigned long newsize = vmalloc_min - __va(bank->start);
967 printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
968 "to -%.8llx (vmalloc region overlap).\n",
969 (unsigned long long)bank->start,
970 (unsigned long long)bank->start + bank->size - 1,
971 (unsigned long long)bank->start + newsize - 1);
972 bank->size = newsize;
973 }
974 #endif
975 if (!bank->highmem && bank->start + bank->size > arm_lowmem_limit)
976 arm_lowmem_limit = bank->start + bank->size;
977
978 j++;
979 }
980 #ifdef CONFIG_HIGHMEM
981 if (highmem) {
982 const char *reason = NULL;
983
984 if (cache_is_vipt_aliasing()) {
985 /*
986 * Interactions between kmap and other mappings
987 * make highmem support with aliasing VIPT caches
988 * rather difficult.
989 */
990 reason = "with VIPT aliasing cache";
991 }
992 if (reason) {
993 printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
994 reason);
995 while (j > 0 && meminfo.bank[j - 1].highmem)
996 j--;
997 }
998 }
999 #endif
1000 meminfo.nr_banks = j;
1001 high_memory = __va(arm_lowmem_limit - 1) + 1;
1002 memblock_set_current_limit(arm_lowmem_limit);
1003 }
1004
1005 static inline void prepare_page_table(void)
1006 {
1007 unsigned long addr;
1008 phys_addr_t end;
1009
1010 /*
1011 * Clear out all the mappings below the kernel image.
1012 */
1013 for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1014 pmd_clear(pmd_off_k(addr));
1015
1016 #ifdef CONFIG_XIP_KERNEL
1017 /* The XIP kernel is mapped in the module area -- skip over it */
1018 addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1019 #endif
1020 for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1021 pmd_clear(pmd_off_k(addr));
1022
1023 /*
1024 * Find the end of the first block of lowmem.
1025 */
1026 end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1027 if (end >= arm_lowmem_limit)
1028 end = arm_lowmem_limit;
1029
1030 /*
1031 * Clear out all the kernel space mappings, except for the first
1032 * memory bank, up to the vmalloc region.
1033 */
1034 for (addr = __phys_to_virt(end);
1035 addr < VMALLOC_START; addr += PMD_SIZE)
1036 pmd_clear(pmd_off_k(addr));
1037 }
1038
1039 #ifdef CONFIG_ARM_LPAE
1040 /* the first page is reserved for pgd */
1041 #define SWAPPER_PG_DIR_SIZE (PAGE_SIZE + \
1042 PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1043 #else
1044 #define SWAPPER_PG_DIR_SIZE (PTRS_PER_PGD * sizeof(pgd_t))
1045 #endif
1046
1047 /*
1048 * Reserve the special regions of memory
1049 */
1050 void __init arm_mm_memblock_reserve(void)
1051 {
1052 /*
1053 * Reserve the page tables. These are already in use,
1054 * and can only be in node 0.
1055 */
1056 memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1057
1058 #ifdef CONFIG_SA1111
1059 /*
1060 * Because of the SA1111 DMA bug, we want to preserve our
1061 * precious DMA-able memory...
1062 */
1063 memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1064 #endif
1065 }
1066
1067 /*
1068 * Set up the device mappings. Since we clear out the page tables for all
1069 * mappings above VMALLOC_START, we will remove any debug device mappings.
1070 * This means you have to be careful how you debug this function, or any
1071 * called function. This means you can't use any function or debugging
1072 * method which may touch any device, otherwise the kernel _will_ crash.
1073 */
1074 static void __init devicemaps_init(struct machine_desc *mdesc)
1075 {
1076 struct map_desc map;
1077 unsigned long addr;
1078 void *vectors;
1079
1080 /*
1081 * Allocate the vector page early.
1082 */
1083 vectors = early_alloc(PAGE_SIZE);
1084
1085 early_trap_init(vectors);
1086
1087 for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1088 pmd_clear(pmd_off_k(addr));
1089
1090 /*
1091 * Map the kernel if it is XIP.
1092 * It is always first in the modulearea.
1093 */
1094 #ifdef CONFIG_XIP_KERNEL
1095 map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1096 map.virtual = MODULES_VADDR;
1097 map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1098 map.type = MT_ROM;
1099 create_mapping(&map);
1100 #endif
1101
1102 /*
1103 * Map the cache flushing regions.
1104 */
1105 #ifdef FLUSH_BASE
1106 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1107 map.virtual = FLUSH_BASE;
1108 map.length = SZ_1M;
1109 map.type = MT_CACHECLEAN;
1110 create_mapping(&map);
1111 #endif
1112 #ifdef FLUSH_BASE_MINICACHE
1113 map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1114 map.virtual = FLUSH_BASE_MINICACHE;
1115 map.length = SZ_1M;
1116 map.type = MT_MINICLEAN;
1117 create_mapping(&map);
1118 #endif
1119
1120 /*
1121 * Create a mapping for the machine vectors at the high-vectors
1122 * location (0xffff0000). If we aren't using high-vectors, also
1123 * create a mapping at the low-vectors virtual address.
1124 */
1125 map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1126 map.virtual = 0xffff0000;
1127 map.length = PAGE_SIZE;
1128 map.type = MT_HIGH_VECTORS;
1129 create_mapping(&map);
1130
1131 if (!vectors_high()) {
1132 map.virtual = 0;
1133 map.type = MT_LOW_VECTORS;
1134 create_mapping(&map);
1135 }
1136
1137 /*
1138 * Ask the machine support to map in the statically mapped devices.
1139 */
1140 if (mdesc->map_io)
1141 mdesc->map_io();
1142 fill_pmd_gaps();
1143
1144 /*
1145 * Finally flush the caches and tlb to ensure that we're in a
1146 * consistent state wrt the writebuffer. This also ensures that
1147 * any write-allocated cache lines in the vector page are written
1148 * back. After this point, we can start to touch devices again.
1149 */
1150 local_flush_tlb_all();
1151 flush_cache_all();
1152 }
1153
1154 static void __init kmap_init(void)
1155 {
1156 #ifdef CONFIG_HIGHMEM
1157 pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1158 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1159 #endif
1160 }
1161
1162 static void __init map_lowmem(void)
1163 {
1164 struct memblock_region *reg;
1165
1166 /* Map all the lowmem memory banks. */
1167 for_each_memblock(memory, reg) {
1168 phys_addr_t start = reg->base;
1169 phys_addr_t end = start + reg->size;
1170 struct map_desc map;
1171
1172 if (end > arm_lowmem_limit)
1173 end = arm_lowmem_limit;
1174 if (start >= end)
1175 break;
1176
1177 map.pfn = __phys_to_pfn(start);
1178 map.virtual = __phys_to_virt(start);
1179 map.length = end - start;
1180 map.type = MT_MEMORY;
1181
1182 create_mapping(&map);
1183 }
1184 }
1185
1186 /*
1187 * paging_init() sets up the page tables, initialises the zone memory
1188 * maps, and sets up the zero page, bad page and bad page tables.
1189 */
1190 void __init paging_init(struct machine_desc *mdesc)
1191 {
1192 void *zero_page;
1193
1194 memblock_set_current_limit(arm_lowmem_limit);
1195
1196 build_mem_type_table();
1197 prepare_page_table();
1198 map_lowmem();
1199 dma_contiguous_remap();
1200 devicemaps_init(mdesc);
1201 kmap_init();
1202
1203 top_pmd = pmd_off_k(0xffff0000);
1204
1205 /* allocate the zero page. */
1206 zero_page = early_alloc(PAGE_SIZE);
1207
1208 bootmem_init();
1209
1210 empty_zero_page = virt_to_page(zero_page);
1211 __flush_dcache_page(NULL, empty_zero_page);
1212 }