Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/hid
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / mm / fault.c
1 /*
2 * linux/arch/arm/mm/fault.c
3 *
4 * Copyright (C) 1995 Linus Torvalds
5 * Modifications for ARM processor (c) 1995-2004 Russell King
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 */
11 #include <linux/module.h>
12 #include <linux/signal.h>
13 #include <linux/mm.h>
14 #include <linux/hardirq.h>
15 #include <linux/init.h>
16 #include <linux/kprobes.h>
17 #include <linux/uaccess.h>
18 #include <linux/page-flags.h>
19 #include <linux/sched.h>
20 #include <linux/highmem.h>
21 #include <linux/perf_event.h>
22
23 #include <asm/exception.h>
24 #include <asm/pgtable.h>
25 #include <asm/system_misc.h>
26 #include <asm/system_info.h>
27 #include <asm/tlbflush.h>
28
29 #include "fault.h"
30
31 #ifdef CONFIG_MMU
32
33 #ifdef CONFIG_KPROBES
34 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
35 {
36 int ret = 0;
37
38 if (!user_mode(regs)) {
39 /* kprobe_running() needs smp_processor_id() */
40 preempt_disable();
41 if (kprobe_running() && kprobe_fault_handler(regs, fsr))
42 ret = 1;
43 preempt_enable();
44 }
45
46 return ret;
47 }
48 #else
49 static inline int notify_page_fault(struct pt_regs *regs, unsigned int fsr)
50 {
51 return 0;
52 }
53 #endif
54
55 /*
56 * This is useful to dump out the page tables associated with
57 * 'addr' in mm 'mm'.
58 */
59 void show_pte(struct mm_struct *mm, unsigned long addr)
60 {
61 pgd_t *pgd;
62
63 if (!mm)
64 mm = &init_mm;
65
66 printk(KERN_ALERT "pgd = %p\n", mm->pgd);
67 pgd = pgd_offset(mm, addr);
68 printk(KERN_ALERT "[%08lx] *pgd=%08llx",
69 addr, (long long)pgd_val(*pgd));
70
71 do {
72 pud_t *pud;
73 pmd_t *pmd;
74 pte_t *pte;
75
76 if (pgd_none(*pgd))
77 break;
78
79 if (pgd_bad(*pgd)) {
80 printk("(bad)");
81 break;
82 }
83
84 pud = pud_offset(pgd, addr);
85 if (PTRS_PER_PUD != 1)
86 printk(", *pud=%08llx", (long long)pud_val(*pud));
87
88 if (pud_none(*pud))
89 break;
90
91 if (pud_bad(*pud)) {
92 printk("(bad)");
93 break;
94 }
95
96 pmd = pmd_offset(pud, addr);
97 if (PTRS_PER_PMD != 1)
98 printk(", *pmd=%08llx", (long long)pmd_val(*pmd));
99
100 if (pmd_none(*pmd))
101 break;
102
103 if (pmd_bad(*pmd)) {
104 printk("(bad)");
105 break;
106 }
107
108 /* We must not map this if we have highmem enabled */
109 if (PageHighMem(pfn_to_page(pmd_val(*pmd) >> PAGE_SHIFT)))
110 break;
111
112 pte = pte_offset_map(pmd, addr);
113 printk(", *pte=%08llx", (long long)pte_val(*pte));
114 #ifndef CONFIG_ARM_LPAE
115 printk(", *ppte=%08llx",
116 (long long)pte_val(pte[PTE_HWTABLE_PTRS]));
117 #endif
118 pte_unmap(pte);
119 } while(0);
120
121 printk("\n");
122 }
123 #else /* CONFIG_MMU */
124 void show_pte(struct mm_struct *mm, unsigned long addr)
125 { }
126 #endif /* CONFIG_MMU */
127
128 /*
129 * Oops. The kernel tried to access some page that wasn't present.
130 */
131 static void
132 __do_kernel_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
133 struct pt_regs *regs)
134 {
135 /*
136 * Are we prepared to handle this kernel fault?
137 */
138 if (fixup_exception(regs))
139 return;
140
141 /*
142 * No handler, we'll have to terminate things with extreme prejudice.
143 */
144 bust_spinlocks(1);
145 printk(KERN_ALERT
146 "Unable to handle kernel %s at virtual address %08lx\n",
147 (addr < PAGE_SIZE) ? "NULL pointer dereference" :
148 "paging request", addr);
149
150 show_pte(mm, addr);
151 die("Oops", regs, fsr);
152 bust_spinlocks(0);
153 do_exit(SIGKILL);
154 }
155
156 /*
157 * Something tried to access memory that isn't in our memory map..
158 * User mode accesses just cause a SIGSEGV
159 */
160 static void
161 __do_user_fault(struct task_struct *tsk, unsigned long addr,
162 unsigned int fsr, unsigned int sig, int code,
163 struct pt_regs *regs)
164 {
165 struct siginfo si;
166
167 #ifdef CONFIG_DEBUG_USER
168 if (((user_debug & UDBG_SEGV) && (sig == SIGSEGV)) ||
169 ((user_debug & UDBG_BUS) && (sig == SIGBUS))) {
170 printk(KERN_DEBUG "%s: unhandled page fault (%d) at 0x%08lx, code 0x%03x\n",
171 tsk->comm, sig, addr, fsr);
172 show_pte(tsk->mm, addr);
173 show_regs(regs);
174 }
175 #endif
176
177 tsk->thread.address = addr;
178 tsk->thread.error_code = fsr;
179 tsk->thread.trap_no = 14;
180 si.si_signo = sig;
181 si.si_errno = 0;
182 si.si_code = code;
183 si.si_addr = (void __user *)addr;
184 force_sig_info(sig, &si, tsk);
185 }
186
187 void do_bad_area(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
188 {
189 struct task_struct *tsk = current;
190 struct mm_struct *mm = tsk->active_mm;
191
192 /*
193 * If we are in kernel mode at this point, we
194 * have no context to handle this fault with.
195 */
196 if (user_mode(regs))
197 __do_user_fault(tsk, addr, fsr, SIGSEGV, SEGV_MAPERR, regs);
198 else
199 __do_kernel_fault(mm, addr, fsr, regs);
200 }
201
202 #ifdef CONFIG_MMU
203 #define VM_FAULT_BADMAP 0x010000
204 #define VM_FAULT_BADACCESS 0x020000
205
206 /*
207 * Check that the permissions on the VMA allow for the fault which occurred.
208 * If we encountered a write fault, we must have write permission, otherwise
209 * we allow any permission.
210 */
211 static inline bool access_error(unsigned int fsr, struct vm_area_struct *vma)
212 {
213 unsigned int mask = VM_READ | VM_WRITE | VM_EXEC;
214
215 if (fsr & FSR_WRITE)
216 mask = VM_WRITE;
217 if (fsr & FSR_LNX_PF)
218 mask = VM_EXEC;
219
220 return vma->vm_flags & mask ? false : true;
221 }
222
223 static int __kprobes
224 __do_page_fault(struct mm_struct *mm, unsigned long addr, unsigned int fsr,
225 unsigned int flags, struct task_struct *tsk)
226 {
227 struct vm_area_struct *vma;
228 int fault;
229
230 vma = find_vma(mm, addr);
231 fault = VM_FAULT_BADMAP;
232 if (unlikely(!vma))
233 goto out;
234 if (unlikely(vma->vm_start > addr))
235 goto check_stack;
236
237 /*
238 * Ok, we have a good vm_area for this
239 * memory access, so we can handle it.
240 */
241 good_area:
242 if (access_error(fsr, vma)) {
243 fault = VM_FAULT_BADACCESS;
244 goto out;
245 }
246
247 return handle_mm_fault(mm, vma, addr & PAGE_MASK, flags);
248
249 check_stack:
250 /* Don't allow expansion below FIRST_USER_ADDRESS */
251 if (vma->vm_flags & VM_GROWSDOWN &&
252 addr >= FIRST_USER_ADDRESS && !expand_stack(vma, addr))
253 goto good_area;
254 out:
255 return fault;
256 }
257
258 static int __kprobes
259 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
260 {
261 struct task_struct *tsk;
262 struct mm_struct *mm;
263 int fault, sig, code;
264 int write = fsr & FSR_WRITE;
265 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE |
266 (write ? FAULT_FLAG_WRITE : 0);
267
268 if (notify_page_fault(regs, fsr))
269 return 0;
270
271 tsk = current;
272 mm = tsk->mm;
273
274 /* Enable interrupts if they were enabled in the parent context. */
275 if (interrupts_enabled(regs))
276 local_irq_enable();
277
278 /*
279 * If we're in an interrupt or have no user
280 * context, we must not take the fault..
281 */
282 if (in_atomic() || !mm)
283 goto no_context;
284
285 /*
286 * As per x86, we may deadlock here. However, since the kernel only
287 * validly references user space from well defined areas of the code,
288 * we can bug out early if this is from code which shouldn't.
289 */
290 if (!down_read_trylock(&mm->mmap_sem)) {
291 if (!user_mode(regs) && !search_exception_tables(regs->ARM_pc))
292 goto no_context;
293 retry:
294 down_read(&mm->mmap_sem);
295 } else {
296 /*
297 * The above down_read_trylock() might have succeeded in
298 * which case, we'll have missed the might_sleep() from
299 * down_read()
300 */
301 might_sleep();
302 #ifdef CONFIG_DEBUG_VM
303 if (!user_mode(regs) &&
304 !search_exception_tables(regs->ARM_pc))
305 goto no_context;
306 #endif
307 }
308
309 fault = __do_page_fault(mm, addr, fsr, flags, tsk);
310
311 /* If we need to retry but a fatal signal is pending, handle the
312 * signal first. We do not need to release the mmap_sem because
313 * it would already be released in __lock_page_or_retry in
314 * mm/filemap.c. */
315 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current))
316 return 0;
317
318 /*
319 * Major/minor page fault accounting is only done on the
320 * initial attempt. If we go through a retry, it is extremely
321 * likely that the page will be found in page cache at that point.
322 */
323
324 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, addr);
325 if (!(fault & VM_FAULT_ERROR) && flags & FAULT_FLAG_ALLOW_RETRY) {
326 if (fault & VM_FAULT_MAJOR) {
327 tsk->maj_flt++;
328 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
329 regs, addr);
330 } else {
331 tsk->min_flt++;
332 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
333 regs, addr);
334 }
335 if (fault & VM_FAULT_RETRY) {
336 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
337 * of starvation. */
338 flags &= ~FAULT_FLAG_ALLOW_RETRY;
339 flags |= FAULT_FLAG_TRIED;
340 goto retry;
341 }
342 }
343
344 up_read(&mm->mmap_sem);
345
346 /*
347 * Handle the "normal" case first - VM_FAULT_MAJOR / VM_FAULT_MINOR
348 */
349 if (likely(!(fault & (VM_FAULT_ERROR | VM_FAULT_BADMAP | VM_FAULT_BADACCESS))))
350 return 0;
351
352 if (fault & VM_FAULT_OOM) {
353 /*
354 * We ran out of memory, call the OOM killer, and return to
355 * userspace (which will retry the fault, or kill us if we
356 * got oom-killed)
357 */
358 pagefault_out_of_memory();
359 return 0;
360 }
361
362 /*
363 * If we are in kernel mode at this point, we
364 * have no context to handle this fault with.
365 */
366 if (!user_mode(regs))
367 goto no_context;
368
369 if (fault & VM_FAULT_SIGBUS) {
370 /*
371 * We had some memory, but were unable to
372 * successfully fix up this page fault.
373 */
374 sig = SIGBUS;
375 code = BUS_ADRERR;
376 } else {
377 /*
378 * Something tried to access memory that
379 * isn't in our memory map..
380 */
381 sig = SIGSEGV;
382 code = fault == VM_FAULT_BADACCESS ?
383 SEGV_ACCERR : SEGV_MAPERR;
384 }
385
386 __do_user_fault(tsk, addr, fsr, sig, code, regs);
387 return 0;
388
389 no_context:
390 __do_kernel_fault(mm, addr, fsr, regs);
391 return 0;
392 }
393 #else /* CONFIG_MMU */
394 static int
395 do_page_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
396 {
397 return 0;
398 }
399 #endif /* CONFIG_MMU */
400
401 /*
402 * First Level Translation Fault Handler
403 *
404 * We enter here because the first level page table doesn't contain
405 * a valid entry for the address.
406 *
407 * If the address is in kernel space (>= TASK_SIZE), then we are
408 * probably faulting in the vmalloc() area.
409 *
410 * If the init_task's first level page tables contains the relevant
411 * entry, we copy the it to this task. If not, we send the process
412 * a signal, fixup the exception, or oops the kernel.
413 *
414 * NOTE! We MUST NOT take any locks for this case. We may be in an
415 * interrupt or a critical region, and should only copy the information
416 * from the master page table, nothing more.
417 */
418 #ifdef CONFIG_MMU
419 static int __kprobes
420 do_translation_fault(unsigned long addr, unsigned int fsr,
421 struct pt_regs *regs)
422 {
423 unsigned int index;
424 pgd_t *pgd, *pgd_k;
425 pud_t *pud, *pud_k;
426 pmd_t *pmd, *pmd_k;
427
428 if (addr < TASK_SIZE)
429 return do_page_fault(addr, fsr, regs);
430
431 if (user_mode(regs))
432 goto bad_area;
433
434 index = pgd_index(addr);
435
436 pgd = cpu_get_pgd() + index;
437 pgd_k = init_mm.pgd + index;
438
439 if (pgd_none(*pgd_k))
440 goto bad_area;
441 if (!pgd_present(*pgd))
442 set_pgd(pgd, *pgd_k);
443
444 pud = pud_offset(pgd, addr);
445 pud_k = pud_offset(pgd_k, addr);
446
447 if (pud_none(*pud_k))
448 goto bad_area;
449 if (!pud_present(*pud))
450 set_pud(pud, *pud_k);
451
452 pmd = pmd_offset(pud, addr);
453 pmd_k = pmd_offset(pud_k, addr);
454
455 #ifdef CONFIG_ARM_LPAE
456 /*
457 * Only one hardware entry per PMD with LPAE.
458 */
459 index = 0;
460 #else
461 /*
462 * On ARM one Linux PGD entry contains two hardware entries (see page
463 * tables layout in pgtable.h). We normally guarantee that we always
464 * fill both L1 entries. But create_mapping() doesn't follow the rule.
465 * It can create inidividual L1 entries, so here we have to call
466 * pmd_none() check for the entry really corresponded to address, not
467 * for the first of pair.
468 */
469 index = (addr >> SECTION_SHIFT) & 1;
470 #endif
471 if (pmd_none(pmd_k[index]))
472 goto bad_area;
473
474 copy_pmd(pmd, pmd_k);
475 return 0;
476
477 bad_area:
478 do_bad_area(addr, fsr, regs);
479 return 0;
480 }
481 #else /* CONFIG_MMU */
482 static int
483 do_translation_fault(unsigned long addr, unsigned int fsr,
484 struct pt_regs *regs)
485 {
486 return 0;
487 }
488 #endif /* CONFIG_MMU */
489
490 /*
491 * Some section permission faults need to be handled gracefully.
492 * They can happen due to a __{get,put}_user during an oops.
493 */
494 static int
495 do_sect_fault(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
496 {
497 do_bad_area(addr, fsr, regs);
498 return 0;
499 }
500
501 /*
502 * This abort handler always returns "fault".
503 */
504 static int
505 do_bad(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
506 {
507 return 1;
508 }
509
510 struct fsr_info {
511 int (*fn)(unsigned long addr, unsigned int fsr, struct pt_regs *regs);
512 int sig;
513 int code;
514 const char *name;
515 };
516
517 /* FSR definition */
518 #ifdef CONFIG_ARM_LPAE
519 #include "fsr-3level.c"
520 #else
521 #include "fsr-2level.c"
522 #endif
523
524 void __init
525 hook_fault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
526 int sig, int code, const char *name)
527 {
528 if (nr < 0 || nr >= ARRAY_SIZE(fsr_info))
529 BUG();
530
531 fsr_info[nr].fn = fn;
532 fsr_info[nr].sig = sig;
533 fsr_info[nr].code = code;
534 fsr_info[nr].name = name;
535 }
536
537 /*
538 * Dispatch a data abort to the relevant handler.
539 */
540 asmlinkage void __exception
541 do_DataAbort(unsigned long addr, unsigned int fsr, struct pt_regs *regs)
542 {
543 const struct fsr_info *inf = fsr_info + fsr_fs(fsr);
544 struct siginfo info;
545
546 if (!inf->fn(addr, fsr & ~FSR_LNX_PF, regs))
547 return;
548
549 printk(KERN_ALERT "Unhandled fault: %s (0x%03x) at 0x%08lx\n",
550 inf->name, fsr, addr);
551
552 info.si_signo = inf->sig;
553 info.si_errno = 0;
554 info.si_code = inf->code;
555 info.si_addr = (void __user *)addr;
556 arm_notify_die("", regs, &info, fsr, 0);
557 }
558
559 void __init
560 hook_ifault_code(int nr, int (*fn)(unsigned long, unsigned int, struct pt_regs *),
561 int sig, int code, const char *name)
562 {
563 if (nr < 0 || nr >= ARRAY_SIZE(ifsr_info))
564 BUG();
565
566 ifsr_info[nr].fn = fn;
567 ifsr_info[nr].sig = sig;
568 ifsr_info[nr].code = code;
569 ifsr_info[nr].name = name;
570 }
571
572 asmlinkage void __exception
573 do_PrefetchAbort(unsigned long addr, unsigned int ifsr, struct pt_regs *regs)
574 {
575 const struct fsr_info *inf = ifsr_info + fsr_fs(ifsr);
576 struct siginfo info;
577
578 if (!inf->fn(addr, ifsr | FSR_LNX_PF, regs))
579 return;
580
581 printk(KERN_ALERT "Unhandled prefetch abort: %s (0x%03x) at 0x%08lx\n",
582 inf->name, ifsr, addr);
583
584 info.si_signo = inf->sig;
585 info.si_errno = 0;
586 info.si_code = inf->code;
587 info.si_addr = (void __user *)addr;
588 arm_notify_die("", regs, &info, ifsr, 0);
589 }
590
591 #ifndef CONFIG_ARM_LPAE
592 static int __init exceptions_init(void)
593 {
594 if (cpu_architecture() >= CPU_ARCH_ARMv6) {
595 hook_fault_code(4, do_translation_fault, SIGSEGV, SEGV_MAPERR,
596 "I-cache maintenance fault");
597 }
598
599 if (cpu_architecture() >= CPU_ARCH_ARMv7) {
600 /*
601 * TODO: Access flag faults introduced in ARMv6K.
602 * Runtime check for 'K' extension is needed
603 */
604 hook_fault_code(3, do_bad, SIGSEGV, SEGV_MAPERR,
605 "section access flag fault");
606 hook_fault_code(6, do_bad, SIGSEGV, SEGV_MAPERR,
607 "section access flag fault");
608 }
609
610 return 0;
611 }
612
613 arch_initcall(exceptions_init);
614 #endif