ARM: 7432/1: use the new linux/sizes.h
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / mm / dma-mapping.c
1 /*
2 * linux/arch/arm/mm/dma-mapping.c
3 *
4 * Copyright (C) 2000-2004 Russell King
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 *
10 * DMA uncached mapping support.
11 */
12 #include <linux/module.h>
13 #include <linux/mm.h>
14 #include <linux/gfp.h>
15 #include <linux/errno.h>
16 #include <linux/list.h>
17 #include <linux/init.h>
18 #include <linux/device.h>
19 #include <linux/dma-mapping.h>
20 #include <linux/dma-contiguous.h>
21 #include <linux/highmem.h>
22 #include <linux/memblock.h>
23 #include <linux/slab.h>
24 #include <linux/iommu.h>
25 #include <linux/vmalloc.h>
26 #include <linux/sizes.h>
27
28 #include <asm/memory.h>
29 #include <asm/highmem.h>
30 #include <asm/cacheflush.h>
31 #include <asm/tlbflush.h>
32 #include <asm/mach/arch.h>
33 #include <asm/dma-iommu.h>
34 #include <asm/mach/map.h>
35 #include <asm/system_info.h>
36 #include <asm/dma-contiguous.h>
37
38 #include "mm.h"
39
40 /*
41 * The DMA API is built upon the notion of "buffer ownership". A buffer
42 * is either exclusively owned by the CPU (and therefore may be accessed
43 * by it) or exclusively owned by the DMA device. These helper functions
44 * represent the transitions between these two ownership states.
45 *
46 * Note, however, that on later ARMs, this notion does not work due to
47 * speculative prefetches. We model our approach on the assumption that
48 * the CPU does do speculative prefetches, which means we clean caches
49 * before transfers and delay cache invalidation until transfer completion.
50 *
51 */
52 static void __dma_page_cpu_to_dev(struct page *, unsigned long,
53 size_t, enum dma_data_direction);
54 static void __dma_page_dev_to_cpu(struct page *, unsigned long,
55 size_t, enum dma_data_direction);
56
57 /**
58 * arm_dma_map_page - map a portion of a page for streaming DMA
59 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
60 * @page: page that buffer resides in
61 * @offset: offset into page for start of buffer
62 * @size: size of buffer to map
63 * @dir: DMA transfer direction
64 *
65 * Ensure that any data held in the cache is appropriately discarded
66 * or written back.
67 *
68 * The device owns this memory once this call has completed. The CPU
69 * can regain ownership by calling dma_unmap_page().
70 */
71 static dma_addr_t arm_dma_map_page(struct device *dev, struct page *page,
72 unsigned long offset, size_t size, enum dma_data_direction dir,
73 struct dma_attrs *attrs)
74 {
75 if (!arch_is_coherent())
76 __dma_page_cpu_to_dev(page, offset, size, dir);
77 return pfn_to_dma(dev, page_to_pfn(page)) + offset;
78 }
79
80 /**
81 * arm_dma_unmap_page - unmap a buffer previously mapped through dma_map_page()
82 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
83 * @handle: DMA address of buffer
84 * @size: size of buffer (same as passed to dma_map_page)
85 * @dir: DMA transfer direction (same as passed to dma_map_page)
86 *
87 * Unmap a page streaming mode DMA translation. The handle and size
88 * must match what was provided in the previous dma_map_page() call.
89 * All other usages are undefined.
90 *
91 * After this call, reads by the CPU to the buffer are guaranteed to see
92 * whatever the device wrote there.
93 */
94 static void arm_dma_unmap_page(struct device *dev, dma_addr_t handle,
95 size_t size, enum dma_data_direction dir,
96 struct dma_attrs *attrs)
97 {
98 if (!arch_is_coherent())
99 __dma_page_dev_to_cpu(pfn_to_page(dma_to_pfn(dev, handle)),
100 handle & ~PAGE_MASK, size, dir);
101 }
102
103 static void arm_dma_sync_single_for_cpu(struct device *dev,
104 dma_addr_t handle, size_t size, enum dma_data_direction dir)
105 {
106 unsigned int offset = handle & (PAGE_SIZE - 1);
107 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
108 if (!arch_is_coherent())
109 __dma_page_dev_to_cpu(page, offset, size, dir);
110 }
111
112 static void arm_dma_sync_single_for_device(struct device *dev,
113 dma_addr_t handle, size_t size, enum dma_data_direction dir)
114 {
115 unsigned int offset = handle & (PAGE_SIZE - 1);
116 struct page *page = pfn_to_page(dma_to_pfn(dev, handle-offset));
117 if (!arch_is_coherent())
118 __dma_page_cpu_to_dev(page, offset, size, dir);
119 }
120
121 static int arm_dma_set_mask(struct device *dev, u64 dma_mask);
122
123 struct dma_map_ops arm_dma_ops = {
124 .alloc = arm_dma_alloc,
125 .free = arm_dma_free,
126 .mmap = arm_dma_mmap,
127 .map_page = arm_dma_map_page,
128 .unmap_page = arm_dma_unmap_page,
129 .map_sg = arm_dma_map_sg,
130 .unmap_sg = arm_dma_unmap_sg,
131 .sync_single_for_cpu = arm_dma_sync_single_for_cpu,
132 .sync_single_for_device = arm_dma_sync_single_for_device,
133 .sync_sg_for_cpu = arm_dma_sync_sg_for_cpu,
134 .sync_sg_for_device = arm_dma_sync_sg_for_device,
135 .set_dma_mask = arm_dma_set_mask,
136 };
137 EXPORT_SYMBOL(arm_dma_ops);
138
139 static u64 get_coherent_dma_mask(struct device *dev)
140 {
141 u64 mask = (u64)arm_dma_limit;
142
143 if (dev) {
144 mask = dev->coherent_dma_mask;
145
146 /*
147 * Sanity check the DMA mask - it must be non-zero, and
148 * must be able to be satisfied by a DMA allocation.
149 */
150 if (mask == 0) {
151 dev_warn(dev, "coherent DMA mask is unset\n");
152 return 0;
153 }
154
155 if ((~mask) & (u64)arm_dma_limit) {
156 dev_warn(dev, "coherent DMA mask %#llx is smaller "
157 "than system GFP_DMA mask %#llx\n",
158 mask, (u64)arm_dma_limit);
159 return 0;
160 }
161 }
162
163 return mask;
164 }
165
166 static void __dma_clear_buffer(struct page *page, size_t size)
167 {
168 void *ptr;
169 /*
170 * Ensure that the allocated pages are zeroed, and that any data
171 * lurking in the kernel direct-mapped region is invalidated.
172 */
173 ptr = page_address(page);
174 if (ptr) {
175 memset(ptr, 0, size);
176 dmac_flush_range(ptr, ptr + size);
177 outer_flush_range(__pa(ptr), __pa(ptr) + size);
178 }
179 }
180
181 /*
182 * Allocate a DMA buffer for 'dev' of size 'size' using the
183 * specified gfp mask. Note that 'size' must be page aligned.
184 */
185 static struct page *__dma_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
186 {
187 unsigned long order = get_order(size);
188 struct page *page, *p, *e;
189
190 page = alloc_pages(gfp, order);
191 if (!page)
192 return NULL;
193
194 /*
195 * Now split the huge page and free the excess pages
196 */
197 split_page(page, order);
198 for (p = page + (size >> PAGE_SHIFT), e = page + (1 << order); p < e; p++)
199 __free_page(p);
200
201 __dma_clear_buffer(page, size);
202
203 return page;
204 }
205
206 /*
207 * Free a DMA buffer. 'size' must be page aligned.
208 */
209 static void __dma_free_buffer(struct page *page, size_t size)
210 {
211 struct page *e = page + (size >> PAGE_SHIFT);
212
213 while (page < e) {
214 __free_page(page);
215 page++;
216 }
217 }
218
219 #ifdef CONFIG_MMU
220
221 #define CONSISTENT_OFFSET(x) (((unsigned long)(x) - consistent_base) >> PAGE_SHIFT)
222 #define CONSISTENT_PTE_INDEX(x) (((unsigned long)(x) - consistent_base) >> PMD_SHIFT)
223
224 /*
225 * These are the page tables (2MB each) covering uncached, DMA consistent allocations
226 */
227 static pte_t **consistent_pte;
228
229 #define DEFAULT_CONSISTENT_DMA_SIZE SZ_2M
230
231 unsigned long consistent_base = CONSISTENT_END - DEFAULT_CONSISTENT_DMA_SIZE;
232
233 void __init init_consistent_dma_size(unsigned long size)
234 {
235 unsigned long base = CONSISTENT_END - ALIGN(size, SZ_2M);
236
237 BUG_ON(consistent_pte); /* Check we're called before DMA region init */
238 BUG_ON(base < VMALLOC_END);
239
240 /* Grow region to accommodate specified size */
241 if (base < consistent_base)
242 consistent_base = base;
243 }
244
245 #include "vmregion.h"
246
247 static struct arm_vmregion_head consistent_head = {
248 .vm_lock = __SPIN_LOCK_UNLOCKED(&consistent_head.vm_lock),
249 .vm_list = LIST_HEAD_INIT(consistent_head.vm_list),
250 .vm_end = CONSISTENT_END,
251 };
252
253 #ifdef CONFIG_HUGETLB_PAGE
254 #error ARM Coherent DMA allocator does not (yet) support huge TLB
255 #endif
256
257 /*
258 * Initialise the consistent memory allocation.
259 */
260 static int __init consistent_init(void)
261 {
262 int ret = 0;
263 pgd_t *pgd;
264 pud_t *pud;
265 pmd_t *pmd;
266 pte_t *pte;
267 int i = 0;
268 unsigned long base = consistent_base;
269 unsigned long num_ptes = (CONSISTENT_END - base) >> PMD_SHIFT;
270
271 #ifndef CONFIG_ARM_DMA_USE_IOMMU
272 if (cpu_architecture() >= CPU_ARCH_ARMv6)
273 return 0;
274 #endif
275
276 consistent_pte = kmalloc(num_ptes * sizeof(pte_t), GFP_KERNEL);
277 if (!consistent_pte) {
278 pr_err("%s: no memory\n", __func__);
279 return -ENOMEM;
280 }
281
282 pr_debug("DMA memory: 0x%08lx - 0x%08lx:\n", base, CONSISTENT_END);
283 consistent_head.vm_start = base;
284
285 do {
286 pgd = pgd_offset(&init_mm, base);
287
288 pud = pud_alloc(&init_mm, pgd, base);
289 if (!pud) {
290 pr_err("%s: no pud tables\n", __func__);
291 ret = -ENOMEM;
292 break;
293 }
294
295 pmd = pmd_alloc(&init_mm, pud, base);
296 if (!pmd) {
297 pr_err("%s: no pmd tables\n", __func__);
298 ret = -ENOMEM;
299 break;
300 }
301 WARN_ON(!pmd_none(*pmd));
302
303 pte = pte_alloc_kernel(pmd, base);
304 if (!pte) {
305 pr_err("%s: no pte tables\n", __func__);
306 ret = -ENOMEM;
307 break;
308 }
309
310 consistent_pte[i++] = pte;
311 base += PMD_SIZE;
312 } while (base < CONSISTENT_END);
313
314 return ret;
315 }
316 core_initcall(consistent_init);
317
318 static void *__alloc_from_contiguous(struct device *dev, size_t size,
319 pgprot_t prot, struct page **ret_page);
320
321 static struct arm_vmregion_head coherent_head = {
322 .vm_lock = __SPIN_LOCK_UNLOCKED(&coherent_head.vm_lock),
323 .vm_list = LIST_HEAD_INIT(coherent_head.vm_list),
324 };
325
326 size_t coherent_pool_size = DEFAULT_CONSISTENT_DMA_SIZE / 8;
327
328 static int __init early_coherent_pool(char *p)
329 {
330 coherent_pool_size = memparse(p, &p);
331 return 0;
332 }
333 early_param("coherent_pool", early_coherent_pool);
334
335 /*
336 * Initialise the coherent pool for atomic allocations.
337 */
338 static int __init coherent_init(void)
339 {
340 pgprot_t prot = pgprot_dmacoherent(pgprot_kernel);
341 size_t size = coherent_pool_size;
342 struct page *page;
343 void *ptr;
344
345 if (cpu_architecture() < CPU_ARCH_ARMv6)
346 return 0;
347
348 ptr = __alloc_from_contiguous(NULL, size, prot, &page);
349 if (ptr) {
350 coherent_head.vm_start = (unsigned long) ptr;
351 coherent_head.vm_end = (unsigned long) ptr + size;
352 printk(KERN_INFO "DMA: preallocated %u KiB pool for atomic coherent allocations\n",
353 (unsigned)size / 1024);
354 return 0;
355 }
356 printk(KERN_ERR "DMA: failed to allocate %u KiB pool for atomic coherent allocation\n",
357 (unsigned)size / 1024);
358 return -ENOMEM;
359 }
360 /*
361 * CMA is activated by core_initcall, so we must be called after it.
362 */
363 postcore_initcall(coherent_init);
364
365 struct dma_contig_early_reserve {
366 phys_addr_t base;
367 unsigned long size;
368 };
369
370 static struct dma_contig_early_reserve dma_mmu_remap[MAX_CMA_AREAS] __initdata;
371
372 static int dma_mmu_remap_num __initdata;
373
374 void __init dma_contiguous_early_fixup(phys_addr_t base, unsigned long size)
375 {
376 dma_mmu_remap[dma_mmu_remap_num].base = base;
377 dma_mmu_remap[dma_mmu_remap_num].size = size;
378 dma_mmu_remap_num++;
379 }
380
381 void __init dma_contiguous_remap(void)
382 {
383 int i;
384 for (i = 0; i < dma_mmu_remap_num; i++) {
385 phys_addr_t start = dma_mmu_remap[i].base;
386 phys_addr_t end = start + dma_mmu_remap[i].size;
387 struct map_desc map;
388 unsigned long addr;
389
390 if (end > arm_lowmem_limit)
391 end = arm_lowmem_limit;
392 if (start >= end)
393 return;
394
395 map.pfn = __phys_to_pfn(start);
396 map.virtual = __phys_to_virt(start);
397 map.length = end - start;
398 map.type = MT_MEMORY_DMA_READY;
399
400 /*
401 * Clear previous low-memory mapping
402 */
403 for (addr = __phys_to_virt(start); addr < __phys_to_virt(end);
404 addr += PMD_SIZE)
405 pmd_clear(pmd_off_k(addr));
406
407 iotable_init(&map, 1);
408 }
409 }
410
411 static void *
412 __dma_alloc_remap(struct page *page, size_t size, gfp_t gfp, pgprot_t prot,
413 const void *caller)
414 {
415 struct arm_vmregion *c;
416 size_t align;
417 int bit;
418
419 if (!consistent_pte) {
420 pr_err("%s: not initialised\n", __func__);
421 dump_stack();
422 return NULL;
423 }
424
425 /*
426 * Align the virtual region allocation - maximum alignment is
427 * a section size, minimum is a page size. This helps reduce
428 * fragmentation of the DMA space, and also prevents allocations
429 * smaller than a section from crossing a section boundary.
430 */
431 bit = fls(size - 1);
432 if (bit > SECTION_SHIFT)
433 bit = SECTION_SHIFT;
434 align = 1 << bit;
435
436 /*
437 * Allocate a virtual address in the consistent mapping region.
438 */
439 c = arm_vmregion_alloc(&consistent_head, align, size,
440 gfp & ~(__GFP_DMA | __GFP_HIGHMEM), caller);
441 if (c) {
442 pte_t *pte;
443 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
444 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
445
446 pte = consistent_pte[idx] + off;
447 c->priv = page;
448
449 do {
450 BUG_ON(!pte_none(*pte));
451
452 set_pte_ext(pte, mk_pte(page, prot), 0);
453 page++;
454 pte++;
455 off++;
456 if (off >= PTRS_PER_PTE) {
457 off = 0;
458 pte = consistent_pte[++idx];
459 }
460 } while (size -= PAGE_SIZE);
461
462 dsb();
463
464 return (void *)c->vm_start;
465 }
466 return NULL;
467 }
468
469 static void __dma_free_remap(void *cpu_addr, size_t size)
470 {
471 struct arm_vmregion *c;
472 unsigned long addr;
473 pte_t *ptep;
474 int idx;
475 u32 off;
476
477 c = arm_vmregion_find_remove(&consistent_head, (unsigned long)cpu_addr);
478 if (!c) {
479 pr_err("%s: trying to free invalid coherent area: %p\n",
480 __func__, cpu_addr);
481 dump_stack();
482 return;
483 }
484
485 if ((c->vm_end - c->vm_start) != size) {
486 pr_err("%s: freeing wrong coherent size (%ld != %d)\n",
487 __func__, c->vm_end - c->vm_start, size);
488 dump_stack();
489 size = c->vm_end - c->vm_start;
490 }
491
492 idx = CONSISTENT_PTE_INDEX(c->vm_start);
493 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
494 ptep = consistent_pte[idx] + off;
495 addr = c->vm_start;
496 do {
497 pte_t pte = ptep_get_and_clear(&init_mm, addr, ptep);
498
499 ptep++;
500 addr += PAGE_SIZE;
501 off++;
502 if (off >= PTRS_PER_PTE) {
503 off = 0;
504 ptep = consistent_pte[++idx];
505 }
506
507 if (pte_none(pte) || !pte_present(pte))
508 pr_crit("%s: bad page in kernel page table\n",
509 __func__);
510 } while (size -= PAGE_SIZE);
511
512 flush_tlb_kernel_range(c->vm_start, c->vm_end);
513
514 arm_vmregion_free(&consistent_head, c);
515 }
516
517 static int __dma_update_pte(pte_t *pte, pgtable_t token, unsigned long addr,
518 void *data)
519 {
520 struct page *page = virt_to_page(addr);
521 pgprot_t prot = *(pgprot_t *)data;
522
523 set_pte_ext(pte, mk_pte(page, prot), 0);
524 return 0;
525 }
526
527 static void __dma_remap(struct page *page, size_t size, pgprot_t prot)
528 {
529 unsigned long start = (unsigned long) page_address(page);
530 unsigned end = start + size;
531
532 apply_to_page_range(&init_mm, start, size, __dma_update_pte, &prot);
533 dsb();
534 flush_tlb_kernel_range(start, end);
535 }
536
537 static void *__alloc_remap_buffer(struct device *dev, size_t size, gfp_t gfp,
538 pgprot_t prot, struct page **ret_page,
539 const void *caller)
540 {
541 struct page *page;
542 void *ptr;
543 page = __dma_alloc_buffer(dev, size, gfp);
544 if (!page)
545 return NULL;
546
547 ptr = __dma_alloc_remap(page, size, gfp, prot, caller);
548 if (!ptr) {
549 __dma_free_buffer(page, size);
550 return NULL;
551 }
552
553 *ret_page = page;
554 return ptr;
555 }
556
557 static void *__alloc_from_pool(struct device *dev, size_t size,
558 struct page **ret_page, const void *caller)
559 {
560 struct arm_vmregion *c;
561 size_t align;
562
563 if (!coherent_head.vm_start) {
564 printk(KERN_ERR "%s: coherent pool not initialised!\n",
565 __func__);
566 dump_stack();
567 return NULL;
568 }
569
570 /*
571 * Align the region allocation - allocations from pool are rather
572 * small, so align them to their order in pages, minimum is a page
573 * size. This helps reduce fragmentation of the DMA space.
574 */
575 align = PAGE_SIZE << get_order(size);
576 c = arm_vmregion_alloc(&coherent_head, align, size, 0, caller);
577 if (c) {
578 void *ptr = (void *)c->vm_start;
579 struct page *page = virt_to_page(ptr);
580 *ret_page = page;
581 return ptr;
582 }
583 return NULL;
584 }
585
586 static int __free_from_pool(void *cpu_addr, size_t size)
587 {
588 unsigned long start = (unsigned long)cpu_addr;
589 unsigned long end = start + size;
590 struct arm_vmregion *c;
591
592 if (start < coherent_head.vm_start || end > coherent_head.vm_end)
593 return 0;
594
595 c = arm_vmregion_find_remove(&coherent_head, (unsigned long)start);
596
597 if ((c->vm_end - c->vm_start) != size) {
598 printk(KERN_ERR "%s: freeing wrong coherent size (%ld != %d)\n",
599 __func__, c->vm_end - c->vm_start, size);
600 dump_stack();
601 size = c->vm_end - c->vm_start;
602 }
603
604 arm_vmregion_free(&coherent_head, c);
605 return 1;
606 }
607
608 static void *__alloc_from_contiguous(struct device *dev, size_t size,
609 pgprot_t prot, struct page **ret_page)
610 {
611 unsigned long order = get_order(size);
612 size_t count = size >> PAGE_SHIFT;
613 struct page *page;
614
615 page = dma_alloc_from_contiguous(dev, count, order);
616 if (!page)
617 return NULL;
618
619 __dma_clear_buffer(page, size);
620 __dma_remap(page, size, prot);
621
622 *ret_page = page;
623 return page_address(page);
624 }
625
626 static void __free_from_contiguous(struct device *dev, struct page *page,
627 size_t size)
628 {
629 __dma_remap(page, size, pgprot_kernel);
630 dma_release_from_contiguous(dev, page, size >> PAGE_SHIFT);
631 }
632
633 static inline pgprot_t __get_dma_pgprot(struct dma_attrs *attrs, pgprot_t prot)
634 {
635 prot = dma_get_attr(DMA_ATTR_WRITE_COMBINE, attrs) ?
636 pgprot_writecombine(prot) :
637 pgprot_dmacoherent(prot);
638 return prot;
639 }
640
641 #define nommu() 0
642
643 #else /* !CONFIG_MMU */
644
645 #define nommu() 1
646
647 #define __get_dma_pgprot(attrs, prot) __pgprot(0)
648 #define __alloc_remap_buffer(dev, size, gfp, prot, ret, c) NULL
649 #define __alloc_from_pool(dev, size, ret_page, c) NULL
650 #define __alloc_from_contiguous(dev, size, prot, ret) NULL
651 #define __free_from_pool(cpu_addr, size) 0
652 #define __free_from_contiguous(dev, page, size) do { } while (0)
653 #define __dma_free_remap(cpu_addr, size) do { } while (0)
654
655 #endif /* CONFIG_MMU */
656
657 static void *__alloc_simple_buffer(struct device *dev, size_t size, gfp_t gfp,
658 struct page **ret_page)
659 {
660 struct page *page;
661 page = __dma_alloc_buffer(dev, size, gfp);
662 if (!page)
663 return NULL;
664
665 *ret_page = page;
666 return page_address(page);
667 }
668
669
670
671 static void *__dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
672 gfp_t gfp, pgprot_t prot, const void *caller)
673 {
674 u64 mask = get_coherent_dma_mask(dev);
675 struct page *page;
676 void *addr;
677
678 #ifdef CONFIG_DMA_API_DEBUG
679 u64 limit = (mask + 1) & ~mask;
680 if (limit && size >= limit) {
681 dev_warn(dev, "coherent allocation too big (requested %#x mask %#llx)\n",
682 size, mask);
683 return NULL;
684 }
685 #endif
686
687 if (!mask)
688 return NULL;
689
690 if (mask < 0xffffffffULL)
691 gfp |= GFP_DMA;
692
693 /*
694 * Following is a work-around (a.k.a. hack) to prevent pages
695 * with __GFP_COMP being passed to split_page() which cannot
696 * handle them. The real problem is that this flag probably
697 * should be 0 on ARM as it is not supported on this
698 * platform; see CONFIG_HUGETLBFS.
699 */
700 gfp &= ~(__GFP_COMP);
701
702 *handle = DMA_ERROR_CODE;
703 size = PAGE_ALIGN(size);
704
705 if (arch_is_coherent() || nommu())
706 addr = __alloc_simple_buffer(dev, size, gfp, &page);
707 else if (cpu_architecture() < CPU_ARCH_ARMv6)
708 addr = __alloc_remap_buffer(dev, size, gfp, prot, &page, caller);
709 else if (gfp & GFP_ATOMIC)
710 addr = __alloc_from_pool(dev, size, &page, caller);
711 else
712 addr = __alloc_from_contiguous(dev, size, prot, &page);
713
714 if (addr)
715 *handle = pfn_to_dma(dev, page_to_pfn(page));
716
717 return addr;
718 }
719
720 /*
721 * Allocate DMA-coherent memory space and return both the kernel remapped
722 * virtual and bus address for that space.
723 */
724 void *arm_dma_alloc(struct device *dev, size_t size, dma_addr_t *handle,
725 gfp_t gfp, struct dma_attrs *attrs)
726 {
727 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
728 void *memory;
729
730 if (dma_alloc_from_coherent(dev, size, handle, &memory))
731 return memory;
732
733 return __dma_alloc(dev, size, handle, gfp, prot,
734 __builtin_return_address(0));
735 }
736
737 /*
738 * Create userspace mapping for the DMA-coherent memory.
739 */
740 int arm_dma_mmap(struct device *dev, struct vm_area_struct *vma,
741 void *cpu_addr, dma_addr_t dma_addr, size_t size,
742 struct dma_attrs *attrs)
743 {
744 int ret = -ENXIO;
745 #ifdef CONFIG_MMU
746 unsigned long pfn = dma_to_pfn(dev, dma_addr);
747 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
748
749 if (dma_mmap_from_coherent(dev, vma, cpu_addr, size, &ret))
750 return ret;
751
752 ret = remap_pfn_range(vma, vma->vm_start,
753 pfn + vma->vm_pgoff,
754 vma->vm_end - vma->vm_start,
755 vma->vm_page_prot);
756 #endif /* CONFIG_MMU */
757
758 return ret;
759 }
760
761 /*
762 * Free a buffer as defined by the above mapping.
763 */
764 void arm_dma_free(struct device *dev, size_t size, void *cpu_addr,
765 dma_addr_t handle, struct dma_attrs *attrs)
766 {
767 struct page *page = pfn_to_page(dma_to_pfn(dev, handle));
768
769 if (dma_release_from_coherent(dev, get_order(size), cpu_addr))
770 return;
771
772 size = PAGE_ALIGN(size);
773
774 if (arch_is_coherent() || nommu()) {
775 __dma_free_buffer(page, size);
776 } else if (cpu_architecture() < CPU_ARCH_ARMv6) {
777 __dma_free_remap(cpu_addr, size);
778 __dma_free_buffer(page, size);
779 } else {
780 if (__free_from_pool(cpu_addr, size))
781 return;
782 /*
783 * Non-atomic allocations cannot be freed with IRQs disabled
784 */
785 WARN_ON(irqs_disabled());
786 __free_from_contiguous(dev, page, size);
787 }
788 }
789
790 static void dma_cache_maint_page(struct page *page, unsigned long offset,
791 size_t size, enum dma_data_direction dir,
792 void (*op)(const void *, size_t, int))
793 {
794 /*
795 * A single sg entry may refer to multiple physically contiguous
796 * pages. But we still need to process highmem pages individually.
797 * If highmem is not configured then the bulk of this loop gets
798 * optimized out.
799 */
800 size_t left = size;
801 do {
802 size_t len = left;
803 void *vaddr;
804
805 if (PageHighMem(page)) {
806 if (len + offset > PAGE_SIZE) {
807 if (offset >= PAGE_SIZE) {
808 page += offset / PAGE_SIZE;
809 offset %= PAGE_SIZE;
810 }
811 len = PAGE_SIZE - offset;
812 }
813 vaddr = kmap_high_get(page);
814 if (vaddr) {
815 vaddr += offset;
816 op(vaddr, len, dir);
817 kunmap_high(page);
818 } else if (cache_is_vipt()) {
819 /* unmapped pages might still be cached */
820 vaddr = kmap_atomic(page);
821 op(vaddr + offset, len, dir);
822 kunmap_atomic(vaddr);
823 }
824 } else {
825 vaddr = page_address(page) + offset;
826 op(vaddr, len, dir);
827 }
828 offset = 0;
829 page++;
830 left -= len;
831 } while (left);
832 }
833
834 /*
835 * Make an area consistent for devices.
836 * Note: Drivers should NOT use this function directly, as it will break
837 * platforms with CONFIG_DMABOUNCE.
838 * Use the driver DMA support - see dma-mapping.h (dma_sync_*)
839 */
840 static void __dma_page_cpu_to_dev(struct page *page, unsigned long off,
841 size_t size, enum dma_data_direction dir)
842 {
843 unsigned long paddr;
844
845 dma_cache_maint_page(page, off, size, dir, dmac_map_area);
846
847 paddr = page_to_phys(page) + off;
848 if (dir == DMA_FROM_DEVICE) {
849 outer_inv_range(paddr, paddr + size);
850 } else {
851 outer_clean_range(paddr, paddr + size);
852 }
853 /* FIXME: non-speculating: flush on bidirectional mappings? */
854 }
855
856 static void __dma_page_dev_to_cpu(struct page *page, unsigned long off,
857 size_t size, enum dma_data_direction dir)
858 {
859 unsigned long paddr = page_to_phys(page) + off;
860
861 /* FIXME: non-speculating: not required */
862 /* don't bother invalidating if DMA to device */
863 if (dir != DMA_TO_DEVICE)
864 outer_inv_range(paddr, paddr + size);
865
866 dma_cache_maint_page(page, off, size, dir, dmac_unmap_area);
867
868 /*
869 * Mark the D-cache clean for this page to avoid extra flushing.
870 */
871 if (dir != DMA_TO_DEVICE && off == 0 && size >= PAGE_SIZE)
872 set_bit(PG_dcache_clean, &page->flags);
873 }
874
875 /**
876 * arm_dma_map_sg - map a set of SG buffers for streaming mode DMA
877 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
878 * @sg: list of buffers
879 * @nents: number of buffers to map
880 * @dir: DMA transfer direction
881 *
882 * Map a set of buffers described by scatterlist in streaming mode for DMA.
883 * This is the scatter-gather version of the dma_map_single interface.
884 * Here the scatter gather list elements are each tagged with the
885 * appropriate dma address and length. They are obtained via
886 * sg_dma_{address,length}.
887 *
888 * Device ownership issues as mentioned for dma_map_single are the same
889 * here.
890 */
891 int arm_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
892 enum dma_data_direction dir, struct dma_attrs *attrs)
893 {
894 struct dma_map_ops *ops = get_dma_ops(dev);
895 struct scatterlist *s;
896 int i, j;
897
898 for_each_sg(sg, s, nents, i) {
899 #ifdef CONFIG_NEED_SG_DMA_LENGTH
900 s->dma_length = s->length;
901 #endif
902 s->dma_address = ops->map_page(dev, sg_page(s), s->offset,
903 s->length, dir, attrs);
904 if (dma_mapping_error(dev, s->dma_address))
905 goto bad_mapping;
906 }
907 return nents;
908
909 bad_mapping:
910 for_each_sg(sg, s, i, j)
911 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
912 return 0;
913 }
914
915 /**
916 * arm_dma_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
917 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
918 * @sg: list of buffers
919 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
920 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
921 *
922 * Unmap a set of streaming mode DMA translations. Again, CPU access
923 * rules concerning calls here are the same as for dma_unmap_single().
924 */
925 void arm_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
926 enum dma_data_direction dir, struct dma_attrs *attrs)
927 {
928 struct dma_map_ops *ops = get_dma_ops(dev);
929 struct scatterlist *s;
930
931 int i;
932
933 for_each_sg(sg, s, nents, i)
934 ops->unmap_page(dev, sg_dma_address(s), sg_dma_len(s), dir, attrs);
935 }
936
937 /**
938 * arm_dma_sync_sg_for_cpu
939 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
940 * @sg: list of buffers
941 * @nents: number of buffers to map (returned from dma_map_sg)
942 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
943 */
944 void arm_dma_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
945 int nents, enum dma_data_direction dir)
946 {
947 struct dma_map_ops *ops = get_dma_ops(dev);
948 struct scatterlist *s;
949 int i;
950
951 for_each_sg(sg, s, nents, i)
952 ops->sync_single_for_cpu(dev, sg_dma_address(s), s->length,
953 dir);
954 }
955
956 /**
957 * arm_dma_sync_sg_for_device
958 * @dev: valid struct device pointer, or NULL for ISA and EISA-like devices
959 * @sg: list of buffers
960 * @nents: number of buffers to map (returned from dma_map_sg)
961 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
962 */
963 void arm_dma_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
964 int nents, enum dma_data_direction dir)
965 {
966 struct dma_map_ops *ops = get_dma_ops(dev);
967 struct scatterlist *s;
968 int i;
969
970 for_each_sg(sg, s, nents, i)
971 ops->sync_single_for_device(dev, sg_dma_address(s), s->length,
972 dir);
973 }
974
975 /*
976 * Return whether the given device DMA address mask can be supported
977 * properly. For example, if your device can only drive the low 24-bits
978 * during bus mastering, then you would pass 0x00ffffff as the mask
979 * to this function.
980 */
981 int dma_supported(struct device *dev, u64 mask)
982 {
983 if (mask < (u64)arm_dma_limit)
984 return 0;
985 return 1;
986 }
987 EXPORT_SYMBOL(dma_supported);
988
989 static int arm_dma_set_mask(struct device *dev, u64 dma_mask)
990 {
991 if (!dev->dma_mask || !dma_supported(dev, dma_mask))
992 return -EIO;
993
994 *dev->dma_mask = dma_mask;
995
996 return 0;
997 }
998
999 #define PREALLOC_DMA_DEBUG_ENTRIES 4096
1000
1001 static int __init dma_debug_do_init(void)
1002 {
1003 #ifdef CONFIG_MMU
1004 arm_vmregion_create_proc("dma-mappings", &consistent_head);
1005 #endif
1006 dma_debug_init(PREALLOC_DMA_DEBUG_ENTRIES);
1007 return 0;
1008 }
1009 fs_initcall(dma_debug_do_init);
1010
1011 #ifdef CONFIG_ARM_DMA_USE_IOMMU
1012
1013 /* IOMMU */
1014
1015 static inline dma_addr_t __alloc_iova(struct dma_iommu_mapping *mapping,
1016 size_t size)
1017 {
1018 unsigned int order = get_order(size);
1019 unsigned int align = 0;
1020 unsigned int count, start;
1021 unsigned long flags;
1022
1023 count = ((PAGE_ALIGN(size) >> PAGE_SHIFT) +
1024 (1 << mapping->order) - 1) >> mapping->order;
1025
1026 if (order > mapping->order)
1027 align = (1 << (order - mapping->order)) - 1;
1028
1029 spin_lock_irqsave(&mapping->lock, flags);
1030 start = bitmap_find_next_zero_area(mapping->bitmap, mapping->bits, 0,
1031 count, align);
1032 if (start > mapping->bits) {
1033 spin_unlock_irqrestore(&mapping->lock, flags);
1034 return DMA_ERROR_CODE;
1035 }
1036
1037 bitmap_set(mapping->bitmap, start, count);
1038 spin_unlock_irqrestore(&mapping->lock, flags);
1039
1040 return mapping->base + (start << (mapping->order + PAGE_SHIFT));
1041 }
1042
1043 static inline void __free_iova(struct dma_iommu_mapping *mapping,
1044 dma_addr_t addr, size_t size)
1045 {
1046 unsigned int start = (addr - mapping->base) >>
1047 (mapping->order + PAGE_SHIFT);
1048 unsigned int count = ((size >> PAGE_SHIFT) +
1049 (1 << mapping->order) - 1) >> mapping->order;
1050 unsigned long flags;
1051
1052 spin_lock_irqsave(&mapping->lock, flags);
1053 bitmap_clear(mapping->bitmap, start, count);
1054 spin_unlock_irqrestore(&mapping->lock, flags);
1055 }
1056
1057 static struct page **__iommu_alloc_buffer(struct device *dev, size_t size, gfp_t gfp)
1058 {
1059 struct page **pages;
1060 int count = size >> PAGE_SHIFT;
1061 int array_size = count * sizeof(struct page *);
1062 int i = 0;
1063
1064 if (array_size <= PAGE_SIZE)
1065 pages = kzalloc(array_size, gfp);
1066 else
1067 pages = vzalloc(array_size);
1068 if (!pages)
1069 return NULL;
1070
1071 while (count) {
1072 int j, order = __ffs(count);
1073
1074 pages[i] = alloc_pages(gfp | __GFP_NOWARN, order);
1075 while (!pages[i] && order)
1076 pages[i] = alloc_pages(gfp | __GFP_NOWARN, --order);
1077 if (!pages[i])
1078 goto error;
1079
1080 if (order)
1081 split_page(pages[i], order);
1082 j = 1 << order;
1083 while (--j)
1084 pages[i + j] = pages[i] + j;
1085
1086 __dma_clear_buffer(pages[i], PAGE_SIZE << order);
1087 i += 1 << order;
1088 count -= 1 << order;
1089 }
1090
1091 return pages;
1092 error:
1093 while (--i)
1094 if (pages[i])
1095 __free_pages(pages[i], 0);
1096 if (array_size < PAGE_SIZE)
1097 kfree(pages);
1098 else
1099 vfree(pages);
1100 return NULL;
1101 }
1102
1103 static int __iommu_free_buffer(struct device *dev, struct page **pages, size_t size)
1104 {
1105 int count = size >> PAGE_SHIFT;
1106 int array_size = count * sizeof(struct page *);
1107 int i;
1108 for (i = 0; i < count; i++)
1109 if (pages[i])
1110 __free_pages(pages[i], 0);
1111 if (array_size < PAGE_SIZE)
1112 kfree(pages);
1113 else
1114 vfree(pages);
1115 return 0;
1116 }
1117
1118 /*
1119 * Create a CPU mapping for a specified pages
1120 */
1121 static void *
1122 __iommu_alloc_remap(struct page **pages, size_t size, gfp_t gfp, pgprot_t prot)
1123 {
1124 struct arm_vmregion *c;
1125 size_t align;
1126 size_t count = size >> PAGE_SHIFT;
1127 int bit;
1128
1129 if (!consistent_pte[0]) {
1130 pr_err("%s: not initialised\n", __func__);
1131 dump_stack();
1132 return NULL;
1133 }
1134
1135 /*
1136 * Align the virtual region allocation - maximum alignment is
1137 * a section size, minimum is a page size. This helps reduce
1138 * fragmentation of the DMA space, and also prevents allocations
1139 * smaller than a section from crossing a section boundary.
1140 */
1141 bit = fls(size - 1);
1142 if (bit > SECTION_SHIFT)
1143 bit = SECTION_SHIFT;
1144 align = 1 << bit;
1145
1146 /*
1147 * Allocate a virtual address in the consistent mapping region.
1148 */
1149 c = arm_vmregion_alloc(&consistent_head, align, size,
1150 gfp & ~(__GFP_DMA | __GFP_HIGHMEM), NULL);
1151 if (c) {
1152 pte_t *pte;
1153 int idx = CONSISTENT_PTE_INDEX(c->vm_start);
1154 int i = 0;
1155 u32 off = CONSISTENT_OFFSET(c->vm_start) & (PTRS_PER_PTE-1);
1156
1157 pte = consistent_pte[idx] + off;
1158 c->priv = pages;
1159
1160 do {
1161 BUG_ON(!pte_none(*pte));
1162
1163 set_pte_ext(pte, mk_pte(pages[i], prot), 0);
1164 pte++;
1165 off++;
1166 i++;
1167 if (off >= PTRS_PER_PTE) {
1168 off = 0;
1169 pte = consistent_pte[++idx];
1170 }
1171 } while (i < count);
1172
1173 dsb();
1174
1175 return (void *)c->vm_start;
1176 }
1177 return NULL;
1178 }
1179
1180 /*
1181 * Create a mapping in device IO address space for specified pages
1182 */
1183 static dma_addr_t
1184 __iommu_create_mapping(struct device *dev, struct page **pages, size_t size)
1185 {
1186 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1187 unsigned int count = PAGE_ALIGN(size) >> PAGE_SHIFT;
1188 dma_addr_t dma_addr, iova;
1189 int i, ret = DMA_ERROR_CODE;
1190
1191 dma_addr = __alloc_iova(mapping, size);
1192 if (dma_addr == DMA_ERROR_CODE)
1193 return dma_addr;
1194
1195 iova = dma_addr;
1196 for (i = 0; i < count; ) {
1197 unsigned int next_pfn = page_to_pfn(pages[i]) + 1;
1198 phys_addr_t phys = page_to_phys(pages[i]);
1199 unsigned int len, j;
1200
1201 for (j = i + 1; j < count; j++, next_pfn++)
1202 if (page_to_pfn(pages[j]) != next_pfn)
1203 break;
1204
1205 len = (j - i) << PAGE_SHIFT;
1206 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1207 if (ret < 0)
1208 goto fail;
1209 iova += len;
1210 i = j;
1211 }
1212 return dma_addr;
1213 fail:
1214 iommu_unmap(mapping->domain, dma_addr, iova-dma_addr);
1215 __free_iova(mapping, dma_addr, size);
1216 return DMA_ERROR_CODE;
1217 }
1218
1219 static int __iommu_remove_mapping(struct device *dev, dma_addr_t iova, size_t size)
1220 {
1221 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1222
1223 /*
1224 * add optional in-page offset from iova to size and align
1225 * result to page size
1226 */
1227 size = PAGE_ALIGN((iova & ~PAGE_MASK) + size);
1228 iova &= PAGE_MASK;
1229
1230 iommu_unmap(mapping->domain, iova, size);
1231 __free_iova(mapping, iova, size);
1232 return 0;
1233 }
1234
1235 static void *arm_iommu_alloc_attrs(struct device *dev, size_t size,
1236 dma_addr_t *handle, gfp_t gfp, struct dma_attrs *attrs)
1237 {
1238 pgprot_t prot = __get_dma_pgprot(attrs, pgprot_kernel);
1239 struct page **pages;
1240 void *addr = NULL;
1241
1242 *handle = DMA_ERROR_CODE;
1243 size = PAGE_ALIGN(size);
1244
1245 pages = __iommu_alloc_buffer(dev, size, gfp);
1246 if (!pages)
1247 return NULL;
1248
1249 *handle = __iommu_create_mapping(dev, pages, size);
1250 if (*handle == DMA_ERROR_CODE)
1251 goto err_buffer;
1252
1253 addr = __iommu_alloc_remap(pages, size, gfp, prot);
1254 if (!addr)
1255 goto err_mapping;
1256
1257 return addr;
1258
1259 err_mapping:
1260 __iommu_remove_mapping(dev, *handle, size);
1261 err_buffer:
1262 __iommu_free_buffer(dev, pages, size);
1263 return NULL;
1264 }
1265
1266 static int arm_iommu_mmap_attrs(struct device *dev, struct vm_area_struct *vma,
1267 void *cpu_addr, dma_addr_t dma_addr, size_t size,
1268 struct dma_attrs *attrs)
1269 {
1270 struct arm_vmregion *c;
1271
1272 vma->vm_page_prot = __get_dma_pgprot(attrs, vma->vm_page_prot);
1273 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
1274
1275 if (c) {
1276 struct page **pages = c->priv;
1277
1278 unsigned long uaddr = vma->vm_start;
1279 unsigned long usize = vma->vm_end - vma->vm_start;
1280 int i = 0;
1281
1282 do {
1283 int ret;
1284
1285 ret = vm_insert_page(vma, uaddr, pages[i++]);
1286 if (ret) {
1287 pr_err("Remapping memory, error: %d\n", ret);
1288 return ret;
1289 }
1290
1291 uaddr += PAGE_SIZE;
1292 usize -= PAGE_SIZE;
1293 } while (usize > 0);
1294 }
1295 return 0;
1296 }
1297
1298 /*
1299 * free a page as defined by the above mapping.
1300 * Must not be called with IRQs disabled.
1301 */
1302 void arm_iommu_free_attrs(struct device *dev, size_t size, void *cpu_addr,
1303 dma_addr_t handle, struct dma_attrs *attrs)
1304 {
1305 struct arm_vmregion *c;
1306 size = PAGE_ALIGN(size);
1307
1308 c = arm_vmregion_find(&consistent_head, (unsigned long)cpu_addr);
1309 if (c) {
1310 struct page **pages = c->priv;
1311 __dma_free_remap(cpu_addr, size);
1312 __iommu_remove_mapping(dev, handle, size);
1313 __iommu_free_buffer(dev, pages, size);
1314 }
1315 }
1316
1317 /*
1318 * Map a part of the scatter-gather list into contiguous io address space
1319 */
1320 static int __map_sg_chunk(struct device *dev, struct scatterlist *sg,
1321 size_t size, dma_addr_t *handle,
1322 enum dma_data_direction dir)
1323 {
1324 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1325 dma_addr_t iova, iova_base;
1326 int ret = 0;
1327 unsigned int count;
1328 struct scatterlist *s;
1329
1330 size = PAGE_ALIGN(size);
1331 *handle = DMA_ERROR_CODE;
1332
1333 iova_base = iova = __alloc_iova(mapping, size);
1334 if (iova == DMA_ERROR_CODE)
1335 return -ENOMEM;
1336
1337 for (count = 0, s = sg; count < (size >> PAGE_SHIFT); s = sg_next(s)) {
1338 phys_addr_t phys = page_to_phys(sg_page(s));
1339 unsigned int len = PAGE_ALIGN(s->offset + s->length);
1340
1341 if (!arch_is_coherent())
1342 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1343
1344 ret = iommu_map(mapping->domain, iova, phys, len, 0);
1345 if (ret < 0)
1346 goto fail;
1347 count += len >> PAGE_SHIFT;
1348 iova += len;
1349 }
1350 *handle = iova_base;
1351
1352 return 0;
1353 fail:
1354 iommu_unmap(mapping->domain, iova_base, count * PAGE_SIZE);
1355 __free_iova(mapping, iova_base, size);
1356 return ret;
1357 }
1358
1359 /**
1360 * arm_iommu_map_sg - map a set of SG buffers for streaming mode DMA
1361 * @dev: valid struct device pointer
1362 * @sg: list of buffers
1363 * @nents: number of buffers to map
1364 * @dir: DMA transfer direction
1365 *
1366 * Map a set of buffers described by scatterlist in streaming mode for DMA.
1367 * The scatter gather list elements are merged together (if possible) and
1368 * tagged with the appropriate dma address and length. They are obtained via
1369 * sg_dma_{address,length}.
1370 */
1371 int arm_iommu_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1372 enum dma_data_direction dir, struct dma_attrs *attrs)
1373 {
1374 struct scatterlist *s = sg, *dma = sg, *start = sg;
1375 int i, count = 0;
1376 unsigned int offset = s->offset;
1377 unsigned int size = s->offset + s->length;
1378 unsigned int max = dma_get_max_seg_size(dev);
1379
1380 for (i = 1; i < nents; i++) {
1381 s = sg_next(s);
1382
1383 s->dma_address = DMA_ERROR_CODE;
1384 s->dma_length = 0;
1385
1386 if (s->offset || (size & ~PAGE_MASK) || size + s->length > max) {
1387 if (__map_sg_chunk(dev, start, size, &dma->dma_address,
1388 dir) < 0)
1389 goto bad_mapping;
1390
1391 dma->dma_address += offset;
1392 dma->dma_length = size - offset;
1393
1394 size = offset = s->offset;
1395 start = s;
1396 dma = sg_next(dma);
1397 count += 1;
1398 }
1399 size += s->length;
1400 }
1401 if (__map_sg_chunk(dev, start, size, &dma->dma_address, dir) < 0)
1402 goto bad_mapping;
1403
1404 dma->dma_address += offset;
1405 dma->dma_length = size - offset;
1406
1407 return count+1;
1408
1409 bad_mapping:
1410 for_each_sg(sg, s, count, i)
1411 __iommu_remove_mapping(dev, sg_dma_address(s), sg_dma_len(s));
1412 return 0;
1413 }
1414
1415 /**
1416 * arm_iommu_unmap_sg - unmap a set of SG buffers mapped by dma_map_sg
1417 * @dev: valid struct device pointer
1418 * @sg: list of buffers
1419 * @nents: number of buffers to unmap (same as was passed to dma_map_sg)
1420 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1421 *
1422 * Unmap a set of streaming mode DMA translations. Again, CPU access
1423 * rules concerning calls here are the same as for dma_unmap_single().
1424 */
1425 void arm_iommu_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1426 enum dma_data_direction dir, struct dma_attrs *attrs)
1427 {
1428 struct scatterlist *s;
1429 int i;
1430
1431 for_each_sg(sg, s, nents, i) {
1432 if (sg_dma_len(s))
1433 __iommu_remove_mapping(dev, sg_dma_address(s),
1434 sg_dma_len(s));
1435 if (!arch_is_coherent())
1436 __dma_page_dev_to_cpu(sg_page(s), s->offset,
1437 s->length, dir);
1438 }
1439 }
1440
1441 /**
1442 * arm_iommu_sync_sg_for_cpu
1443 * @dev: valid struct device pointer
1444 * @sg: list of buffers
1445 * @nents: number of buffers to map (returned from dma_map_sg)
1446 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1447 */
1448 void arm_iommu_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
1449 int nents, enum dma_data_direction dir)
1450 {
1451 struct scatterlist *s;
1452 int i;
1453
1454 for_each_sg(sg, s, nents, i)
1455 if (!arch_is_coherent())
1456 __dma_page_dev_to_cpu(sg_page(s), s->offset, s->length, dir);
1457
1458 }
1459
1460 /**
1461 * arm_iommu_sync_sg_for_device
1462 * @dev: valid struct device pointer
1463 * @sg: list of buffers
1464 * @nents: number of buffers to map (returned from dma_map_sg)
1465 * @dir: DMA transfer direction (same as was passed to dma_map_sg)
1466 */
1467 void arm_iommu_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
1468 int nents, enum dma_data_direction dir)
1469 {
1470 struct scatterlist *s;
1471 int i;
1472
1473 for_each_sg(sg, s, nents, i)
1474 if (!arch_is_coherent())
1475 __dma_page_cpu_to_dev(sg_page(s), s->offset, s->length, dir);
1476 }
1477
1478
1479 /**
1480 * arm_iommu_map_page
1481 * @dev: valid struct device pointer
1482 * @page: page that buffer resides in
1483 * @offset: offset into page for start of buffer
1484 * @size: size of buffer to map
1485 * @dir: DMA transfer direction
1486 *
1487 * IOMMU aware version of arm_dma_map_page()
1488 */
1489 static dma_addr_t arm_iommu_map_page(struct device *dev, struct page *page,
1490 unsigned long offset, size_t size, enum dma_data_direction dir,
1491 struct dma_attrs *attrs)
1492 {
1493 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1494 dma_addr_t dma_addr;
1495 int ret, len = PAGE_ALIGN(size + offset);
1496
1497 if (!arch_is_coherent())
1498 __dma_page_cpu_to_dev(page, offset, size, dir);
1499
1500 dma_addr = __alloc_iova(mapping, len);
1501 if (dma_addr == DMA_ERROR_CODE)
1502 return dma_addr;
1503
1504 ret = iommu_map(mapping->domain, dma_addr, page_to_phys(page), len, 0);
1505 if (ret < 0)
1506 goto fail;
1507
1508 return dma_addr + offset;
1509 fail:
1510 __free_iova(mapping, dma_addr, len);
1511 return DMA_ERROR_CODE;
1512 }
1513
1514 /**
1515 * arm_iommu_unmap_page
1516 * @dev: valid struct device pointer
1517 * @handle: DMA address of buffer
1518 * @size: size of buffer (same as passed to dma_map_page)
1519 * @dir: DMA transfer direction (same as passed to dma_map_page)
1520 *
1521 * IOMMU aware version of arm_dma_unmap_page()
1522 */
1523 static void arm_iommu_unmap_page(struct device *dev, dma_addr_t handle,
1524 size_t size, enum dma_data_direction dir,
1525 struct dma_attrs *attrs)
1526 {
1527 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1528 dma_addr_t iova = handle & PAGE_MASK;
1529 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1530 int offset = handle & ~PAGE_MASK;
1531 int len = PAGE_ALIGN(size + offset);
1532
1533 if (!iova)
1534 return;
1535
1536 if (!arch_is_coherent())
1537 __dma_page_dev_to_cpu(page, offset, size, dir);
1538
1539 iommu_unmap(mapping->domain, iova, len);
1540 __free_iova(mapping, iova, len);
1541 }
1542
1543 static void arm_iommu_sync_single_for_cpu(struct device *dev,
1544 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1545 {
1546 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1547 dma_addr_t iova = handle & PAGE_MASK;
1548 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1549 unsigned int offset = handle & ~PAGE_MASK;
1550
1551 if (!iova)
1552 return;
1553
1554 if (!arch_is_coherent())
1555 __dma_page_dev_to_cpu(page, offset, size, dir);
1556 }
1557
1558 static void arm_iommu_sync_single_for_device(struct device *dev,
1559 dma_addr_t handle, size_t size, enum dma_data_direction dir)
1560 {
1561 struct dma_iommu_mapping *mapping = dev->archdata.mapping;
1562 dma_addr_t iova = handle & PAGE_MASK;
1563 struct page *page = phys_to_page(iommu_iova_to_phys(mapping->domain, iova));
1564 unsigned int offset = handle & ~PAGE_MASK;
1565
1566 if (!iova)
1567 return;
1568
1569 __dma_page_cpu_to_dev(page, offset, size, dir);
1570 }
1571
1572 struct dma_map_ops iommu_ops = {
1573 .alloc = arm_iommu_alloc_attrs,
1574 .free = arm_iommu_free_attrs,
1575 .mmap = arm_iommu_mmap_attrs,
1576
1577 .map_page = arm_iommu_map_page,
1578 .unmap_page = arm_iommu_unmap_page,
1579 .sync_single_for_cpu = arm_iommu_sync_single_for_cpu,
1580 .sync_single_for_device = arm_iommu_sync_single_for_device,
1581
1582 .map_sg = arm_iommu_map_sg,
1583 .unmap_sg = arm_iommu_unmap_sg,
1584 .sync_sg_for_cpu = arm_iommu_sync_sg_for_cpu,
1585 .sync_sg_for_device = arm_iommu_sync_sg_for_device,
1586 };
1587
1588 /**
1589 * arm_iommu_create_mapping
1590 * @bus: pointer to the bus holding the client device (for IOMMU calls)
1591 * @base: start address of the valid IO address space
1592 * @size: size of the valid IO address space
1593 * @order: accuracy of the IO addresses allocations
1594 *
1595 * Creates a mapping structure which holds information about used/unused
1596 * IO address ranges, which is required to perform memory allocation and
1597 * mapping with IOMMU aware functions.
1598 *
1599 * The client device need to be attached to the mapping with
1600 * arm_iommu_attach_device function.
1601 */
1602 struct dma_iommu_mapping *
1603 arm_iommu_create_mapping(struct bus_type *bus, dma_addr_t base, size_t size,
1604 int order)
1605 {
1606 unsigned int count = size >> (PAGE_SHIFT + order);
1607 unsigned int bitmap_size = BITS_TO_LONGS(count) * sizeof(long);
1608 struct dma_iommu_mapping *mapping;
1609 int err = -ENOMEM;
1610
1611 if (!count)
1612 return ERR_PTR(-EINVAL);
1613
1614 mapping = kzalloc(sizeof(struct dma_iommu_mapping), GFP_KERNEL);
1615 if (!mapping)
1616 goto err;
1617
1618 mapping->bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1619 if (!mapping->bitmap)
1620 goto err2;
1621
1622 mapping->base = base;
1623 mapping->bits = BITS_PER_BYTE * bitmap_size;
1624 mapping->order = order;
1625 spin_lock_init(&mapping->lock);
1626
1627 mapping->domain = iommu_domain_alloc(bus);
1628 if (!mapping->domain)
1629 goto err3;
1630
1631 kref_init(&mapping->kref);
1632 return mapping;
1633 err3:
1634 kfree(mapping->bitmap);
1635 err2:
1636 kfree(mapping);
1637 err:
1638 return ERR_PTR(err);
1639 }
1640
1641 static void release_iommu_mapping(struct kref *kref)
1642 {
1643 struct dma_iommu_mapping *mapping =
1644 container_of(kref, struct dma_iommu_mapping, kref);
1645
1646 iommu_domain_free(mapping->domain);
1647 kfree(mapping->bitmap);
1648 kfree(mapping);
1649 }
1650
1651 void arm_iommu_release_mapping(struct dma_iommu_mapping *mapping)
1652 {
1653 if (mapping)
1654 kref_put(&mapping->kref, release_iommu_mapping);
1655 }
1656
1657 /**
1658 * arm_iommu_attach_device
1659 * @dev: valid struct device pointer
1660 * @mapping: io address space mapping structure (returned from
1661 * arm_iommu_create_mapping)
1662 *
1663 * Attaches specified io address space mapping to the provided device,
1664 * this replaces the dma operations (dma_map_ops pointer) with the
1665 * IOMMU aware version. More than one client might be attached to
1666 * the same io address space mapping.
1667 */
1668 int arm_iommu_attach_device(struct device *dev,
1669 struct dma_iommu_mapping *mapping)
1670 {
1671 int err;
1672
1673 err = iommu_attach_device(mapping->domain, dev);
1674 if (err)
1675 return err;
1676
1677 kref_get(&mapping->kref);
1678 dev->archdata.mapping = mapping;
1679 set_dma_ops(dev, &iommu_ops);
1680
1681 pr_info("Attached IOMMU controller to %s device.\n", dev_name(dev));
1682 return 0;
1683 }
1684
1685 #endif