Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/sage/ceph...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/cpu.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/kvm_host.h>
23 #include <linux/module.h>
24 #include <linux/vmalloc.h>
25 #include <linux/fs.h>
26 #include <linux/mman.h>
27 #include <linux/sched.h>
28 #include <linux/kvm.h>
29 #include <trace/events/kvm.h>
30
31 #define CREATE_TRACE_POINTS
32 #include "trace.h"
33
34 #include <asm/uaccess.h>
35 #include <asm/ptrace.h>
36 #include <asm/mman.h>
37 #include <asm/tlbflush.h>
38 #include <asm/cacheflush.h>
39 #include <asm/virt.h>
40 #include <asm/kvm_arm.h>
41 #include <asm/kvm_asm.h>
42 #include <asm/kvm_mmu.h>
43 #include <asm/kvm_emulate.h>
44 #include <asm/kvm_coproc.h>
45 #include <asm/kvm_psci.h>
46
47 #ifdef REQUIRES_VIRT
48 __asm__(".arch_extension virt");
49 #endif
50
51 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
52 static kvm_cpu_context_t __percpu *kvm_host_cpu_state;
53 static unsigned long hyp_default_vectors;
54
55 /* Per-CPU variable containing the currently running vcpu. */
56 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
57
58 /* The VMID used in the VTTBR */
59 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
60 static u8 kvm_next_vmid;
61 static DEFINE_SPINLOCK(kvm_vmid_lock);
62
63 static bool vgic_present;
64
65 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
66 {
67 BUG_ON(preemptible());
68 __get_cpu_var(kvm_arm_running_vcpu) = vcpu;
69 }
70
71 /**
72 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
73 * Must be called from non-preemptible context
74 */
75 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
76 {
77 BUG_ON(preemptible());
78 return __get_cpu_var(kvm_arm_running_vcpu);
79 }
80
81 /**
82 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
83 */
84 struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
85 {
86 return &kvm_arm_running_vcpu;
87 }
88
89 int kvm_arch_hardware_enable(void *garbage)
90 {
91 return 0;
92 }
93
94 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
95 {
96 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
97 }
98
99 void kvm_arch_hardware_disable(void *garbage)
100 {
101 }
102
103 int kvm_arch_hardware_setup(void)
104 {
105 return 0;
106 }
107
108 void kvm_arch_hardware_unsetup(void)
109 {
110 }
111
112 void kvm_arch_check_processor_compat(void *rtn)
113 {
114 *(int *)rtn = 0;
115 }
116
117 void kvm_arch_sync_events(struct kvm *kvm)
118 {
119 }
120
121 /**
122 * kvm_arch_init_vm - initializes a VM data structure
123 * @kvm: pointer to the KVM struct
124 */
125 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
126 {
127 int ret = 0;
128
129 if (type)
130 return -EINVAL;
131
132 ret = kvm_alloc_stage2_pgd(kvm);
133 if (ret)
134 goto out_fail_alloc;
135
136 ret = create_hyp_mappings(kvm, kvm + 1);
137 if (ret)
138 goto out_free_stage2_pgd;
139
140 /* Mark the initial VMID generation invalid */
141 kvm->arch.vmid_gen = 0;
142
143 return ret;
144 out_free_stage2_pgd:
145 kvm_free_stage2_pgd(kvm);
146 out_fail_alloc:
147 return ret;
148 }
149
150 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
151 {
152 return VM_FAULT_SIGBUS;
153 }
154
155 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
156 struct kvm_memory_slot *dont)
157 {
158 }
159
160 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
161 {
162 return 0;
163 }
164
165 /**
166 * kvm_arch_destroy_vm - destroy the VM data structure
167 * @kvm: pointer to the KVM struct
168 */
169 void kvm_arch_destroy_vm(struct kvm *kvm)
170 {
171 int i;
172
173 kvm_free_stage2_pgd(kvm);
174
175 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
176 if (kvm->vcpus[i]) {
177 kvm_arch_vcpu_free(kvm->vcpus[i]);
178 kvm->vcpus[i] = NULL;
179 }
180 }
181 }
182
183 int kvm_dev_ioctl_check_extension(long ext)
184 {
185 int r;
186 switch (ext) {
187 case KVM_CAP_IRQCHIP:
188 r = vgic_present;
189 break;
190 case KVM_CAP_USER_MEMORY:
191 case KVM_CAP_SYNC_MMU:
192 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
193 case KVM_CAP_ONE_REG:
194 case KVM_CAP_ARM_PSCI:
195 r = 1;
196 break;
197 case KVM_CAP_COALESCED_MMIO:
198 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
199 break;
200 case KVM_CAP_ARM_SET_DEVICE_ADDR:
201 r = 1;
202 break;
203 case KVM_CAP_NR_VCPUS:
204 r = num_online_cpus();
205 break;
206 case KVM_CAP_MAX_VCPUS:
207 r = KVM_MAX_VCPUS;
208 break;
209 default:
210 r = kvm_arch_dev_ioctl_check_extension(ext);
211 break;
212 }
213 return r;
214 }
215
216 long kvm_arch_dev_ioctl(struct file *filp,
217 unsigned int ioctl, unsigned long arg)
218 {
219 return -EINVAL;
220 }
221
222 int kvm_arch_prepare_memory_region(struct kvm *kvm,
223 struct kvm_memory_slot *memslot,
224 struct kvm_userspace_memory_region *mem,
225 enum kvm_mr_change change)
226 {
227 return 0;
228 }
229
230 void kvm_arch_commit_memory_region(struct kvm *kvm,
231 struct kvm_userspace_memory_region *mem,
232 const struct kvm_memory_slot *old,
233 enum kvm_mr_change change)
234 {
235 }
236
237 void kvm_arch_flush_shadow_all(struct kvm *kvm)
238 {
239 }
240
241 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
242 struct kvm_memory_slot *slot)
243 {
244 }
245
246 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
247 {
248 int err;
249 struct kvm_vcpu *vcpu;
250
251 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
252 if (!vcpu) {
253 err = -ENOMEM;
254 goto out;
255 }
256
257 err = kvm_vcpu_init(vcpu, kvm, id);
258 if (err)
259 goto free_vcpu;
260
261 err = create_hyp_mappings(vcpu, vcpu + 1);
262 if (err)
263 goto vcpu_uninit;
264
265 return vcpu;
266 vcpu_uninit:
267 kvm_vcpu_uninit(vcpu);
268 free_vcpu:
269 kmem_cache_free(kvm_vcpu_cache, vcpu);
270 out:
271 return ERR_PTR(err);
272 }
273
274 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
275 {
276 return 0;
277 }
278
279 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
280 {
281 kvm_mmu_free_memory_caches(vcpu);
282 kvm_timer_vcpu_terminate(vcpu);
283 kmem_cache_free(kvm_vcpu_cache, vcpu);
284 }
285
286 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
287 {
288 kvm_arch_vcpu_free(vcpu);
289 }
290
291 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
292 {
293 return 0;
294 }
295
296 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
297 {
298 int ret;
299
300 /* Force users to call KVM_ARM_VCPU_INIT */
301 vcpu->arch.target = -1;
302
303 /* Set up VGIC */
304 ret = kvm_vgic_vcpu_init(vcpu);
305 if (ret)
306 return ret;
307
308 /* Set up the timer */
309 kvm_timer_vcpu_init(vcpu);
310
311 return 0;
312 }
313
314 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
315 {
316 }
317
318 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
319 {
320 vcpu->cpu = cpu;
321 vcpu->arch.host_cpu_context = this_cpu_ptr(kvm_host_cpu_state);
322
323 /*
324 * Check whether this vcpu requires the cache to be flushed on
325 * this physical CPU. This is a consequence of doing dcache
326 * operations by set/way on this vcpu. We do it here to be in
327 * a non-preemptible section.
328 */
329 if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
330 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
331
332 kvm_arm_set_running_vcpu(vcpu);
333 }
334
335 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
336 {
337 kvm_arm_set_running_vcpu(NULL);
338 }
339
340 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
341 struct kvm_guest_debug *dbg)
342 {
343 return -EINVAL;
344 }
345
346
347 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
348 struct kvm_mp_state *mp_state)
349 {
350 return -EINVAL;
351 }
352
353 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
354 struct kvm_mp_state *mp_state)
355 {
356 return -EINVAL;
357 }
358
359 /**
360 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
361 * @v: The VCPU pointer
362 *
363 * If the guest CPU is not waiting for interrupts or an interrupt line is
364 * asserted, the CPU is by definition runnable.
365 */
366 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
367 {
368 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
369 }
370
371 /* Just ensure a guest exit from a particular CPU */
372 static void exit_vm_noop(void *info)
373 {
374 }
375
376 void force_vm_exit(const cpumask_t *mask)
377 {
378 smp_call_function_many(mask, exit_vm_noop, NULL, true);
379 }
380
381 /**
382 * need_new_vmid_gen - check that the VMID is still valid
383 * @kvm: The VM's VMID to checkt
384 *
385 * return true if there is a new generation of VMIDs being used
386 *
387 * The hardware supports only 256 values with the value zero reserved for the
388 * host, so we check if an assigned value belongs to a previous generation,
389 * which which requires us to assign a new value. If we're the first to use a
390 * VMID for the new generation, we must flush necessary caches and TLBs on all
391 * CPUs.
392 */
393 static bool need_new_vmid_gen(struct kvm *kvm)
394 {
395 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
396 }
397
398 /**
399 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
400 * @kvm The guest that we are about to run
401 *
402 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
403 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
404 * caches and TLBs.
405 */
406 static void update_vttbr(struct kvm *kvm)
407 {
408 phys_addr_t pgd_phys;
409 u64 vmid;
410
411 if (!need_new_vmid_gen(kvm))
412 return;
413
414 spin_lock(&kvm_vmid_lock);
415
416 /*
417 * We need to re-check the vmid_gen here to ensure that if another vcpu
418 * already allocated a valid vmid for this vm, then this vcpu should
419 * use the same vmid.
420 */
421 if (!need_new_vmid_gen(kvm)) {
422 spin_unlock(&kvm_vmid_lock);
423 return;
424 }
425
426 /* First user of a new VMID generation? */
427 if (unlikely(kvm_next_vmid == 0)) {
428 atomic64_inc(&kvm_vmid_gen);
429 kvm_next_vmid = 1;
430
431 /*
432 * On SMP we know no other CPUs can use this CPU's or each
433 * other's VMID after force_vm_exit returns since the
434 * kvm_vmid_lock blocks them from reentry to the guest.
435 */
436 force_vm_exit(cpu_all_mask);
437 /*
438 * Now broadcast TLB + ICACHE invalidation over the inner
439 * shareable domain to make sure all data structures are
440 * clean.
441 */
442 kvm_call_hyp(__kvm_flush_vm_context);
443 }
444
445 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
446 kvm->arch.vmid = kvm_next_vmid;
447 kvm_next_vmid++;
448
449 /* update vttbr to be used with the new vmid */
450 pgd_phys = virt_to_phys(kvm->arch.pgd);
451 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
452 kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
453 kvm->arch.vttbr |= vmid;
454
455 spin_unlock(&kvm_vmid_lock);
456 }
457
458 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
459 {
460 if (likely(vcpu->arch.has_run_once))
461 return 0;
462
463 vcpu->arch.has_run_once = true;
464
465 /*
466 * Initialize the VGIC before running a vcpu the first time on
467 * this VM.
468 */
469 if (irqchip_in_kernel(vcpu->kvm) &&
470 unlikely(!vgic_initialized(vcpu->kvm))) {
471 int ret = kvm_vgic_init(vcpu->kvm);
472 if (ret)
473 return ret;
474 }
475
476 /*
477 * Handle the "start in power-off" case by calling into the
478 * PSCI code.
479 */
480 if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
481 *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
482 kvm_psci_call(vcpu);
483 }
484
485 return 0;
486 }
487
488 static void vcpu_pause(struct kvm_vcpu *vcpu)
489 {
490 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
491
492 wait_event_interruptible(*wq, !vcpu->arch.pause);
493 }
494
495 static int kvm_vcpu_initialized(struct kvm_vcpu *vcpu)
496 {
497 return vcpu->arch.target >= 0;
498 }
499
500 /**
501 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
502 * @vcpu: The VCPU pointer
503 * @run: The kvm_run structure pointer used for userspace state exchange
504 *
505 * This function is called through the VCPU_RUN ioctl called from user space. It
506 * will execute VM code in a loop until the time slice for the process is used
507 * or some emulation is needed from user space in which case the function will
508 * return with return value 0 and with the kvm_run structure filled in with the
509 * required data for the requested emulation.
510 */
511 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
512 {
513 int ret;
514 sigset_t sigsaved;
515
516 if (unlikely(!kvm_vcpu_initialized(vcpu)))
517 return -ENOEXEC;
518
519 ret = kvm_vcpu_first_run_init(vcpu);
520 if (ret)
521 return ret;
522
523 if (run->exit_reason == KVM_EXIT_MMIO) {
524 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
525 if (ret)
526 return ret;
527 }
528
529 if (vcpu->sigset_active)
530 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
531
532 ret = 1;
533 run->exit_reason = KVM_EXIT_UNKNOWN;
534 while (ret > 0) {
535 /*
536 * Check conditions before entering the guest
537 */
538 cond_resched();
539
540 update_vttbr(vcpu->kvm);
541
542 if (vcpu->arch.pause)
543 vcpu_pause(vcpu);
544
545 kvm_vgic_flush_hwstate(vcpu);
546 kvm_timer_flush_hwstate(vcpu);
547
548 local_irq_disable();
549
550 /*
551 * Re-check atomic conditions
552 */
553 if (signal_pending(current)) {
554 ret = -EINTR;
555 run->exit_reason = KVM_EXIT_INTR;
556 }
557
558 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
559 local_irq_enable();
560 kvm_timer_sync_hwstate(vcpu);
561 kvm_vgic_sync_hwstate(vcpu);
562 continue;
563 }
564
565 /**************************************************************
566 * Enter the guest
567 */
568 trace_kvm_entry(*vcpu_pc(vcpu));
569 kvm_guest_enter();
570 vcpu->mode = IN_GUEST_MODE;
571
572 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
573
574 vcpu->mode = OUTSIDE_GUEST_MODE;
575 vcpu->arch.last_pcpu = smp_processor_id();
576 kvm_guest_exit();
577 trace_kvm_exit(*vcpu_pc(vcpu));
578 /*
579 * We may have taken a host interrupt in HYP mode (ie
580 * while executing the guest). This interrupt is still
581 * pending, as we haven't serviced it yet!
582 *
583 * We're now back in SVC mode, with interrupts
584 * disabled. Enabling the interrupts now will have
585 * the effect of taking the interrupt again, in SVC
586 * mode this time.
587 */
588 local_irq_enable();
589
590 /*
591 * Back from guest
592 *************************************************************/
593
594 kvm_timer_sync_hwstate(vcpu);
595 kvm_vgic_sync_hwstate(vcpu);
596
597 ret = handle_exit(vcpu, run, ret);
598 }
599
600 if (vcpu->sigset_active)
601 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
602 return ret;
603 }
604
605 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
606 {
607 int bit_index;
608 bool set;
609 unsigned long *ptr;
610
611 if (number == KVM_ARM_IRQ_CPU_IRQ)
612 bit_index = __ffs(HCR_VI);
613 else /* KVM_ARM_IRQ_CPU_FIQ */
614 bit_index = __ffs(HCR_VF);
615
616 ptr = (unsigned long *)&vcpu->arch.irq_lines;
617 if (level)
618 set = test_and_set_bit(bit_index, ptr);
619 else
620 set = test_and_clear_bit(bit_index, ptr);
621
622 /*
623 * If we didn't change anything, no need to wake up or kick other CPUs
624 */
625 if (set == level)
626 return 0;
627
628 /*
629 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
630 * trigger a world-switch round on the running physical CPU to set the
631 * virtual IRQ/FIQ fields in the HCR appropriately.
632 */
633 kvm_vcpu_kick(vcpu);
634
635 return 0;
636 }
637
638 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
639 bool line_status)
640 {
641 u32 irq = irq_level->irq;
642 unsigned int irq_type, vcpu_idx, irq_num;
643 int nrcpus = atomic_read(&kvm->online_vcpus);
644 struct kvm_vcpu *vcpu = NULL;
645 bool level = irq_level->level;
646
647 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
648 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
649 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
650
651 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
652
653 switch (irq_type) {
654 case KVM_ARM_IRQ_TYPE_CPU:
655 if (irqchip_in_kernel(kvm))
656 return -ENXIO;
657
658 if (vcpu_idx >= nrcpus)
659 return -EINVAL;
660
661 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
662 if (!vcpu)
663 return -EINVAL;
664
665 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
666 return -EINVAL;
667
668 return vcpu_interrupt_line(vcpu, irq_num, level);
669 case KVM_ARM_IRQ_TYPE_PPI:
670 if (!irqchip_in_kernel(kvm))
671 return -ENXIO;
672
673 if (vcpu_idx >= nrcpus)
674 return -EINVAL;
675
676 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
677 if (!vcpu)
678 return -EINVAL;
679
680 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
681 return -EINVAL;
682
683 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
684 case KVM_ARM_IRQ_TYPE_SPI:
685 if (!irqchip_in_kernel(kvm))
686 return -ENXIO;
687
688 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
689 irq_num > KVM_ARM_IRQ_GIC_MAX)
690 return -EINVAL;
691
692 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
693 }
694
695 return -EINVAL;
696 }
697
698 long kvm_arch_vcpu_ioctl(struct file *filp,
699 unsigned int ioctl, unsigned long arg)
700 {
701 struct kvm_vcpu *vcpu = filp->private_data;
702 void __user *argp = (void __user *)arg;
703
704 switch (ioctl) {
705 case KVM_ARM_VCPU_INIT: {
706 struct kvm_vcpu_init init;
707
708 if (copy_from_user(&init, argp, sizeof(init)))
709 return -EFAULT;
710
711 return kvm_vcpu_set_target(vcpu, &init);
712
713 }
714 case KVM_SET_ONE_REG:
715 case KVM_GET_ONE_REG: {
716 struct kvm_one_reg reg;
717
718 if (unlikely(!kvm_vcpu_initialized(vcpu)))
719 return -ENOEXEC;
720
721 if (copy_from_user(&reg, argp, sizeof(reg)))
722 return -EFAULT;
723 if (ioctl == KVM_SET_ONE_REG)
724 return kvm_arm_set_reg(vcpu, &reg);
725 else
726 return kvm_arm_get_reg(vcpu, &reg);
727 }
728 case KVM_GET_REG_LIST: {
729 struct kvm_reg_list __user *user_list = argp;
730 struct kvm_reg_list reg_list;
731 unsigned n;
732
733 if (unlikely(!kvm_vcpu_initialized(vcpu)))
734 return -ENOEXEC;
735
736 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
737 return -EFAULT;
738 n = reg_list.n;
739 reg_list.n = kvm_arm_num_regs(vcpu);
740 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
741 return -EFAULT;
742 if (n < reg_list.n)
743 return -E2BIG;
744 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
745 }
746 default:
747 return -EINVAL;
748 }
749 }
750
751 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
752 {
753 return -EINVAL;
754 }
755
756 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
757 struct kvm_arm_device_addr *dev_addr)
758 {
759 unsigned long dev_id, type;
760
761 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
762 KVM_ARM_DEVICE_ID_SHIFT;
763 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
764 KVM_ARM_DEVICE_TYPE_SHIFT;
765
766 switch (dev_id) {
767 case KVM_ARM_DEVICE_VGIC_V2:
768 if (!vgic_present)
769 return -ENXIO;
770 return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
771 default:
772 return -ENODEV;
773 }
774 }
775
776 long kvm_arch_vm_ioctl(struct file *filp,
777 unsigned int ioctl, unsigned long arg)
778 {
779 struct kvm *kvm = filp->private_data;
780 void __user *argp = (void __user *)arg;
781
782 switch (ioctl) {
783 case KVM_CREATE_IRQCHIP: {
784 if (vgic_present)
785 return kvm_vgic_create(kvm);
786 else
787 return -ENXIO;
788 }
789 case KVM_ARM_SET_DEVICE_ADDR: {
790 struct kvm_arm_device_addr dev_addr;
791
792 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
793 return -EFAULT;
794 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
795 }
796 default:
797 return -EINVAL;
798 }
799 }
800
801 static void cpu_init_hyp_mode(void *dummy)
802 {
803 unsigned long long boot_pgd_ptr;
804 unsigned long long pgd_ptr;
805 unsigned long hyp_stack_ptr;
806 unsigned long stack_page;
807 unsigned long vector_ptr;
808
809 /* Switch from the HYP stub to our own HYP init vector */
810 __hyp_set_vectors(kvm_get_idmap_vector());
811
812 boot_pgd_ptr = (unsigned long long)kvm_mmu_get_boot_httbr();
813 pgd_ptr = (unsigned long long)kvm_mmu_get_httbr();
814 stack_page = __get_cpu_var(kvm_arm_hyp_stack_page);
815 hyp_stack_ptr = stack_page + PAGE_SIZE;
816 vector_ptr = (unsigned long)__kvm_hyp_vector;
817
818 __cpu_init_hyp_mode(boot_pgd_ptr, pgd_ptr, hyp_stack_ptr, vector_ptr);
819 }
820
821 static int hyp_init_cpu_notify(struct notifier_block *self,
822 unsigned long action, void *cpu)
823 {
824 switch (action) {
825 case CPU_STARTING:
826 case CPU_STARTING_FROZEN:
827 cpu_init_hyp_mode(NULL);
828 break;
829 }
830
831 return NOTIFY_OK;
832 }
833
834 static struct notifier_block hyp_init_cpu_nb = {
835 .notifier_call = hyp_init_cpu_notify,
836 };
837
838 /**
839 * Inits Hyp-mode on all online CPUs
840 */
841 static int init_hyp_mode(void)
842 {
843 int cpu;
844 int err = 0;
845
846 /*
847 * Allocate Hyp PGD and setup Hyp identity mapping
848 */
849 err = kvm_mmu_init();
850 if (err)
851 goto out_err;
852
853 /*
854 * It is probably enough to obtain the default on one
855 * CPU. It's unlikely to be different on the others.
856 */
857 hyp_default_vectors = __hyp_get_vectors();
858
859 /*
860 * Allocate stack pages for Hypervisor-mode
861 */
862 for_each_possible_cpu(cpu) {
863 unsigned long stack_page;
864
865 stack_page = __get_free_page(GFP_KERNEL);
866 if (!stack_page) {
867 err = -ENOMEM;
868 goto out_free_stack_pages;
869 }
870
871 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
872 }
873
874 /*
875 * Map the Hyp-code called directly from the host
876 */
877 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
878 if (err) {
879 kvm_err("Cannot map world-switch code\n");
880 goto out_free_mappings;
881 }
882
883 /*
884 * Map the Hyp stack pages
885 */
886 for_each_possible_cpu(cpu) {
887 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
888 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
889
890 if (err) {
891 kvm_err("Cannot map hyp stack\n");
892 goto out_free_mappings;
893 }
894 }
895
896 /*
897 * Map the host CPU structures
898 */
899 kvm_host_cpu_state = alloc_percpu(kvm_cpu_context_t);
900 if (!kvm_host_cpu_state) {
901 err = -ENOMEM;
902 kvm_err("Cannot allocate host CPU state\n");
903 goto out_free_mappings;
904 }
905
906 for_each_possible_cpu(cpu) {
907 kvm_cpu_context_t *cpu_ctxt;
908
909 cpu_ctxt = per_cpu_ptr(kvm_host_cpu_state, cpu);
910 err = create_hyp_mappings(cpu_ctxt, cpu_ctxt + 1);
911
912 if (err) {
913 kvm_err("Cannot map host CPU state: %d\n", err);
914 goto out_free_context;
915 }
916 }
917
918 /*
919 * Execute the init code on each CPU.
920 */
921 on_each_cpu(cpu_init_hyp_mode, NULL, 1);
922
923 /*
924 * Init HYP view of VGIC
925 */
926 err = kvm_vgic_hyp_init();
927 if (err)
928 goto out_free_context;
929
930 #ifdef CONFIG_KVM_ARM_VGIC
931 vgic_present = true;
932 #endif
933
934 /*
935 * Init HYP architected timer support
936 */
937 err = kvm_timer_hyp_init();
938 if (err)
939 goto out_free_mappings;
940
941 #ifndef CONFIG_HOTPLUG_CPU
942 free_boot_hyp_pgd();
943 #endif
944
945 kvm_perf_init();
946
947 kvm_info("Hyp mode initialized successfully\n");
948
949 return 0;
950 out_free_context:
951 free_percpu(kvm_host_cpu_state);
952 out_free_mappings:
953 free_hyp_pgds();
954 out_free_stack_pages:
955 for_each_possible_cpu(cpu)
956 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
957 out_err:
958 kvm_err("error initializing Hyp mode: %d\n", err);
959 return err;
960 }
961
962 static void check_kvm_target_cpu(void *ret)
963 {
964 *(int *)ret = kvm_target_cpu();
965 }
966
967 /**
968 * Initialize Hyp-mode and memory mappings on all CPUs.
969 */
970 int kvm_arch_init(void *opaque)
971 {
972 int err;
973 int ret, cpu;
974
975 if (!is_hyp_mode_available()) {
976 kvm_err("HYP mode not available\n");
977 return -ENODEV;
978 }
979
980 for_each_online_cpu(cpu) {
981 smp_call_function_single(cpu, check_kvm_target_cpu, &ret, 1);
982 if (ret < 0) {
983 kvm_err("Error, CPU %d not supported!\n", cpu);
984 return -ENODEV;
985 }
986 }
987
988 err = init_hyp_mode();
989 if (err)
990 goto out_err;
991
992 err = register_cpu_notifier(&hyp_init_cpu_nb);
993 if (err) {
994 kvm_err("Cannot register HYP init CPU notifier (%d)\n", err);
995 goto out_err;
996 }
997
998 kvm_coproc_table_init();
999 return 0;
1000 out_err:
1001 return err;
1002 }
1003
1004 /* NOP: Compiling as a module not supported */
1005 void kvm_arch_exit(void)
1006 {
1007 kvm_perf_teardown();
1008 }
1009
1010 static int arm_init(void)
1011 {
1012 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1013 return rc;
1014 }
1015
1016 module_init(arm_init);