Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / kvm / arm.c
1 /*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
18
19 #include <linux/errno.h>
20 #include <linux/err.h>
21 #include <linux/kvm_host.h>
22 #include <linux/module.h>
23 #include <linux/vmalloc.h>
24 #include <linux/fs.h>
25 #include <linux/mman.h>
26 #include <linux/sched.h>
27 #include <linux/kvm.h>
28 #include <trace/events/kvm.h>
29
30 #define CREATE_TRACE_POINTS
31 #include "trace.h"
32
33 #include <asm/unified.h>
34 #include <asm/uaccess.h>
35 #include <asm/ptrace.h>
36 #include <asm/mman.h>
37 #include <asm/cputype.h>
38 #include <asm/tlbflush.h>
39 #include <asm/cacheflush.h>
40 #include <asm/virt.h>
41 #include <asm/kvm_arm.h>
42 #include <asm/kvm_asm.h>
43 #include <asm/kvm_mmu.h>
44 #include <asm/kvm_emulate.h>
45 #include <asm/kvm_coproc.h>
46 #include <asm/kvm_psci.h>
47 #include <asm/opcodes.h>
48
49 #ifdef REQUIRES_VIRT
50 __asm__(".arch_extension virt");
51 #endif
52
53 static DEFINE_PER_CPU(unsigned long, kvm_arm_hyp_stack_page);
54 static struct vfp_hard_struct __percpu *kvm_host_vfp_state;
55 static unsigned long hyp_default_vectors;
56
57 /* Per-CPU variable containing the currently running vcpu. */
58 static DEFINE_PER_CPU(struct kvm_vcpu *, kvm_arm_running_vcpu);
59
60 /* The VMID used in the VTTBR */
61 static atomic64_t kvm_vmid_gen = ATOMIC64_INIT(1);
62 static u8 kvm_next_vmid;
63 static DEFINE_SPINLOCK(kvm_vmid_lock);
64
65 static bool vgic_present;
66
67 static void kvm_arm_set_running_vcpu(struct kvm_vcpu *vcpu)
68 {
69 BUG_ON(preemptible());
70 __get_cpu_var(kvm_arm_running_vcpu) = vcpu;
71 }
72
73 /**
74 * kvm_arm_get_running_vcpu - get the vcpu running on the current CPU.
75 * Must be called from non-preemptible context
76 */
77 struct kvm_vcpu *kvm_arm_get_running_vcpu(void)
78 {
79 BUG_ON(preemptible());
80 return __get_cpu_var(kvm_arm_running_vcpu);
81 }
82
83 /**
84 * kvm_arm_get_running_vcpus - get the per-CPU array of currently running vcpus.
85 */
86 struct kvm_vcpu __percpu **kvm_get_running_vcpus(void)
87 {
88 return &kvm_arm_running_vcpu;
89 }
90
91 int kvm_arch_hardware_enable(void *garbage)
92 {
93 return 0;
94 }
95
96 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
97 {
98 return kvm_vcpu_exiting_guest_mode(vcpu) == IN_GUEST_MODE;
99 }
100
101 void kvm_arch_hardware_disable(void *garbage)
102 {
103 }
104
105 int kvm_arch_hardware_setup(void)
106 {
107 return 0;
108 }
109
110 void kvm_arch_hardware_unsetup(void)
111 {
112 }
113
114 void kvm_arch_check_processor_compat(void *rtn)
115 {
116 *(int *)rtn = 0;
117 }
118
119 void kvm_arch_sync_events(struct kvm *kvm)
120 {
121 }
122
123 /**
124 * kvm_arch_init_vm - initializes a VM data structure
125 * @kvm: pointer to the KVM struct
126 */
127 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
128 {
129 int ret = 0;
130
131 if (type)
132 return -EINVAL;
133
134 ret = kvm_alloc_stage2_pgd(kvm);
135 if (ret)
136 goto out_fail_alloc;
137
138 ret = create_hyp_mappings(kvm, kvm + 1);
139 if (ret)
140 goto out_free_stage2_pgd;
141
142 /* Mark the initial VMID generation invalid */
143 kvm->arch.vmid_gen = 0;
144
145 return ret;
146 out_free_stage2_pgd:
147 kvm_free_stage2_pgd(kvm);
148 out_fail_alloc:
149 return ret;
150 }
151
152 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
153 {
154 return VM_FAULT_SIGBUS;
155 }
156
157 void kvm_arch_free_memslot(struct kvm_memory_slot *free,
158 struct kvm_memory_slot *dont)
159 {
160 }
161
162 int kvm_arch_create_memslot(struct kvm_memory_slot *slot, unsigned long npages)
163 {
164 return 0;
165 }
166
167 /**
168 * kvm_arch_destroy_vm - destroy the VM data structure
169 * @kvm: pointer to the KVM struct
170 */
171 void kvm_arch_destroy_vm(struct kvm *kvm)
172 {
173 int i;
174
175 kvm_free_stage2_pgd(kvm);
176
177 for (i = 0; i < KVM_MAX_VCPUS; ++i) {
178 if (kvm->vcpus[i]) {
179 kvm_arch_vcpu_free(kvm->vcpus[i]);
180 kvm->vcpus[i] = NULL;
181 }
182 }
183 }
184
185 int kvm_dev_ioctl_check_extension(long ext)
186 {
187 int r;
188 switch (ext) {
189 case KVM_CAP_IRQCHIP:
190 r = vgic_present;
191 break;
192 case KVM_CAP_USER_MEMORY:
193 case KVM_CAP_SYNC_MMU:
194 case KVM_CAP_DESTROY_MEMORY_REGION_WORKS:
195 case KVM_CAP_ONE_REG:
196 case KVM_CAP_ARM_PSCI:
197 r = 1;
198 break;
199 case KVM_CAP_COALESCED_MMIO:
200 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
201 break;
202 case KVM_CAP_ARM_SET_DEVICE_ADDR:
203 r = 1;
204 break;
205 case KVM_CAP_NR_VCPUS:
206 r = num_online_cpus();
207 break;
208 case KVM_CAP_MAX_VCPUS:
209 r = KVM_MAX_VCPUS;
210 break;
211 default:
212 r = 0;
213 break;
214 }
215 return r;
216 }
217
218 long kvm_arch_dev_ioctl(struct file *filp,
219 unsigned int ioctl, unsigned long arg)
220 {
221 return -EINVAL;
222 }
223
224 int kvm_arch_set_memory_region(struct kvm *kvm,
225 struct kvm_userspace_memory_region *mem,
226 struct kvm_memory_slot old,
227 int user_alloc)
228 {
229 return 0;
230 }
231
232 int kvm_arch_prepare_memory_region(struct kvm *kvm,
233 struct kvm_memory_slot *memslot,
234 struct kvm_memory_slot old,
235 struct kvm_userspace_memory_region *mem,
236 bool user_alloc)
237 {
238 return 0;
239 }
240
241 void kvm_arch_commit_memory_region(struct kvm *kvm,
242 struct kvm_userspace_memory_region *mem,
243 struct kvm_memory_slot old,
244 bool user_alloc)
245 {
246 }
247
248 void kvm_arch_flush_shadow_all(struct kvm *kvm)
249 {
250 }
251
252 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
253 struct kvm_memory_slot *slot)
254 {
255 }
256
257 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
258 {
259 int err;
260 struct kvm_vcpu *vcpu;
261
262 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
263 if (!vcpu) {
264 err = -ENOMEM;
265 goto out;
266 }
267
268 err = kvm_vcpu_init(vcpu, kvm, id);
269 if (err)
270 goto free_vcpu;
271
272 err = create_hyp_mappings(vcpu, vcpu + 1);
273 if (err)
274 goto vcpu_uninit;
275
276 return vcpu;
277 vcpu_uninit:
278 kvm_vcpu_uninit(vcpu);
279 free_vcpu:
280 kmem_cache_free(kvm_vcpu_cache, vcpu);
281 out:
282 return ERR_PTR(err);
283 }
284
285 int kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
286 {
287 return 0;
288 }
289
290 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
291 {
292 kvm_mmu_free_memory_caches(vcpu);
293 kvm_timer_vcpu_terminate(vcpu);
294 kmem_cache_free(kvm_vcpu_cache, vcpu);
295 }
296
297 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
298 {
299 kvm_arch_vcpu_free(vcpu);
300 }
301
302 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
303 {
304 return 0;
305 }
306
307 int __attribute_const__ kvm_target_cpu(void)
308 {
309 unsigned long implementor = read_cpuid_implementor();
310 unsigned long part_number = read_cpuid_part_number();
311
312 if (implementor != ARM_CPU_IMP_ARM)
313 return -EINVAL;
314
315 switch (part_number) {
316 case ARM_CPU_PART_CORTEX_A15:
317 return KVM_ARM_TARGET_CORTEX_A15;
318 default:
319 return -EINVAL;
320 }
321 }
322
323 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
324 {
325 int ret;
326
327 /* Force users to call KVM_ARM_VCPU_INIT */
328 vcpu->arch.target = -1;
329
330 /* Set up VGIC */
331 ret = kvm_vgic_vcpu_init(vcpu);
332 if (ret)
333 return ret;
334
335 /* Set up the timer */
336 kvm_timer_vcpu_init(vcpu);
337
338 return 0;
339 }
340
341 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
342 {
343 }
344
345 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
346 {
347 vcpu->cpu = cpu;
348 vcpu->arch.vfp_host = this_cpu_ptr(kvm_host_vfp_state);
349
350 /*
351 * Check whether this vcpu requires the cache to be flushed on
352 * this physical CPU. This is a consequence of doing dcache
353 * operations by set/way on this vcpu. We do it here to be in
354 * a non-preemptible section.
355 */
356 if (cpumask_test_and_clear_cpu(cpu, &vcpu->arch.require_dcache_flush))
357 flush_cache_all(); /* We'd really want v7_flush_dcache_all() */
358
359 kvm_arm_set_running_vcpu(vcpu);
360 }
361
362 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
363 {
364 kvm_arm_set_running_vcpu(NULL);
365 }
366
367 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
368 struct kvm_guest_debug *dbg)
369 {
370 return -EINVAL;
371 }
372
373
374 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
375 struct kvm_mp_state *mp_state)
376 {
377 return -EINVAL;
378 }
379
380 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
381 struct kvm_mp_state *mp_state)
382 {
383 return -EINVAL;
384 }
385
386 /**
387 * kvm_arch_vcpu_runnable - determine if the vcpu can be scheduled
388 * @v: The VCPU pointer
389 *
390 * If the guest CPU is not waiting for interrupts or an interrupt line is
391 * asserted, the CPU is by definition runnable.
392 */
393 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
394 {
395 return !!v->arch.irq_lines || kvm_vgic_vcpu_pending_irq(v);
396 }
397
398 /* Just ensure a guest exit from a particular CPU */
399 static void exit_vm_noop(void *info)
400 {
401 }
402
403 void force_vm_exit(const cpumask_t *mask)
404 {
405 smp_call_function_many(mask, exit_vm_noop, NULL, true);
406 }
407
408 /**
409 * need_new_vmid_gen - check that the VMID is still valid
410 * @kvm: The VM's VMID to checkt
411 *
412 * return true if there is a new generation of VMIDs being used
413 *
414 * The hardware supports only 256 values with the value zero reserved for the
415 * host, so we check if an assigned value belongs to a previous generation,
416 * which which requires us to assign a new value. If we're the first to use a
417 * VMID for the new generation, we must flush necessary caches and TLBs on all
418 * CPUs.
419 */
420 static bool need_new_vmid_gen(struct kvm *kvm)
421 {
422 return unlikely(kvm->arch.vmid_gen != atomic64_read(&kvm_vmid_gen));
423 }
424
425 /**
426 * update_vttbr - Update the VTTBR with a valid VMID before the guest runs
427 * @kvm The guest that we are about to run
428 *
429 * Called from kvm_arch_vcpu_ioctl_run before entering the guest to ensure the
430 * VM has a valid VMID, otherwise assigns a new one and flushes corresponding
431 * caches and TLBs.
432 */
433 static void update_vttbr(struct kvm *kvm)
434 {
435 phys_addr_t pgd_phys;
436 u64 vmid;
437
438 if (!need_new_vmid_gen(kvm))
439 return;
440
441 spin_lock(&kvm_vmid_lock);
442
443 /*
444 * We need to re-check the vmid_gen here to ensure that if another vcpu
445 * already allocated a valid vmid for this vm, then this vcpu should
446 * use the same vmid.
447 */
448 if (!need_new_vmid_gen(kvm)) {
449 spin_unlock(&kvm_vmid_lock);
450 return;
451 }
452
453 /* First user of a new VMID generation? */
454 if (unlikely(kvm_next_vmid == 0)) {
455 atomic64_inc(&kvm_vmid_gen);
456 kvm_next_vmid = 1;
457
458 /*
459 * On SMP we know no other CPUs can use this CPU's or each
460 * other's VMID after force_vm_exit returns since the
461 * kvm_vmid_lock blocks them from reentry to the guest.
462 */
463 force_vm_exit(cpu_all_mask);
464 /*
465 * Now broadcast TLB + ICACHE invalidation over the inner
466 * shareable domain to make sure all data structures are
467 * clean.
468 */
469 kvm_call_hyp(__kvm_flush_vm_context);
470 }
471
472 kvm->arch.vmid_gen = atomic64_read(&kvm_vmid_gen);
473 kvm->arch.vmid = kvm_next_vmid;
474 kvm_next_vmid++;
475
476 /* update vttbr to be used with the new vmid */
477 pgd_phys = virt_to_phys(kvm->arch.pgd);
478 vmid = ((u64)(kvm->arch.vmid) << VTTBR_VMID_SHIFT) & VTTBR_VMID_MASK;
479 kvm->arch.vttbr = pgd_phys & VTTBR_BADDR_MASK;
480 kvm->arch.vttbr |= vmid;
481
482 spin_unlock(&kvm_vmid_lock);
483 }
484
485 static int handle_svc_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
486 {
487 /* SVC called from Hyp mode should never get here */
488 kvm_debug("SVC called from Hyp mode shouldn't go here\n");
489 BUG();
490 return -EINVAL; /* Squash warning */
491 }
492
493 static int handle_hvc(struct kvm_vcpu *vcpu, struct kvm_run *run)
494 {
495 trace_kvm_hvc(*vcpu_pc(vcpu), *vcpu_reg(vcpu, 0),
496 vcpu->arch.hsr & HSR_HVC_IMM_MASK);
497
498 if (kvm_psci_call(vcpu))
499 return 1;
500
501 kvm_inject_undefined(vcpu);
502 return 1;
503 }
504
505 static int handle_smc(struct kvm_vcpu *vcpu, struct kvm_run *run)
506 {
507 if (kvm_psci_call(vcpu))
508 return 1;
509
510 kvm_inject_undefined(vcpu);
511 return 1;
512 }
513
514 static int handle_pabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
515 {
516 /* The hypervisor should never cause aborts */
517 kvm_err("Prefetch Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
518 vcpu->arch.hxfar, vcpu->arch.hsr);
519 return -EFAULT;
520 }
521
522 static int handle_dabt_hyp(struct kvm_vcpu *vcpu, struct kvm_run *run)
523 {
524 /* This is either an error in the ws. code or an external abort */
525 kvm_err("Data Abort taken from Hyp mode at %#08x (HSR: %#08x)\n",
526 vcpu->arch.hxfar, vcpu->arch.hsr);
527 return -EFAULT;
528 }
529
530 typedef int (*exit_handle_fn)(struct kvm_vcpu *, struct kvm_run *);
531 static exit_handle_fn arm_exit_handlers[] = {
532 [HSR_EC_WFI] = kvm_handle_wfi,
533 [HSR_EC_CP15_32] = kvm_handle_cp15_32,
534 [HSR_EC_CP15_64] = kvm_handle_cp15_64,
535 [HSR_EC_CP14_MR] = kvm_handle_cp14_access,
536 [HSR_EC_CP14_LS] = kvm_handle_cp14_load_store,
537 [HSR_EC_CP14_64] = kvm_handle_cp14_access,
538 [HSR_EC_CP_0_13] = kvm_handle_cp_0_13_access,
539 [HSR_EC_CP10_ID] = kvm_handle_cp10_id,
540 [HSR_EC_SVC_HYP] = handle_svc_hyp,
541 [HSR_EC_HVC] = handle_hvc,
542 [HSR_EC_SMC] = handle_smc,
543 [HSR_EC_IABT] = kvm_handle_guest_abort,
544 [HSR_EC_IABT_HYP] = handle_pabt_hyp,
545 [HSR_EC_DABT] = kvm_handle_guest_abort,
546 [HSR_EC_DABT_HYP] = handle_dabt_hyp,
547 };
548
549 /*
550 * A conditional instruction is allowed to trap, even though it
551 * wouldn't be executed. So let's re-implement the hardware, in
552 * software!
553 */
554 static bool kvm_condition_valid(struct kvm_vcpu *vcpu)
555 {
556 unsigned long cpsr, cond, insn;
557
558 /*
559 * Exception Code 0 can only happen if we set HCR.TGE to 1, to
560 * catch undefined instructions, and then we won't get past
561 * the arm_exit_handlers test anyway.
562 */
563 BUG_ON(((vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT) == 0);
564
565 /* Top two bits non-zero? Unconditional. */
566 if (vcpu->arch.hsr >> 30)
567 return true;
568
569 cpsr = *vcpu_cpsr(vcpu);
570
571 /* Is condition field valid? */
572 if ((vcpu->arch.hsr & HSR_CV) >> HSR_CV_SHIFT)
573 cond = (vcpu->arch.hsr & HSR_COND) >> HSR_COND_SHIFT;
574 else {
575 /* This can happen in Thumb mode: examine IT state. */
576 unsigned long it;
577
578 it = ((cpsr >> 8) & 0xFC) | ((cpsr >> 25) & 0x3);
579
580 /* it == 0 => unconditional. */
581 if (it == 0)
582 return true;
583
584 /* The cond for this insn works out as the top 4 bits. */
585 cond = (it >> 4);
586 }
587
588 /* Shift makes it look like an ARM-mode instruction */
589 insn = cond << 28;
590 return arm_check_condition(insn, cpsr) != ARM_OPCODE_CONDTEST_FAIL;
591 }
592
593 /*
594 * Return > 0 to return to guest, < 0 on error, 0 (and set exit_reason) on
595 * proper exit to QEMU.
596 */
597 static int handle_exit(struct kvm_vcpu *vcpu, struct kvm_run *run,
598 int exception_index)
599 {
600 unsigned long hsr_ec;
601
602 switch (exception_index) {
603 case ARM_EXCEPTION_IRQ:
604 return 1;
605 case ARM_EXCEPTION_UNDEFINED:
606 kvm_err("Undefined exception in Hyp mode at: %#08x\n",
607 vcpu->arch.hyp_pc);
608 BUG();
609 panic("KVM: Hypervisor undefined exception!\n");
610 case ARM_EXCEPTION_DATA_ABORT:
611 case ARM_EXCEPTION_PREF_ABORT:
612 case ARM_EXCEPTION_HVC:
613 hsr_ec = (vcpu->arch.hsr & HSR_EC) >> HSR_EC_SHIFT;
614
615 if (hsr_ec >= ARRAY_SIZE(arm_exit_handlers)
616 || !arm_exit_handlers[hsr_ec]) {
617 kvm_err("Unknown exception class: %#08lx, "
618 "hsr: %#08x\n", hsr_ec,
619 (unsigned int)vcpu->arch.hsr);
620 BUG();
621 }
622
623 /*
624 * See ARM ARM B1.14.1: "Hyp traps on instructions
625 * that fail their condition code check"
626 */
627 if (!kvm_condition_valid(vcpu)) {
628 bool is_wide = vcpu->arch.hsr & HSR_IL;
629 kvm_skip_instr(vcpu, is_wide);
630 return 1;
631 }
632
633 return arm_exit_handlers[hsr_ec](vcpu, run);
634 default:
635 kvm_pr_unimpl("Unsupported exception type: %d",
636 exception_index);
637 run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
638 return 0;
639 }
640 }
641
642 static int kvm_vcpu_first_run_init(struct kvm_vcpu *vcpu)
643 {
644 if (likely(vcpu->arch.has_run_once))
645 return 0;
646
647 vcpu->arch.has_run_once = true;
648
649 /*
650 * Initialize the VGIC before running a vcpu the first time on
651 * this VM.
652 */
653 if (irqchip_in_kernel(vcpu->kvm) &&
654 unlikely(!vgic_initialized(vcpu->kvm))) {
655 int ret = kvm_vgic_init(vcpu->kvm);
656 if (ret)
657 return ret;
658 }
659
660 /*
661 * Handle the "start in power-off" case by calling into the
662 * PSCI code.
663 */
664 if (test_and_clear_bit(KVM_ARM_VCPU_POWER_OFF, vcpu->arch.features)) {
665 *vcpu_reg(vcpu, 0) = KVM_PSCI_FN_CPU_OFF;
666 kvm_psci_call(vcpu);
667 }
668
669 return 0;
670 }
671
672 static void vcpu_pause(struct kvm_vcpu *vcpu)
673 {
674 wait_queue_head_t *wq = kvm_arch_vcpu_wq(vcpu);
675
676 wait_event_interruptible(*wq, !vcpu->arch.pause);
677 }
678
679 /**
680 * kvm_arch_vcpu_ioctl_run - the main VCPU run function to execute guest code
681 * @vcpu: The VCPU pointer
682 * @run: The kvm_run structure pointer used for userspace state exchange
683 *
684 * This function is called through the VCPU_RUN ioctl called from user space. It
685 * will execute VM code in a loop until the time slice for the process is used
686 * or some emulation is needed from user space in which case the function will
687 * return with return value 0 and with the kvm_run structure filled in with the
688 * required data for the requested emulation.
689 */
690 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
691 {
692 int ret;
693 sigset_t sigsaved;
694
695 /* Make sure they initialize the vcpu with KVM_ARM_VCPU_INIT */
696 if (unlikely(vcpu->arch.target < 0))
697 return -ENOEXEC;
698
699 ret = kvm_vcpu_first_run_init(vcpu);
700 if (ret)
701 return ret;
702
703 if (run->exit_reason == KVM_EXIT_MMIO) {
704 ret = kvm_handle_mmio_return(vcpu, vcpu->run);
705 if (ret)
706 return ret;
707 }
708
709 if (vcpu->sigset_active)
710 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
711
712 ret = 1;
713 run->exit_reason = KVM_EXIT_UNKNOWN;
714 while (ret > 0) {
715 /*
716 * Check conditions before entering the guest
717 */
718 cond_resched();
719
720 update_vttbr(vcpu->kvm);
721
722 if (vcpu->arch.pause)
723 vcpu_pause(vcpu);
724
725 kvm_vgic_flush_hwstate(vcpu);
726 kvm_timer_flush_hwstate(vcpu);
727
728 local_irq_disable();
729
730 /*
731 * Re-check atomic conditions
732 */
733 if (signal_pending(current)) {
734 ret = -EINTR;
735 run->exit_reason = KVM_EXIT_INTR;
736 }
737
738 if (ret <= 0 || need_new_vmid_gen(vcpu->kvm)) {
739 local_irq_enable();
740 kvm_timer_sync_hwstate(vcpu);
741 kvm_vgic_sync_hwstate(vcpu);
742 continue;
743 }
744
745 /**************************************************************
746 * Enter the guest
747 */
748 trace_kvm_entry(*vcpu_pc(vcpu));
749 kvm_guest_enter();
750 vcpu->mode = IN_GUEST_MODE;
751
752 ret = kvm_call_hyp(__kvm_vcpu_run, vcpu);
753
754 vcpu->mode = OUTSIDE_GUEST_MODE;
755 vcpu->arch.last_pcpu = smp_processor_id();
756 kvm_guest_exit();
757 trace_kvm_exit(*vcpu_pc(vcpu));
758 /*
759 * We may have taken a host interrupt in HYP mode (ie
760 * while executing the guest). This interrupt is still
761 * pending, as we haven't serviced it yet!
762 *
763 * We're now back in SVC mode, with interrupts
764 * disabled. Enabling the interrupts now will have
765 * the effect of taking the interrupt again, in SVC
766 * mode this time.
767 */
768 local_irq_enable();
769
770 /*
771 * Back from guest
772 *************************************************************/
773
774 kvm_timer_sync_hwstate(vcpu);
775 kvm_vgic_sync_hwstate(vcpu);
776
777 ret = handle_exit(vcpu, run, ret);
778 }
779
780 if (vcpu->sigset_active)
781 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
782 return ret;
783 }
784
785 static int vcpu_interrupt_line(struct kvm_vcpu *vcpu, int number, bool level)
786 {
787 int bit_index;
788 bool set;
789 unsigned long *ptr;
790
791 if (number == KVM_ARM_IRQ_CPU_IRQ)
792 bit_index = __ffs(HCR_VI);
793 else /* KVM_ARM_IRQ_CPU_FIQ */
794 bit_index = __ffs(HCR_VF);
795
796 ptr = (unsigned long *)&vcpu->arch.irq_lines;
797 if (level)
798 set = test_and_set_bit(bit_index, ptr);
799 else
800 set = test_and_clear_bit(bit_index, ptr);
801
802 /*
803 * If we didn't change anything, no need to wake up or kick other CPUs
804 */
805 if (set == level)
806 return 0;
807
808 /*
809 * The vcpu irq_lines field was updated, wake up sleeping VCPUs and
810 * trigger a world-switch round on the running physical CPU to set the
811 * virtual IRQ/FIQ fields in the HCR appropriately.
812 */
813 kvm_vcpu_kick(vcpu);
814
815 return 0;
816 }
817
818 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level)
819 {
820 u32 irq = irq_level->irq;
821 unsigned int irq_type, vcpu_idx, irq_num;
822 int nrcpus = atomic_read(&kvm->online_vcpus);
823 struct kvm_vcpu *vcpu = NULL;
824 bool level = irq_level->level;
825
826 irq_type = (irq >> KVM_ARM_IRQ_TYPE_SHIFT) & KVM_ARM_IRQ_TYPE_MASK;
827 vcpu_idx = (irq >> KVM_ARM_IRQ_VCPU_SHIFT) & KVM_ARM_IRQ_VCPU_MASK;
828 irq_num = (irq >> KVM_ARM_IRQ_NUM_SHIFT) & KVM_ARM_IRQ_NUM_MASK;
829
830 trace_kvm_irq_line(irq_type, vcpu_idx, irq_num, irq_level->level);
831
832 switch (irq_type) {
833 case KVM_ARM_IRQ_TYPE_CPU:
834 if (irqchip_in_kernel(kvm))
835 return -ENXIO;
836
837 if (vcpu_idx >= nrcpus)
838 return -EINVAL;
839
840 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
841 if (!vcpu)
842 return -EINVAL;
843
844 if (irq_num > KVM_ARM_IRQ_CPU_FIQ)
845 return -EINVAL;
846
847 return vcpu_interrupt_line(vcpu, irq_num, level);
848 case KVM_ARM_IRQ_TYPE_PPI:
849 if (!irqchip_in_kernel(kvm))
850 return -ENXIO;
851
852 if (vcpu_idx >= nrcpus)
853 return -EINVAL;
854
855 vcpu = kvm_get_vcpu(kvm, vcpu_idx);
856 if (!vcpu)
857 return -EINVAL;
858
859 if (irq_num < VGIC_NR_SGIS || irq_num >= VGIC_NR_PRIVATE_IRQS)
860 return -EINVAL;
861
862 return kvm_vgic_inject_irq(kvm, vcpu->vcpu_id, irq_num, level);
863 case KVM_ARM_IRQ_TYPE_SPI:
864 if (!irqchip_in_kernel(kvm))
865 return -ENXIO;
866
867 if (irq_num < VGIC_NR_PRIVATE_IRQS ||
868 irq_num > KVM_ARM_IRQ_GIC_MAX)
869 return -EINVAL;
870
871 return kvm_vgic_inject_irq(kvm, 0, irq_num, level);
872 }
873
874 return -EINVAL;
875 }
876
877 long kvm_arch_vcpu_ioctl(struct file *filp,
878 unsigned int ioctl, unsigned long arg)
879 {
880 struct kvm_vcpu *vcpu = filp->private_data;
881 void __user *argp = (void __user *)arg;
882
883 switch (ioctl) {
884 case KVM_ARM_VCPU_INIT: {
885 struct kvm_vcpu_init init;
886
887 if (copy_from_user(&init, argp, sizeof(init)))
888 return -EFAULT;
889
890 return kvm_vcpu_set_target(vcpu, &init);
891
892 }
893 case KVM_SET_ONE_REG:
894 case KVM_GET_ONE_REG: {
895 struct kvm_one_reg reg;
896 if (copy_from_user(&reg, argp, sizeof(reg)))
897 return -EFAULT;
898 if (ioctl == KVM_SET_ONE_REG)
899 return kvm_arm_set_reg(vcpu, &reg);
900 else
901 return kvm_arm_get_reg(vcpu, &reg);
902 }
903 case KVM_GET_REG_LIST: {
904 struct kvm_reg_list __user *user_list = argp;
905 struct kvm_reg_list reg_list;
906 unsigned n;
907
908 if (copy_from_user(&reg_list, user_list, sizeof(reg_list)))
909 return -EFAULT;
910 n = reg_list.n;
911 reg_list.n = kvm_arm_num_regs(vcpu);
912 if (copy_to_user(user_list, &reg_list, sizeof(reg_list)))
913 return -EFAULT;
914 if (n < reg_list.n)
915 return -E2BIG;
916 return kvm_arm_copy_reg_indices(vcpu, user_list->reg);
917 }
918 default:
919 return -EINVAL;
920 }
921 }
922
923 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log)
924 {
925 return -EINVAL;
926 }
927
928 static int kvm_vm_ioctl_set_device_addr(struct kvm *kvm,
929 struct kvm_arm_device_addr *dev_addr)
930 {
931 unsigned long dev_id, type;
932
933 dev_id = (dev_addr->id & KVM_ARM_DEVICE_ID_MASK) >>
934 KVM_ARM_DEVICE_ID_SHIFT;
935 type = (dev_addr->id & KVM_ARM_DEVICE_TYPE_MASK) >>
936 KVM_ARM_DEVICE_TYPE_SHIFT;
937
938 switch (dev_id) {
939 case KVM_ARM_DEVICE_VGIC_V2:
940 if (!vgic_present)
941 return -ENXIO;
942 return kvm_vgic_set_addr(kvm, type, dev_addr->addr);
943 default:
944 return -ENODEV;
945 }
946 }
947
948 long kvm_arch_vm_ioctl(struct file *filp,
949 unsigned int ioctl, unsigned long arg)
950 {
951 struct kvm *kvm = filp->private_data;
952 void __user *argp = (void __user *)arg;
953
954 switch (ioctl) {
955 case KVM_CREATE_IRQCHIP: {
956 if (vgic_present)
957 return kvm_vgic_create(kvm);
958 else
959 return -ENXIO;
960 }
961 case KVM_ARM_SET_DEVICE_ADDR: {
962 struct kvm_arm_device_addr dev_addr;
963
964 if (copy_from_user(&dev_addr, argp, sizeof(dev_addr)))
965 return -EFAULT;
966 return kvm_vm_ioctl_set_device_addr(kvm, &dev_addr);
967 }
968 default:
969 return -EINVAL;
970 }
971 }
972
973 static void cpu_init_hyp_mode(void *vector)
974 {
975 unsigned long long pgd_ptr;
976 unsigned long pgd_low, pgd_high;
977 unsigned long hyp_stack_ptr;
978 unsigned long stack_page;
979 unsigned long vector_ptr;
980
981 /* Switch from the HYP stub to our own HYP init vector */
982 __hyp_set_vectors((unsigned long)vector);
983
984 pgd_ptr = (unsigned long long)kvm_mmu_get_httbr();
985 pgd_low = (pgd_ptr & ((1ULL << 32) - 1));
986 pgd_high = (pgd_ptr >> 32ULL);
987 stack_page = __get_cpu_var(kvm_arm_hyp_stack_page);
988 hyp_stack_ptr = stack_page + PAGE_SIZE;
989 vector_ptr = (unsigned long)__kvm_hyp_vector;
990
991 /*
992 * Call initialization code, and switch to the full blown
993 * HYP code. The init code doesn't need to preserve these registers as
994 * r1-r3 and r12 are already callee save according to the AAPCS.
995 * Note that we slightly misuse the prototype by casing the pgd_low to
996 * a void *.
997 */
998 kvm_call_hyp((void *)pgd_low, pgd_high, hyp_stack_ptr, vector_ptr);
999 }
1000
1001 /**
1002 * Inits Hyp-mode on all online CPUs
1003 */
1004 static int init_hyp_mode(void)
1005 {
1006 phys_addr_t init_phys_addr;
1007 int cpu;
1008 int err = 0;
1009
1010 /*
1011 * Allocate Hyp PGD and setup Hyp identity mapping
1012 */
1013 err = kvm_mmu_init();
1014 if (err)
1015 goto out_err;
1016
1017 /*
1018 * It is probably enough to obtain the default on one
1019 * CPU. It's unlikely to be different on the others.
1020 */
1021 hyp_default_vectors = __hyp_get_vectors();
1022
1023 /*
1024 * Allocate stack pages for Hypervisor-mode
1025 */
1026 for_each_possible_cpu(cpu) {
1027 unsigned long stack_page;
1028
1029 stack_page = __get_free_page(GFP_KERNEL);
1030 if (!stack_page) {
1031 err = -ENOMEM;
1032 goto out_free_stack_pages;
1033 }
1034
1035 per_cpu(kvm_arm_hyp_stack_page, cpu) = stack_page;
1036 }
1037
1038 /*
1039 * Execute the init code on each CPU.
1040 *
1041 * Note: The stack is not mapped yet, so don't do anything else than
1042 * initializing the hypervisor mode on each CPU using a local stack
1043 * space for temporary storage.
1044 */
1045 init_phys_addr = virt_to_phys(__kvm_hyp_init);
1046 for_each_online_cpu(cpu) {
1047 smp_call_function_single(cpu, cpu_init_hyp_mode,
1048 (void *)(long)init_phys_addr, 1);
1049 }
1050
1051 /*
1052 * Unmap the identity mapping
1053 */
1054 kvm_clear_hyp_idmap();
1055
1056 /*
1057 * Map the Hyp-code called directly from the host
1058 */
1059 err = create_hyp_mappings(__kvm_hyp_code_start, __kvm_hyp_code_end);
1060 if (err) {
1061 kvm_err("Cannot map world-switch code\n");
1062 goto out_free_mappings;
1063 }
1064
1065 /*
1066 * Map the Hyp stack pages
1067 */
1068 for_each_possible_cpu(cpu) {
1069 char *stack_page = (char *)per_cpu(kvm_arm_hyp_stack_page, cpu);
1070 err = create_hyp_mappings(stack_page, stack_page + PAGE_SIZE);
1071
1072 if (err) {
1073 kvm_err("Cannot map hyp stack\n");
1074 goto out_free_mappings;
1075 }
1076 }
1077
1078 /*
1079 * Map the host VFP structures
1080 */
1081 kvm_host_vfp_state = alloc_percpu(struct vfp_hard_struct);
1082 if (!kvm_host_vfp_state) {
1083 err = -ENOMEM;
1084 kvm_err("Cannot allocate host VFP state\n");
1085 goto out_free_mappings;
1086 }
1087
1088 for_each_possible_cpu(cpu) {
1089 struct vfp_hard_struct *vfp;
1090
1091 vfp = per_cpu_ptr(kvm_host_vfp_state, cpu);
1092 err = create_hyp_mappings(vfp, vfp + 1);
1093
1094 if (err) {
1095 kvm_err("Cannot map host VFP state: %d\n", err);
1096 goto out_free_vfp;
1097 }
1098 }
1099
1100 /*
1101 * Init HYP view of VGIC
1102 */
1103 err = kvm_vgic_hyp_init();
1104 if (err)
1105 goto out_free_vfp;
1106
1107 #ifdef CONFIG_KVM_ARM_VGIC
1108 vgic_present = true;
1109 #endif
1110
1111 /*
1112 * Init HYP architected timer support
1113 */
1114 err = kvm_timer_hyp_init();
1115 if (err)
1116 goto out_free_mappings;
1117
1118 kvm_info("Hyp mode initialized successfully\n");
1119 return 0;
1120 out_free_vfp:
1121 free_percpu(kvm_host_vfp_state);
1122 out_free_mappings:
1123 free_hyp_pmds();
1124 out_free_stack_pages:
1125 for_each_possible_cpu(cpu)
1126 free_page(per_cpu(kvm_arm_hyp_stack_page, cpu));
1127 out_err:
1128 kvm_err("error initializing Hyp mode: %d\n", err);
1129 return err;
1130 }
1131
1132 /**
1133 * Initialize Hyp-mode and memory mappings on all CPUs.
1134 */
1135 int kvm_arch_init(void *opaque)
1136 {
1137 int err;
1138
1139 if (!is_hyp_mode_available()) {
1140 kvm_err("HYP mode not available\n");
1141 return -ENODEV;
1142 }
1143
1144 if (kvm_target_cpu() < 0) {
1145 kvm_err("Target CPU not supported!\n");
1146 return -ENODEV;
1147 }
1148
1149 err = init_hyp_mode();
1150 if (err)
1151 goto out_err;
1152
1153 kvm_coproc_table_init();
1154 return 0;
1155 out_err:
1156 return err;
1157 }
1158
1159 /* NOP: Compiling as a module not supported */
1160 void kvm_arch_exit(void)
1161 {
1162 }
1163
1164 static int arm_init(void)
1165 {
1166 int rc = kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
1167 return rc;
1168 }
1169
1170 module_init(arm_init);