Merge branch 'devel-stable' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / kernel / smp.c
1 /*
2 * linux/arch/arm/kernel/smp.c
3 *
4 * Copyright (C) 2002 ARM Limited, All Rights Reserved.
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
9 */
10 #include <linux/module.h>
11 #include <linux/delay.h>
12 #include <linux/init.h>
13 #include <linux/spinlock.h>
14 #include <linux/sched.h>
15 #include <linux/interrupt.h>
16 #include <linux/cache.h>
17 #include <linux/profile.h>
18 #include <linux/errno.h>
19 #include <linux/mm.h>
20 #include <linux/err.h>
21 #include <linux/cpu.h>
22 #include <linux/seq_file.h>
23 #include <linux/irq.h>
24 #include <linux/percpu.h>
25 #include <linux/clockchips.h>
26 #include <linux/completion.h>
27 #include <linux/cpufreq.h>
28
29 #include <linux/atomic.h>
30 #include <asm/smp.h>
31 #include <asm/cacheflush.h>
32 #include <asm/cpu.h>
33 #include <asm/cputype.h>
34 #include <asm/exception.h>
35 #include <asm/idmap.h>
36 #include <asm/topology.h>
37 #include <asm/mmu_context.h>
38 #include <asm/pgtable.h>
39 #include <asm/pgalloc.h>
40 #include <asm/processor.h>
41 #include <asm/sections.h>
42 #include <asm/tlbflush.h>
43 #include <asm/ptrace.h>
44 #include <asm/localtimer.h>
45 #include <asm/smp_plat.h>
46 #include <asm/virt.h>
47 #include <asm/mach/arch.h>
48
49 /*
50 * as from 2.5, kernels no longer have an init_tasks structure
51 * so we need some other way of telling a new secondary core
52 * where to place its SVC stack
53 */
54 struct secondary_data secondary_data;
55
56 /*
57 * control for which core is the next to come out of the secondary
58 * boot "holding pen"
59 */
60 volatile int __cpuinitdata pen_release = -1;
61
62 enum ipi_msg_type {
63 IPI_WAKEUP,
64 IPI_TIMER,
65 IPI_RESCHEDULE,
66 IPI_CALL_FUNC,
67 IPI_CALL_FUNC_SINGLE,
68 IPI_CPU_STOP,
69 };
70
71 static DECLARE_COMPLETION(cpu_running);
72
73 static struct smp_operations smp_ops;
74
75 void __init smp_set_ops(struct smp_operations *ops)
76 {
77 if (ops)
78 smp_ops = *ops;
79 };
80
81 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *idle)
82 {
83 int ret;
84
85 /*
86 * We need to tell the secondary core where to find
87 * its stack and the page tables.
88 */
89 secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
90 secondary_data.pgdir = virt_to_phys(idmap_pgd);
91 secondary_data.swapper_pg_dir = virt_to_phys(swapper_pg_dir);
92 __cpuc_flush_dcache_area(&secondary_data, sizeof(secondary_data));
93 outer_clean_range(__pa(&secondary_data), __pa(&secondary_data + 1));
94
95 /*
96 * Now bring the CPU into our world.
97 */
98 ret = boot_secondary(cpu, idle);
99 if (ret == 0) {
100 /*
101 * CPU was successfully started, wait for it
102 * to come online or time out.
103 */
104 wait_for_completion_timeout(&cpu_running,
105 msecs_to_jiffies(1000));
106
107 if (!cpu_online(cpu)) {
108 pr_crit("CPU%u: failed to come online\n", cpu);
109 ret = -EIO;
110 }
111 } else {
112 pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
113 }
114
115 secondary_data.stack = NULL;
116 secondary_data.pgdir = 0;
117
118 return ret;
119 }
120
121 /* platform specific SMP operations */
122 void __init smp_init_cpus(void)
123 {
124 if (smp_ops.smp_init_cpus)
125 smp_ops.smp_init_cpus();
126 }
127
128 static void __init platform_smp_prepare_cpus(unsigned int max_cpus)
129 {
130 if (smp_ops.smp_prepare_cpus)
131 smp_ops.smp_prepare_cpus(max_cpus);
132 }
133
134 static void __cpuinit platform_secondary_init(unsigned int cpu)
135 {
136 if (smp_ops.smp_secondary_init)
137 smp_ops.smp_secondary_init(cpu);
138 }
139
140 int __cpuinit boot_secondary(unsigned int cpu, struct task_struct *idle)
141 {
142 if (smp_ops.smp_boot_secondary)
143 return smp_ops.smp_boot_secondary(cpu, idle);
144 return -ENOSYS;
145 }
146
147 #ifdef CONFIG_HOTPLUG_CPU
148 static void percpu_timer_stop(void);
149
150 static int platform_cpu_kill(unsigned int cpu)
151 {
152 if (smp_ops.cpu_kill)
153 return smp_ops.cpu_kill(cpu);
154 return 1;
155 }
156
157 static void platform_cpu_die(unsigned int cpu)
158 {
159 if (smp_ops.cpu_die)
160 smp_ops.cpu_die(cpu);
161 }
162
163 static int platform_cpu_disable(unsigned int cpu)
164 {
165 if (smp_ops.cpu_disable)
166 return smp_ops.cpu_disable(cpu);
167
168 /*
169 * By default, allow disabling all CPUs except the first one,
170 * since this is special on a lot of platforms, e.g. because
171 * of clock tick interrupts.
172 */
173 return cpu == 0 ? -EPERM : 0;
174 }
175 /*
176 * __cpu_disable runs on the processor to be shutdown.
177 */
178 int __cpuinit __cpu_disable(void)
179 {
180 unsigned int cpu = smp_processor_id();
181 int ret;
182
183 ret = platform_cpu_disable(cpu);
184 if (ret)
185 return ret;
186
187 /*
188 * Take this CPU offline. Once we clear this, we can't return,
189 * and we must not schedule until we're ready to give up the cpu.
190 */
191 set_cpu_online(cpu, false);
192
193 /*
194 * OK - migrate IRQs away from this CPU
195 */
196 migrate_irqs();
197
198 /*
199 * Stop the local timer for this CPU.
200 */
201 percpu_timer_stop();
202
203 /*
204 * Flush user cache and TLB mappings, and then remove this CPU
205 * from the vm mask set of all processes.
206 *
207 * Caches are flushed to the Level of Unification Inner Shareable
208 * to write-back dirty lines to unified caches shared by all CPUs.
209 */
210 flush_cache_louis();
211 local_flush_tlb_all();
212
213 clear_tasks_mm_cpumask(cpu);
214
215 return 0;
216 }
217
218 static DECLARE_COMPLETION(cpu_died);
219
220 /*
221 * called on the thread which is asking for a CPU to be shutdown -
222 * waits until shutdown has completed, or it is timed out.
223 */
224 void __cpuinit __cpu_die(unsigned int cpu)
225 {
226 if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
227 pr_err("CPU%u: cpu didn't die\n", cpu);
228 return;
229 }
230 printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
231
232 if (!platform_cpu_kill(cpu))
233 printk("CPU%u: unable to kill\n", cpu);
234 }
235
236 /*
237 * Called from the idle thread for the CPU which has been shutdown.
238 *
239 * Note that we disable IRQs here, but do not re-enable them
240 * before returning to the caller. This is also the behaviour
241 * of the other hotplug-cpu capable cores, so presumably coming
242 * out of idle fixes this.
243 */
244 void __ref cpu_die(void)
245 {
246 unsigned int cpu = smp_processor_id();
247
248 idle_task_exit();
249
250 local_irq_disable();
251 mb();
252
253 /* Tell __cpu_die() that this CPU is now safe to dispose of */
254 RCU_NONIDLE(complete(&cpu_died));
255
256 /*
257 * actual CPU shutdown procedure is at least platform (if not
258 * CPU) specific.
259 */
260 platform_cpu_die(cpu);
261
262 /*
263 * Do not return to the idle loop - jump back to the secondary
264 * cpu initialisation. There's some initialisation which needs
265 * to be repeated to undo the effects of taking the CPU offline.
266 */
267 __asm__("mov sp, %0\n"
268 " mov fp, #0\n"
269 " b secondary_start_kernel"
270 :
271 : "r" (task_stack_page(current) + THREAD_SIZE - 8));
272 }
273 #endif /* CONFIG_HOTPLUG_CPU */
274
275 /*
276 * Called by both boot and secondaries to move global data into
277 * per-processor storage.
278 */
279 static void __cpuinit smp_store_cpu_info(unsigned int cpuid)
280 {
281 struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
282
283 cpu_info->loops_per_jiffy = loops_per_jiffy;
284 cpu_info->cpuid = read_cpuid_id();
285
286 store_cpu_topology(cpuid);
287 }
288
289 static void percpu_timer_setup(void);
290
291 /*
292 * This is the secondary CPU boot entry. We're using this CPUs
293 * idle thread stack, but a set of temporary page tables.
294 */
295 asmlinkage void __cpuinit secondary_start_kernel(void)
296 {
297 struct mm_struct *mm = &init_mm;
298 unsigned int cpu;
299
300 /*
301 * The identity mapping is uncached (strongly ordered), so
302 * switch away from it before attempting any exclusive accesses.
303 */
304 cpu_switch_mm(mm->pgd, mm);
305 enter_lazy_tlb(mm, current);
306 local_flush_tlb_all();
307
308 /*
309 * All kernel threads share the same mm context; grab a
310 * reference and switch to it.
311 */
312 cpu = smp_processor_id();
313 atomic_inc(&mm->mm_count);
314 current->active_mm = mm;
315 cpumask_set_cpu(cpu, mm_cpumask(mm));
316
317 cpu_init();
318
319 printk("CPU%u: Booted secondary processor\n", cpu);
320
321 preempt_disable();
322 trace_hardirqs_off();
323
324 /*
325 * Give the platform a chance to do its own initialisation.
326 */
327 platform_secondary_init(cpu);
328
329 notify_cpu_starting(cpu);
330
331 calibrate_delay();
332
333 smp_store_cpu_info(cpu);
334
335 /*
336 * OK, now it's safe to let the boot CPU continue. Wait for
337 * the CPU migration code to notice that the CPU is online
338 * before we continue - which happens after __cpu_up returns.
339 */
340 set_cpu_online(cpu, true);
341 complete(&cpu_running);
342
343 /*
344 * Setup the percpu timer for this CPU.
345 */
346 percpu_timer_setup();
347
348 local_irq_enable();
349 local_fiq_enable();
350
351 /*
352 * OK, it's off to the idle thread for us
353 */
354 cpu_idle();
355 }
356
357 void __init smp_cpus_done(unsigned int max_cpus)
358 {
359 int cpu;
360 unsigned long bogosum = 0;
361
362 for_each_online_cpu(cpu)
363 bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
364
365 printk(KERN_INFO "SMP: Total of %d processors activated "
366 "(%lu.%02lu BogoMIPS).\n",
367 num_online_cpus(),
368 bogosum / (500000/HZ),
369 (bogosum / (5000/HZ)) % 100);
370
371 hyp_mode_check();
372 }
373
374 void __init smp_prepare_boot_cpu(void)
375 {
376 set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
377 }
378
379 void __init smp_prepare_cpus(unsigned int max_cpus)
380 {
381 unsigned int ncores = num_possible_cpus();
382
383 init_cpu_topology();
384
385 smp_store_cpu_info(smp_processor_id());
386
387 /*
388 * are we trying to boot more cores than exist?
389 */
390 if (max_cpus > ncores)
391 max_cpus = ncores;
392 if (ncores > 1 && max_cpus) {
393 /*
394 * Enable the local timer or broadcast device for the
395 * boot CPU, but only if we have more than one CPU.
396 */
397 percpu_timer_setup();
398
399 /*
400 * Initialise the present map, which describes the set of CPUs
401 * actually populated at the present time. A platform should
402 * re-initialize the map in platform_smp_prepare_cpus() if
403 * present != possible (e.g. physical hotplug).
404 */
405 init_cpu_present(cpu_possible_mask);
406
407 /*
408 * Initialise the SCU if there are more than one CPU
409 * and let them know where to start.
410 */
411 platform_smp_prepare_cpus(max_cpus);
412 }
413 }
414
415 static void (*smp_cross_call)(const struct cpumask *, unsigned int);
416
417 void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
418 {
419 smp_cross_call = fn;
420 }
421
422 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
423 {
424 smp_cross_call(mask, IPI_CALL_FUNC);
425 }
426
427 void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
428 {
429 smp_cross_call(mask, IPI_WAKEUP);
430 }
431
432 void arch_send_call_function_single_ipi(int cpu)
433 {
434 smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
435 }
436
437 static const char *ipi_types[NR_IPI] = {
438 #define S(x,s) [x] = s
439 S(IPI_WAKEUP, "CPU wakeup interrupts"),
440 S(IPI_TIMER, "Timer broadcast interrupts"),
441 S(IPI_RESCHEDULE, "Rescheduling interrupts"),
442 S(IPI_CALL_FUNC, "Function call interrupts"),
443 S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
444 S(IPI_CPU_STOP, "CPU stop interrupts"),
445 };
446
447 void show_ipi_list(struct seq_file *p, int prec)
448 {
449 unsigned int cpu, i;
450
451 for (i = 0; i < NR_IPI; i++) {
452 seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
453
454 for_each_online_cpu(cpu)
455 seq_printf(p, "%10u ",
456 __get_irq_stat(cpu, ipi_irqs[i]));
457
458 seq_printf(p, " %s\n", ipi_types[i]);
459 }
460 }
461
462 u64 smp_irq_stat_cpu(unsigned int cpu)
463 {
464 u64 sum = 0;
465 int i;
466
467 for (i = 0; i < NR_IPI; i++)
468 sum += __get_irq_stat(cpu, ipi_irqs[i]);
469
470 return sum;
471 }
472
473 /*
474 * Timer (local or broadcast) support
475 */
476 static DEFINE_PER_CPU(struct clock_event_device, percpu_clockevent);
477
478 static void ipi_timer(void)
479 {
480 struct clock_event_device *evt = &__get_cpu_var(percpu_clockevent);
481 evt->event_handler(evt);
482 }
483
484 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
485 static void smp_timer_broadcast(const struct cpumask *mask)
486 {
487 smp_cross_call(mask, IPI_TIMER);
488 }
489 #else
490 #define smp_timer_broadcast NULL
491 #endif
492
493 static void broadcast_timer_set_mode(enum clock_event_mode mode,
494 struct clock_event_device *evt)
495 {
496 }
497
498 static void __cpuinit broadcast_timer_setup(struct clock_event_device *evt)
499 {
500 evt->name = "dummy_timer";
501 evt->features = CLOCK_EVT_FEAT_ONESHOT |
502 CLOCK_EVT_FEAT_PERIODIC |
503 CLOCK_EVT_FEAT_DUMMY;
504 evt->rating = 400;
505 evt->mult = 1;
506 evt->set_mode = broadcast_timer_set_mode;
507
508 clockevents_register_device(evt);
509 }
510
511 static struct local_timer_ops *lt_ops;
512
513 #ifdef CONFIG_LOCAL_TIMERS
514 int local_timer_register(struct local_timer_ops *ops)
515 {
516 if (!is_smp() || !setup_max_cpus)
517 return -ENXIO;
518
519 if (lt_ops)
520 return -EBUSY;
521
522 lt_ops = ops;
523 return 0;
524 }
525 #endif
526
527 static void __cpuinit percpu_timer_setup(void)
528 {
529 unsigned int cpu = smp_processor_id();
530 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
531
532 evt->cpumask = cpumask_of(cpu);
533 evt->broadcast = smp_timer_broadcast;
534
535 if (!lt_ops || lt_ops->setup(evt))
536 broadcast_timer_setup(evt);
537 }
538
539 #ifdef CONFIG_HOTPLUG_CPU
540 /*
541 * The generic clock events code purposely does not stop the local timer
542 * on CPU_DEAD/CPU_DEAD_FROZEN hotplug events, so we have to do it
543 * manually here.
544 */
545 static void percpu_timer_stop(void)
546 {
547 unsigned int cpu = smp_processor_id();
548 struct clock_event_device *evt = &per_cpu(percpu_clockevent, cpu);
549
550 if (lt_ops)
551 lt_ops->stop(evt);
552 }
553 #endif
554
555 static DEFINE_RAW_SPINLOCK(stop_lock);
556
557 /*
558 * ipi_cpu_stop - handle IPI from smp_send_stop()
559 */
560 static void ipi_cpu_stop(unsigned int cpu)
561 {
562 if (system_state == SYSTEM_BOOTING ||
563 system_state == SYSTEM_RUNNING) {
564 raw_spin_lock(&stop_lock);
565 printk(KERN_CRIT "CPU%u: stopping\n", cpu);
566 dump_stack();
567 raw_spin_unlock(&stop_lock);
568 }
569
570 set_cpu_online(cpu, false);
571
572 local_fiq_disable();
573 local_irq_disable();
574
575 while (1)
576 cpu_relax();
577 }
578
579 /*
580 * Main handler for inter-processor interrupts
581 */
582 asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
583 {
584 handle_IPI(ipinr, regs);
585 }
586
587 void handle_IPI(int ipinr, struct pt_regs *regs)
588 {
589 unsigned int cpu = smp_processor_id();
590 struct pt_regs *old_regs = set_irq_regs(regs);
591
592 if (ipinr < NR_IPI)
593 __inc_irq_stat(cpu, ipi_irqs[ipinr]);
594
595 switch (ipinr) {
596 case IPI_WAKEUP:
597 break;
598
599 case IPI_TIMER:
600 irq_enter();
601 ipi_timer();
602 irq_exit();
603 break;
604
605 case IPI_RESCHEDULE:
606 scheduler_ipi();
607 break;
608
609 case IPI_CALL_FUNC:
610 irq_enter();
611 generic_smp_call_function_interrupt();
612 irq_exit();
613 break;
614
615 case IPI_CALL_FUNC_SINGLE:
616 irq_enter();
617 generic_smp_call_function_single_interrupt();
618 irq_exit();
619 break;
620
621 case IPI_CPU_STOP:
622 irq_enter();
623 ipi_cpu_stop(cpu);
624 irq_exit();
625 break;
626
627 default:
628 printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
629 cpu, ipinr);
630 break;
631 }
632 set_irq_regs(old_regs);
633 }
634
635 void smp_send_reschedule(int cpu)
636 {
637 smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
638 }
639
640 #ifdef CONFIG_HOTPLUG_CPU
641 static void smp_kill_cpus(cpumask_t *mask)
642 {
643 unsigned int cpu;
644 for_each_cpu(cpu, mask)
645 platform_cpu_kill(cpu);
646 }
647 #else
648 static void smp_kill_cpus(cpumask_t *mask) { }
649 #endif
650
651 void smp_send_stop(void)
652 {
653 unsigned long timeout;
654 struct cpumask mask;
655
656 cpumask_copy(&mask, cpu_online_mask);
657 cpumask_clear_cpu(smp_processor_id(), &mask);
658 if (!cpumask_empty(&mask))
659 smp_cross_call(&mask, IPI_CPU_STOP);
660
661 /* Wait up to one second for other CPUs to stop */
662 timeout = USEC_PER_SEC;
663 while (num_online_cpus() > 1 && timeout--)
664 udelay(1);
665
666 if (num_online_cpus() > 1)
667 pr_warning("SMP: failed to stop secondary CPUs\n");
668
669 smp_kill_cpus(&mask);
670 }
671
672 /*
673 * not supported here
674 */
675 int setup_profiling_timer(unsigned int multiplier)
676 {
677 return -EINVAL;
678 }
679
680 #ifdef CONFIG_CPU_FREQ
681
682 static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
683 static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
684 static unsigned long global_l_p_j_ref;
685 static unsigned long global_l_p_j_ref_freq;
686
687 static int cpufreq_callback(struct notifier_block *nb,
688 unsigned long val, void *data)
689 {
690 struct cpufreq_freqs *freq = data;
691 int cpu = freq->cpu;
692
693 if (freq->flags & CPUFREQ_CONST_LOOPS)
694 return NOTIFY_OK;
695
696 if (!per_cpu(l_p_j_ref, cpu)) {
697 per_cpu(l_p_j_ref, cpu) =
698 per_cpu(cpu_data, cpu).loops_per_jiffy;
699 per_cpu(l_p_j_ref_freq, cpu) = freq->old;
700 if (!global_l_p_j_ref) {
701 global_l_p_j_ref = loops_per_jiffy;
702 global_l_p_j_ref_freq = freq->old;
703 }
704 }
705
706 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
707 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new) ||
708 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
709 loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
710 global_l_p_j_ref_freq,
711 freq->new);
712 per_cpu(cpu_data, cpu).loops_per_jiffy =
713 cpufreq_scale(per_cpu(l_p_j_ref, cpu),
714 per_cpu(l_p_j_ref_freq, cpu),
715 freq->new);
716 }
717 return NOTIFY_OK;
718 }
719
720 static struct notifier_block cpufreq_notifier = {
721 .notifier_call = cpufreq_callback,
722 };
723
724 static int __init register_cpufreq_notifier(void)
725 {
726 return cpufreq_register_notifier(&cpufreq_notifier,
727 CPUFREQ_TRANSITION_NOTIFIER);
728 }
729 core_initcall(register_cpufreq_notifier);
730
731 #endif