ARM: perf: Remove unnecessary armpmu->enable()s
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / kernel / perf_event.c
1 #undef DEBUG
2
3 /*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8 *
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11 * code.
12 */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/bitmap.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/module.h>
19 #include <linux/perf_event.h>
20 #include <linux/platform_device.h>
21 #include <linux/spinlock.h>
22 #include <linux/uaccess.h>
23
24 #include <asm/cputype.h>
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/pmu.h>
28 #include <asm/stacktrace.h>
29
30 /*
31 * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
32 * another platform that supports more, we need to increase this to be the
33 * largest of all platforms.
34 *
35 * ARMv7 supports up to 32 events:
36 * cycle counter CCNT + 31 events counters CNT0..30.
37 * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
38 */
39 #define ARMPMU_MAX_HWEVENTS 32
40
41 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
42 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
43 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
44
45 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
46
47 /* Set at runtime when we know what CPU type we are. */
48 static struct arm_pmu *cpu_pmu;
49
50 enum arm_perf_pmu_ids
51 armpmu_get_pmu_id(void)
52 {
53 int id = -ENODEV;
54
55 if (cpu_pmu != NULL)
56 id = cpu_pmu->id;
57
58 return id;
59 }
60 EXPORT_SYMBOL_GPL(armpmu_get_pmu_id);
61
62 int
63 armpmu_get_max_events(void)
64 {
65 int max_events = 0;
66
67 if (cpu_pmu != NULL)
68 max_events = cpu_pmu->num_events;
69
70 return max_events;
71 }
72 EXPORT_SYMBOL_GPL(armpmu_get_max_events);
73
74 int perf_num_counters(void)
75 {
76 return armpmu_get_max_events();
77 }
78 EXPORT_SYMBOL_GPL(perf_num_counters);
79
80 #define HW_OP_UNSUPPORTED 0xFFFF
81
82 #define C(_x) \
83 PERF_COUNT_HW_CACHE_##_x
84
85 #define CACHE_OP_UNSUPPORTED 0xFFFF
86
87 static int
88 armpmu_map_cache_event(const unsigned (*cache_map)
89 [PERF_COUNT_HW_CACHE_MAX]
90 [PERF_COUNT_HW_CACHE_OP_MAX]
91 [PERF_COUNT_HW_CACHE_RESULT_MAX],
92 u64 config)
93 {
94 unsigned int cache_type, cache_op, cache_result, ret;
95
96 cache_type = (config >> 0) & 0xff;
97 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
98 return -EINVAL;
99
100 cache_op = (config >> 8) & 0xff;
101 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
102 return -EINVAL;
103
104 cache_result = (config >> 16) & 0xff;
105 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
106 return -EINVAL;
107
108 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
109
110 if (ret == CACHE_OP_UNSUPPORTED)
111 return -ENOENT;
112
113 return ret;
114 }
115
116 static int
117 armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
118 {
119 int mapping = (*event_map)[config];
120 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
121 }
122
123 static int
124 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
125 {
126 return (int)(config & raw_event_mask);
127 }
128
129 static int map_cpu_event(struct perf_event *event,
130 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
131 const unsigned (*cache_map)
132 [PERF_COUNT_HW_CACHE_MAX]
133 [PERF_COUNT_HW_CACHE_OP_MAX]
134 [PERF_COUNT_HW_CACHE_RESULT_MAX],
135 u32 raw_event_mask)
136 {
137 u64 config = event->attr.config;
138
139 switch (event->attr.type) {
140 case PERF_TYPE_HARDWARE:
141 return armpmu_map_event(event_map, config);
142 case PERF_TYPE_HW_CACHE:
143 return armpmu_map_cache_event(cache_map, config);
144 case PERF_TYPE_RAW:
145 return armpmu_map_raw_event(raw_event_mask, config);
146 }
147
148 return -ENOENT;
149 }
150
151 int
152 armpmu_event_set_period(struct perf_event *event,
153 struct hw_perf_event *hwc,
154 int idx)
155 {
156 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
157 s64 left = local64_read(&hwc->period_left);
158 s64 period = hwc->sample_period;
159 int ret = 0;
160
161 if (unlikely(left <= -period)) {
162 left = period;
163 local64_set(&hwc->period_left, left);
164 hwc->last_period = period;
165 ret = 1;
166 }
167
168 if (unlikely(left <= 0)) {
169 left += period;
170 local64_set(&hwc->period_left, left);
171 hwc->last_period = period;
172 ret = 1;
173 }
174
175 if (left > (s64)armpmu->max_period)
176 left = armpmu->max_period;
177
178 local64_set(&hwc->prev_count, (u64)-left);
179
180 armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
181
182 perf_event_update_userpage(event);
183
184 return ret;
185 }
186
187 u64
188 armpmu_event_update(struct perf_event *event,
189 struct hw_perf_event *hwc,
190 int idx, int overflow)
191 {
192 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
193 u64 delta, prev_raw_count, new_raw_count;
194
195 again:
196 prev_raw_count = local64_read(&hwc->prev_count);
197 new_raw_count = armpmu->read_counter(idx);
198
199 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
200 new_raw_count) != prev_raw_count)
201 goto again;
202
203 new_raw_count &= armpmu->max_period;
204 prev_raw_count &= armpmu->max_period;
205
206 if (overflow)
207 delta = armpmu->max_period - prev_raw_count + new_raw_count + 1;
208 else
209 delta = new_raw_count - prev_raw_count;
210
211 local64_add(delta, &event->count);
212 local64_sub(delta, &hwc->period_left);
213
214 return new_raw_count;
215 }
216
217 static void
218 armpmu_read(struct perf_event *event)
219 {
220 struct hw_perf_event *hwc = &event->hw;
221
222 /* Don't read disabled counters! */
223 if (hwc->idx < 0)
224 return;
225
226 armpmu_event_update(event, hwc, hwc->idx, 0);
227 }
228
229 static void
230 armpmu_stop(struct perf_event *event, int flags)
231 {
232 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
233 struct hw_perf_event *hwc = &event->hw;
234
235 /*
236 * ARM pmu always has to update the counter, so ignore
237 * PERF_EF_UPDATE, see comments in armpmu_start().
238 */
239 if (!(hwc->state & PERF_HES_STOPPED)) {
240 armpmu->disable(hwc, hwc->idx);
241 barrier(); /* why? */
242 armpmu_event_update(event, hwc, hwc->idx, 0);
243 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
244 }
245 }
246
247 static void
248 armpmu_start(struct perf_event *event, int flags)
249 {
250 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
251 struct hw_perf_event *hwc = &event->hw;
252
253 /*
254 * ARM pmu always has to reprogram the period, so ignore
255 * PERF_EF_RELOAD, see the comment below.
256 */
257 if (flags & PERF_EF_RELOAD)
258 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
259
260 hwc->state = 0;
261 /*
262 * Set the period again. Some counters can't be stopped, so when we
263 * were stopped we simply disabled the IRQ source and the counter
264 * may have been left counting. If we don't do this step then we may
265 * get an interrupt too soon or *way* too late if the overflow has
266 * happened since disabling.
267 */
268 armpmu_event_set_period(event, hwc, hwc->idx);
269 armpmu->enable(hwc, hwc->idx);
270 }
271
272 static void
273 armpmu_del(struct perf_event *event, int flags)
274 {
275 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
276 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
277 struct hw_perf_event *hwc = &event->hw;
278 int idx = hwc->idx;
279
280 WARN_ON(idx < 0);
281
282 armpmu_stop(event, PERF_EF_UPDATE);
283 hw_events->events[idx] = NULL;
284 clear_bit(idx, hw_events->used_mask);
285
286 perf_event_update_userpage(event);
287 }
288
289 static int
290 armpmu_add(struct perf_event *event, int flags)
291 {
292 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
293 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
294 struct hw_perf_event *hwc = &event->hw;
295 int idx;
296 int err = 0;
297
298 perf_pmu_disable(event->pmu);
299
300 /* If we don't have a space for the counter then finish early. */
301 idx = armpmu->get_event_idx(hw_events, hwc);
302 if (idx < 0) {
303 err = idx;
304 goto out;
305 }
306
307 /*
308 * If there is an event in the counter we are going to use then make
309 * sure it is disabled.
310 */
311 event->hw.idx = idx;
312 armpmu->disable(hwc, idx);
313 hw_events->events[idx] = event;
314
315 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
316 if (flags & PERF_EF_START)
317 armpmu_start(event, PERF_EF_RELOAD);
318
319 /* Propagate our changes to the userspace mapping. */
320 perf_event_update_userpage(event);
321
322 out:
323 perf_pmu_enable(event->pmu);
324 return err;
325 }
326
327 static int
328 validate_event(struct pmu_hw_events *hw_events,
329 struct perf_event *event)
330 {
331 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
332 struct hw_perf_event fake_event = event->hw;
333 struct pmu *leader_pmu = event->group_leader->pmu;
334
335 if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
336 return 1;
337
338 return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
339 }
340
341 static int
342 validate_group(struct perf_event *event)
343 {
344 struct perf_event *sibling, *leader = event->group_leader;
345 struct pmu_hw_events fake_pmu;
346
347 memset(&fake_pmu, 0, sizeof(fake_pmu));
348
349 if (!validate_event(&fake_pmu, leader))
350 return -ENOSPC;
351
352 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
353 if (!validate_event(&fake_pmu, sibling))
354 return -ENOSPC;
355 }
356
357 if (!validate_event(&fake_pmu, event))
358 return -ENOSPC;
359
360 return 0;
361 }
362
363 static irqreturn_t armpmu_platform_irq(int irq, void *dev)
364 {
365 struct arm_pmu *armpmu = (struct arm_pmu *) dev;
366 struct platform_device *plat_device = armpmu->plat_device;
367 struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
368
369 return plat->handle_irq(irq, dev, armpmu->handle_irq);
370 }
371
372 static void
373 armpmu_release_hardware(struct arm_pmu *armpmu)
374 {
375 int i, irq, irqs;
376 struct platform_device *pmu_device = armpmu->plat_device;
377
378 irqs = min(pmu_device->num_resources, num_possible_cpus());
379
380 for (i = 0; i < irqs; ++i) {
381 if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
382 continue;
383 irq = platform_get_irq(pmu_device, i);
384 if (irq >= 0)
385 free_irq(irq, armpmu);
386 }
387
388 release_pmu(armpmu->type);
389 }
390
391 static int
392 armpmu_reserve_hardware(struct arm_pmu *armpmu)
393 {
394 struct arm_pmu_platdata *plat;
395 irq_handler_t handle_irq;
396 int i, err, irq, irqs;
397 struct platform_device *pmu_device = armpmu->plat_device;
398
399 err = reserve_pmu(armpmu->type);
400 if (err) {
401 pr_warning("unable to reserve pmu\n");
402 return err;
403 }
404
405 plat = dev_get_platdata(&pmu_device->dev);
406 if (plat && plat->handle_irq)
407 handle_irq = armpmu_platform_irq;
408 else
409 handle_irq = armpmu->handle_irq;
410
411 irqs = min(pmu_device->num_resources, num_possible_cpus());
412 if (irqs < 1) {
413 pr_err("no irqs for PMUs defined\n");
414 return -ENODEV;
415 }
416
417 for (i = 0; i < irqs; ++i) {
418 err = 0;
419 irq = platform_get_irq(pmu_device, i);
420 if (irq < 0)
421 continue;
422
423 /*
424 * If we have a single PMU interrupt that we can't shift,
425 * assume that we're running on a uniprocessor machine and
426 * continue. Otherwise, continue without this interrupt.
427 */
428 if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
429 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
430 irq, i);
431 continue;
432 }
433
434 err = request_irq(irq, handle_irq,
435 IRQF_DISABLED | IRQF_NOBALANCING,
436 "arm-pmu", armpmu);
437 if (err) {
438 pr_err("unable to request IRQ%d for ARM PMU counters\n",
439 irq);
440 armpmu_release_hardware(armpmu);
441 return err;
442 }
443
444 cpumask_set_cpu(i, &armpmu->active_irqs);
445 }
446
447 return 0;
448 }
449
450 static void
451 hw_perf_event_destroy(struct perf_event *event)
452 {
453 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
454 atomic_t *active_events = &armpmu->active_events;
455 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
456
457 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
458 armpmu_release_hardware(armpmu);
459 mutex_unlock(pmu_reserve_mutex);
460 }
461 }
462
463 static int
464 event_requires_mode_exclusion(struct perf_event_attr *attr)
465 {
466 return attr->exclude_idle || attr->exclude_user ||
467 attr->exclude_kernel || attr->exclude_hv;
468 }
469
470 static int
471 __hw_perf_event_init(struct perf_event *event)
472 {
473 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
474 struct hw_perf_event *hwc = &event->hw;
475 int mapping, err;
476
477 mapping = armpmu->map_event(event);
478
479 if (mapping < 0) {
480 pr_debug("event %x:%llx not supported\n", event->attr.type,
481 event->attr.config);
482 return mapping;
483 }
484
485 /*
486 * We don't assign an index until we actually place the event onto
487 * hardware. Use -1 to signify that we haven't decided where to put it
488 * yet. For SMP systems, each core has it's own PMU so we can't do any
489 * clever allocation or constraints checking at this point.
490 */
491 hwc->idx = -1;
492 hwc->config_base = 0;
493 hwc->config = 0;
494 hwc->event_base = 0;
495
496 /*
497 * Check whether we need to exclude the counter from certain modes.
498 */
499 if ((!armpmu->set_event_filter ||
500 armpmu->set_event_filter(hwc, &event->attr)) &&
501 event_requires_mode_exclusion(&event->attr)) {
502 pr_debug("ARM performance counters do not support "
503 "mode exclusion\n");
504 return -EPERM;
505 }
506
507 /*
508 * Store the event encoding into the config_base field.
509 */
510 hwc->config_base |= (unsigned long)mapping;
511
512 if (!hwc->sample_period) {
513 hwc->sample_period = armpmu->max_period;
514 hwc->last_period = hwc->sample_period;
515 local64_set(&hwc->period_left, hwc->sample_period);
516 }
517
518 err = 0;
519 if (event->group_leader != event) {
520 err = validate_group(event);
521 if (err)
522 return -EINVAL;
523 }
524
525 return err;
526 }
527
528 static int armpmu_event_init(struct perf_event *event)
529 {
530 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
531 int err = 0;
532 atomic_t *active_events = &armpmu->active_events;
533
534 if (armpmu->map_event(event) == -ENOENT)
535 return -ENOENT;
536
537 event->destroy = hw_perf_event_destroy;
538
539 if (!atomic_inc_not_zero(active_events)) {
540 mutex_lock(&armpmu->reserve_mutex);
541 if (atomic_read(active_events) == 0)
542 err = armpmu_reserve_hardware(armpmu);
543
544 if (!err)
545 atomic_inc(active_events);
546 mutex_unlock(&armpmu->reserve_mutex);
547 }
548
549 if (err)
550 return err;
551
552 err = __hw_perf_event_init(event);
553 if (err)
554 hw_perf_event_destroy(event);
555
556 return err;
557 }
558
559 static void armpmu_enable(struct pmu *pmu)
560 {
561 struct arm_pmu *armpmu = to_arm_pmu(pmu);
562 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
563 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
564
565 if (enabled)
566 armpmu->start();
567 }
568
569 static void armpmu_disable(struct pmu *pmu)
570 {
571 struct arm_pmu *armpmu = to_arm_pmu(pmu);
572 armpmu->stop();
573 }
574
575 static void __init armpmu_init(struct arm_pmu *armpmu)
576 {
577 atomic_set(&armpmu->active_events, 0);
578 mutex_init(&armpmu->reserve_mutex);
579
580 armpmu->pmu = (struct pmu) {
581 .pmu_enable = armpmu_enable,
582 .pmu_disable = armpmu_disable,
583 .event_init = armpmu_event_init,
584 .add = armpmu_add,
585 .del = armpmu_del,
586 .start = armpmu_start,
587 .stop = armpmu_stop,
588 .read = armpmu_read,
589 };
590 }
591
592 int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
593 {
594 armpmu_init(armpmu);
595 return perf_pmu_register(&armpmu->pmu, name, type);
596 }
597
598 /* Include the PMU-specific implementations. */
599 #include "perf_event_xscale.c"
600 #include "perf_event_v6.c"
601 #include "perf_event_v7.c"
602
603 /*
604 * Ensure the PMU has sane values out of reset.
605 * This requires SMP to be available, so exists as a separate initcall.
606 */
607 static int __init
608 cpu_pmu_reset(void)
609 {
610 if (cpu_pmu && cpu_pmu->reset)
611 return on_each_cpu(cpu_pmu->reset, NULL, 1);
612 return 0;
613 }
614 arch_initcall(cpu_pmu_reset);
615
616 /*
617 * PMU platform driver and devicetree bindings.
618 */
619 static struct of_device_id armpmu_of_device_ids[] = {
620 {.compatible = "arm,cortex-a9-pmu"},
621 {.compatible = "arm,cortex-a8-pmu"},
622 {.compatible = "arm,arm1136-pmu"},
623 {.compatible = "arm,arm1176-pmu"},
624 {},
625 };
626
627 static struct platform_device_id armpmu_plat_device_ids[] = {
628 {.name = "arm-pmu"},
629 {},
630 };
631
632 static int __devinit armpmu_device_probe(struct platform_device *pdev)
633 {
634 cpu_pmu->plat_device = pdev;
635 return 0;
636 }
637
638 static struct platform_driver armpmu_driver = {
639 .driver = {
640 .name = "arm-pmu",
641 .of_match_table = armpmu_of_device_ids,
642 },
643 .probe = armpmu_device_probe,
644 .id_table = armpmu_plat_device_ids,
645 };
646
647 static int __init register_pmu_driver(void)
648 {
649 return platform_driver_register(&armpmu_driver);
650 }
651 device_initcall(register_pmu_driver);
652
653 static struct pmu_hw_events *armpmu_get_cpu_events(void)
654 {
655 return &__get_cpu_var(cpu_hw_events);
656 }
657
658 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
659 {
660 int cpu;
661 for_each_possible_cpu(cpu) {
662 struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
663 events->events = per_cpu(hw_events, cpu);
664 events->used_mask = per_cpu(used_mask, cpu);
665 raw_spin_lock_init(&events->pmu_lock);
666 }
667 armpmu->get_hw_events = armpmu_get_cpu_events;
668 armpmu->type = ARM_PMU_DEVICE_CPU;
669 }
670
671 /*
672 * CPU PMU identification and registration.
673 */
674 static int __init
675 init_hw_perf_events(void)
676 {
677 unsigned long cpuid = read_cpuid_id();
678 unsigned long implementor = (cpuid & 0xFF000000) >> 24;
679 unsigned long part_number = (cpuid & 0xFFF0);
680
681 /* ARM Ltd CPUs. */
682 if (0x41 == implementor) {
683 switch (part_number) {
684 case 0xB360: /* ARM1136 */
685 case 0xB560: /* ARM1156 */
686 case 0xB760: /* ARM1176 */
687 cpu_pmu = armv6pmu_init();
688 break;
689 case 0xB020: /* ARM11mpcore */
690 cpu_pmu = armv6mpcore_pmu_init();
691 break;
692 case 0xC080: /* Cortex-A8 */
693 cpu_pmu = armv7_a8_pmu_init();
694 break;
695 case 0xC090: /* Cortex-A9 */
696 cpu_pmu = armv7_a9_pmu_init();
697 break;
698 case 0xC050: /* Cortex-A5 */
699 cpu_pmu = armv7_a5_pmu_init();
700 break;
701 case 0xC0F0: /* Cortex-A15 */
702 cpu_pmu = armv7_a15_pmu_init();
703 break;
704 }
705 /* Intel CPUs [xscale]. */
706 } else if (0x69 == implementor) {
707 part_number = (cpuid >> 13) & 0x7;
708 switch (part_number) {
709 case 1:
710 cpu_pmu = xscale1pmu_init();
711 break;
712 case 2:
713 cpu_pmu = xscale2pmu_init();
714 break;
715 }
716 }
717
718 if (cpu_pmu) {
719 pr_info("enabled with %s PMU driver, %d counters available\n",
720 cpu_pmu->name, cpu_pmu->num_events);
721 cpu_pmu_init(cpu_pmu);
722 armpmu_register(cpu_pmu, "cpu", PERF_TYPE_RAW);
723 } else {
724 pr_info("no hardware support available\n");
725 }
726
727 return 0;
728 }
729 early_initcall(init_hw_perf_events);
730
731 /*
732 * Callchain handling code.
733 */
734
735 /*
736 * The registers we're interested in are at the end of the variable
737 * length saved register structure. The fp points at the end of this
738 * structure so the address of this struct is:
739 * (struct frame_tail *)(xxx->fp)-1
740 *
741 * This code has been adapted from the ARM OProfile support.
742 */
743 struct frame_tail {
744 struct frame_tail __user *fp;
745 unsigned long sp;
746 unsigned long lr;
747 } __attribute__((packed));
748
749 /*
750 * Get the return address for a single stackframe and return a pointer to the
751 * next frame tail.
752 */
753 static struct frame_tail __user *
754 user_backtrace(struct frame_tail __user *tail,
755 struct perf_callchain_entry *entry)
756 {
757 struct frame_tail buftail;
758
759 /* Also check accessibility of one struct frame_tail beyond */
760 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
761 return NULL;
762 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
763 return NULL;
764
765 perf_callchain_store(entry, buftail.lr);
766
767 /*
768 * Frame pointers should strictly progress back up the stack
769 * (towards higher addresses).
770 */
771 if (tail + 1 >= buftail.fp)
772 return NULL;
773
774 return buftail.fp - 1;
775 }
776
777 void
778 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
779 {
780 struct frame_tail __user *tail;
781
782
783 tail = (struct frame_tail __user *)regs->ARM_fp - 1;
784
785 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
786 tail && !((unsigned long)tail & 0x3))
787 tail = user_backtrace(tail, entry);
788 }
789
790 /*
791 * Gets called by walk_stackframe() for every stackframe. This will be called
792 * whist unwinding the stackframe and is like a subroutine return so we use
793 * the PC.
794 */
795 static int
796 callchain_trace(struct stackframe *fr,
797 void *data)
798 {
799 struct perf_callchain_entry *entry = data;
800 perf_callchain_store(entry, fr->pc);
801 return 0;
802 }
803
804 void
805 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
806 {
807 struct stackframe fr;
808
809 fr.fp = regs->ARM_fp;
810 fr.sp = regs->ARM_sp;
811 fr.lr = regs->ARM_lr;
812 fr.pc = regs->ARM_pc;
813 walk_stackframe(&fr, callchain_trace, entry);
814 }