Merge branches 'audit', 'delay', 'fixes', 'misc' and 'sta2x11' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / kernel / perf_event.c
1 #undef DEBUG
2
3 /*
4 * ARM performance counter support.
5 *
6 * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
7 * Copyright (C) 2010 ARM Ltd., Will Deacon <will.deacon@arm.com>
8 *
9 * This code is based on the sparc64 perf event code, which is in turn based
10 * on the x86 code. Callchain code is based on the ARM OProfile backtrace
11 * code.
12 */
13 #define pr_fmt(fmt) "hw perfevents: " fmt
14
15 #include <linux/bitmap.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <linux/export.h>
19 #include <linux/perf_event.h>
20 #include <linux/platform_device.h>
21 #include <linux/spinlock.h>
22 #include <linux/uaccess.h>
23
24 #include <asm/cputype.h>
25 #include <asm/irq.h>
26 #include <asm/irq_regs.h>
27 #include <asm/pmu.h>
28 #include <asm/stacktrace.h>
29
30 /*
31 * ARMv6 supports a maximum of 3 events, starting from index 0. If we add
32 * another platform that supports more, we need to increase this to be the
33 * largest of all platforms.
34 *
35 * ARMv7 supports up to 32 events:
36 * cycle counter CCNT + 31 events counters CNT0..30.
37 * Cortex-A8 has 1+4 counters, Cortex-A9 has 1+6 counters.
38 */
39 #define ARMPMU_MAX_HWEVENTS 32
40
41 static DEFINE_PER_CPU(struct perf_event * [ARMPMU_MAX_HWEVENTS], hw_events);
42 static DEFINE_PER_CPU(unsigned long [BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)], used_mask);
43 static DEFINE_PER_CPU(struct pmu_hw_events, cpu_hw_events);
44
45 #define to_arm_pmu(p) (container_of(p, struct arm_pmu, pmu))
46
47 /* Set at runtime when we know what CPU type we are. */
48 static struct arm_pmu *cpu_pmu;
49
50 const char *perf_pmu_name(void)
51 {
52 if (!cpu_pmu)
53 return NULL;
54
55 return cpu_pmu->pmu.name;
56 }
57 EXPORT_SYMBOL_GPL(perf_pmu_name);
58
59 int perf_num_counters(void)
60 {
61 int max_events = 0;
62
63 if (cpu_pmu != NULL)
64 max_events = cpu_pmu->num_events;
65
66 return max_events;
67 }
68 EXPORT_SYMBOL_GPL(perf_num_counters);
69
70 #define HW_OP_UNSUPPORTED 0xFFFF
71
72 #define C(_x) \
73 PERF_COUNT_HW_CACHE_##_x
74
75 #define CACHE_OP_UNSUPPORTED 0xFFFF
76
77 static int
78 armpmu_map_cache_event(const unsigned (*cache_map)
79 [PERF_COUNT_HW_CACHE_MAX]
80 [PERF_COUNT_HW_CACHE_OP_MAX]
81 [PERF_COUNT_HW_CACHE_RESULT_MAX],
82 u64 config)
83 {
84 unsigned int cache_type, cache_op, cache_result, ret;
85
86 cache_type = (config >> 0) & 0xff;
87 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
88 return -EINVAL;
89
90 cache_op = (config >> 8) & 0xff;
91 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
92 return -EINVAL;
93
94 cache_result = (config >> 16) & 0xff;
95 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
96 return -EINVAL;
97
98 ret = (int)(*cache_map)[cache_type][cache_op][cache_result];
99
100 if (ret == CACHE_OP_UNSUPPORTED)
101 return -ENOENT;
102
103 return ret;
104 }
105
106 static int
107 armpmu_map_event(const unsigned (*event_map)[PERF_COUNT_HW_MAX], u64 config)
108 {
109 int mapping = (*event_map)[config];
110 return mapping == HW_OP_UNSUPPORTED ? -ENOENT : mapping;
111 }
112
113 static int
114 armpmu_map_raw_event(u32 raw_event_mask, u64 config)
115 {
116 return (int)(config & raw_event_mask);
117 }
118
119 static int map_cpu_event(struct perf_event *event,
120 const unsigned (*event_map)[PERF_COUNT_HW_MAX],
121 const unsigned (*cache_map)
122 [PERF_COUNT_HW_CACHE_MAX]
123 [PERF_COUNT_HW_CACHE_OP_MAX]
124 [PERF_COUNT_HW_CACHE_RESULT_MAX],
125 u32 raw_event_mask)
126 {
127 u64 config = event->attr.config;
128
129 switch (event->attr.type) {
130 case PERF_TYPE_HARDWARE:
131 return armpmu_map_event(event_map, config);
132 case PERF_TYPE_HW_CACHE:
133 return armpmu_map_cache_event(cache_map, config);
134 case PERF_TYPE_RAW:
135 return armpmu_map_raw_event(raw_event_mask, config);
136 }
137
138 return -ENOENT;
139 }
140
141 int
142 armpmu_event_set_period(struct perf_event *event,
143 struct hw_perf_event *hwc,
144 int idx)
145 {
146 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
147 s64 left = local64_read(&hwc->period_left);
148 s64 period = hwc->sample_period;
149 int ret = 0;
150
151 if (unlikely(left <= -period)) {
152 left = period;
153 local64_set(&hwc->period_left, left);
154 hwc->last_period = period;
155 ret = 1;
156 }
157
158 if (unlikely(left <= 0)) {
159 left += period;
160 local64_set(&hwc->period_left, left);
161 hwc->last_period = period;
162 ret = 1;
163 }
164
165 if (left > (s64)armpmu->max_period)
166 left = armpmu->max_period;
167
168 local64_set(&hwc->prev_count, (u64)-left);
169
170 armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
171
172 perf_event_update_userpage(event);
173
174 return ret;
175 }
176
177 u64
178 armpmu_event_update(struct perf_event *event,
179 struct hw_perf_event *hwc,
180 int idx)
181 {
182 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
183 u64 delta, prev_raw_count, new_raw_count;
184
185 again:
186 prev_raw_count = local64_read(&hwc->prev_count);
187 new_raw_count = armpmu->read_counter(idx);
188
189 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
190 new_raw_count) != prev_raw_count)
191 goto again;
192
193 delta = (new_raw_count - prev_raw_count) & armpmu->max_period;
194
195 local64_add(delta, &event->count);
196 local64_sub(delta, &hwc->period_left);
197
198 return new_raw_count;
199 }
200
201 static void
202 armpmu_read(struct perf_event *event)
203 {
204 struct hw_perf_event *hwc = &event->hw;
205
206 /* Don't read disabled counters! */
207 if (hwc->idx < 0)
208 return;
209
210 armpmu_event_update(event, hwc, hwc->idx);
211 }
212
213 static void
214 armpmu_stop(struct perf_event *event, int flags)
215 {
216 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
217 struct hw_perf_event *hwc = &event->hw;
218
219 /*
220 * ARM pmu always has to update the counter, so ignore
221 * PERF_EF_UPDATE, see comments in armpmu_start().
222 */
223 if (!(hwc->state & PERF_HES_STOPPED)) {
224 armpmu->disable(hwc, hwc->idx);
225 barrier(); /* why? */
226 armpmu_event_update(event, hwc, hwc->idx);
227 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
228 }
229 }
230
231 static void
232 armpmu_start(struct perf_event *event, int flags)
233 {
234 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
235 struct hw_perf_event *hwc = &event->hw;
236
237 /*
238 * ARM pmu always has to reprogram the period, so ignore
239 * PERF_EF_RELOAD, see the comment below.
240 */
241 if (flags & PERF_EF_RELOAD)
242 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
243
244 hwc->state = 0;
245 /*
246 * Set the period again. Some counters can't be stopped, so when we
247 * were stopped we simply disabled the IRQ source and the counter
248 * may have been left counting. If we don't do this step then we may
249 * get an interrupt too soon or *way* too late if the overflow has
250 * happened since disabling.
251 */
252 armpmu_event_set_period(event, hwc, hwc->idx);
253 armpmu->enable(hwc, hwc->idx);
254 }
255
256 static void
257 armpmu_del(struct perf_event *event, int flags)
258 {
259 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
260 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
261 struct hw_perf_event *hwc = &event->hw;
262 int idx = hwc->idx;
263
264 WARN_ON(idx < 0);
265
266 armpmu_stop(event, PERF_EF_UPDATE);
267 hw_events->events[idx] = NULL;
268 clear_bit(idx, hw_events->used_mask);
269
270 perf_event_update_userpage(event);
271 }
272
273 static int
274 armpmu_add(struct perf_event *event, int flags)
275 {
276 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
277 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
278 struct hw_perf_event *hwc = &event->hw;
279 int idx;
280 int err = 0;
281
282 perf_pmu_disable(event->pmu);
283
284 /* If we don't have a space for the counter then finish early. */
285 idx = armpmu->get_event_idx(hw_events, hwc);
286 if (idx < 0) {
287 err = idx;
288 goto out;
289 }
290
291 /*
292 * If there is an event in the counter we are going to use then make
293 * sure it is disabled.
294 */
295 event->hw.idx = idx;
296 armpmu->disable(hwc, idx);
297 hw_events->events[idx] = event;
298
299 hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
300 if (flags & PERF_EF_START)
301 armpmu_start(event, PERF_EF_RELOAD);
302
303 /* Propagate our changes to the userspace mapping. */
304 perf_event_update_userpage(event);
305
306 out:
307 perf_pmu_enable(event->pmu);
308 return err;
309 }
310
311 static int
312 validate_event(struct pmu_hw_events *hw_events,
313 struct perf_event *event)
314 {
315 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
316 struct hw_perf_event fake_event = event->hw;
317 struct pmu *leader_pmu = event->group_leader->pmu;
318
319 if (event->pmu != leader_pmu || event->state <= PERF_EVENT_STATE_OFF)
320 return 1;
321
322 return armpmu->get_event_idx(hw_events, &fake_event) >= 0;
323 }
324
325 static int
326 validate_group(struct perf_event *event)
327 {
328 struct perf_event *sibling, *leader = event->group_leader;
329 struct pmu_hw_events fake_pmu;
330 DECLARE_BITMAP(fake_used_mask, ARMPMU_MAX_HWEVENTS);
331
332 /*
333 * Initialise the fake PMU. We only need to populate the
334 * used_mask for the purposes of validation.
335 */
336 memset(fake_used_mask, 0, sizeof(fake_used_mask));
337 fake_pmu.used_mask = fake_used_mask;
338
339 if (!validate_event(&fake_pmu, leader))
340 return -EINVAL;
341
342 list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
343 if (!validate_event(&fake_pmu, sibling))
344 return -EINVAL;
345 }
346
347 if (!validate_event(&fake_pmu, event))
348 return -EINVAL;
349
350 return 0;
351 }
352
353 static irqreturn_t armpmu_platform_irq(int irq, void *dev)
354 {
355 struct arm_pmu *armpmu = (struct arm_pmu *) dev;
356 struct platform_device *plat_device = armpmu->plat_device;
357 struct arm_pmu_platdata *plat = dev_get_platdata(&plat_device->dev);
358
359 return plat->handle_irq(irq, dev, armpmu->handle_irq);
360 }
361
362 static void
363 armpmu_release_hardware(struct arm_pmu *armpmu)
364 {
365 int i, irq, irqs;
366 struct platform_device *pmu_device = armpmu->plat_device;
367 struct arm_pmu_platdata *plat =
368 dev_get_platdata(&pmu_device->dev);
369
370 irqs = min(pmu_device->num_resources, num_possible_cpus());
371
372 for (i = 0; i < irqs; ++i) {
373 if (!cpumask_test_and_clear_cpu(i, &armpmu->active_irqs))
374 continue;
375 irq = platform_get_irq(pmu_device, i);
376 if (irq >= 0) {
377 if (plat && plat->disable_irq)
378 plat->disable_irq(irq);
379 free_irq(irq, armpmu);
380 }
381 }
382
383 release_pmu(armpmu->type);
384 }
385
386 static int
387 armpmu_reserve_hardware(struct arm_pmu *armpmu)
388 {
389 struct arm_pmu_platdata *plat;
390 irq_handler_t handle_irq;
391 int i, err, irq, irqs;
392 struct platform_device *pmu_device = armpmu->plat_device;
393
394 if (!pmu_device)
395 return -ENODEV;
396
397 err = reserve_pmu(armpmu->type);
398 if (err) {
399 pr_warning("unable to reserve pmu\n");
400 return err;
401 }
402
403 plat = dev_get_platdata(&pmu_device->dev);
404 if (plat && plat->handle_irq)
405 handle_irq = armpmu_platform_irq;
406 else
407 handle_irq = armpmu->handle_irq;
408
409 irqs = min(pmu_device->num_resources, num_possible_cpus());
410 if (irqs < 1) {
411 pr_err("no irqs for PMUs defined\n");
412 return -ENODEV;
413 }
414
415 for (i = 0; i < irqs; ++i) {
416 err = 0;
417 irq = platform_get_irq(pmu_device, i);
418 if (irq < 0)
419 continue;
420
421 /*
422 * If we have a single PMU interrupt that we can't shift,
423 * assume that we're running on a uniprocessor machine and
424 * continue. Otherwise, continue without this interrupt.
425 */
426 if (irq_set_affinity(irq, cpumask_of(i)) && irqs > 1) {
427 pr_warning("unable to set irq affinity (irq=%d, cpu=%u)\n",
428 irq, i);
429 continue;
430 }
431
432 err = request_irq(irq, handle_irq,
433 IRQF_DISABLED | IRQF_NOBALANCING,
434 "arm-pmu", armpmu);
435 if (err) {
436 pr_err("unable to request IRQ%d for ARM PMU counters\n",
437 irq);
438 armpmu_release_hardware(armpmu);
439 return err;
440 } else if (plat && plat->enable_irq)
441 plat->enable_irq(irq);
442
443 cpumask_set_cpu(i, &armpmu->active_irqs);
444 }
445
446 return 0;
447 }
448
449 static void
450 hw_perf_event_destroy(struct perf_event *event)
451 {
452 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
453 atomic_t *active_events = &armpmu->active_events;
454 struct mutex *pmu_reserve_mutex = &armpmu->reserve_mutex;
455
456 if (atomic_dec_and_mutex_lock(active_events, pmu_reserve_mutex)) {
457 armpmu_release_hardware(armpmu);
458 mutex_unlock(pmu_reserve_mutex);
459 }
460 }
461
462 static int
463 event_requires_mode_exclusion(struct perf_event_attr *attr)
464 {
465 return attr->exclude_idle || attr->exclude_user ||
466 attr->exclude_kernel || attr->exclude_hv;
467 }
468
469 static int
470 __hw_perf_event_init(struct perf_event *event)
471 {
472 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
473 struct hw_perf_event *hwc = &event->hw;
474 int mapping, err;
475
476 mapping = armpmu->map_event(event);
477
478 if (mapping < 0) {
479 pr_debug("event %x:%llx not supported\n", event->attr.type,
480 event->attr.config);
481 return mapping;
482 }
483
484 /*
485 * We don't assign an index until we actually place the event onto
486 * hardware. Use -1 to signify that we haven't decided where to put it
487 * yet. For SMP systems, each core has it's own PMU so we can't do any
488 * clever allocation or constraints checking at this point.
489 */
490 hwc->idx = -1;
491 hwc->config_base = 0;
492 hwc->config = 0;
493 hwc->event_base = 0;
494
495 /*
496 * Check whether we need to exclude the counter from certain modes.
497 */
498 if ((!armpmu->set_event_filter ||
499 armpmu->set_event_filter(hwc, &event->attr)) &&
500 event_requires_mode_exclusion(&event->attr)) {
501 pr_debug("ARM performance counters do not support "
502 "mode exclusion\n");
503 return -EOPNOTSUPP;
504 }
505
506 /*
507 * Store the event encoding into the config_base field.
508 */
509 hwc->config_base |= (unsigned long)mapping;
510
511 if (!hwc->sample_period) {
512 /*
513 * For non-sampling runs, limit the sample_period to half
514 * of the counter width. That way, the new counter value
515 * is far less likely to overtake the previous one unless
516 * you have some serious IRQ latency issues.
517 */
518 hwc->sample_period = armpmu->max_period >> 1;
519 hwc->last_period = hwc->sample_period;
520 local64_set(&hwc->period_left, hwc->sample_period);
521 }
522
523 err = 0;
524 if (event->group_leader != event) {
525 err = validate_group(event);
526 if (err)
527 return -EINVAL;
528 }
529
530 return err;
531 }
532
533 static int armpmu_event_init(struct perf_event *event)
534 {
535 struct arm_pmu *armpmu = to_arm_pmu(event->pmu);
536 int err = 0;
537 atomic_t *active_events = &armpmu->active_events;
538
539 /* does not support taken branch sampling */
540 if (has_branch_stack(event))
541 return -EOPNOTSUPP;
542
543 if (armpmu->map_event(event) == -ENOENT)
544 return -ENOENT;
545
546 event->destroy = hw_perf_event_destroy;
547
548 if (!atomic_inc_not_zero(active_events)) {
549 mutex_lock(&armpmu->reserve_mutex);
550 if (atomic_read(active_events) == 0)
551 err = armpmu_reserve_hardware(armpmu);
552
553 if (!err)
554 atomic_inc(active_events);
555 mutex_unlock(&armpmu->reserve_mutex);
556 }
557
558 if (err)
559 return err;
560
561 err = __hw_perf_event_init(event);
562 if (err)
563 hw_perf_event_destroy(event);
564
565 return err;
566 }
567
568 static void armpmu_enable(struct pmu *pmu)
569 {
570 struct arm_pmu *armpmu = to_arm_pmu(pmu);
571 struct pmu_hw_events *hw_events = armpmu->get_hw_events();
572 int enabled = bitmap_weight(hw_events->used_mask, armpmu->num_events);
573
574 if (enabled)
575 armpmu->start();
576 }
577
578 static void armpmu_disable(struct pmu *pmu)
579 {
580 struct arm_pmu *armpmu = to_arm_pmu(pmu);
581 armpmu->stop();
582 }
583
584 static void __init armpmu_init(struct arm_pmu *armpmu)
585 {
586 atomic_set(&armpmu->active_events, 0);
587 mutex_init(&armpmu->reserve_mutex);
588
589 armpmu->pmu = (struct pmu) {
590 .pmu_enable = armpmu_enable,
591 .pmu_disable = armpmu_disable,
592 .event_init = armpmu_event_init,
593 .add = armpmu_add,
594 .del = armpmu_del,
595 .start = armpmu_start,
596 .stop = armpmu_stop,
597 .read = armpmu_read,
598 };
599 }
600
601 int __init armpmu_register(struct arm_pmu *armpmu, char *name, int type)
602 {
603 armpmu_init(armpmu);
604 return perf_pmu_register(&armpmu->pmu, name, type);
605 }
606
607 /* Include the PMU-specific implementations. */
608 #include "perf_event_xscale.c"
609 #include "perf_event_v6.c"
610 #include "perf_event_v7.c"
611
612 /*
613 * Ensure the PMU has sane values out of reset.
614 * This requires SMP to be available, so exists as a separate initcall.
615 */
616 static int __init
617 cpu_pmu_reset(void)
618 {
619 if (cpu_pmu && cpu_pmu->reset)
620 return on_each_cpu(cpu_pmu->reset, NULL, 1);
621 return 0;
622 }
623 arch_initcall(cpu_pmu_reset);
624
625 /*
626 * PMU platform driver and devicetree bindings.
627 */
628 static struct of_device_id armpmu_of_device_ids[] = {
629 {.compatible = "arm,cortex-a9-pmu"},
630 {.compatible = "arm,cortex-a8-pmu"},
631 {.compatible = "arm,arm1136-pmu"},
632 {.compatible = "arm,arm1176-pmu"},
633 {},
634 };
635
636 static struct platform_device_id armpmu_plat_device_ids[] = {
637 {.name = "arm-pmu"},
638 {},
639 };
640
641 static int __devinit armpmu_device_probe(struct platform_device *pdev)
642 {
643 if (!cpu_pmu)
644 return -ENODEV;
645
646 cpu_pmu->plat_device = pdev;
647 return 0;
648 }
649
650 static struct platform_driver armpmu_driver = {
651 .driver = {
652 .name = "arm-pmu",
653 .of_match_table = armpmu_of_device_ids,
654 },
655 .probe = armpmu_device_probe,
656 .id_table = armpmu_plat_device_ids,
657 };
658
659 static int __init register_pmu_driver(void)
660 {
661 return platform_driver_register(&armpmu_driver);
662 }
663 device_initcall(register_pmu_driver);
664
665 static struct pmu_hw_events *armpmu_get_cpu_events(void)
666 {
667 return &__get_cpu_var(cpu_hw_events);
668 }
669
670 static void __init cpu_pmu_init(struct arm_pmu *armpmu)
671 {
672 int cpu;
673 for_each_possible_cpu(cpu) {
674 struct pmu_hw_events *events = &per_cpu(cpu_hw_events, cpu);
675 events->events = per_cpu(hw_events, cpu);
676 events->used_mask = per_cpu(used_mask, cpu);
677 raw_spin_lock_init(&events->pmu_lock);
678 }
679 armpmu->get_hw_events = armpmu_get_cpu_events;
680 armpmu->type = ARM_PMU_DEVICE_CPU;
681 }
682
683 /*
684 * PMU hardware loses all context when a CPU goes offline.
685 * When a CPU is hotplugged back in, since some hardware registers are
686 * UNKNOWN at reset, the PMU must be explicitly reset to avoid reading
687 * junk values out of them.
688 */
689 static int __cpuinit pmu_cpu_notify(struct notifier_block *b,
690 unsigned long action, void *hcpu)
691 {
692 if ((action & ~CPU_TASKS_FROZEN) != CPU_STARTING)
693 return NOTIFY_DONE;
694
695 if (cpu_pmu && cpu_pmu->reset)
696 cpu_pmu->reset(NULL);
697
698 return NOTIFY_OK;
699 }
700
701 static struct notifier_block __cpuinitdata pmu_cpu_notifier = {
702 .notifier_call = pmu_cpu_notify,
703 };
704
705 /*
706 * CPU PMU identification and registration.
707 */
708 static int __init
709 init_hw_perf_events(void)
710 {
711 unsigned long cpuid = read_cpuid_id();
712 unsigned long implementor = (cpuid & 0xFF000000) >> 24;
713 unsigned long part_number = (cpuid & 0xFFF0);
714
715 /* ARM Ltd CPUs. */
716 if (0x41 == implementor) {
717 switch (part_number) {
718 case 0xB360: /* ARM1136 */
719 case 0xB560: /* ARM1156 */
720 case 0xB760: /* ARM1176 */
721 cpu_pmu = armv6pmu_init();
722 break;
723 case 0xB020: /* ARM11mpcore */
724 cpu_pmu = armv6mpcore_pmu_init();
725 break;
726 case 0xC080: /* Cortex-A8 */
727 cpu_pmu = armv7_a8_pmu_init();
728 break;
729 case 0xC090: /* Cortex-A9 */
730 cpu_pmu = armv7_a9_pmu_init();
731 break;
732 case 0xC050: /* Cortex-A5 */
733 cpu_pmu = armv7_a5_pmu_init();
734 break;
735 case 0xC0F0: /* Cortex-A15 */
736 cpu_pmu = armv7_a15_pmu_init();
737 break;
738 case 0xC070: /* Cortex-A7 */
739 cpu_pmu = armv7_a7_pmu_init();
740 break;
741 }
742 /* Intel CPUs [xscale]. */
743 } else if (0x69 == implementor) {
744 part_number = (cpuid >> 13) & 0x7;
745 switch (part_number) {
746 case 1:
747 cpu_pmu = xscale1pmu_init();
748 break;
749 case 2:
750 cpu_pmu = xscale2pmu_init();
751 break;
752 }
753 }
754
755 if (cpu_pmu) {
756 pr_info("enabled with %s PMU driver, %d counters available\n",
757 cpu_pmu->name, cpu_pmu->num_events);
758 cpu_pmu_init(cpu_pmu);
759 register_cpu_notifier(&pmu_cpu_notifier);
760 armpmu_register(cpu_pmu, cpu_pmu->name, PERF_TYPE_RAW);
761 } else {
762 pr_info("no hardware support available\n");
763 }
764
765 return 0;
766 }
767 early_initcall(init_hw_perf_events);
768
769 /*
770 * Callchain handling code.
771 */
772
773 /*
774 * The registers we're interested in are at the end of the variable
775 * length saved register structure. The fp points at the end of this
776 * structure so the address of this struct is:
777 * (struct frame_tail *)(xxx->fp)-1
778 *
779 * This code has been adapted from the ARM OProfile support.
780 */
781 struct frame_tail {
782 struct frame_tail __user *fp;
783 unsigned long sp;
784 unsigned long lr;
785 } __attribute__((packed));
786
787 /*
788 * Get the return address for a single stackframe and return a pointer to the
789 * next frame tail.
790 */
791 static struct frame_tail __user *
792 user_backtrace(struct frame_tail __user *tail,
793 struct perf_callchain_entry *entry)
794 {
795 struct frame_tail buftail;
796
797 /* Also check accessibility of one struct frame_tail beyond */
798 if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
799 return NULL;
800 if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
801 return NULL;
802
803 perf_callchain_store(entry, buftail.lr);
804
805 /*
806 * Frame pointers should strictly progress back up the stack
807 * (towards higher addresses).
808 */
809 if (tail + 1 >= buftail.fp)
810 return NULL;
811
812 return buftail.fp - 1;
813 }
814
815 void
816 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
817 {
818 struct frame_tail __user *tail;
819
820
821 tail = (struct frame_tail __user *)regs->ARM_fp - 1;
822
823 while ((entry->nr < PERF_MAX_STACK_DEPTH) &&
824 tail && !((unsigned long)tail & 0x3))
825 tail = user_backtrace(tail, entry);
826 }
827
828 /*
829 * Gets called by walk_stackframe() for every stackframe. This will be called
830 * whist unwinding the stackframe and is like a subroutine return so we use
831 * the PC.
832 */
833 static int
834 callchain_trace(struct stackframe *fr,
835 void *data)
836 {
837 struct perf_callchain_entry *entry = data;
838 perf_callchain_store(entry, fr->pc);
839 return 0;
840 }
841
842 void
843 perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
844 {
845 struct stackframe fr;
846
847 fr.fp = regs->ARM_fp;
848 fr.sp = regs->ARM_sp;
849 fr.lr = regs->ARM_lr;
850 fr.pc = regs->ARM_pc;
851 walk_stackframe(&fr, callchain_trace, entry);
852 }