[ARM] 3061/1: cleanup the XIP link address mess
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / arm / kernel / head.S
1 /*
2 * linux/arch/arm/kernel/head.S
3 *
4 * Copyright (C) 1994-2002 Russell King
5 * Copyright (c) 2003 ARM Limited
6 * All Rights Reserved
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 *
12 * Kernel startup code for all 32-bit CPUs
13 */
14 #include <linux/config.h>
15 #include <linux/linkage.h>
16 #include <linux/init.h>
17
18 #include <asm/assembler.h>
19 #include <asm/domain.h>
20 #include <asm/mach-types.h>
21 #include <asm/procinfo.h>
22 #include <asm/ptrace.h>
23 #include <asm/asm-offsets.h>
24 #include <asm/memory.h>
25 #include <asm/thread_info.h>
26 #include <asm/system.h>
27
28 #define PROCINFO_MMUFLAGS 8
29 #define PROCINFO_INITFUNC 12
30
31 #define MACHINFO_TYPE 0
32 #define MACHINFO_PHYSRAM 4
33 #define MACHINFO_PHYSIO 8
34 #define MACHINFO_PGOFFIO 12
35 #define MACHINFO_NAME 16
36
37 /*
38 * swapper_pg_dir is the virtual address of the initial page table.
39 * We place the page tables 16K below KERNEL_RAM_ADDR. Therefore, we must
40 * make sure that KERNEL_RAM_ADDR is correctly set. Currently, we expect
41 * the least significant 16 bits to be 0x8000, but we could probably
42 * relax this restriction to KERNEL_RAM_ADDR >= PAGE_OFFSET + 0x4000.
43 */
44 #if (KERNEL_RAM_ADDR & 0xffff) != 0x8000
45 #error KERNEL_RAM_ADDR must start at 0xXXXX8000
46 #endif
47
48 .globl swapper_pg_dir
49 .equ swapper_pg_dir, KERNEL_RAM_ADDR - 0x4000
50
51 .macro pgtbl, rd
52 ldr \rd, =(__virt_to_phys(KERNEL_RAM_ADDR - 0x4000))
53 .endm
54
55 #ifdef CONFIG_XIP_KERNEL
56 #define TEXTADDR XIP_VIRT_ADDR(CONFIG_XIP_PHYS_ADDR)
57 #else
58 #define TEXTADDR KERNEL_RAM_ADDR
59 #endif
60
61 /*
62 * Kernel startup entry point.
63 * ---------------------------
64 *
65 * This is normally called from the decompressor code. The requirements
66 * are: MMU = off, D-cache = off, I-cache = dont care, r0 = 0,
67 * r1 = machine nr.
68 *
69 * This code is mostly position independent, so if you link the kernel at
70 * 0xc0008000, you call this at __pa(0xc0008000).
71 *
72 * See linux/arch/arm/tools/mach-types for the complete list of machine
73 * numbers for r1.
74 *
75 * We're trying to keep crap to a minimum; DO NOT add any machine specific
76 * crap here - that's what the boot loader (or in extreme, well justified
77 * circumstances, zImage) is for.
78 */
79 __INIT
80 .type stext, %function
81 ENTRY(stext)
82 msr cpsr_c, #PSR_F_BIT | PSR_I_BIT | MODE_SVC @ ensure svc mode
83 @ and irqs disabled
84 bl __lookup_processor_type @ r5=procinfo r9=cpuid
85 movs r10, r5 @ invalid processor (r5=0)?
86 beq __error_p @ yes, error 'p'
87 bl __lookup_machine_type @ r5=machinfo
88 movs r8, r5 @ invalid machine (r5=0)?
89 beq __error_a @ yes, error 'a'
90 bl __create_page_tables
91
92 /*
93 * The following calls CPU specific code in a position independent
94 * manner. See arch/arm/mm/proc-*.S for details. r10 = base of
95 * xxx_proc_info structure selected by __lookup_machine_type
96 * above. On return, the CPU will be ready for the MMU to be
97 * turned on, and r0 will hold the CPU control register value.
98 */
99 ldr r13, __switch_data @ address to jump to after
100 @ mmu has been enabled
101 adr lr, __enable_mmu @ return (PIC) address
102 add pc, r10, #PROCINFO_INITFUNC
103
104 .type __switch_data, %object
105 __switch_data:
106 .long __mmap_switched
107 .long __data_loc @ r4
108 .long __data_start @ r5
109 .long __bss_start @ r6
110 .long _end @ r7
111 .long processor_id @ r4
112 .long __machine_arch_type @ r5
113 .long cr_alignment @ r6
114 .long init_thread_union + THREAD_START_SP @ sp
115
116 /*
117 * The following fragment of code is executed with the MMU on, and uses
118 * absolute addresses; this is not position independent.
119 *
120 * r0 = cp#15 control register
121 * r1 = machine ID
122 * r9 = processor ID
123 */
124 .type __mmap_switched, %function
125 __mmap_switched:
126 adr r3, __switch_data + 4
127
128 ldmia r3!, {r4, r5, r6, r7}
129 cmp r4, r5 @ Copy data segment if needed
130 1: cmpne r5, r6
131 ldrne fp, [r4], #4
132 strne fp, [r5], #4
133 bne 1b
134
135 mov fp, #0 @ Clear BSS (and zero fp)
136 1: cmp r6, r7
137 strcc fp, [r6],#4
138 bcc 1b
139
140 ldmia r3, {r4, r5, r6, sp}
141 str r9, [r4] @ Save processor ID
142 str r1, [r5] @ Save machine type
143 bic r4, r0, #CR_A @ Clear 'A' bit
144 stmia r6, {r0, r4} @ Save control register values
145 b start_kernel
146
147 #if defined(CONFIG_SMP)
148 .type secondary_startup, #function
149 ENTRY(secondary_startup)
150 /*
151 * Common entry point for secondary CPUs.
152 *
153 * Ensure that we're in SVC mode, and IRQs are disabled. Lookup
154 * the processor type - there is no need to check the machine type
155 * as it has already been validated by the primary processor.
156 */
157 msr cpsr_c, #PSR_F_BIT | PSR_I_BIT | MODE_SVC
158 bl __lookup_processor_type
159 movs r10, r5 @ invalid processor?
160 moveq r0, #'p' @ yes, error 'p'
161 beq __error
162
163 /*
164 * Use the page tables supplied from __cpu_up.
165 */
166 adr r4, __secondary_data
167 ldmia r4, {r5, r6, r13} @ address to jump to after
168 sub r4, r4, r5 @ mmu has been enabled
169 ldr r4, [r6, r4] @ get secondary_data.pgdir
170 adr lr, __enable_mmu @ return address
171 add pc, r10, #12 @ initialise processor
172 @ (return control reg)
173
174 /*
175 * r6 = &secondary_data
176 */
177 ENTRY(__secondary_switched)
178 ldr sp, [r6, #4] @ get secondary_data.stack
179 mov fp, #0
180 b secondary_start_kernel
181
182 .type __secondary_data, %object
183 __secondary_data:
184 .long .
185 .long secondary_data
186 .long __secondary_switched
187 #endif /* defined(CONFIG_SMP) */
188
189
190
191 /*
192 * Setup common bits before finally enabling the MMU. Essentially
193 * this is just loading the page table pointer and domain access
194 * registers.
195 */
196 .type __enable_mmu, %function
197 __enable_mmu:
198 #ifdef CONFIG_ALIGNMENT_TRAP
199 orr r0, r0, #CR_A
200 #else
201 bic r0, r0, #CR_A
202 #endif
203 #ifdef CONFIG_CPU_DCACHE_DISABLE
204 bic r0, r0, #CR_C
205 #endif
206 #ifdef CONFIG_CPU_BPREDICT_DISABLE
207 bic r0, r0, #CR_Z
208 #endif
209 #ifdef CONFIG_CPU_ICACHE_DISABLE
210 bic r0, r0, #CR_I
211 #endif
212 mov r5, #(domain_val(DOMAIN_USER, DOMAIN_MANAGER) | \
213 domain_val(DOMAIN_KERNEL, DOMAIN_MANAGER) | \
214 domain_val(DOMAIN_TABLE, DOMAIN_MANAGER) | \
215 domain_val(DOMAIN_IO, DOMAIN_CLIENT))
216 mcr p15, 0, r5, c3, c0, 0 @ load domain access register
217 mcr p15, 0, r4, c2, c0, 0 @ load page table pointer
218 b __turn_mmu_on
219
220 /*
221 * Enable the MMU. This completely changes the structure of the visible
222 * memory space. You will not be able to trace execution through this.
223 * If you have an enquiry about this, *please* check the linux-arm-kernel
224 * mailing list archives BEFORE sending another post to the list.
225 *
226 * r0 = cp#15 control register
227 * r13 = *virtual* address to jump to upon completion
228 *
229 * other registers depend on the function called upon completion
230 */
231 .align 5
232 .type __turn_mmu_on, %function
233 __turn_mmu_on:
234 mov r0, r0
235 mcr p15, 0, r0, c1, c0, 0 @ write control reg
236 mrc p15, 0, r3, c0, c0, 0 @ read id reg
237 mov r3, r3
238 mov r3, r3
239 mov pc, r13
240
241
242
243 /*
244 * Setup the initial page tables. We only setup the barest
245 * amount which are required to get the kernel running, which
246 * generally means mapping in the kernel code.
247 *
248 * r8 = machinfo
249 * r9 = cpuid
250 * r10 = procinfo
251 *
252 * Returns:
253 * r0, r3, r5, r6, r7 corrupted
254 * r4 = physical page table address
255 */
256 .type __create_page_tables, %function
257 __create_page_tables:
258 ldr r5, [r8, #MACHINFO_PHYSRAM] @ physram
259 pgtbl r4 @ page table address
260
261 /*
262 * Clear the 16K level 1 swapper page table
263 */
264 mov r0, r4
265 mov r3, #0
266 add r6, r0, #0x4000
267 1: str r3, [r0], #4
268 str r3, [r0], #4
269 str r3, [r0], #4
270 str r3, [r0], #4
271 teq r0, r6
272 bne 1b
273
274 ldr r7, [r10, #PROCINFO_MMUFLAGS] @ mmuflags
275
276 /*
277 * Create identity mapping for first MB of kernel to
278 * cater for the MMU enable. This identity mapping
279 * will be removed by paging_init(). We use our current program
280 * counter to determine corresponding section base address.
281 */
282 mov r6, pc, lsr #20 @ start of kernel section
283 orr r3, r7, r6, lsl #20 @ flags + kernel base
284 str r3, [r4, r6, lsl #2] @ identity mapping
285
286 /*
287 * Now setup the pagetables for our kernel direct
288 * mapped region. We round TEXTADDR down to the
289 * nearest megabyte boundary. It is assumed that
290 * the kernel fits within 4 contigous 1MB sections.
291 */
292 add r0, r4, #(TEXTADDR & 0xff000000) >> 18 @ start of kernel
293 str r3, [r0, #(TEXTADDR & 0x00f00000) >> 18]!
294 add r3, r3, #1 << 20
295 str r3, [r0, #4]! @ KERNEL + 1MB
296 add r3, r3, #1 << 20
297 str r3, [r0, #4]! @ KERNEL + 2MB
298 add r3, r3, #1 << 20
299 str r3, [r0, #4] @ KERNEL + 3MB
300
301 /*
302 * Then map first 1MB of ram in case it contains our boot params.
303 */
304 add r0, r4, #PAGE_OFFSET >> 18
305 orr r6, r5, r7
306 str r6, [r0]
307
308 #ifdef CONFIG_XIP_KERNEL
309 /*
310 * Map some ram to cover our .data and .bss areas.
311 * Mapping 3MB should be plenty.
312 */
313 sub r3, r4, r5
314 mov r3, r3, lsr #20
315 add r0, r0, r3, lsl #2
316 add r6, r6, r3, lsl #20
317 str r6, [r0], #4
318 add r6, r6, #(1 << 20)
319 str r6, [r0], #4
320 add r6, r6, #(1 << 20)
321 str r6, [r0]
322 #endif
323
324 #ifdef CONFIG_DEBUG_LL
325 bic r7, r7, #0x0c @ turn off cacheable
326 @ and bufferable bits
327 /*
328 * Map in IO space for serial debugging.
329 * This allows debug messages to be output
330 * via a serial console before paging_init.
331 */
332 ldr r3, [r8, #MACHINFO_PGOFFIO]
333 add r0, r4, r3
334 rsb r3, r3, #0x4000 @ PTRS_PER_PGD*sizeof(long)
335 cmp r3, #0x0800 @ limit to 512MB
336 movhi r3, #0x0800
337 add r6, r0, r3
338 ldr r3, [r8, #MACHINFO_PHYSIO]
339 orr r3, r3, r7
340 1: str r3, [r0], #4
341 add r3, r3, #1 << 20
342 teq r0, r6
343 bne 1b
344 #if defined(CONFIG_ARCH_NETWINDER) || defined(CONFIG_ARCH_CATS)
345 /*
346 * If we're using the NetWinder, we need to map in
347 * the 16550-type serial port for the debug messages
348 */
349 teq r1, #MACH_TYPE_NETWINDER
350 teqne r1, #MACH_TYPE_CATS
351 bne 1f
352 add r0, r4, #0xff000000 >> 18
353 orr r3, r7, #0x7c000000
354 str r3, [r0]
355 1:
356 #endif
357 #ifdef CONFIG_ARCH_RPC
358 /*
359 * Map in screen at 0x02000000 & SCREEN2_BASE
360 * Similar reasons here - for debug. This is
361 * only for Acorn RiscPC architectures.
362 */
363 add r0, r4, #0x02000000 >> 18
364 orr r3, r7, #0x02000000
365 str r3, [r0]
366 add r0, r4, #0xd8000000 >> 18
367 str r3, [r0]
368 #endif
369 #endif
370 mov pc, lr
371 .ltorg
372
373
374
375 /*
376 * Exception handling. Something went wrong and we can't proceed. We
377 * ought to tell the user, but since we don't have any guarantee that
378 * we're even running on the right architecture, we do virtually nothing.
379 *
380 * If CONFIG_DEBUG_LL is set we try to print out something about the error
381 * and hope for the best (useful if bootloader fails to pass a proper
382 * machine ID for example).
383 */
384
385 .type __error_p, %function
386 __error_p:
387 #ifdef CONFIG_DEBUG_LL
388 adr r0, str_p1
389 bl printascii
390 b __error
391 str_p1: .asciz "\nError: unrecognized/unsupported processor variant.\n"
392 .align
393 #endif
394
395 .type __error_a, %function
396 __error_a:
397 #ifdef CONFIG_DEBUG_LL
398 mov r4, r1 @ preserve machine ID
399 adr r0, str_a1
400 bl printascii
401 mov r0, r4
402 bl printhex8
403 adr r0, str_a2
404 bl printascii
405 adr r3, 3f
406 ldmia r3, {r4, r5, r6} @ get machine desc list
407 sub r4, r3, r4 @ get offset between virt&phys
408 add r5, r5, r4 @ convert virt addresses to
409 add r6, r6, r4 @ physical address space
410 1: ldr r0, [r5, #MACHINFO_TYPE] @ get machine type
411 bl printhex8
412 mov r0, #'\t'
413 bl printch
414 ldr r0, [r5, #MACHINFO_NAME] @ get machine name
415 add r0, r0, r4
416 bl printascii
417 mov r0, #'\n'
418 bl printch
419 add r5, r5, #SIZEOF_MACHINE_DESC @ next machine_desc
420 cmp r5, r6
421 blo 1b
422 adr r0, str_a3
423 bl printascii
424 b __error
425 str_a1: .asciz "\nError: unrecognized/unsupported machine ID (r1 = 0x"
426 str_a2: .asciz ").\n\nAvailable machine support:\n\nID (hex)\tNAME\n"
427 str_a3: .asciz "\nPlease check your kernel config and/or bootloader.\n"
428 .align
429 #endif
430
431 .type __error, %function
432 __error:
433 #ifdef CONFIG_ARCH_RPC
434 /*
435 * Turn the screen red on a error - RiscPC only.
436 */
437 mov r0, #0x02000000
438 mov r3, #0x11
439 orr r3, r3, r3, lsl #8
440 orr r3, r3, r3, lsl #16
441 str r3, [r0], #4
442 str r3, [r0], #4
443 str r3, [r0], #4
444 str r3, [r0], #4
445 #endif
446 1: mov r0, r0
447 b 1b
448
449
450 /*
451 * Read processor ID register (CP#15, CR0), and look up in the linker-built
452 * supported processor list. Note that we can't use the absolute addresses
453 * for the __proc_info lists since we aren't running with the MMU on
454 * (and therefore, we are not in the correct address space). We have to
455 * calculate the offset.
456 *
457 * Returns:
458 * r3, r4, r6 corrupted
459 * r5 = proc_info pointer in physical address space
460 * r9 = cpuid
461 */
462 .type __lookup_processor_type, %function
463 __lookup_processor_type:
464 adr r3, 3f
465 ldmda r3, {r5, r6, r9}
466 sub r3, r3, r9 @ get offset between virt&phys
467 add r5, r5, r3 @ convert virt addresses to
468 add r6, r6, r3 @ physical address space
469 mrc p15, 0, r9, c0, c0 @ get processor id
470 1: ldmia r5, {r3, r4} @ value, mask
471 and r4, r4, r9 @ mask wanted bits
472 teq r3, r4
473 beq 2f
474 add r5, r5, #PROC_INFO_SZ @ sizeof(proc_info_list)
475 cmp r5, r6
476 blo 1b
477 mov r5, #0 @ unknown processor
478 2: mov pc, lr
479
480 /*
481 * This provides a C-API version of the above function.
482 */
483 ENTRY(lookup_processor_type)
484 stmfd sp!, {r4 - r6, r9, lr}
485 bl __lookup_processor_type
486 mov r0, r5
487 ldmfd sp!, {r4 - r6, r9, pc}
488
489 /*
490 * Look in include/asm-arm/procinfo.h and arch/arm/kernel/arch.[ch] for
491 * more information about the __proc_info and __arch_info structures.
492 */
493 .long __proc_info_begin
494 .long __proc_info_end
495 3: .long .
496 .long __arch_info_begin
497 .long __arch_info_end
498
499 /*
500 * Lookup machine architecture in the linker-build list of architectures.
501 * Note that we can't use the absolute addresses for the __arch_info
502 * lists since we aren't running with the MMU on (and therefore, we are
503 * not in the correct address space). We have to calculate the offset.
504 *
505 * r1 = machine architecture number
506 * Returns:
507 * r3, r4, r6 corrupted
508 * r5 = mach_info pointer in physical address space
509 */
510 .type __lookup_machine_type, %function
511 __lookup_machine_type:
512 adr r3, 3b
513 ldmia r3, {r4, r5, r6}
514 sub r3, r3, r4 @ get offset between virt&phys
515 add r5, r5, r3 @ convert virt addresses to
516 add r6, r6, r3 @ physical address space
517 1: ldr r3, [r5, #MACHINFO_TYPE] @ get machine type
518 teq r3, r1 @ matches loader number?
519 beq 2f @ found
520 add r5, r5, #SIZEOF_MACHINE_DESC @ next machine_desc
521 cmp r5, r6
522 blo 1b
523 mov r5, #0 @ unknown machine
524 2: mov pc, lr
525
526 /*
527 * This provides a C-API version of the above function.
528 */
529 ENTRY(lookup_machine_type)
530 stmfd sp!, {r4 - r6, lr}
531 mov r1, r0
532 bl __lookup_machine_type
533 mov r0, r5
534 ldmfd sp!, {r4 - r6, pc}