tracing: add support for userspace stacktraces in tracing/iter_ctrl
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / Documentation / ftrace.txt
1 ftrace - Function Tracer
2 ========================
3
4 Copyright 2008 Red Hat Inc.
5 Author: Steven Rostedt <srostedt@redhat.com>
6 License: The GNU Free Documentation License, Version 1.2
7 (dual licensed under the GPL v2)
8 Reviewers: Elias Oltmanns, Randy Dunlap, Andrew Morton,
9 John Kacur, and David Teigland.
10
11 Written for: 2.6.28-rc2
12
13 Introduction
14 ------------
15
16 Ftrace is an internal tracer designed to help out developers and
17 designers of systems to find what is going on inside the kernel.
18 It can be used for debugging or analyzing latencies and performance
19 issues that take place outside of user-space.
20
21 Although ftrace is the function tracer, it also includes an
22 infrastructure that allows for other types of tracing. Some of the
23 tracers that are currently in ftrace include a tracer to trace
24 context switches, the time it takes for a high priority task to
25 run after it was woken up, the time interrupts are disabled, and
26 more (ftrace allows for tracer plugins, which means that the list of
27 tracers can always grow).
28
29
30 The File System
31 ---------------
32
33 Ftrace uses the debugfs file system to hold the control files as well
34 as the files to display output.
35
36 To mount the debugfs system:
37
38 # mkdir /debug
39 # mount -t debugfs nodev /debug
40
41 (Note: it is more common to mount at /sys/kernel/debug, but for simplicity
42 this document will use /debug)
43
44 That's it! (assuming that you have ftrace configured into your kernel)
45
46 After mounting the debugfs, you can see a directory called
47 "tracing". This directory contains the control and output files
48 of ftrace. Here is a list of some of the key files:
49
50
51 Note: all time values are in microseconds.
52
53 current_tracer: This is used to set or display the current tracer
54 that is configured.
55
56 available_tracers: This holds the different types of tracers that
57 have been compiled into the kernel. The tracers
58 listed here can be configured by echoing their name
59 into current_tracer.
60
61 tracing_enabled: This sets or displays whether the current_tracer
62 is activated and tracing or not. Echo 0 into this
63 file to disable the tracer or 1 to enable it.
64
65 trace: This file holds the output of the trace in a human readable
66 format (described below).
67
68 latency_trace: This file shows the same trace but the information
69 is organized more to display possible latencies
70 in the system (described below).
71
72 trace_pipe: The output is the same as the "trace" file but this
73 file is meant to be streamed with live tracing.
74 Reads from this file will block until new data
75 is retrieved. Unlike the "trace" and "latency_trace"
76 files, this file is a consumer. This means reading
77 from this file causes sequential reads to display
78 more current data. Once data is read from this
79 file, it is consumed, and will not be read
80 again with a sequential read. The "trace" and
81 "latency_trace" files are static, and if the
82 tracer is not adding more data, they will display
83 the same information every time they are read.
84
85 trace_options: This file lets the user control the amount of data
86 that is displayed in one of the above output
87 files.
88
89 trace_max_latency: Some of the tracers record the max latency.
90 For example, the time interrupts are disabled.
91 This time is saved in this file. The max trace
92 will also be stored, and displayed by either
93 "trace" or "latency_trace". A new max trace will
94 only be recorded if the latency is greater than
95 the value in this file. (in microseconds)
96
97 buffer_size_kb: This sets or displays the number of kilobytes each CPU
98 buffer can hold. The tracer buffers are the same size
99 for each CPU. The displayed number is the size of the
100 CPU buffer and not total size of all buffers. The
101 trace buffers are allocated in pages (blocks of memory
102 that the kernel uses for allocation, usually 4 KB in size).
103 If the last page allocated has room for more bytes
104 than requested, the rest of the page will be used,
105 making the actual allocation bigger than requested.
106 (Note, the size may not be a multiple of the page size due
107 to buffer managment overhead.)
108
109 This can only be updated when the current_tracer
110 is set to "nop".
111
112 tracing_cpumask: This is a mask that lets the user only trace
113 on specified CPUS. The format is a hex string
114 representing the CPUS.
115
116 set_ftrace_filter: When dynamic ftrace is configured in (see the
117 section below "dynamic ftrace"), the code is dynamically
118 modified (code text rewrite) to disable calling of the
119 function profiler (mcount). This lets tracing be configured
120 in with practically no overhead in performance. This also
121 has a side effect of enabling or disabling specific functions
122 to be traced. Echoing names of functions into this file
123 will limit the trace to only those functions.
124
125 set_ftrace_notrace: This has an effect opposite to that of
126 set_ftrace_filter. Any function that is added here will not
127 be traced. If a function exists in both set_ftrace_filter
128 and set_ftrace_notrace, the function will _not_ be traced.
129
130 available_filter_functions: This lists the functions that ftrace
131 has processed and can trace. These are the function
132 names that you can pass to "set_ftrace_filter" or
133 "set_ftrace_notrace". (See the section "dynamic ftrace"
134 below for more details.)
135
136
137 The Tracers
138 -----------
139
140 Here is the list of current tracers that may be configured.
141
142 function - function tracer that uses mcount to trace all functions.
143
144 sched_switch - traces the context switches between tasks.
145
146 irqsoff - traces the areas that disable interrupts and saves
147 the trace with the longest max latency.
148 See tracing_max_latency. When a new max is recorded,
149 it replaces the old trace. It is best to view this
150 trace via the latency_trace file.
151
152 preemptoff - Similar to irqsoff but traces and records the amount of
153 time for which preemption is disabled.
154
155 preemptirqsoff - Similar to irqsoff and preemptoff, but traces and
156 records the largest time for which irqs and/or preemption
157 is disabled.
158
159 wakeup - Traces and records the max latency that it takes for
160 the highest priority task to get scheduled after
161 it has been woken up.
162
163 nop - This is not a tracer. To remove all tracers from tracing
164 simply echo "nop" into current_tracer.
165
166
167 Examples of using the tracer
168 ----------------------------
169
170 Here are typical examples of using the tracers when controlling them only
171 with the debugfs interface (without using any user-land utilities).
172
173 Output format:
174 --------------
175
176 Here is an example of the output format of the file "trace"
177
178 --------
179 # tracer: function
180 #
181 # TASK-PID CPU# TIMESTAMP FUNCTION
182 # | | | | |
183 bash-4251 [01] 10152.583854: path_put <-path_walk
184 bash-4251 [01] 10152.583855: dput <-path_put
185 bash-4251 [01] 10152.583855: _atomic_dec_and_lock <-dput
186 --------
187
188 A header is printed with the tracer name that is represented by the trace.
189 In this case the tracer is "function". Then a header showing the format. Task
190 name "bash", the task PID "4251", the CPU that it was running on
191 "01", the timestamp in <secs>.<usecs> format, the function name that was
192 traced "path_put" and the parent function that called this function
193 "path_walk". The timestamp is the time at which the function was
194 entered.
195
196 The sched_switch tracer also includes tracing of task wakeups and
197 context switches.
198
199 ksoftirqd/1-7 [01] 1453.070013: 7:115:R + 2916:115:S
200 ksoftirqd/1-7 [01] 1453.070013: 7:115:R + 10:115:S
201 ksoftirqd/1-7 [01] 1453.070013: 7:115:R ==> 10:115:R
202 events/1-10 [01] 1453.070013: 10:115:S ==> 2916:115:R
203 kondemand/1-2916 [01] 1453.070013: 2916:115:S ==> 7:115:R
204 ksoftirqd/1-7 [01] 1453.070013: 7:115:S ==> 0:140:R
205
206 Wake ups are represented by a "+" and the context switches are shown as
207 "==>". The format is:
208
209 Context switches:
210
211 Previous task Next Task
212
213 <pid>:<prio>:<state> ==> <pid>:<prio>:<state>
214
215 Wake ups:
216
217 Current task Task waking up
218
219 <pid>:<prio>:<state> + <pid>:<prio>:<state>
220
221 The prio is the internal kernel priority, which is the inverse of the
222 priority that is usually displayed by user-space tools. Zero represents
223 the highest priority (99). Prio 100 starts the "nice" priorities with
224 100 being equal to nice -20 and 139 being nice 19. The prio "140" is
225 reserved for the idle task which is the lowest priority thread (pid 0).
226
227
228 Latency trace format
229 --------------------
230
231 For traces that display latency times, the latency_trace file gives
232 somewhat more information to see why a latency happened. Here is a typical
233 trace.
234
235 # tracer: irqsoff
236 #
237 irqsoff latency trace v1.1.5 on 2.6.26-rc8
238 --------------------------------------------------------------------
239 latency: 97 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
240 -----------------
241 | task: swapper-0 (uid:0 nice:0 policy:0 rt_prio:0)
242 -----------------
243 => started at: apic_timer_interrupt
244 => ended at: do_softirq
245
246 # _------=> CPU#
247 # / _-----=> irqs-off
248 # | / _----=> need-resched
249 # || / _---=> hardirq/softirq
250 # ||| / _--=> preempt-depth
251 # |||| /
252 # ||||| delay
253 # cmd pid ||||| time | caller
254 # \ / ||||| \ | /
255 <idle>-0 0d..1 0us+: trace_hardirqs_off_thunk (apic_timer_interrupt)
256 <idle>-0 0d.s. 97us : __do_softirq (do_softirq)
257 <idle>-0 0d.s1 98us : trace_hardirqs_on (do_softirq)
258
259
260
261 This shows that the current tracer is "irqsoff" tracing the time for which
262 interrupts were disabled. It gives the trace version and the version
263 of the kernel upon which this was executed on (2.6.26-rc8). Then it displays
264 the max latency in microsecs (97 us). The number of trace entries displayed
265 and the total number recorded (both are three: #3/3). The type of
266 preemption that was used (PREEMPT). VP, KP, SP, and HP are always zero
267 and are reserved for later use. #P is the number of online CPUS (#P:2).
268
269 The task is the process that was running when the latency occurred.
270 (swapper pid: 0).
271
272 The start and stop (the functions in which the interrupts were disabled and
273 enabled respectively) that caused the latencies:
274
275 apic_timer_interrupt is where the interrupts were disabled.
276 do_softirq is where they were enabled again.
277
278 The next lines after the header are the trace itself. The header
279 explains which is which.
280
281 cmd: The name of the process in the trace.
282
283 pid: The PID of that process.
284
285 CPU#: The CPU which the process was running on.
286
287 irqs-off: 'd' interrupts are disabled. '.' otherwise.
288 Note: If the architecture does not support a way to
289 read the irq flags variable, an 'X' will always
290 be printed here.
291
292 need-resched: 'N' task need_resched is set, '.' otherwise.
293
294 hardirq/softirq:
295 'H' - hard irq occurred inside a softirq.
296 'h' - hard irq is running
297 's' - soft irq is running
298 '.' - normal context.
299
300 preempt-depth: The level of preempt_disabled
301
302 The above is mostly meaningful for kernel developers.
303
304 time: This differs from the trace file output. The trace file output
305 includes an absolute timestamp. The timestamp used by the
306 latency_trace file is relative to the start of the trace.
307
308 delay: This is just to help catch your eye a bit better. And
309 needs to be fixed to be only relative to the same CPU.
310 The marks are determined by the difference between this
311 current trace and the next trace.
312 '!' - greater than preempt_mark_thresh (default 100)
313 '+' - greater than 1 microsecond
314 ' ' - less than or equal to 1 microsecond.
315
316 The rest is the same as the 'trace' file.
317
318
319 trace_options
320 -------------
321
322 The trace_options file is used to control what gets printed in the trace
323 output. To see what is available, simply cat the file:
324
325 cat /debug/tracing/trace_options
326 print-parent nosym-offset nosym-addr noverbose noraw nohex nobin \
327 noblock nostacktrace nosched-tree nouserstacktrace
328
329 To disable one of the options, echo in the option prepended with "no".
330
331 echo noprint-parent > /debug/tracing/trace_options
332
333 To enable an option, leave off the "no".
334
335 echo sym-offset > /debug/tracing/trace_options
336
337 Here are the available options:
338
339 print-parent - On function traces, display the calling function
340 as well as the function being traced.
341
342 print-parent:
343 bash-4000 [01] 1477.606694: simple_strtoul <-strict_strtoul
344
345 noprint-parent:
346 bash-4000 [01] 1477.606694: simple_strtoul
347
348
349 sym-offset - Display not only the function name, but also the offset
350 in the function. For example, instead of seeing just
351 "ktime_get", you will see "ktime_get+0xb/0x20".
352
353 sym-offset:
354 bash-4000 [01] 1477.606694: simple_strtoul+0x6/0xa0
355
356 sym-addr - this will also display the function address as well as
357 the function name.
358
359 sym-addr:
360 bash-4000 [01] 1477.606694: simple_strtoul <c0339346>
361
362 verbose - This deals with the latency_trace file.
363
364 bash 4000 1 0 00000000 00010a95 [58127d26] 1720.415ms \
365 (+0.000ms): simple_strtoul (strict_strtoul)
366
367 raw - This will display raw numbers. This option is best for use with
368 user applications that can translate the raw numbers better than
369 having it done in the kernel.
370
371 hex - Similar to raw, but the numbers will be in a hexadecimal format.
372
373 bin - This will print out the formats in raw binary.
374
375 block - TBD (needs update)
376
377 stacktrace - This is one of the options that changes the trace itself.
378 When a trace is recorded, so is the stack of functions.
379 This allows for back traces of trace sites.
380
381 userstacktrace - This option changes the trace.
382 It records a stacktrace of the current userspace thread.
383
384 sched-tree - TBD (any users??)
385
386
387 sched_switch
388 ------------
389
390 This tracer simply records schedule switches. Here is an example
391 of how to use it.
392
393 # echo sched_switch > /debug/tracing/current_tracer
394 # echo 1 > /debug/tracing/tracing_enabled
395 # sleep 1
396 # echo 0 > /debug/tracing/tracing_enabled
397 # cat /debug/tracing/trace
398
399 # tracer: sched_switch
400 #
401 # TASK-PID CPU# TIMESTAMP FUNCTION
402 # | | | | |
403 bash-3997 [01] 240.132281: 3997:120:R + 4055:120:R
404 bash-3997 [01] 240.132284: 3997:120:R ==> 4055:120:R
405 sleep-4055 [01] 240.132371: 4055:120:S ==> 3997:120:R
406 bash-3997 [01] 240.132454: 3997:120:R + 4055:120:S
407 bash-3997 [01] 240.132457: 3997:120:R ==> 4055:120:R
408 sleep-4055 [01] 240.132460: 4055:120:D ==> 3997:120:R
409 bash-3997 [01] 240.132463: 3997:120:R + 4055:120:D
410 bash-3997 [01] 240.132465: 3997:120:R ==> 4055:120:R
411 <idle>-0 [00] 240.132589: 0:140:R + 4:115:S
412 <idle>-0 [00] 240.132591: 0:140:R ==> 4:115:R
413 ksoftirqd/0-4 [00] 240.132595: 4:115:S ==> 0:140:R
414 <idle>-0 [00] 240.132598: 0:140:R + 4:115:S
415 <idle>-0 [00] 240.132599: 0:140:R ==> 4:115:R
416 ksoftirqd/0-4 [00] 240.132603: 4:115:S ==> 0:140:R
417 sleep-4055 [01] 240.133058: 4055:120:S ==> 3997:120:R
418 [...]
419
420
421 As we have discussed previously about this format, the header shows
422 the name of the trace and points to the options. The "FUNCTION"
423 is a misnomer since here it represents the wake ups and context
424 switches.
425
426 The sched_switch file only lists the wake ups (represented with '+')
427 and context switches ('==>') with the previous task or current task
428 first followed by the next task or task waking up. The format for both
429 of these is PID:KERNEL-PRIO:TASK-STATE. Remember that the KERNEL-PRIO
430 is the inverse of the actual priority with zero (0) being the highest
431 priority and the nice values starting at 100 (nice -20). Below is
432 a quick chart to map the kernel priority to user land priorities.
433
434 Kernel priority: 0 to 99 ==> user RT priority 99 to 0
435 Kernel priority: 100 to 139 ==> user nice -20 to 19
436 Kernel priority: 140 ==> idle task priority
437
438 The task states are:
439
440 R - running : wants to run, may not actually be running
441 S - sleep : process is waiting to be woken up (handles signals)
442 D - disk sleep (uninterruptible sleep) : process must be woken up
443 (ignores signals)
444 T - stopped : process suspended
445 t - traced : process is being traced (with something like gdb)
446 Z - zombie : process waiting to be cleaned up
447 X - unknown
448
449
450 ftrace_enabled
451 --------------
452
453 The following tracers (listed below) give different output depending
454 on whether or not the sysctl ftrace_enabled is set. To set ftrace_enabled,
455 one can either use the sysctl function or set it via the proc
456 file system interface.
457
458 sysctl kernel.ftrace_enabled=1
459
460 or
461
462 echo 1 > /proc/sys/kernel/ftrace_enabled
463
464 To disable ftrace_enabled simply replace the '1' with '0' in
465 the above commands.
466
467 When ftrace_enabled is set the tracers will also record the functions
468 that are within the trace. The descriptions of the tracers
469 will also show an example with ftrace enabled.
470
471
472 irqsoff
473 -------
474
475 When interrupts are disabled, the CPU can not react to any other
476 external event (besides NMIs and SMIs). This prevents the timer
477 interrupt from triggering or the mouse interrupt from letting the
478 kernel know of a new mouse event. The result is a latency with the
479 reaction time.
480
481 The irqsoff tracer tracks the time for which interrupts are disabled.
482 When a new maximum latency is hit, the tracer saves the trace leading up
483 to that latency point so that every time a new maximum is reached, the old
484 saved trace is discarded and the new trace is saved.
485
486 To reset the maximum, echo 0 into tracing_max_latency. Here is an
487 example:
488
489 # echo irqsoff > /debug/tracing/current_tracer
490 # echo 0 > /debug/tracing/tracing_max_latency
491 # echo 1 > /debug/tracing/tracing_enabled
492 # ls -ltr
493 [...]
494 # echo 0 > /debug/tracing/tracing_enabled
495 # cat /debug/tracing/latency_trace
496 # tracer: irqsoff
497 #
498 irqsoff latency trace v1.1.5 on 2.6.26
499 --------------------------------------------------------------------
500 latency: 12 us, #3/3, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
501 -----------------
502 | task: bash-3730 (uid:0 nice:0 policy:0 rt_prio:0)
503 -----------------
504 => started at: sys_setpgid
505 => ended at: sys_setpgid
506
507 # _------=> CPU#
508 # / _-----=> irqs-off
509 # | / _----=> need-resched
510 # || / _---=> hardirq/softirq
511 # ||| / _--=> preempt-depth
512 # |||| /
513 # ||||| delay
514 # cmd pid ||||| time | caller
515 # \ / ||||| \ | /
516 bash-3730 1d... 0us : _write_lock_irq (sys_setpgid)
517 bash-3730 1d..1 1us+: _write_unlock_irq (sys_setpgid)
518 bash-3730 1d..2 14us : trace_hardirqs_on (sys_setpgid)
519
520
521 Here we see that that we had a latency of 12 microsecs (which is
522 very good). The _write_lock_irq in sys_setpgid disabled interrupts.
523 The difference between the 12 and the displayed timestamp 14us occurred
524 because the clock was incremented between the time of recording the max
525 latency and the time of recording the function that had that latency.
526
527 Note the above example had ftrace_enabled not set. If we set the
528 ftrace_enabled, we get a much larger output:
529
530 # tracer: irqsoff
531 #
532 irqsoff latency trace v1.1.5 on 2.6.26-rc8
533 --------------------------------------------------------------------
534 latency: 50 us, #101/101, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
535 -----------------
536 | task: ls-4339 (uid:0 nice:0 policy:0 rt_prio:0)
537 -----------------
538 => started at: __alloc_pages_internal
539 => ended at: __alloc_pages_internal
540
541 # _------=> CPU#
542 # / _-----=> irqs-off
543 # | / _----=> need-resched
544 # || / _---=> hardirq/softirq
545 # ||| / _--=> preempt-depth
546 # |||| /
547 # ||||| delay
548 # cmd pid ||||| time | caller
549 # \ / ||||| \ | /
550 ls-4339 0...1 0us+: get_page_from_freelist (__alloc_pages_internal)
551 ls-4339 0d..1 3us : rmqueue_bulk (get_page_from_freelist)
552 ls-4339 0d..1 3us : _spin_lock (rmqueue_bulk)
553 ls-4339 0d..1 4us : add_preempt_count (_spin_lock)
554 ls-4339 0d..2 4us : __rmqueue (rmqueue_bulk)
555 ls-4339 0d..2 5us : __rmqueue_smallest (__rmqueue)
556 ls-4339 0d..2 5us : __mod_zone_page_state (__rmqueue_smallest)
557 ls-4339 0d..2 6us : __rmqueue (rmqueue_bulk)
558 ls-4339 0d..2 6us : __rmqueue_smallest (__rmqueue)
559 ls-4339 0d..2 7us : __mod_zone_page_state (__rmqueue_smallest)
560 ls-4339 0d..2 7us : __rmqueue (rmqueue_bulk)
561 ls-4339 0d..2 8us : __rmqueue_smallest (__rmqueue)
562 [...]
563 ls-4339 0d..2 46us : __rmqueue_smallest (__rmqueue)
564 ls-4339 0d..2 47us : __mod_zone_page_state (__rmqueue_smallest)
565 ls-4339 0d..2 47us : __rmqueue (rmqueue_bulk)
566 ls-4339 0d..2 48us : __rmqueue_smallest (__rmqueue)
567 ls-4339 0d..2 48us : __mod_zone_page_state (__rmqueue_smallest)
568 ls-4339 0d..2 49us : _spin_unlock (rmqueue_bulk)
569 ls-4339 0d..2 49us : sub_preempt_count (_spin_unlock)
570 ls-4339 0d..1 50us : get_page_from_freelist (__alloc_pages_internal)
571 ls-4339 0d..2 51us : trace_hardirqs_on (__alloc_pages_internal)
572
573
574
575 Here we traced a 50 microsecond latency. But we also see all the
576 functions that were called during that time. Note that by enabling
577 function tracing, we incur an added overhead. This overhead may
578 extend the latency times. But nevertheless, this trace has provided
579 some very helpful debugging information.
580
581
582 preemptoff
583 ----------
584
585 When preemption is disabled, we may be able to receive interrupts but
586 the task cannot be preempted and a higher priority task must wait
587 for preemption to be enabled again before it can preempt a lower
588 priority task.
589
590 The preemptoff tracer traces the places that disable preemption.
591 Like the irqsoff tracer, it records the maximum latency for which preemption
592 was disabled. The control of preemptoff tracer is much like the irqsoff
593 tracer.
594
595 # echo preemptoff > /debug/tracing/current_tracer
596 # echo 0 > /debug/tracing/tracing_max_latency
597 # echo 1 > /debug/tracing/tracing_enabled
598 # ls -ltr
599 [...]
600 # echo 0 > /debug/tracing/tracing_enabled
601 # cat /debug/tracing/latency_trace
602 # tracer: preemptoff
603 #
604 preemptoff latency trace v1.1.5 on 2.6.26-rc8
605 --------------------------------------------------------------------
606 latency: 29 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
607 -----------------
608 | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
609 -----------------
610 => started at: do_IRQ
611 => ended at: __do_softirq
612
613 # _------=> CPU#
614 # / _-----=> irqs-off
615 # | / _----=> need-resched
616 # || / _---=> hardirq/softirq
617 # ||| / _--=> preempt-depth
618 # |||| /
619 # ||||| delay
620 # cmd pid ||||| time | caller
621 # \ / ||||| \ | /
622 sshd-4261 0d.h. 0us+: irq_enter (do_IRQ)
623 sshd-4261 0d.s. 29us : _local_bh_enable (__do_softirq)
624 sshd-4261 0d.s1 30us : trace_preempt_on (__do_softirq)
625
626
627 This has some more changes. Preemption was disabled when an interrupt
628 came in (notice the 'h'), and was enabled while doing a softirq.
629 (notice the 's'). But we also see that interrupts have been disabled
630 when entering the preempt off section and leaving it (the 'd').
631 We do not know if interrupts were enabled in the mean time.
632
633 # tracer: preemptoff
634 #
635 preemptoff latency trace v1.1.5 on 2.6.26-rc8
636 --------------------------------------------------------------------
637 latency: 63 us, #87/87, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
638 -----------------
639 | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
640 -----------------
641 => started at: remove_wait_queue
642 => ended at: __do_softirq
643
644 # _------=> CPU#
645 # / _-----=> irqs-off
646 # | / _----=> need-resched
647 # || / _---=> hardirq/softirq
648 # ||| / _--=> preempt-depth
649 # |||| /
650 # ||||| delay
651 # cmd pid ||||| time | caller
652 # \ / ||||| \ | /
653 sshd-4261 0d..1 0us : _spin_lock_irqsave (remove_wait_queue)
654 sshd-4261 0d..1 1us : _spin_unlock_irqrestore (remove_wait_queue)
655 sshd-4261 0d..1 2us : do_IRQ (common_interrupt)
656 sshd-4261 0d..1 2us : irq_enter (do_IRQ)
657 sshd-4261 0d..1 2us : idle_cpu (irq_enter)
658 sshd-4261 0d..1 3us : add_preempt_count (irq_enter)
659 sshd-4261 0d.h1 3us : idle_cpu (irq_enter)
660 sshd-4261 0d.h. 4us : handle_fasteoi_irq (do_IRQ)
661 [...]
662 sshd-4261 0d.h. 12us : add_preempt_count (_spin_lock)
663 sshd-4261 0d.h1 12us : ack_ioapic_quirk_irq (handle_fasteoi_irq)
664 sshd-4261 0d.h1 13us : move_native_irq (ack_ioapic_quirk_irq)
665 sshd-4261 0d.h1 13us : _spin_unlock (handle_fasteoi_irq)
666 sshd-4261 0d.h1 14us : sub_preempt_count (_spin_unlock)
667 sshd-4261 0d.h1 14us : irq_exit (do_IRQ)
668 sshd-4261 0d.h1 15us : sub_preempt_count (irq_exit)
669 sshd-4261 0d..2 15us : do_softirq (irq_exit)
670 sshd-4261 0d... 15us : __do_softirq (do_softirq)
671 sshd-4261 0d... 16us : __local_bh_disable (__do_softirq)
672 sshd-4261 0d... 16us+: add_preempt_count (__local_bh_disable)
673 sshd-4261 0d.s4 20us : add_preempt_count (__local_bh_disable)
674 sshd-4261 0d.s4 21us : sub_preempt_count (local_bh_enable)
675 sshd-4261 0d.s5 21us : sub_preempt_count (local_bh_enable)
676 [...]
677 sshd-4261 0d.s6 41us : add_preempt_count (__local_bh_disable)
678 sshd-4261 0d.s6 42us : sub_preempt_count (local_bh_enable)
679 sshd-4261 0d.s7 42us : sub_preempt_count (local_bh_enable)
680 sshd-4261 0d.s5 43us : add_preempt_count (__local_bh_disable)
681 sshd-4261 0d.s5 43us : sub_preempt_count (local_bh_enable_ip)
682 sshd-4261 0d.s6 44us : sub_preempt_count (local_bh_enable_ip)
683 sshd-4261 0d.s5 44us : add_preempt_count (__local_bh_disable)
684 sshd-4261 0d.s5 45us : sub_preempt_count (local_bh_enable)
685 [...]
686 sshd-4261 0d.s. 63us : _local_bh_enable (__do_softirq)
687 sshd-4261 0d.s1 64us : trace_preempt_on (__do_softirq)
688
689
690 The above is an example of the preemptoff trace with ftrace_enabled
691 set. Here we see that interrupts were disabled the entire time.
692 The irq_enter code lets us know that we entered an interrupt 'h'.
693 Before that, the functions being traced still show that it is not
694 in an interrupt, but we can see from the functions themselves that
695 this is not the case.
696
697 Notice that __do_softirq when called does not have a preempt_count.
698 It may seem that we missed a preempt enabling. What really happened
699 is that the preempt count is held on the thread's stack and we
700 switched to the softirq stack (4K stacks in effect). The code
701 does not copy the preempt count, but because interrupts are disabled,
702 we do not need to worry about it. Having a tracer like this is good
703 for letting people know what really happens inside the kernel.
704
705
706 preemptirqsoff
707 --------------
708
709 Knowing the locations that have interrupts disabled or preemption
710 disabled for the longest times is helpful. But sometimes we would
711 like to know when either preemption and/or interrupts are disabled.
712
713 Consider the following code:
714
715 local_irq_disable();
716 call_function_with_irqs_off();
717 preempt_disable();
718 call_function_with_irqs_and_preemption_off();
719 local_irq_enable();
720 call_function_with_preemption_off();
721 preempt_enable();
722
723 The irqsoff tracer will record the total length of
724 call_function_with_irqs_off() and
725 call_function_with_irqs_and_preemption_off().
726
727 The preemptoff tracer will record the total length of
728 call_function_with_irqs_and_preemption_off() and
729 call_function_with_preemption_off().
730
731 But neither will trace the time that interrupts and/or preemption
732 is disabled. This total time is the time that we can not schedule.
733 To record this time, use the preemptirqsoff tracer.
734
735 Again, using this trace is much like the irqsoff and preemptoff tracers.
736
737 # echo preemptirqsoff > /debug/tracing/current_tracer
738 # echo 0 > /debug/tracing/tracing_max_latency
739 # echo 1 > /debug/tracing/tracing_enabled
740 # ls -ltr
741 [...]
742 # echo 0 > /debug/tracing/tracing_enabled
743 # cat /debug/tracing/latency_trace
744 # tracer: preemptirqsoff
745 #
746 preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
747 --------------------------------------------------------------------
748 latency: 293 us, #3/3, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
749 -----------------
750 | task: ls-4860 (uid:0 nice:0 policy:0 rt_prio:0)
751 -----------------
752 => started at: apic_timer_interrupt
753 => ended at: __do_softirq
754
755 # _------=> CPU#
756 # / _-----=> irqs-off
757 # | / _----=> need-resched
758 # || / _---=> hardirq/softirq
759 # ||| / _--=> preempt-depth
760 # |||| /
761 # ||||| delay
762 # cmd pid ||||| time | caller
763 # \ / ||||| \ | /
764 ls-4860 0d... 0us!: trace_hardirqs_off_thunk (apic_timer_interrupt)
765 ls-4860 0d.s. 294us : _local_bh_enable (__do_softirq)
766 ls-4860 0d.s1 294us : trace_preempt_on (__do_softirq)
767
768
769
770 The trace_hardirqs_off_thunk is called from assembly on x86 when
771 interrupts are disabled in the assembly code. Without the function
772 tracing, we do not know if interrupts were enabled within the preemption
773 points. We do see that it started with preemption enabled.
774
775 Here is a trace with ftrace_enabled set:
776
777
778 # tracer: preemptirqsoff
779 #
780 preemptirqsoff latency trace v1.1.5 on 2.6.26-rc8
781 --------------------------------------------------------------------
782 latency: 105 us, #183/183, CPU#0 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
783 -----------------
784 | task: sshd-4261 (uid:0 nice:0 policy:0 rt_prio:0)
785 -----------------
786 => started at: write_chan
787 => ended at: __do_softirq
788
789 # _------=> CPU#
790 # / _-----=> irqs-off
791 # | / _----=> need-resched
792 # || / _---=> hardirq/softirq
793 # ||| / _--=> preempt-depth
794 # |||| /
795 # ||||| delay
796 # cmd pid ||||| time | caller
797 # \ / ||||| \ | /
798 ls-4473 0.N.. 0us : preempt_schedule (write_chan)
799 ls-4473 0dN.1 1us : _spin_lock (schedule)
800 ls-4473 0dN.1 2us : add_preempt_count (_spin_lock)
801 ls-4473 0d..2 2us : put_prev_task_fair (schedule)
802 [...]
803 ls-4473 0d..2 13us : set_normalized_timespec (ktime_get_ts)
804 ls-4473 0d..2 13us : __switch_to (schedule)
805 sshd-4261 0d..2 14us : finish_task_switch (schedule)
806 sshd-4261 0d..2 14us : _spin_unlock_irq (finish_task_switch)
807 sshd-4261 0d..1 15us : add_preempt_count (_spin_lock_irqsave)
808 sshd-4261 0d..2 16us : _spin_unlock_irqrestore (hrtick_set)
809 sshd-4261 0d..2 16us : do_IRQ (common_interrupt)
810 sshd-4261 0d..2 17us : irq_enter (do_IRQ)
811 sshd-4261 0d..2 17us : idle_cpu (irq_enter)
812 sshd-4261 0d..2 18us : add_preempt_count (irq_enter)
813 sshd-4261 0d.h2 18us : idle_cpu (irq_enter)
814 sshd-4261 0d.h. 18us : handle_fasteoi_irq (do_IRQ)
815 sshd-4261 0d.h. 19us : _spin_lock (handle_fasteoi_irq)
816 sshd-4261 0d.h. 19us : add_preempt_count (_spin_lock)
817 sshd-4261 0d.h1 20us : _spin_unlock (handle_fasteoi_irq)
818 sshd-4261 0d.h1 20us : sub_preempt_count (_spin_unlock)
819 [...]
820 sshd-4261 0d.h1 28us : _spin_unlock (handle_fasteoi_irq)
821 sshd-4261 0d.h1 29us : sub_preempt_count (_spin_unlock)
822 sshd-4261 0d.h2 29us : irq_exit (do_IRQ)
823 sshd-4261 0d.h2 29us : sub_preempt_count (irq_exit)
824 sshd-4261 0d..3 30us : do_softirq (irq_exit)
825 sshd-4261 0d... 30us : __do_softirq (do_softirq)
826 sshd-4261 0d... 31us : __local_bh_disable (__do_softirq)
827 sshd-4261 0d... 31us+: add_preempt_count (__local_bh_disable)
828 sshd-4261 0d.s4 34us : add_preempt_count (__local_bh_disable)
829 [...]
830 sshd-4261 0d.s3 43us : sub_preempt_count (local_bh_enable_ip)
831 sshd-4261 0d.s4 44us : sub_preempt_count (local_bh_enable_ip)
832 sshd-4261 0d.s3 44us : smp_apic_timer_interrupt (apic_timer_interrupt)
833 sshd-4261 0d.s3 45us : irq_enter (smp_apic_timer_interrupt)
834 sshd-4261 0d.s3 45us : idle_cpu (irq_enter)
835 sshd-4261 0d.s3 46us : add_preempt_count (irq_enter)
836 sshd-4261 0d.H3 46us : idle_cpu (irq_enter)
837 sshd-4261 0d.H3 47us : hrtimer_interrupt (smp_apic_timer_interrupt)
838 sshd-4261 0d.H3 47us : ktime_get (hrtimer_interrupt)
839 [...]
840 sshd-4261 0d.H3 81us : tick_program_event (hrtimer_interrupt)
841 sshd-4261 0d.H3 82us : ktime_get (tick_program_event)
842 sshd-4261 0d.H3 82us : ktime_get_ts (ktime_get)
843 sshd-4261 0d.H3 83us : getnstimeofday (ktime_get_ts)
844 sshd-4261 0d.H3 83us : set_normalized_timespec (ktime_get_ts)
845 sshd-4261 0d.H3 84us : clockevents_program_event (tick_program_event)
846 sshd-4261 0d.H3 84us : lapic_next_event (clockevents_program_event)
847 sshd-4261 0d.H3 85us : irq_exit (smp_apic_timer_interrupt)
848 sshd-4261 0d.H3 85us : sub_preempt_count (irq_exit)
849 sshd-4261 0d.s4 86us : sub_preempt_count (irq_exit)
850 sshd-4261 0d.s3 86us : add_preempt_count (__local_bh_disable)
851 [...]
852 sshd-4261 0d.s1 98us : sub_preempt_count (net_rx_action)
853 sshd-4261 0d.s. 99us : add_preempt_count (_spin_lock_irq)
854 sshd-4261 0d.s1 99us+: _spin_unlock_irq (run_timer_softirq)
855 sshd-4261 0d.s. 104us : _local_bh_enable (__do_softirq)
856 sshd-4261 0d.s. 104us : sub_preempt_count (_local_bh_enable)
857 sshd-4261 0d.s. 105us : _local_bh_enable (__do_softirq)
858 sshd-4261 0d.s1 105us : trace_preempt_on (__do_softirq)
859
860
861 This is a very interesting trace. It started with the preemption of
862 the ls task. We see that the task had the "need_resched" bit set
863 via the 'N' in the trace. Interrupts were disabled before the spin_lock
864 at the beginning of the trace. We see that a schedule took place to run
865 sshd. When the interrupts were enabled, we took an interrupt.
866 On return from the interrupt handler, the softirq ran. We took another
867 interrupt while running the softirq as we see from the capital 'H'.
868
869
870 wakeup
871 ------
872
873 In a Real-Time environment it is very important to know the wakeup
874 time it takes for the highest priority task that is woken up to the
875 time that it executes. This is also known as "schedule latency".
876 I stress the point that this is about RT tasks. It is also important
877 to know the scheduling latency of non-RT tasks, but the average
878 schedule latency is better for non-RT tasks. Tools like
879 LatencyTop are more appropriate for such measurements.
880
881 Real-Time environments are interested in the worst case latency.
882 That is the longest latency it takes for something to happen, and
883 not the average. We can have a very fast scheduler that may only
884 have a large latency once in a while, but that would not work well
885 with Real-Time tasks. The wakeup tracer was designed to record
886 the worst case wakeups of RT tasks. Non-RT tasks are not recorded
887 because the tracer only records one worst case and tracing non-RT
888 tasks that are unpredictable will overwrite the worst case latency
889 of RT tasks.
890
891 Since this tracer only deals with RT tasks, we will run this slightly
892 differently than we did with the previous tracers. Instead of performing
893 an 'ls', we will run 'sleep 1' under 'chrt' which changes the
894 priority of the task.
895
896 # echo wakeup > /debug/tracing/current_tracer
897 # echo 0 > /debug/tracing/tracing_max_latency
898 # echo 1 > /debug/tracing/tracing_enabled
899 # chrt -f 5 sleep 1
900 # echo 0 > /debug/tracing/tracing_enabled
901 # cat /debug/tracing/latency_trace
902 # tracer: wakeup
903 #
904 wakeup latency trace v1.1.5 on 2.6.26-rc8
905 --------------------------------------------------------------------
906 latency: 4 us, #2/2, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
907 -----------------
908 | task: sleep-4901 (uid:0 nice:0 policy:1 rt_prio:5)
909 -----------------
910
911 # _------=> CPU#
912 # / _-----=> irqs-off
913 # | / _----=> need-resched
914 # || / _---=> hardirq/softirq
915 # ||| / _--=> preempt-depth
916 # |||| /
917 # ||||| delay
918 # cmd pid ||||| time | caller
919 # \ / ||||| \ | /
920 <idle>-0 1d.h4 0us+: try_to_wake_up (wake_up_process)
921 <idle>-0 1d..4 4us : schedule (cpu_idle)
922
923
924
925 Running this on an idle system, we see that it only took 4 microseconds
926 to perform the task switch. Note, since the trace marker in the
927 schedule is before the actual "switch", we stop the tracing when
928 the recorded task is about to schedule in. This may change if
929 we add a new marker at the end of the scheduler.
930
931 Notice that the recorded task is 'sleep' with the PID of 4901 and it
932 has an rt_prio of 5. This priority is user-space priority and not
933 the internal kernel priority. The policy is 1 for SCHED_FIFO and 2
934 for SCHED_RR.
935
936 Doing the same with chrt -r 5 and ftrace_enabled set.
937
938 # tracer: wakeup
939 #
940 wakeup latency trace v1.1.5 on 2.6.26-rc8
941 --------------------------------------------------------------------
942 latency: 50 us, #60/60, CPU#1 | (M:preempt VP:0, KP:0, SP:0 HP:0 #P:2)
943 -----------------
944 | task: sleep-4068 (uid:0 nice:0 policy:2 rt_prio:5)
945 -----------------
946
947 # _------=> CPU#
948 # / _-----=> irqs-off
949 # | / _----=> need-resched
950 # || / _---=> hardirq/softirq
951 # ||| / _--=> preempt-depth
952 # |||| /
953 # ||||| delay
954 # cmd pid ||||| time | caller
955 # \ / ||||| \ | /
956 ksoftirq-7 1d.H3 0us : try_to_wake_up (wake_up_process)
957 ksoftirq-7 1d.H4 1us : sub_preempt_count (marker_probe_cb)
958 ksoftirq-7 1d.H3 2us : check_preempt_wakeup (try_to_wake_up)
959 ksoftirq-7 1d.H3 3us : update_curr (check_preempt_wakeup)
960 ksoftirq-7 1d.H3 4us : calc_delta_mine (update_curr)
961 ksoftirq-7 1d.H3 5us : __resched_task (check_preempt_wakeup)
962 ksoftirq-7 1d.H3 6us : task_wake_up_rt (try_to_wake_up)
963 ksoftirq-7 1d.H3 7us : _spin_unlock_irqrestore (try_to_wake_up)
964 [...]
965 ksoftirq-7 1d.H2 17us : irq_exit (smp_apic_timer_interrupt)
966 ksoftirq-7 1d.H2 18us : sub_preempt_count (irq_exit)
967 ksoftirq-7 1d.s3 19us : sub_preempt_count (irq_exit)
968 ksoftirq-7 1..s2 20us : rcu_process_callbacks (__do_softirq)
969 [...]
970 ksoftirq-7 1..s2 26us : __rcu_process_callbacks (rcu_process_callbacks)
971 ksoftirq-7 1d.s2 27us : _local_bh_enable (__do_softirq)
972 ksoftirq-7 1d.s2 28us : sub_preempt_count (_local_bh_enable)
973 ksoftirq-7 1.N.3 29us : sub_preempt_count (ksoftirqd)
974 ksoftirq-7 1.N.2 30us : _cond_resched (ksoftirqd)
975 ksoftirq-7 1.N.2 31us : __cond_resched (_cond_resched)
976 ksoftirq-7 1.N.2 32us : add_preempt_count (__cond_resched)
977 ksoftirq-7 1.N.2 33us : schedule (__cond_resched)
978 ksoftirq-7 1.N.2 33us : add_preempt_count (schedule)
979 ksoftirq-7 1.N.3 34us : hrtick_clear (schedule)
980 ksoftirq-7 1dN.3 35us : _spin_lock (schedule)
981 ksoftirq-7 1dN.3 36us : add_preempt_count (_spin_lock)
982 ksoftirq-7 1d..4 37us : put_prev_task_fair (schedule)
983 ksoftirq-7 1d..4 38us : update_curr (put_prev_task_fair)
984 [...]
985 ksoftirq-7 1d..5 47us : _spin_trylock (tracing_record_cmdline)
986 ksoftirq-7 1d..5 48us : add_preempt_count (_spin_trylock)
987 ksoftirq-7 1d..6 49us : _spin_unlock (tracing_record_cmdline)
988 ksoftirq-7 1d..6 49us : sub_preempt_count (_spin_unlock)
989 ksoftirq-7 1d..4 50us : schedule (__cond_resched)
990
991 The interrupt went off while running ksoftirqd. This task runs at
992 SCHED_OTHER. Why did not we see the 'N' set early? This may be
993 a harmless bug with x86_32 and 4K stacks. On x86_32 with 4K stacks
994 configured, the interrupt and softirq run with their own stack.
995 Some information is held on the top of the task's stack (need_resched
996 and preempt_count are both stored there). The setting of the NEED_RESCHED
997 bit is done directly to the task's stack, but the reading of the
998 NEED_RESCHED is done by looking at the current stack, which in this case
999 is the stack for the hard interrupt. This hides the fact that NEED_RESCHED
1000 has been set. We do not see the 'N' until we switch back to the task's
1001 assigned stack.
1002
1003 function
1004 --------
1005
1006 This tracer is the function tracer. Enabling the function tracer
1007 can be done from the debug file system. Make sure the ftrace_enabled is
1008 set; otherwise this tracer is a nop.
1009
1010 # sysctl kernel.ftrace_enabled=1
1011 # echo function > /debug/tracing/current_tracer
1012 # echo 1 > /debug/tracing/tracing_enabled
1013 # usleep 1
1014 # echo 0 > /debug/tracing/tracing_enabled
1015 # cat /debug/tracing/trace
1016 # tracer: function
1017 #
1018 # TASK-PID CPU# TIMESTAMP FUNCTION
1019 # | | | | |
1020 bash-4003 [00] 123.638713: finish_task_switch <-schedule
1021 bash-4003 [00] 123.638714: _spin_unlock_irq <-finish_task_switch
1022 bash-4003 [00] 123.638714: sub_preempt_count <-_spin_unlock_irq
1023 bash-4003 [00] 123.638715: hrtick_set <-schedule
1024 bash-4003 [00] 123.638715: _spin_lock_irqsave <-hrtick_set
1025 bash-4003 [00] 123.638716: add_preempt_count <-_spin_lock_irqsave
1026 bash-4003 [00] 123.638716: _spin_unlock_irqrestore <-hrtick_set
1027 bash-4003 [00] 123.638717: sub_preempt_count <-_spin_unlock_irqrestore
1028 bash-4003 [00] 123.638717: hrtick_clear <-hrtick_set
1029 bash-4003 [00] 123.638718: sub_preempt_count <-schedule
1030 bash-4003 [00] 123.638718: sub_preempt_count <-preempt_schedule
1031 bash-4003 [00] 123.638719: wait_for_completion <-__stop_machine_run
1032 bash-4003 [00] 123.638719: wait_for_common <-wait_for_completion
1033 bash-4003 [00] 123.638720: _spin_lock_irq <-wait_for_common
1034 bash-4003 [00] 123.638720: add_preempt_count <-_spin_lock_irq
1035 [...]
1036
1037
1038 Note: function tracer uses ring buffers to store the above entries.
1039 The newest data may overwrite the oldest data. Sometimes using echo to
1040 stop the trace is not sufficient because the tracing could have overwritten
1041 the data that you wanted to record. For this reason, it is sometimes better to
1042 disable tracing directly from a program. This allows you to stop the
1043 tracing at the point that you hit the part that you are interested in.
1044 To disable the tracing directly from a C program, something like following
1045 code snippet can be used:
1046
1047 int trace_fd;
1048 [...]
1049 int main(int argc, char *argv[]) {
1050 [...]
1051 trace_fd = open("/debug/tracing/tracing_enabled", O_WRONLY);
1052 [...]
1053 if (condition_hit()) {
1054 write(trace_fd, "0", 1);
1055 }
1056 [...]
1057 }
1058
1059 Note: Here we hard coded the path name. The debugfs mount is not
1060 guaranteed to be at /debug (and is more commonly at /sys/kernel/debug).
1061 For simple one time traces, the above is sufficent. For anything else,
1062 a search through /proc/mounts may be needed to find where the debugfs
1063 file-system is mounted.
1064
1065 dynamic ftrace
1066 --------------
1067
1068 If CONFIG_DYNAMIC_FTRACE is set, the system will run with
1069 virtually no overhead when function tracing is disabled. The way
1070 this works is the mcount function call (placed at the start of
1071 every kernel function, produced by the -pg switch in gcc), starts
1072 of pointing to a simple return. (Enabling FTRACE will include the
1073 -pg switch in the compiling of the kernel.)
1074
1075 At compile time every C file object is run through the
1076 recordmcount.pl script (located in the scripts directory). This
1077 script will process the C object using objdump to find all the
1078 locations in the .text section that call mcount. (Note, only
1079 the .text section is processed, since processing other sections
1080 like .init.text may cause races due to those sections being freed).
1081
1082 A new section called "__mcount_loc" is created that holds references
1083 to all the mcount call sites in the .text section. This section is
1084 compiled back into the original object. The final linker will add
1085 all these references into a single table.
1086
1087 On boot up, before SMP is initialized, the dynamic ftrace code
1088 scans this table and updates all the locations into nops. It also
1089 records the locations, which are added to the available_filter_functions
1090 list. Modules are processed as they are loaded and before they are
1091 executed. When a module is unloaded, it also removes its functions from
1092 the ftrace function list. This is automatic in the module unload
1093 code, and the module author does not need to worry about it.
1094
1095 When tracing is enabled, kstop_machine is called to prevent races
1096 with the CPUS executing code being modified (which can cause the
1097 CPU to do undesireable things), and the nops are patched back
1098 to calls. But this time, they do not call mcount (which is just
1099 a function stub). They now call into the ftrace infrastructure.
1100
1101 One special side-effect to the recording of the functions being
1102 traced is that we can now selectively choose which functions we
1103 wish to trace and which ones we want the mcount calls to remain as
1104 nops.
1105
1106 Two files are used, one for enabling and one for disabling the tracing
1107 of specified functions. They are:
1108
1109 set_ftrace_filter
1110
1111 and
1112
1113 set_ftrace_notrace
1114
1115 A list of available functions that you can add to these files is listed
1116 in:
1117
1118 available_filter_functions
1119
1120 # cat /debug/tracing/available_filter_functions
1121 put_prev_task_idle
1122 kmem_cache_create
1123 pick_next_task_rt
1124 get_online_cpus
1125 pick_next_task_fair
1126 mutex_lock
1127 [...]
1128
1129 If I am only interested in sys_nanosleep and hrtimer_interrupt:
1130
1131 # echo sys_nanosleep hrtimer_interrupt \
1132 > /debug/tracing/set_ftrace_filter
1133 # echo ftrace > /debug/tracing/current_tracer
1134 # echo 1 > /debug/tracing/tracing_enabled
1135 # usleep 1
1136 # echo 0 > /debug/tracing/tracing_enabled
1137 # cat /debug/tracing/trace
1138 # tracer: ftrace
1139 #
1140 # TASK-PID CPU# TIMESTAMP FUNCTION
1141 # | | | | |
1142 usleep-4134 [00] 1317.070017: hrtimer_interrupt <-smp_apic_timer_interrupt
1143 usleep-4134 [00] 1317.070111: sys_nanosleep <-syscall_call
1144 <idle>-0 [00] 1317.070115: hrtimer_interrupt <-smp_apic_timer_interrupt
1145
1146 To see which functions are being traced, you can cat the file:
1147
1148 # cat /debug/tracing/set_ftrace_filter
1149 hrtimer_interrupt
1150 sys_nanosleep
1151
1152
1153 Perhaps this is not enough. The filters also allow simple wild cards.
1154 Only the following are currently available
1155
1156 <match>* - will match functions that begin with <match>
1157 *<match> - will match functions that end with <match>
1158 *<match>* - will match functions that have <match> in it
1159
1160 These are the only wild cards which are supported.
1161
1162 <match>*<match> will not work.
1163
1164 # echo hrtimer_* > /debug/tracing/set_ftrace_filter
1165
1166 Produces:
1167
1168 # tracer: ftrace
1169 #
1170 # TASK-PID CPU# TIMESTAMP FUNCTION
1171 # | | | | |
1172 bash-4003 [00] 1480.611794: hrtimer_init <-copy_process
1173 bash-4003 [00] 1480.611941: hrtimer_start <-hrtick_set
1174 bash-4003 [00] 1480.611956: hrtimer_cancel <-hrtick_clear
1175 bash-4003 [00] 1480.611956: hrtimer_try_to_cancel <-hrtimer_cancel
1176 <idle>-0 [00] 1480.612019: hrtimer_get_next_event <-get_next_timer_interrupt
1177 <idle>-0 [00] 1480.612025: hrtimer_get_next_event <-get_next_timer_interrupt
1178 <idle>-0 [00] 1480.612032: hrtimer_get_next_event <-get_next_timer_interrupt
1179 <idle>-0 [00] 1480.612037: hrtimer_get_next_event <-get_next_timer_interrupt
1180 <idle>-0 [00] 1480.612382: hrtimer_get_next_event <-get_next_timer_interrupt
1181
1182
1183 Notice that we lost the sys_nanosleep.
1184
1185 # cat /debug/tracing/set_ftrace_filter
1186 hrtimer_run_queues
1187 hrtimer_run_pending
1188 hrtimer_init
1189 hrtimer_cancel
1190 hrtimer_try_to_cancel
1191 hrtimer_forward
1192 hrtimer_start
1193 hrtimer_reprogram
1194 hrtimer_force_reprogram
1195 hrtimer_get_next_event
1196 hrtimer_interrupt
1197 hrtimer_nanosleep
1198 hrtimer_wakeup
1199 hrtimer_get_remaining
1200 hrtimer_get_res
1201 hrtimer_init_sleeper
1202
1203
1204 This is because the '>' and '>>' act just like they do in bash.
1205 To rewrite the filters, use '>'
1206 To append to the filters, use '>>'
1207
1208 To clear out a filter so that all functions will be recorded again:
1209
1210 # echo > /debug/tracing/set_ftrace_filter
1211 # cat /debug/tracing/set_ftrace_filter
1212 #
1213
1214 Again, now we want to append.
1215
1216 # echo sys_nanosleep > /debug/tracing/set_ftrace_filter
1217 # cat /debug/tracing/set_ftrace_filter
1218 sys_nanosleep
1219 # echo hrtimer_* >> /debug/tracing/set_ftrace_filter
1220 # cat /debug/tracing/set_ftrace_filter
1221 hrtimer_run_queues
1222 hrtimer_run_pending
1223 hrtimer_init
1224 hrtimer_cancel
1225 hrtimer_try_to_cancel
1226 hrtimer_forward
1227 hrtimer_start
1228 hrtimer_reprogram
1229 hrtimer_force_reprogram
1230 hrtimer_get_next_event
1231 hrtimer_interrupt
1232 sys_nanosleep
1233 hrtimer_nanosleep
1234 hrtimer_wakeup
1235 hrtimer_get_remaining
1236 hrtimer_get_res
1237 hrtimer_init_sleeper
1238
1239
1240 The set_ftrace_notrace prevents those functions from being traced.
1241
1242 # echo '*preempt*' '*lock*' > /debug/tracing/set_ftrace_notrace
1243
1244 Produces:
1245
1246 # tracer: ftrace
1247 #
1248 # TASK-PID CPU# TIMESTAMP FUNCTION
1249 # | | | | |
1250 bash-4043 [01] 115.281644: finish_task_switch <-schedule
1251 bash-4043 [01] 115.281645: hrtick_set <-schedule
1252 bash-4043 [01] 115.281645: hrtick_clear <-hrtick_set
1253 bash-4043 [01] 115.281646: wait_for_completion <-__stop_machine_run
1254 bash-4043 [01] 115.281647: wait_for_common <-wait_for_completion
1255 bash-4043 [01] 115.281647: kthread_stop <-stop_machine_run
1256 bash-4043 [01] 115.281648: init_waitqueue_head <-kthread_stop
1257 bash-4043 [01] 115.281648: wake_up_process <-kthread_stop
1258 bash-4043 [01] 115.281649: try_to_wake_up <-wake_up_process
1259
1260 We can see that there's no more lock or preempt tracing.
1261
1262 trace_pipe
1263 ----------
1264
1265 The trace_pipe outputs the same content as the trace file, but the effect
1266 on the tracing is different. Every read from trace_pipe is consumed.
1267 This means that subsequent reads will be different. The trace
1268 is live.
1269
1270 # echo function > /debug/tracing/current_tracer
1271 # cat /debug/tracing/trace_pipe > /tmp/trace.out &
1272 [1] 4153
1273 # echo 1 > /debug/tracing/tracing_enabled
1274 # usleep 1
1275 # echo 0 > /debug/tracing/tracing_enabled
1276 # cat /debug/tracing/trace
1277 # tracer: function
1278 #
1279 # TASK-PID CPU# TIMESTAMP FUNCTION
1280 # | | | | |
1281
1282 #
1283 # cat /tmp/trace.out
1284 bash-4043 [00] 41.267106: finish_task_switch <-schedule
1285 bash-4043 [00] 41.267106: hrtick_set <-schedule
1286 bash-4043 [00] 41.267107: hrtick_clear <-hrtick_set
1287 bash-4043 [00] 41.267108: wait_for_completion <-__stop_machine_run
1288 bash-4043 [00] 41.267108: wait_for_common <-wait_for_completion
1289 bash-4043 [00] 41.267109: kthread_stop <-stop_machine_run
1290 bash-4043 [00] 41.267109: init_waitqueue_head <-kthread_stop
1291 bash-4043 [00] 41.267110: wake_up_process <-kthread_stop
1292 bash-4043 [00] 41.267110: try_to_wake_up <-wake_up_process
1293 bash-4043 [00] 41.267111: select_task_rq_rt <-try_to_wake_up
1294
1295
1296 Note, reading the trace_pipe file will block until more input is added.
1297 By changing the tracer, trace_pipe will issue an EOF. We needed
1298 to set the function tracer _before_ we "cat" the trace_pipe file.
1299
1300
1301 trace entries
1302 -------------
1303
1304 Having too much or not enough data can be troublesome in diagnosing
1305 an issue in the kernel. The file buffer_size_kb is used to modify
1306 the size of the internal trace buffers. The number listed
1307 is the number of entries that can be recorded per CPU. To know
1308 the full size, multiply the number of possible CPUS with the
1309 number of entries.
1310
1311 # cat /debug/tracing/buffer_size_kb
1312 1408 (units kilobytes)
1313
1314 Note, to modify this, you must have tracing completely disabled. To do that,
1315 echo "nop" into the current_tracer. If the current_tracer is not set
1316 to "nop", an EINVAL error will be returned.
1317
1318 # echo nop > /debug/tracing/current_tracer
1319 # echo 10000 > /debug/tracing/buffer_size_kb
1320 # cat /debug/tracing/buffer_size_kb
1321 10000 (units kilobytes)
1322
1323 The number of pages which will be allocated is limited to a percentage
1324 of available memory. Allocating too much will produce an error.
1325
1326 # echo 1000000000000 > /debug/tracing/buffer_size_kb
1327 -bash: echo: write error: Cannot allocate memory
1328 # cat /debug/tracing/buffer_size_kb
1329 85
1330