PowerPC: Disable SLUB for configurations in which slab page structs are modified
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
29 * slabs and you must pass objects with the same intializations to
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
fc0abb14 71 * The global cache-chain is protected by the mutex 'cache_chain_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
1da177e4
LT
98#include <linux/seq_file.h>
99#include <linux/notifier.h>
100#include <linux/kallsyms.h>
101#include <linux/cpu.h>
102#include <linux/sysctl.h>
103#include <linux/module.h>
104#include <linux/rcupdate.h>
543537bd 105#include <linux/string.h>
138ae663 106#include <linux/uaccess.h>
e498be7d 107#include <linux/nodemask.h>
dc85da15 108#include <linux/mempolicy.h>
fc0abb14 109#include <linux/mutex.h>
8a8b6502 110#include <linux/fault-inject.h>
e7eebaf6 111#include <linux/rtmutex.h>
6a2d7a95 112#include <linux/reciprocal_div.h>
1da177e4 113
1da177e4
LT
114#include <asm/cacheflush.h>
115#include <asm/tlbflush.h>
116#include <asm/page.h>
117
118/*
119 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_DEBUG_INITIAL,
120 * SLAB_RED_ZONE & SLAB_POISON.
121 * 0 for faster, smaller code (especially in the critical paths).
122 *
123 * STATS - 1 to collect stats for /proc/slabinfo.
124 * 0 for faster, smaller code (especially in the critical paths).
125 *
126 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
127 */
128
129#ifdef CONFIG_DEBUG_SLAB
130#define DEBUG 1
131#define STATS 1
132#define FORCED_DEBUG 1
133#else
134#define DEBUG 0
135#define STATS 0
136#define FORCED_DEBUG 0
137#endif
138
1da177e4
LT
139/* Shouldn't this be in a header file somewhere? */
140#define BYTES_PER_WORD sizeof(void *)
141
142#ifndef cache_line_size
143#define cache_line_size() L1_CACHE_BYTES
144#endif
145
146#ifndef ARCH_KMALLOC_MINALIGN
147/*
148 * Enforce a minimum alignment for the kmalloc caches.
149 * Usually, the kmalloc caches are cache_line_size() aligned, except when
150 * DEBUG and FORCED_DEBUG are enabled, then they are BYTES_PER_WORD aligned.
151 * Some archs want to perform DMA into kmalloc caches and need a guaranteed
152 * alignment larger than BYTES_PER_WORD. ARCH_KMALLOC_MINALIGN allows that.
153 * Note that this flag disables some debug features.
154 */
155#define ARCH_KMALLOC_MINALIGN 0
156#endif
157
158#ifndef ARCH_SLAB_MINALIGN
159/*
160 * Enforce a minimum alignment for all caches.
161 * Intended for archs that get misalignment faults even for BYTES_PER_WORD
162 * aligned buffers. Includes ARCH_KMALLOC_MINALIGN.
163 * If possible: Do not enable this flag for CONFIG_DEBUG_SLAB, it disables
164 * some debug features.
165 */
166#define ARCH_SLAB_MINALIGN 0
167#endif
168
169#ifndef ARCH_KMALLOC_FLAGS
170#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
171#endif
172
173/* Legal flag mask for kmem_cache_create(). */
174#if DEBUG
175# define CREATE_MASK (SLAB_DEBUG_INITIAL | SLAB_RED_ZONE | \
176 SLAB_POISON | SLAB_HWCACHE_ALIGN | \
ac2b898c 177 SLAB_CACHE_DMA | \
1da177e4
LT
178 SLAB_MUST_HWCACHE_ALIGN | SLAB_STORE_USER | \
179 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 180 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4 181#else
ac2b898c 182# define CREATE_MASK (SLAB_HWCACHE_ALIGN | \
1da177e4
LT
183 SLAB_CACHE_DMA | SLAB_MUST_HWCACHE_ALIGN | \
184 SLAB_RECLAIM_ACCOUNT | SLAB_PANIC | \
101a5001 185 SLAB_DESTROY_BY_RCU | SLAB_MEM_SPREAD)
1da177e4
LT
186#endif
187
188/*
189 * kmem_bufctl_t:
190 *
191 * Bufctl's are used for linking objs within a slab
192 * linked offsets.
193 *
194 * This implementation relies on "struct page" for locating the cache &
195 * slab an object belongs to.
196 * This allows the bufctl structure to be small (one int), but limits
197 * the number of objects a slab (not a cache) can contain when off-slab
198 * bufctls are used. The limit is the size of the largest general cache
199 * that does not use off-slab slabs.
200 * For 32bit archs with 4 kB pages, is this 56.
201 * This is not serious, as it is only for large objects, when it is unwise
202 * to have too many per slab.
203 * Note: This limit can be raised by introducing a general cache whose size
204 * is less than 512 (PAGE_SIZE<<3), but greater than 256.
205 */
206
fa5b08d5 207typedef unsigned int kmem_bufctl_t;
1da177e4
LT
208#define BUFCTL_END (((kmem_bufctl_t)(~0U))-0)
209#define BUFCTL_FREE (((kmem_bufctl_t)(~0U))-1)
871751e2
AV
210#define BUFCTL_ACTIVE (((kmem_bufctl_t)(~0U))-2)
211#define SLAB_LIMIT (((kmem_bufctl_t)(~0U))-3)
1da177e4 212
1da177e4
LT
213/*
214 * struct slab
215 *
216 * Manages the objs in a slab. Placed either at the beginning of mem allocated
217 * for a slab, or allocated from an general cache.
218 * Slabs are chained into three list: fully used, partial, fully free slabs.
219 */
220struct slab {
b28a02de
PE
221 struct list_head list;
222 unsigned long colouroff;
223 void *s_mem; /* including colour offset */
224 unsigned int inuse; /* num of objs active in slab */
225 kmem_bufctl_t free;
226 unsigned short nodeid;
1da177e4
LT
227};
228
229/*
230 * struct slab_rcu
231 *
232 * slab_destroy on a SLAB_DESTROY_BY_RCU cache uses this structure to
233 * arrange for kmem_freepages to be called via RCU. This is useful if
234 * we need to approach a kernel structure obliquely, from its address
235 * obtained without the usual locking. We can lock the structure to
236 * stabilize it and check it's still at the given address, only if we
237 * can be sure that the memory has not been meanwhile reused for some
238 * other kind of object (which our subsystem's lock might corrupt).
239 *
240 * rcu_read_lock before reading the address, then rcu_read_unlock after
241 * taking the spinlock within the structure expected at that address.
242 *
243 * We assume struct slab_rcu can overlay struct slab when destroying.
244 */
245struct slab_rcu {
b28a02de 246 struct rcu_head head;
343e0d7a 247 struct kmem_cache *cachep;
b28a02de 248 void *addr;
1da177e4
LT
249};
250
251/*
252 * struct array_cache
253 *
1da177e4
LT
254 * Purpose:
255 * - LIFO ordering, to hand out cache-warm objects from _alloc
256 * - reduce the number of linked list operations
257 * - reduce spinlock operations
258 *
259 * The limit is stored in the per-cpu structure to reduce the data cache
260 * footprint.
261 *
262 */
263struct array_cache {
264 unsigned int avail;
265 unsigned int limit;
266 unsigned int batchcount;
267 unsigned int touched;
e498be7d 268 spinlock_t lock;
a737b3e2
AM
269 void *entry[0]; /*
270 * Must have this definition in here for the proper
271 * alignment of array_cache. Also simplifies accessing
272 * the entries.
273 * [0] is for gcc 2.95. It should really be [].
274 */
1da177e4
LT
275};
276
a737b3e2
AM
277/*
278 * bootstrap: The caches do not work without cpuarrays anymore, but the
279 * cpuarrays are allocated from the generic caches...
1da177e4
LT
280 */
281#define BOOT_CPUCACHE_ENTRIES 1
282struct arraycache_init {
283 struct array_cache cache;
b28a02de 284 void *entries[BOOT_CPUCACHE_ENTRIES];
1da177e4
LT
285};
286
287/*
e498be7d 288 * The slab lists for all objects.
1da177e4
LT
289 */
290struct kmem_list3 {
b28a02de
PE
291 struct list_head slabs_partial; /* partial list first, better asm code */
292 struct list_head slabs_full;
293 struct list_head slabs_free;
294 unsigned long free_objects;
b28a02de 295 unsigned int free_limit;
2e1217cf 296 unsigned int colour_next; /* Per-node cache coloring */
b28a02de
PE
297 spinlock_t list_lock;
298 struct array_cache *shared; /* shared per node */
299 struct array_cache **alien; /* on other nodes */
35386e3b
CL
300 unsigned long next_reap; /* updated without locking */
301 int free_touched; /* updated without locking */
1da177e4
LT
302};
303
e498be7d
CL
304/*
305 * Need this for bootstrapping a per node allocator.
306 */
307#define NUM_INIT_LISTS (2 * MAX_NUMNODES + 1)
308struct kmem_list3 __initdata initkmem_list3[NUM_INIT_LISTS];
309#define CACHE_CACHE 0
310#define SIZE_AC 1
311#define SIZE_L3 (1 + MAX_NUMNODES)
312
ed11d9eb
CL
313static int drain_freelist(struct kmem_cache *cache,
314 struct kmem_list3 *l3, int tofree);
315static void free_block(struct kmem_cache *cachep, void **objpp, int len,
316 int node);
2ed3a4ef 317static int enable_cpucache(struct kmem_cache *cachep);
65f27f38 318static void cache_reap(struct work_struct *unused);
ed11d9eb 319
e498be7d 320/*
a737b3e2
AM
321 * This function must be completely optimized away if a constant is passed to
322 * it. Mostly the same as what is in linux/slab.h except it returns an index.
e498be7d 323 */
7243cc05 324static __always_inline int index_of(const size_t size)
e498be7d 325{
5ec8a847
SR
326 extern void __bad_size(void);
327
e498be7d
CL
328 if (__builtin_constant_p(size)) {
329 int i = 0;
330
331#define CACHE(x) \
332 if (size <=x) \
333 return i; \
334 else \
335 i++;
336#include "linux/kmalloc_sizes.h"
337#undef CACHE
5ec8a847 338 __bad_size();
7243cc05 339 } else
5ec8a847 340 __bad_size();
e498be7d
CL
341 return 0;
342}
343
e0a42726
IM
344static int slab_early_init = 1;
345
e498be7d
CL
346#define INDEX_AC index_of(sizeof(struct arraycache_init))
347#define INDEX_L3 index_of(sizeof(struct kmem_list3))
1da177e4 348
5295a74c 349static void kmem_list3_init(struct kmem_list3 *parent)
e498be7d
CL
350{
351 INIT_LIST_HEAD(&parent->slabs_full);
352 INIT_LIST_HEAD(&parent->slabs_partial);
353 INIT_LIST_HEAD(&parent->slabs_free);
354 parent->shared = NULL;
355 parent->alien = NULL;
2e1217cf 356 parent->colour_next = 0;
e498be7d
CL
357 spin_lock_init(&parent->list_lock);
358 parent->free_objects = 0;
359 parent->free_touched = 0;
360}
361
a737b3e2
AM
362#define MAKE_LIST(cachep, listp, slab, nodeid) \
363 do { \
364 INIT_LIST_HEAD(listp); \
365 list_splice(&(cachep->nodelists[nodeid]->slab), listp); \
e498be7d
CL
366 } while (0)
367
a737b3e2
AM
368#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
369 do { \
e498be7d
CL
370 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
371 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
372 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
373 } while (0)
1da177e4
LT
374
375/*
343e0d7a 376 * struct kmem_cache
1da177e4
LT
377 *
378 * manages a cache.
379 */
b28a02de 380
2109a2d1 381struct kmem_cache {
1da177e4 382/* 1) per-cpu data, touched during every alloc/free */
b28a02de 383 struct array_cache *array[NR_CPUS];
b5d8ca7c 384/* 2) Cache tunables. Protected by cache_chain_mutex */
b28a02de
PE
385 unsigned int batchcount;
386 unsigned int limit;
387 unsigned int shared;
b5d8ca7c 388
3dafccf2 389 unsigned int buffer_size;
6a2d7a95 390 u32 reciprocal_buffer_size;
b5d8ca7c 391/* 3) touched by every alloc & free from the backend */
b5d8ca7c 392
a737b3e2
AM
393 unsigned int flags; /* constant flags */
394 unsigned int num; /* # of objs per slab */
1da177e4 395
b5d8ca7c 396/* 4) cache_grow/shrink */
1da177e4 397 /* order of pgs per slab (2^n) */
b28a02de 398 unsigned int gfporder;
1da177e4
LT
399
400 /* force GFP flags, e.g. GFP_DMA */
b28a02de 401 gfp_t gfpflags;
1da177e4 402
a737b3e2 403 size_t colour; /* cache colouring range */
b28a02de 404 unsigned int colour_off; /* colour offset */
343e0d7a 405 struct kmem_cache *slabp_cache;
b28a02de 406 unsigned int slab_size;
a737b3e2 407 unsigned int dflags; /* dynamic flags */
1da177e4
LT
408
409 /* constructor func */
343e0d7a 410 void (*ctor) (void *, struct kmem_cache *, unsigned long);
1da177e4
LT
411
412 /* de-constructor func */
343e0d7a 413 void (*dtor) (void *, struct kmem_cache *, unsigned long);
1da177e4 414
b5d8ca7c 415/* 5) cache creation/removal */
b28a02de
PE
416 const char *name;
417 struct list_head next;
1da177e4 418
b5d8ca7c 419/* 6) statistics */
1da177e4 420#if STATS
b28a02de
PE
421 unsigned long num_active;
422 unsigned long num_allocations;
423 unsigned long high_mark;
424 unsigned long grown;
425 unsigned long reaped;
426 unsigned long errors;
427 unsigned long max_freeable;
428 unsigned long node_allocs;
429 unsigned long node_frees;
fb7faf33 430 unsigned long node_overflow;
b28a02de
PE
431 atomic_t allochit;
432 atomic_t allocmiss;
433 atomic_t freehit;
434 atomic_t freemiss;
1da177e4
LT
435#endif
436#if DEBUG
3dafccf2
MS
437 /*
438 * If debugging is enabled, then the allocator can add additional
439 * fields and/or padding to every object. buffer_size contains the total
440 * object size including these internal fields, the following two
441 * variables contain the offset to the user object and its size.
442 */
443 int obj_offset;
444 int obj_size;
1da177e4 445#endif
8da3430d
ED
446 /*
447 * We put nodelists[] at the end of kmem_cache, because we want to size
448 * this array to nr_node_ids slots instead of MAX_NUMNODES
449 * (see kmem_cache_init())
450 * We still use [MAX_NUMNODES] and not [1] or [0] because cache_cache
451 * is statically defined, so we reserve the max number of nodes.
452 */
453 struct kmem_list3 *nodelists[MAX_NUMNODES];
454 /*
455 * Do not add fields after nodelists[]
456 */
1da177e4
LT
457};
458
459#define CFLGS_OFF_SLAB (0x80000000UL)
460#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
461
462#define BATCHREFILL_LIMIT 16
a737b3e2
AM
463/*
464 * Optimization question: fewer reaps means less probability for unnessary
465 * cpucache drain/refill cycles.
1da177e4 466 *
dc6f3f27 467 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
468 * which could lock up otherwise freeable slabs.
469 */
470#define REAPTIMEOUT_CPUC (2*HZ)
471#define REAPTIMEOUT_LIST3 (4*HZ)
472
473#if STATS
474#define STATS_INC_ACTIVE(x) ((x)->num_active++)
475#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
476#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
477#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 478#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
479#define STATS_SET_HIGH(x) \
480 do { \
481 if ((x)->num_active > (x)->high_mark) \
482 (x)->high_mark = (x)->num_active; \
483 } while (0)
1da177e4
LT
484#define STATS_INC_ERR(x) ((x)->errors++)
485#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 486#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 487#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
488#define STATS_SET_FREEABLE(x, i) \
489 do { \
490 if ((x)->max_freeable < i) \
491 (x)->max_freeable = i; \
492 } while (0)
1da177e4
LT
493#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
494#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
495#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
496#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
497#else
498#define STATS_INC_ACTIVE(x) do { } while (0)
499#define STATS_DEC_ACTIVE(x) do { } while (0)
500#define STATS_INC_ALLOCED(x) do { } while (0)
501#define STATS_INC_GROWN(x) do { } while (0)
ed11d9eb 502#define STATS_ADD_REAPED(x,y) do { } while (0)
1da177e4
LT
503#define STATS_SET_HIGH(x) do { } while (0)
504#define STATS_INC_ERR(x) do { } while (0)
505#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 506#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 507#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 508#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
509#define STATS_INC_ALLOCHIT(x) do { } while (0)
510#define STATS_INC_ALLOCMISS(x) do { } while (0)
511#define STATS_INC_FREEHIT(x) do { } while (0)
512#define STATS_INC_FREEMISS(x) do { } while (0)
513#endif
514
515#if DEBUG
1da177e4 516
a737b3e2
AM
517/*
518 * memory layout of objects:
1da177e4 519 * 0 : objp
3dafccf2 520 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
521 * the end of an object is aligned with the end of the real
522 * allocation. Catches writes behind the end of the allocation.
3dafccf2 523 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 524 * redzone word.
3dafccf2
MS
525 * cachep->obj_offset: The real object.
526 * cachep->buffer_size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
a737b3e2
AM
527 * cachep->buffer_size - 1* BYTES_PER_WORD: last caller address
528 * [BYTES_PER_WORD long]
1da177e4 529 */
343e0d7a 530static int obj_offset(struct kmem_cache *cachep)
1da177e4 531{
3dafccf2 532 return cachep->obj_offset;
1da177e4
LT
533}
534
343e0d7a 535static int obj_size(struct kmem_cache *cachep)
1da177e4 536{
3dafccf2 537 return cachep->obj_size;
1da177e4
LT
538}
539
343e0d7a 540static unsigned long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
541{
542 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
3dafccf2 543 return (unsigned long*) (objp+obj_offset(cachep)-BYTES_PER_WORD);
1da177e4
LT
544}
545
343e0d7a 546static unsigned long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
547{
548 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
549 if (cachep->flags & SLAB_STORE_USER)
3dafccf2 550 return (unsigned long *)(objp + cachep->buffer_size -
b28a02de 551 2 * BYTES_PER_WORD);
3dafccf2 552 return (unsigned long *)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
553}
554
343e0d7a 555static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
556{
557 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3dafccf2 558 return (void **)(objp + cachep->buffer_size - BYTES_PER_WORD);
1da177e4
LT
559}
560
561#else
562
3dafccf2
MS
563#define obj_offset(x) 0
564#define obj_size(cachep) (cachep->buffer_size)
1da177e4
LT
565#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long *)NULL;})
566#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long *)NULL;})
567#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
568
569#endif
570
571/*
a737b3e2
AM
572 * Maximum size of an obj (in 2^order pages) and absolute limit for the gfp
573 * order.
1da177e4
LT
574 */
575#if defined(CONFIG_LARGE_ALLOCS)
576#define MAX_OBJ_ORDER 13 /* up to 32Mb */
577#define MAX_GFP_ORDER 13 /* up to 32Mb */
578#elif defined(CONFIG_MMU)
579#define MAX_OBJ_ORDER 5 /* 32 pages */
580#define MAX_GFP_ORDER 5 /* 32 pages */
581#else
582#define MAX_OBJ_ORDER 8 /* up to 1Mb */
583#define MAX_GFP_ORDER 8 /* up to 1Mb */
584#endif
585
586/*
587 * Do not go above this order unless 0 objects fit into the slab.
588 */
589#define BREAK_GFP_ORDER_HI 1
590#define BREAK_GFP_ORDER_LO 0
591static int slab_break_gfp_order = BREAK_GFP_ORDER_LO;
592
a737b3e2
AM
593/*
594 * Functions for storing/retrieving the cachep and or slab from the page
595 * allocator. These are used to find the slab an obj belongs to. With kfree(),
596 * these are used to find the cache which an obj belongs to.
1da177e4 597 */
065d41cb
PE
598static inline void page_set_cache(struct page *page, struct kmem_cache *cache)
599{
600 page->lru.next = (struct list_head *)cache;
601}
602
603static inline struct kmem_cache *page_get_cache(struct page *page)
604{
84097518
NP
605 if (unlikely(PageCompound(page)))
606 page = (struct page *)page_private(page);
ddc2e812 607 BUG_ON(!PageSlab(page));
065d41cb
PE
608 return (struct kmem_cache *)page->lru.next;
609}
610
611static inline void page_set_slab(struct page *page, struct slab *slab)
612{
613 page->lru.prev = (struct list_head *)slab;
614}
615
616static inline struct slab *page_get_slab(struct page *page)
617{
84097518
NP
618 if (unlikely(PageCompound(page)))
619 page = (struct page *)page_private(page);
ddc2e812 620 BUG_ON(!PageSlab(page));
065d41cb
PE
621 return (struct slab *)page->lru.prev;
622}
1da177e4 623
6ed5eb22
PE
624static inline struct kmem_cache *virt_to_cache(const void *obj)
625{
626 struct page *page = virt_to_page(obj);
627 return page_get_cache(page);
628}
629
630static inline struct slab *virt_to_slab(const void *obj)
631{
632 struct page *page = virt_to_page(obj);
633 return page_get_slab(page);
634}
635
8fea4e96
PE
636static inline void *index_to_obj(struct kmem_cache *cache, struct slab *slab,
637 unsigned int idx)
638{
639 return slab->s_mem + cache->buffer_size * idx;
640}
641
6a2d7a95
ED
642/*
643 * We want to avoid an expensive divide : (offset / cache->buffer_size)
644 * Using the fact that buffer_size is a constant for a particular cache,
645 * we can replace (offset / cache->buffer_size) by
646 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
647 */
648static inline unsigned int obj_to_index(const struct kmem_cache *cache,
649 const struct slab *slab, void *obj)
8fea4e96 650{
6a2d7a95
ED
651 u32 offset = (obj - slab->s_mem);
652 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
653}
654
a737b3e2
AM
655/*
656 * These are the default caches for kmalloc. Custom caches can have other sizes.
657 */
1da177e4
LT
658struct cache_sizes malloc_sizes[] = {
659#define CACHE(x) { .cs_size = (x) },
660#include <linux/kmalloc_sizes.h>
661 CACHE(ULONG_MAX)
662#undef CACHE
663};
664EXPORT_SYMBOL(malloc_sizes);
665
666/* Must match cache_sizes above. Out of line to keep cache footprint low. */
667struct cache_names {
668 char *name;
669 char *name_dma;
670};
671
672static struct cache_names __initdata cache_names[] = {
673#define CACHE(x) { .name = "size-" #x, .name_dma = "size-" #x "(DMA)" },
674#include <linux/kmalloc_sizes.h>
b28a02de 675 {NULL,}
1da177e4
LT
676#undef CACHE
677};
678
679static struct arraycache_init initarray_cache __initdata =
b28a02de 680 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4 681static struct arraycache_init initarray_generic =
b28a02de 682 { {0, BOOT_CPUCACHE_ENTRIES, 1, 0} };
1da177e4
LT
683
684/* internal cache of cache description objs */
343e0d7a 685static struct kmem_cache cache_cache = {
b28a02de
PE
686 .batchcount = 1,
687 .limit = BOOT_CPUCACHE_ENTRIES,
688 .shared = 1,
343e0d7a 689 .buffer_size = sizeof(struct kmem_cache),
b28a02de 690 .name = "kmem_cache",
1da177e4
LT
691};
692
056c6241
RT
693#define BAD_ALIEN_MAGIC 0x01020304ul
694
f1aaee53
AV
695#ifdef CONFIG_LOCKDEP
696
697/*
698 * Slab sometimes uses the kmalloc slabs to store the slab headers
699 * for other slabs "off slab".
700 * The locking for this is tricky in that it nests within the locks
701 * of all other slabs in a few places; to deal with this special
702 * locking we put on-slab caches into a separate lock-class.
056c6241
RT
703 *
704 * We set lock class for alien array caches which are up during init.
705 * The lock annotation will be lost if all cpus of a node goes down and
706 * then comes back up during hotplug
f1aaee53 707 */
056c6241
RT
708static struct lock_class_key on_slab_l3_key;
709static struct lock_class_key on_slab_alc_key;
710
711static inline void init_lock_keys(void)
f1aaee53 712
f1aaee53
AV
713{
714 int q;
056c6241
RT
715 struct cache_sizes *s = malloc_sizes;
716
717 while (s->cs_size != ULONG_MAX) {
718 for_each_node(q) {
719 struct array_cache **alc;
720 int r;
721 struct kmem_list3 *l3 = s->cs_cachep->nodelists[q];
722 if (!l3 || OFF_SLAB(s->cs_cachep))
723 continue;
724 lockdep_set_class(&l3->list_lock, &on_slab_l3_key);
725 alc = l3->alien;
726 /*
727 * FIXME: This check for BAD_ALIEN_MAGIC
728 * should go away when common slab code is taught to
729 * work even without alien caches.
730 * Currently, non NUMA code returns BAD_ALIEN_MAGIC
731 * for alloc_alien_cache,
732 */
733 if (!alc || (unsigned long)alc == BAD_ALIEN_MAGIC)
734 continue;
735 for_each_node(r) {
736 if (alc[r])
737 lockdep_set_class(&alc[r]->lock,
738 &on_slab_alc_key);
739 }
740 }
741 s++;
f1aaee53
AV
742 }
743}
f1aaee53 744#else
056c6241 745static inline void init_lock_keys(void)
f1aaee53
AV
746{
747}
748#endif
749
8f5be20b
RT
750/*
751 * 1. Guard access to the cache-chain.
752 * 2. Protect sanity of cpu_online_map against cpu hotplug events
753 */
fc0abb14 754static DEFINE_MUTEX(cache_chain_mutex);
1da177e4
LT
755static struct list_head cache_chain;
756
1da177e4
LT
757/*
758 * chicken and egg problem: delay the per-cpu array allocation
759 * until the general caches are up.
760 */
761static enum {
762 NONE,
e498be7d
CL
763 PARTIAL_AC,
764 PARTIAL_L3,
1da177e4
LT
765 FULL
766} g_cpucache_up;
767
39d24e64
MK
768/*
769 * used by boot code to determine if it can use slab based allocator
770 */
771int slab_is_available(void)
772{
773 return g_cpucache_up == FULL;
774}
775
52bad64d 776static DEFINE_PER_CPU(struct delayed_work, reap_work);
1da177e4 777
343e0d7a 778static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4
LT
779{
780 return cachep->array[smp_processor_id()];
781}
782
a737b3e2
AM
783static inline struct kmem_cache *__find_general_cachep(size_t size,
784 gfp_t gfpflags)
1da177e4
LT
785{
786 struct cache_sizes *csizep = malloc_sizes;
787
788#if DEBUG
789 /* This happens if someone tries to call
b28a02de
PE
790 * kmem_cache_create(), or __kmalloc(), before
791 * the generic caches are initialized.
792 */
c7e43c78 793 BUG_ON(malloc_sizes[INDEX_AC].cs_cachep == NULL);
1da177e4
LT
794#endif
795 while (size > csizep->cs_size)
796 csizep++;
797
798 /*
0abf40c1 799 * Really subtle: The last entry with cs->cs_size==ULONG_MAX
1da177e4
LT
800 * has cs_{dma,}cachep==NULL. Thus no special case
801 * for large kmalloc calls required.
802 */
4b51d669 803#ifdef CONFIG_ZONE_DMA
1da177e4
LT
804 if (unlikely(gfpflags & GFP_DMA))
805 return csizep->cs_dmacachep;
4b51d669 806#endif
1da177e4
LT
807 return csizep->cs_cachep;
808}
809
b221385b 810static struct kmem_cache *kmem_find_general_cachep(size_t size, gfp_t gfpflags)
97e2bde4
MS
811{
812 return __find_general_cachep(size, gfpflags);
813}
97e2bde4 814
fbaccacf 815static size_t slab_mgmt_size(size_t nr_objs, size_t align)
1da177e4 816{
fbaccacf
SR
817 return ALIGN(sizeof(struct slab)+nr_objs*sizeof(kmem_bufctl_t), align);
818}
1da177e4 819
a737b3e2
AM
820/*
821 * Calculate the number of objects and left-over bytes for a given buffer size.
822 */
fbaccacf
SR
823static void cache_estimate(unsigned long gfporder, size_t buffer_size,
824 size_t align, int flags, size_t *left_over,
825 unsigned int *num)
826{
827 int nr_objs;
828 size_t mgmt_size;
829 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 830
fbaccacf
SR
831 /*
832 * The slab management structure can be either off the slab or
833 * on it. For the latter case, the memory allocated for a
834 * slab is used for:
835 *
836 * - The struct slab
837 * - One kmem_bufctl_t for each object
838 * - Padding to respect alignment of @align
839 * - @buffer_size bytes for each object
840 *
841 * If the slab management structure is off the slab, then the
842 * alignment will already be calculated into the size. Because
843 * the slabs are all pages aligned, the objects will be at the
844 * correct alignment when allocated.
845 */
846 if (flags & CFLGS_OFF_SLAB) {
847 mgmt_size = 0;
848 nr_objs = slab_size / buffer_size;
849
850 if (nr_objs > SLAB_LIMIT)
851 nr_objs = SLAB_LIMIT;
852 } else {
853 /*
854 * Ignore padding for the initial guess. The padding
855 * is at most @align-1 bytes, and @buffer_size is at
856 * least @align. In the worst case, this result will
857 * be one greater than the number of objects that fit
858 * into the memory allocation when taking the padding
859 * into account.
860 */
861 nr_objs = (slab_size - sizeof(struct slab)) /
862 (buffer_size + sizeof(kmem_bufctl_t));
863
864 /*
865 * This calculated number will be either the right
866 * amount, or one greater than what we want.
867 */
868 if (slab_mgmt_size(nr_objs, align) + nr_objs*buffer_size
869 > slab_size)
870 nr_objs--;
871
872 if (nr_objs > SLAB_LIMIT)
873 nr_objs = SLAB_LIMIT;
874
875 mgmt_size = slab_mgmt_size(nr_objs, align);
876 }
877 *num = nr_objs;
878 *left_over = slab_size - nr_objs*buffer_size - mgmt_size;
1da177e4
LT
879}
880
881#define slab_error(cachep, msg) __slab_error(__FUNCTION__, cachep, msg)
882
a737b3e2
AM
883static void __slab_error(const char *function, struct kmem_cache *cachep,
884 char *msg)
1da177e4
LT
885{
886 printk(KERN_ERR "slab error in %s(): cache `%s': %s\n",
b28a02de 887 function, cachep->name, msg);
1da177e4
LT
888 dump_stack();
889}
890
3395ee05
PM
891/*
892 * By default on NUMA we use alien caches to stage the freeing of
893 * objects allocated from other nodes. This causes massive memory
894 * inefficiencies when using fake NUMA setup to split memory into a
895 * large number of small nodes, so it can be disabled on the command
896 * line
897 */
898
899static int use_alien_caches __read_mostly = 1;
900static int __init noaliencache_setup(char *s)
901{
902 use_alien_caches = 0;
903 return 1;
904}
905__setup("noaliencache", noaliencache_setup);
906
8fce4d8e
CL
907#ifdef CONFIG_NUMA
908/*
909 * Special reaping functions for NUMA systems called from cache_reap().
910 * These take care of doing round robin flushing of alien caches (containing
911 * objects freed on different nodes from which they were allocated) and the
912 * flushing of remote pcps by calling drain_node_pages.
913 */
914static DEFINE_PER_CPU(unsigned long, reap_node);
915
916static void init_reap_node(int cpu)
917{
918 int node;
919
920 node = next_node(cpu_to_node(cpu), node_online_map);
921 if (node == MAX_NUMNODES)
442295c9 922 node = first_node(node_online_map);
8fce4d8e 923
7f6b8876 924 per_cpu(reap_node, cpu) = node;
8fce4d8e
CL
925}
926
927static void next_reap_node(void)
928{
929 int node = __get_cpu_var(reap_node);
930
931 /*
932 * Also drain per cpu pages on remote zones
933 */
934 if (node != numa_node_id())
935 drain_node_pages(node);
936
937 node = next_node(node, node_online_map);
938 if (unlikely(node >= MAX_NUMNODES))
939 node = first_node(node_online_map);
940 __get_cpu_var(reap_node) = node;
941}
942
943#else
944#define init_reap_node(cpu) do { } while (0)
945#define next_reap_node(void) do { } while (0)
946#endif
947
1da177e4
LT
948/*
949 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
950 * via the workqueue/eventd.
951 * Add the CPU number into the expiration time to minimize the possibility of
952 * the CPUs getting into lockstep and contending for the global cache chain
953 * lock.
954 */
955static void __devinit start_cpu_timer(int cpu)
956{
52bad64d 957 struct delayed_work *reap_work = &per_cpu(reap_work, cpu);
1da177e4
LT
958
959 /*
960 * When this gets called from do_initcalls via cpucache_init(),
961 * init_workqueues() has already run, so keventd will be setup
962 * at that time.
963 */
52bad64d 964 if (keventd_up() && reap_work->work.func == NULL) {
8fce4d8e 965 init_reap_node(cpu);
65f27f38 966 INIT_DELAYED_WORK(reap_work, cache_reap);
2b284214
AV
967 schedule_delayed_work_on(cpu, reap_work,
968 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
969 }
970}
971
e498be7d 972static struct array_cache *alloc_arraycache(int node, int entries,
b28a02de 973 int batchcount)
1da177e4 974{
b28a02de 975 int memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1da177e4
LT
976 struct array_cache *nc = NULL;
977
e498be7d 978 nc = kmalloc_node(memsize, GFP_KERNEL, node);
1da177e4
LT
979 if (nc) {
980 nc->avail = 0;
981 nc->limit = entries;
982 nc->batchcount = batchcount;
983 nc->touched = 0;
e498be7d 984 spin_lock_init(&nc->lock);
1da177e4
LT
985 }
986 return nc;
987}
988
3ded175a
CL
989/*
990 * Transfer objects in one arraycache to another.
991 * Locking must be handled by the caller.
992 *
993 * Return the number of entries transferred.
994 */
995static int transfer_objects(struct array_cache *to,
996 struct array_cache *from, unsigned int max)
997{
998 /* Figure out how many entries to transfer */
999 int nr = min(min(from->avail, max), to->limit - to->avail);
1000
1001 if (!nr)
1002 return 0;
1003
1004 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
1005 sizeof(void *) *nr);
1006
1007 from->avail -= nr;
1008 to->avail += nr;
1009 to->touched = 1;
1010 return nr;
1011}
1012
765c4507
CL
1013#ifndef CONFIG_NUMA
1014
1015#define drain_alien_cache(cachep, alien) do { } while (0)
1016#define reap_alien(cachep, l3) do { } while (0)
1017
1018static inline struct array_cache **alloc_alien_cache(int node, int limit)
1019{
1020 return (struct array_cache **)BAD_ALIEN_MAGIC;
1021}
1022
1023static inline void free_alien_cache(struct array_cache **ac_ptr)
1024{
1025}
1026
1027static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
1028{
1029 return 0;
1030}
1031
1032static inline void *alternate_node_alloc(struct kmem_cache *cachep,
1033 gfp_t flags)
1034{
1035 return NULL;
1036}
1037
8b98c169 1038static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
1039 gfp_t flags, int nodeid)
1040{
1041 return NULL;
1042}
1043
1044#else /* CONFIG_NUMA */
1045
8b98c169 1046static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 1047static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 1048
5295a74c 1049static struct array_cache **alloc_alien_cache(int node, int limit)
e498be7d
CL
1050{
1051 struct array_cache **ac_ptr;
8ef82866 1052 int memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
1053 int i;
1054
1055 if (limit > 1)
1056 limit = 12;
1057 ac_ptr = kmalloc_node(memsize, GFP_KERNEL, node);
1058 if (ac_ptr) {
1059 for_each_node(i) {
1060 if (i == node || !node_online(i)) {
1061 ac_ptr[i] = NULL;
1062 continue;
1063 }
1064 ac_ptr[i] = alloc_arraycache(node, limit, 0xbaadf00d);
1065 if (!ac_ptr[i]) {
b28a02de 1066 for (i--; i <= 0; i--)
e498be7d
CL
1067 kfree(ac_ptr[i]);
1068 kfree(ac_ptr);
1069 return NULL;
1070 }
1071 }
1072 }
1073 return ac_ptr;
1074}
1075
5295a74c 1076static void free_alien_cache(struct array_cache **ac_ptr)
e498be7d
CL
1077{
1078 int i;
1079
1080 if (!ac_ptr)
1081 return;
e498be7d 1082 for_each_node(i)
b28a02de 1083 kfree(ac_ptr[i]);
e498be7d
CL
1084 kfree(ac_ptr);
1085}
1086
343e0d7a 1087static void __drain_alien_cache(struct kmem_cache *cachep,
5295a74c 1088 struct array_cache *ac, int node)
e498be7d
CL
1089{
1090 struct kmem_list3 *rl3 = cachep->nodelists[node];
1091
1092 if (ac->avail) {
1093 spin_lock(&rl3->list_lock);
e00946fe
CL
1094 /*
1095 * Stuff objects into the remote nodes shared array first.
1096 * That way we could avoid the overhead of putting the objects
1097 * into the free lists and getting them back later.
1098 */
693f7d36
JS
1099 if (rl3->shared)
1100 transfer_objects(rl3->shared, ac, ac->limit);
e00946fe 1101
ff69416e 1102 free_block(cachep, ac->entry, ac->avail, node);
e498be7d
CL
1103 ac->avail = 0;
1104 spin_unlock(&rl3->list_lock);
1105 }
1106}
1107
8fce4d8e
CL
1108/*
1109 * Called from cache_reap() to regularly drain alien caches round robin.
1110 */
1111static void reap_alien(struct kmem_cache *cachep, struct kmem_list3 *l3)
1112{
1113 int node = __get_cpu_var(reap_node);
1114
1115 if (l3->alien) {
1116 struct array_cache *ac = l3->alien[node];
e00946fe
CL
1117
1118 if (ac && ac->avail && spin_trylock_irq(&ac->lock)) {
8fce4d8e
CL
1119 __drain_alien_cache(cachep, ac, node);
1120 spin_unlock_irq(&ac->lock);
1121 }
1122 }
1123}
1124
a737b3e2
AM
1125static void drain_alien_cache(struct kmem_cache *cachep,
1126 struct array_cache **alien)
e498be7d 1127{
b28a02de 1128 int i = 0;
e498be7d
CL
1129 struct array_cache *ac;
1130 unsigned long flags;
1131
1132 for_each_online_node(i) {
4484ebf1 1133 ac = alien[i];
e498be7d
CL
1134 if (ac) {
1135 spin_lock_irqsave(&ac->lock, flags);
1136 __drain_alien_cache(cachep, ac, i);
1137 spin_unlock_irqrestore(&ac->lock, flags);
1138 }
1139 }
1140}
729bd0b7 1141
873623df 1142static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
729bd0b7
PE
1143{
1144 struct slab *slabp = virt_to_slab(objp);
1145 int nodeid = slabp->nodeid;
1146 struct kmem_list3 *l3;
1147 struct array_cache *alien = NULL;
1ca4cb24
PE
1148 int node;
1149
1150 node = numa_node_id();
729bd0b7
PE
1151
1152 /*
1153 * Make sure we are not freeing a object from another node to the array
1154 * cache on this cpu.
1155 */
62918a03 1156 if (likely(slabp->nodeid == node))
729bd0b7
PE
1157 return 0;
1158
1ca4cb24 1159 l3 = cachep->nodelists[node];
729bd0b7
PE
1160 STATS_INC_NODEFREES(cachep);
1161 if (l3->alien && l3->alien[nodeid]) {
1162 alien = l3->alien[nodeid];
873623df 1163 spin_lock(&alien->lock);
729bd0b7
PE
1164 if (unlikely(alien->avail == alien->limit)) {
1165 STATS_INC_ACOVERFLOW(cachep);
1166 __drain_alien_cache(cachep, alien, nodeid);
1167 }
1168 alien->entry[alien->avail++] = objp;
1169 spin_unlock(&alien->lock);
1170 } else {
1171 spin_lock(&(cachep->nodelists[nodeid])->list_lock);
1172 free_block(cachep, &objp, 1, nodeid);
1173 spin_unlock(&(cachep->nodelists[nodeid])->list_lock);
1174 }
1175 return 1;
1176}
e498be7d
CL
1177#endif
1178
8c78f307 1179static int __cpuinit cpuup_callback(struct notifier_block *nfb,
b28a02de 1180 unsigned long action, void *hcpu)
1da177e4
LT
1181{
1182 long cpu = (long)hcpu;
343e0d7a 1183 struct kmem_cache *cachep;
e498be7d
CL
1184 struct kmem_list3 *l3 = NULL;
1185 int node = cpu_to_node(cpu);
1186 int memsize = sizeof(struct kmem_list3);
1da177e4
LT
1187
1188 switch (action) {
1189 case CPU_UP_PREPARE:
fc0abb14 1190 mutex_lock(&cache_chain_mutex);
a737b3e2
AM
1191 /*
1192 * We need to do this right in the beginning since
e498be7d
CL
1193 * alloc_arraycache's are going to use this list.
1194 * kmalloc_node allows us to add the slab to the right
1195 * kmem_list3 and not this cpu's kmem_list3
1196 */
1197
1da177e4 1198 list_for_each_entry(cachep, &cache_chain, next) {
a737b3e2
AM
1199 /*
1200 * Set up the size64 kmemlist for cpu before we can
e498be7d
CL
1201 * begin anything. Make sure some other cpu on this
1202 * node has not already allocated this
1203 */
1204 if (!cachep->nodelists[node]) {
a737b3e2
AM
1205 l3 = kmalloc_node(memsize, GFP_KERNEL, node);
1206 if (!l3)
e498be7d
CL
1207 goto bad;
1208 kmem_list3_init(l3);
1209 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
b28a02de 1210 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d 1211
4484ebf1
RT
1212 /*
1213 * The l3s don't come and go as CPUs come and
1214 * go. cache_chain_mutex is sufficient
1215 * protection here.
1216 */
e498be7d
CL
1217 cachep->nodelists[node] = l3;
1218 }
1da177e4 1219
e498be7d
CL
1220 spin_lock_irq(&cachep->nodelists[node]->list_lock);
1221 cachep->nodelists[node]->free_limit =
a737b3e2
AM
1222 (1 + nr_cpus_node(node)) *
1223 cachep->batchcount + cachep->num;
e498be7d
CL
1224 spin_unlock_irq(&cachep->nodelists[node]->list_lock);
1225 }
1226
a737b3e2
AM
1227 /*
1228 * Now we can go ahead with allocating the shared arrays and
1229 * array caches
1230 */
e498be7d 1231 list_for_each_entry(cachep, &cache_chain, next) {
cd105df4 1232 struct array_cache *nc;
63109846 1233 struct array_cache *shared = NULL;
3395ee05 1234 struct array_cache **alien = NULL;
cd105df4 1235
e498be7d 1236 nc = alloc_arraycache(node, cachep->limit,
4484ebf1 1237 cachep->batchcount);
1da177e4
LT
1238 if (!nc)
1239 goto bad;
63109846
ED
1240 if (cachep->shared) {
1241 shared = alloc_arraycache(node,
4484ebf1
RT
1242 cachep->shared * cachep->batchcount,
1243 0xbaadf00d);
63109846
ED
1244 if (!shared)
1245 goto bad;
1246 }
3395ee05
PM
1247 if (use_alien_caches) {
1248 alien = alloc_alien_cache(node, cachep->limit);
1249 if (!alien)
1250 goto bad;
1251 }
1da177e4 1252 cachep->array[cpu] = nc;
e498be7d
CL
1253 l3 = cachep->nodelists[node];
1254 BUG_ON(!l3);
e498be7d 1255
4484ebf1
RT
1256 spin_lock_irq(&l3->list_lock);
1257 if (!l3->shared) {
1258 /*
1259 * We are serialised from CPU_DEAD or
1260 * CPU_UP_CANCELLED by the cpucontrol lock
1261 */
1262 l3->shared = shared;
1263 shared = NULL;
e498be7d 1264 }
4484ebf1
RT
1265#ifdef CONFIG_NUMA
1266 if (!l3->alien) {
1267 l3->alien = alien;
1268 alien = NULL;
1269 }
1270#endif
1271 spin_unlock_irq(&l3->list_lock);
4484ebf1
RT
1272 kfree(shared);
1273 free_alien_cache(alien);
1da177e4 1274 }
1da177e4
LT
1275 break;
1276 case CPU_ONLINE:
8f5be20b 1277 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1278 start_cpu_timer(cpu);
1279 break;
1280#ifdef CONFIG_HOTPLUG_CPU
8f5be20b
RT
1281 case CPU_DOWN_PREPARE:
1282 mutex_lock(&cache_chain_mutex);
1283 break;
1284 case CPU_DOWN_FAILED:
1285 mutex_unlock(&cache_chain_mutex);
1286 break;
1da177e4 1287 case CPU_DEAD:
4484ebf1
RT
1288 /*
1289 * Even if all the cpus of a node are down, we don't free the
1290 * kmem_list3 of any cache. This to avoid a race between
1291 * cpu_down, and a kmalloc allocation from another cpu for
1292 * memory from the node of the cpu going down. The list3
1293 * structure is usually allocated from kmem_cache_create() and
1294 * gets destroyed at kmem_cache_destroy().
1295 */
1da177e4 1296 /* fall thru */
8f5be20b 1297#endif
1da177e4 1298 case CPU_UP_CANCELED:
1da177e4
LT
1299 list_for_each_entry(cachep, &cache_chain, next) {
1300 struct array_cache *nc;
4484ebf1
RT
1301 struct array_cache *shared;
1302 struct array_cache **alien;
e498be7d 1303 cpumask_t mask;
1da177e4 1304
e498be7d 1305 mask = node_to_cpumask(node);
1da177e4
LT
1306 /* cpu is dead; no one can alloc from it. */
1307 nc = cachep->array[cpu];
1308 cachep->array[cpu] = NULL;
e498be7d
CL
1309 l3 = cachep->nodelists[node];
1310
1311 if (!l3)
4484ebf1 1312 goto free_array_cache;
e498be7d 1313
ca3b9b91 1314 spin_lock_irq(&l3->list_lock);
e498be7d
CL
1315
1316 /* Free limit for this kmem_list3 */
1317 l3->free_limit -= cachep->batchcount;
1318 if (nc)
ff69416e 1319 free_block(cachep, nc->entry, nc->avail, node);
e498be7d
CL
1320
1321 if (!cpus_empty(mask)) {
ca3b9b91 1322 spin_unlock_irq(&l3->list_lock);
4484ebf1 1323 goto free_array_cache;
b28a02de 1324 }
e498be7d 1325
4484ebf1
RT
1326 shared = l3->shared;
1327 if (shared) {
63109846
ED
1328 free_block(cachep, shared->entry,
1329 shared->avail, node);
e498be7d
CL
1330 l3->shared = NULL;
1331 }
e498be7d 1332
4484ebf1
RT
1333 alien = l3->alien;
1334 l3->alien = NULL;
1335
1336 spin_unlock_irq(&l3->list_lock);
1337
1338 kfree(shared);
1339 if (alien) {
1340 drain_alien_cache(cachep, alien);
1341 free_alien_cache(alien);
e498be7d 1342 }
4484ebf1 1343free_array_cache:
1da177e4
LT
1344 kfree(nc);
1345 }
4484ebf1
RT
1346 /*
1347 * In the previous loop, all the objects were freed to
1348 * the respective cache's slabs, now we can go ahead and
1349 * shrink each nodelist to its limit.
1350 */
1351 list_for_each_entry(cachep, &cache_chain, next) {
1352 l3 = cachep->nodelists[node];
1353 if (!l3)
1354 continue;
ed11d9eb 1355 drain_freelist(cachep, l3, l3->free_objects);
4484ebf1 1356 }
fc0abb14 1357 mutex_unlock(&cache_chain_mutex);
1da177e4 1358 break;
1da177e4
LT
1359 }
1360 return NOTIFY_OK;
a737b3e2 1361bad:
1da177e4
LT
1362 return NOTIFY_BAD;
1363}
1364
74b85f37
CS
1365static struct notifier_block __cpuinitdata cpucache_notifier = {
1366 &cpuup_callback, NULL, 0
1367};
1da177e4 1368
e498be7d
CL
1369/*
1370 * swap the static kmem_list3 with kmalloced memory
1371 */
a737b3e2
AM
1372static void init_list(struct kmem_cache *cachep, struct kmem_list3 *list,
1373 int nodeid)
e498be7d
CL
1374{
1375 struct kmem_list3 *ptr;
1376
e498be7d
CL
1377 ptr = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, nodeid);
1378 BUG_ON(!ptr);
1379
1380 local_irq_disable();
1381 memcpy(ptr, list, sizeof(struct kmem_list3));
2b2d5493
IM
1382 /*
1383 * Do not assume that spinlocks can be initialized via memcpy:
1384 */
1385 spin_lock_init(&ptr->list_lock);
1386
e498be7d
CL
1387 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1388 cachep->nodelists[nodeid] = ptr;
1389 local_irq_enable();
1390}
1391
a737b3e2
AM
1392/*
1393 * Initialisation. Called after the page allocator have been initialised and
1394 * before smp_init().
1da177e4
LT
1395 */
1396void __init kmem_cache_init(void)
1397{
1398 size_t left_over;
1399 struct cache_sizes *sizes;
1400 struct cache_names *names;
e498be7d 1401 int i;
07ed76b2 1402 int order;
1ca4cb24 1403 int node;
e498be7d 1404
62918a03
SS
1405 if (num_possible_nodes() == 1)
1406 use_alien_caches = 0;
1407
e498be7d
CL
1408 for (i = 0; i < NUM_INIT_LISTS; i++) {
1409 kmem_list3_init(&initkmem_list3[i]);
1410 if (i < MAX_NUMNODES)
1411 cache_cache.nodelists[i] = NULL;
1412 }
1da177e4
LT
1413
1414 /*
1415 * Fragmentation resistance on low memory - only use bigger
1416 * page orders on machines with more than 32MB of memory.
1417 */
1418 if (num_physpages > (32 << 20) >> PAGE_SHIFT)
1419 slab_break_gfp_order = BREAK_GFP_ORDER_HI;
1420
1da177e4
LT
1421 /* Bootstrap is tricky, because several objects are allocated
1422 * from caches that do not exist yet:
a737b3e2
AM
1423 * 1) initialize the cache_cache cache: it contains the struct
1424 * kmem_cache structures of all caches, except cache_cache itself:
1425 * cache_cache is statically allocated.
e498be7d
CL
1426 * Initially an __init data area is used for the head array and the
1427 * kmem_list3 structures, it's replaced with a kmalloc allocated
1428 * array at the end of the bootstrap.
1da177e4 1429 * 2) Create the first kmalloc cache.
343e0d7a 1430 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1431 * An __init data area is used for the head array.
1432 * 3) Create the remaining kmalloc caches, with minimally sized
1433 * head arrays.
1da177e4
LT
1434 * 4) Replace the __init data head arrays for cache_cache and the first
1435 * kmalloc cache with kmalloc allocated arrays.
e498be7d
CL
1436 * 5) Replace the __init data for kmem_list3 for cache_cache and
1437 * the other cache's with kmalloc allocated memory.
1438 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1439 */
1440
1ca4cb24
PE
1441 node = numa_node_id();
1442
1da177e4 1443 /* 1) create the cache_cache */
1da177e4
LT
1444 INIT_LIST_HEAD(&cache_chain);
1445 list_add(&cache_cache.next, &cache_chain);
1446 cache_cache.colour_off = cache_line_size();
1447 cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
1ca4cb24 1448 cache_cache.nodelists[node] = &initkmem_list3[CACHE_CACHE];
1da177e4 1449
8da3430d
ED
1450 /*
1451 * struct kmem_cache size depends on nr_node_ids, which
1452 * can be less than MAX_NUMNODES.
1453 */
1454 cache_cache.buffer_size = offsetof(struct kmem_cache, nodelists) +
1455 nr_node_ids * sizeof(struct kmem_list3 *);
1456#if DEBUG
1457 cache_cache.obj_size = cache_cache.buffer_size;
1458#endif
a737b3e2
AM
1459 cache_cache.buffer_size = ALIGN(cache_cache.buffer_size,
1460 cache_line_size());
6a2d7a95
ED
1461 cache_cache.reciprocal_buffer_size =
1462 reciprocal_value(cache_cache.buffer_size);
1da177e4 1463
07ed76b2
JS
1464 for (order = 0; order < MAX_ORDER; order++) {
1465 cache_estimate(order, cache_cache.buffer_size,
1466 cache_line_size(), 0, &left_over, &cache_cache.num);
1467 if (cache_cache.num)
1468 break;
1469 }
40094fa6 1470 BUG_ON(!cache_cache.num);
07ed76b2 1471 cache_cache.gfporder = order;
b28a02de 1472 cache_cache.colour = left_over / cache_cache.colour_off;
b28a02de
PE
1473 cache_cache.slab_size = ALIGN(cache_cache.num * sizeof(kmem_bufctl_t) +
1474 sizeof(struct slab), cache_line_size());
1da177e4
LT
1475
1476 /* 2+3) create the kmalloc caches */
1477 sizes = malloc_sizes;
1478 names = cache_names;
1479
a737b3e2
AM
1480 /*
1481 * Initialize the caches that provide memory for the array cache and the
1482 * kmem_list3 structures first. Without this, further allocations will
1483 * bug.
e498be7d
CL
1484 */
1485
1486 sizes[INDEX_AC].cs_cachep = kmem_cache_create(names[INDEX_AC].name,
a737b3e2
AM
1487 sizes[INDEX_AC].cs_size,
1488 ARCH_KMALLOC_MINALIGN,
1489 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1490 NULL, NULL);
e498be7d 1491
a737b3e2 1492 if (INDEX_AC != INDEX_L3) {
e498be7d 1493 sizes[INDEX_L3].cs_cachep =
a737b3e2
AM
1494 kmem_cache_create(names[INDEX_L3].name,
1495 sizes[INDEX_L3].cs_size,
1496 ARCH_KMALLOC_MINALIGN,
1497 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1498 NULL, NULL);
1499 }
e498be7d 1500
e0a42726
IM
1501 slab_early_init = 0;
1502
1da177e4 1503 while (sizes->cs_size != ULONG_MAX) {
e498be7d
CL
1504 /*
1505 * For performance, all the general caches are L1 aligned.
1da177e4
LT
1506 * This should be particularly beneficial on SMP boxes, as it
1507 * eliminates "false sharing".
1508 * Note for systems short on memory removing the alignment will
e498be7d
CL
1509 * allow tighter packing of the smaller caches.
1510 */
a737b3e2 1511 if (!sizes->cs_cachep) {
e498be7d 1512 sizes->cs_cachep = kmem_cache_create(names->name,
a737b3e2
AM
1513 sizes->cs_size,
1514 ARCH_KMALLOC_MINALIGN,
1515 ARCH_KMALLOC_FLAGS|SLAB_PANIC,
1516 NULL, NULL);
1517 }
4b51d669
CL
1518#ifdef CONFIG_ZONE_DMA
1519 sizes->cs_dmacachep = kmem_cache_create(
1520 names->name_dma,
a737b3e2
AM
1521 sizes->cs_size,
1522 ARCH_KMALLOC_MINALIGN,
1523 ARCH_KMALLOC_FLAGS|SLAB_CACHE_DMA|
1524 SLAB_PANIC,
1525 NULL, NULL);
4b51d669 1526#endif
1da177e4
LT
1527 sizes++;
1528 names++;
1529 }
1530 /* 4) Replace the bootstrap head arrays */
1531 {
2b2d5493 1532 struct array_cache *ptr;
e498be7d 1533
1da177e4 1534 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1535
1da177e4 1536 local_irq_disable();
9a2dba4b
PE
1537 BUG_ON(cpu_cache_get(&cache_cache) != &initarray_cache.cache);
1538 memcpy(ptr, cpu_cache_get(&cache_cache),
b28a02de 1539 sizeof(struct arraycache_init));
2b2d5493
IM
1540 /*
1541 * Do not assume that spinlocks can be initialized via memcpy:
1542 */
1543 spin_lock_init(&ptr->lock);
1544
1da177e4
LT
1545 cache_cache.array[smp_processor_id()] = ptr;
1546 local_irq_enable();
e498be7d 1547
1da177e4 1548 ptr = kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
e498be7d 1549
1da177e4 1550 local_irq_disable();
9a2dba4b 1551 BUG_ON(cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep)
b28a02de 1552 != &initarray_generic.cache);
9a2dba4b 1553 memcpy(ptr, cpu_cache_get(malloc_sizes[INDEX_AC].cs_cachep),
b28a02de 1554 sizeof(struct arraycache_init));
2b2d5493
IM
1555 /*
1556 * Do not assume that spinlocks can be initialized via memcpy:
1557 */
1558 spin_lock_init(&ptr->lock);
1559
e498be7d 1560 malloc_sizes[INDEX_AC].cs_cachep->array[smp_processor_id()] =
b28a02de 1561 ptr;
1da177e4
LT
1562 local_irq_enable();
1563 }
e498be7d
CL
1564 /* 5) Replace the bootstrap kmem_list3's */
1565 {
1ca4cb24
PE
1566 int nid;
1567
e498be7d 1568 /* Replace the static kmem_list3 structures for the boot cpu */
1ca4cb24 1569 init_list(&cache_cache, &initkmem_list3[CACHE_CACHE], node);
e498be7d 1570
1ca4cb24 1571 for_each_online_node(nid) {
e498be7d 1572 init_list(malloc_sizes[INDEX_AC].cs_cachep,
1ca4cb24 1573 &initkmem_list3[SIZE_AC + nid], nid);
e498be7d
CL
1574
1575 if (INDEX_AC != INDEX_L3) {
1576 init_list(malloc_sizes[INDEX_L3].cs_cachep,
1ca4cb24 1577 &initkmem_list3[SIZE_L3 + nid], nid);
e498be7d
CL
1578 }
1579 }
1580 }
1da177e4 1581
e498be7d 1582 /* 6) resize the head arrays to their final sizes */
1da177e4 1583 {
343e0d7a 1584 struct kmem_cache *cachep;
fc0abb14 1585 mutex_lock(&cache_chain_mutex);
1da177e4 1586 list_for_each_entry(cachep, &cache_chain, next)
2ed3a4ef
CL
1587 if (enable_cpucache(cachep))
1588 BUG();
fc0abb14 1589 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
1590 }
1591
056c6241
RT
1592 /* Annotate slab for lockdep -- annotate the malloc caches */
1593 init_lock_keys();
1594
1595
1da177e4
LT
1596 /* Done! */
1597 g_cpucache_up = FULL;
1598
a737b3e2
AM
1599 /*
1600 * Register a cpu startup notifier callback that initializes
1601 * cpu_cache_get for all new cpus
1da177e4
LT
1602 */
1603 register_cpu_notifier(&cpucache_notifier);
1da177e4 1604
a737b3e2
AM
1605 /*
1606 * The reap timers are started later, with a module init call: That part
1607 * of the kernel is not yet operational.
1da177e4
LT
1608 */
1609}
1610
1611static int __init cpucache_init(void)
1612{
1613 int cpu;
1614
a737b3e2
AM
1615 /*
1616 * Register the timers that return unneeded pages to the page allocator
1da177e4 1617 */
e498be7d 1618 for_each_online_cpu(cpu)
a737b3e2 1619 start_cpu_timer(cpu);
1da177e4
LT
1620 return 0;
1621}
1da177e4
LT
1622__initcall(cpucache_init);
1623
1624/*
1625 * Interface to system's page allocator. No need to hold the cache-lock.
1626 *
1627 * If we requested dmaable memory, we will get it. Even if we
1628 * did not request dmaable memory, we might get it, but that
1629 * would be relatively rare and ignorable.
1630 */
343e0d7a 1631static void *kmem_getpages(struct kmem_cache *cachep, gfp_t flags, int nodeid)
1da177e4
LT
1632{
1633 struct page *page;
e1b6aa6f 1634 int nr_pages;
1da177e4
LT
1635 int i;
1636
d6fef9da 1637#ifndef CONFIG_MMU
e1b6aa6f
CH
1638 /*
1639 * Nommu uses slab's for process anonymous memory allocations, and thus
1640 * requires __GFP_COMP to properly refcount higher order allocations
d6fef9da 1641 */
e1b6aa6f 1642 flags |= __GFP_COMP;
d6fef9da 1643#endif
765c4507 1644
3c517a61 1645 flags |= cachep->gfpflags;
e1b6aa6f
CH
1646
1647 page = alloc_pages_node(nodeid, flags, cachep->gfporder);
1da177e4
LT
1648 if (!page)
1649 return NULL;
1da177e4 1650
e1b6aa6f 1651 nr_pages = (1 << cachep->gfporder);
1da177e4 1652 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
972d1a7b
CL
1653 add_zone_page_state(page_zone(page),
1654 NR_SLAB_RECLAIMABLE, nr_pages);
1655 else
1656 add_zone_page_state(page_zone(page),
1657 NR_SLAB_UNRECLAIMABLE, nr_pages);
e1b6aa6f
CH
1658 for (i = 0; i < nr_pages; i++)
1659 __SetPageSlab(page + i);
1660 return page_address(page);
1da177e4
LT
1661}
1662
1663/*
1664 * Interface to system's page release.
1665 */
343e0d7a 1666static void kmem_freepages(struct kmem_cache *cachep, void *addr)
1da177e4 1667{
b28a02de 1668 unsigned long i = (1 << cachep->gfporder);
1da177e4
LT
1669 struct page *page = virt_to_page(addr);
1670 const unsigned long nr_freed = i;
1671
972d1a7b
CL
1672 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1673 sub_zone_page_state(page_zone(page),
1674 NR_SLAB_RECLAIMABLE, nr_freed);
1675 else
1676 sub_zone_page_state(page_zone(page),
1677 NR_SLAB_UNRECLAIMABLE, nr_freed);
1da177e4 1678 while (i--) {
f205b2fe
NP
1679 BUG_ON(!PageSlab(page));
1680 __ClearPageSlab(page);
1da177e4
LT
1681 page++;
1682 }
1da177e4
LT
1683 if (current->reclaim_state)
1684 current->reclaim_state->reclaimed_slab += nr_freed;
1685 free_pages((unsigned long)addr, cachep->gfporder);
1da177e4
LT
1686}
1687
1688static void kmem_rcu_free(struct rcu_head *head)
1689{
b28a02de 1690 struct slab_rcu *slab_rcu = (struct slab_rcu *)head;
343e0d7a 1691 struct kmem_cache *cachep = slab_rcu->cachep;
1da177e4
LT
1692
1693 kmem_freepages(cachep, slab_rcu->addr);
1694 if (OFF_SLAB(cachep))
1695 kmem_cache_free(cachep->slabp_cache, slab_rcu);
1696}
1697
1698#if DEBUG
1699
1700#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1701static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1702 unsigned long caller)
1da177e4 1703{
3dafccf2 1704 int size = obj_size(cachep);
1da177e4 1705
3dafccf2 1706 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1707
b28a02de 1708 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1709 return;
1710
b28a02de
PE
1711 *addr++ = 0x12345678;
1712 *addr++ = caller;
1713 *addr++ = smp_processor_id();
1714 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1715 {
1716 unsigned long *sptr = &caller;
1717 unsigned long svalue;
1718
1719 while (!kstack_end(sptr)) {
1720 svalue = *sptr++;
1721 if (kernel_text_address(svalue)) {
b28a02de 1722 *addr++ = svalue;
1da177e4
LT
1723 size -= sizeof(unsigned long);
1724 if (size <= sizeof(unsigned long))
1725 break;
1726 }
1727 }
1728
1729 }
b28a02de 1730 *addr++ = 0x87654321;
1da177e4
LT
1731}
1732#endif
1733
343e0d7a 1734static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1735{
3dafccf2
MS
1736 int size = obj_size(cachep);
1737 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1738
1739 memset(addr, val, size);
b28a02de 1740 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1741}
1742
1743static void dump_line(char *data, int offset, int limit)
1744{
1745 int i;
aa83aa40
DJ
1746 unsigned char error = 0;
1747 int bad_count = 0;
1748
1da177e4 1749 printk(KERN_ERR "%03x:", offset);
aa83aa40
DJ
1750 for (i = 0; i < limit; i++) {
1751 if (data[offset + i] != POISON_FREE) {
1752 error = data[offset + i];
1753 bad_count++;
1754 }
b28a02de 1755 printk(" %02x", (unsigned char)data[offset + i]);
aa83aa40 1756 }
1da177e4 1757 printk("\n");
aa83aa40
DJ
1758
1759 if (bad_count == 1) {
1760 error ^= POISON_FREE;
1761 if (!(error & (error - 1))) {
1762 printk(KERN_ERR "Single bit error detected. Probably "
1763 "bad RAM.\n");
1764#ifdef CONFIG_X86
1765 printk(KERN_ERR "Run memtest86+ or a similar memory "
1766 "test tool.\n");
1767#else
1768 printk(KERN_ERR "Run a memory test tool.\n");
1769#endif
1770 }
1771 }
1da177e4
LT
1772}
1773#endif
1774
1775#if DEBUG
1776
343e0d7a 1777static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1778{
1779 int i, size;
1780 char *realobj;
1781
1782 if (cachep->flags & SLAB_RED_ZONE) {
1783 printk(KERN_ERR "Redzone: 0x%lx/0x%lx.\n",
a737b3e2
AM
1784 *dbg_redzone1(cachep, objp),
1785 *dbg_redzone2(cachep, objp));
1da177e4
LT
1786 }
1787
1788 if (cachep->flags & SLAB_STORE_USER) {
1789 printk(KERN_ERR "Last user: [<%p>]",
a737b3e2 1790 *dbg_userword(cachep, objp));
1da177e4 1791 print_symbol("(%s)",
a737b3e2 1792 (unsigned long)*dbg_userword(cachep, objp));
1da177e4
LT
1793 printk("\n");
1794 }
3dafccf2
MS
1795 realobj = (char *)objp + obj_offset(cachep);
1796 size = obj_size(cachep);
b28a02de 1797 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1798 int limit;
1799 limit = 16;
b28a02de
PE
1800 if (i + limit > size)
1801 limit = size - i;
1da177e4
LT
1802 dump_line(realobj, i, limit);
1803 }
1804}
1805
343e0d7a 1806static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1807{
1808 char *realobj;
1809 int size, i;
1810 int lines = 0;
1811
3dafccf2
MS
1812 realobj = (char *)objp + obj_offset(cachep);
1813 size = obj_size(cachep);
1da177e4 1814
b28a02de 1815 for (i = 0; i < size; i++) {
1da177e4 1816 char exp = POISON_FREE;
b28a02de 1817 if (i == size - 1)
1da177e4
LT
1818 exp = POISON_END;
1819 if (realobj[i] != exp) {
1820 int limit;
1821 /* Mismatch ! */
1822 /* Print header */
1823 if (lines == 0) {
b28a02de 1824 printk(KERN_ERR
e94a40c5
DH
1825 "Slab corruption: %s start=%p, len=%d\n",
1826 cachep->name, realobj, size);
1da177e4
LT
1827 print_objinfo(cachep, objp, 0);
1828 }
1829 /* Hexdump the affected line */
b28a02de 1830 i = (i / 16) * 16;
1da177e4 1831 limit = 16;
b28a02de
PE
1832 if (i + limit > size)
1833 limit = size - i;
1da177e4
LT
1834 dump_line(realobj, i, limit);
1835 i += 16;
1836 lines++;
1837 /* Limit to 5 lines */
1838 if (lines > 5)
1839 break;
1840 }
1841 }
1842 if (lines != 0) {
1843 /* Print some data about the neighboring objects, if they
1844 * exist:
1845 */
6ed5eb22 1846 struct slab *slabp = virt_to_slab(objp);
8fea4e96 1847 unsigned int objnr;
1da177e4 1848
8fea4e96 1849 objnr = obj_to_index(cachep, slabp, objp);
1da177e4 1850 if (objnr) {
8fea4e96 1851 objp = index_to_obj(cachep, slabp, objnr - 1);
3dafccf2 1852 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1853 printk(KERN_ERR "Prev obj: start=%p, len=%d\n",
b28a02de 1854 realobj, size);
1da177e4
LT
1855 print_objinfo(cachep, objp, 2);
1856 }
b28a02de 1857 if (objnr + 1 < cachep->num) {
8fea4e96 1858 objp = index_to_obj(cachep, slabp, objnr + 1);
3dafccf2 1859 realobj = (char *)objp + obj_offset(cachep);
1da177e4 1860 printk(KERN_ERR "Next obj: start=%p, len=%d\n",
b28a02de 1861 realobj, size);
1da177e4
LT
1862 print_objinfo(cachep, objp, 2);
1863 }
1864 }
1865}
1866#endif
1867
12dd36fa
MD
1868#if DEBUG
1869/**
911851e6
RD
1870 * slab_destroy_objs - destroy a slab and its objects
1871 * @cachep: cache pointer being destroyed
1872 * @slabp: slab pointer being destroyed
1873 *
1874 * Call the registered destructor for each object in a slab that is being
1875 * destroyed.
1da177e4 1876 */
343e0d7a 1877static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
1da177e4 1878{
1da177e4
LT
1879 int i;
1880 for (i = 0; i < cachep->num; i++) {
8fea4e96 1881 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
1882
1883 if (cachep->flags & SLAB_POISON) {
1884#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2
AM
1885 if (cachep->buffer_size % PAGE_SIZE == 0 &&
1886 OFF_SLAB(cachep))
b28a02de 1887 kernel_map_pages(virt_to_page(objp),
a737b3e2 1888 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
1889 else
1890 check_poison_obj(cachep, objp);
1891#else
1892 check_poison_obj(cachep, objp);
1893#endif
1894 }
1895 if (cachep->flags & SLAB_RED_ZONE) {
1896 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1897 slab_error(cachep, "start of a freed object "
b28a02de 1898 "was overwritten");
1da177e4
LT
1899 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1900 slab_error(cachep, "end of a freed object "
b28a02de 1901 "was overwritten");
1da177e4
LT
1902 }
1903 if (cachep->dtor && !(cachep->flags & SLAB_POISON))
3dafccf2 1904 (cachep->dtor) (objp + obj_offset(cachep), cachep, 0);
1da177e4 1905 }
12dd36fa 1906}
1da177e4 1907#else
343e0d7a 1908static void slab_destroy_objs(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa 1909{
1da177e4
LT
1910 if (cachep->dtor) {
1911 int i;
1912 for (i = 0; i < cachep->num; i++) {
8fea4e96 1913 void *objp = index_to_obj(cachep, slabp, i);
b28a02de 1914 (cachep->dtor) (objp, cachep, 0);
1da177e4
LT
1915 }
1916 }
12dd36fa 1917}
1da177e4
LT
1918#endif
1919
911851e6
RD
1920/**
1921 * slab_destroy - destroy and release all objects in a slab
1922 * @cachep: cache pointer being destroyed
1923 * @slabp: slab pointer being destroyed
1924 *
12dd36fa 1925 * Destroy all the objs in a slab, and release the mem back to the system.
a737b3e2
AM
1926 * Before calling the slab must have been unlinked from the cache. The
1927 * cache-lock is not held/needed.
12dd36fa 1928 */
343e0d7a 1929static void slab_destroy(struct kmem_cache *cachep, struct slab *slabp)
12dd36fa
MD
1930{
1931 void *addr = slabp->s_mem - slabp->colouroff;
1932
1933 slab_destroy_objs(cachep, slabp);
1da177e4
LT
1934 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU)) {
1935 struct slab_rcu *slab_rcu;
1936
b28a02de 1937 slab_rcu = (struct slab_rcu *)slabp;
1da177e4
LT
1938 slab_rcu->cachep = cachep;
1939 slab_rcu->addr = addr;
1940 call_rcu(&slab_rcu->head, kmem_rcu_free);
1941 } else {
1942 kmem_freepages(cachep, addr);
873623df
IM
1943 if (OFF_SLAB(cachep))
1944 kmem_cache_free(cachep->slabp_cache, slabp);
1da177e4
LT
1945 }
1946}
1947
a737b3e2
AM
1948/*
1949 * For setting up all the kmem_list3s for cache whose buffer_size is same as
1950 * size of kmem_list3.
1951 */
a3a02be7 1952static void __init set_up_list3s(struct kmem_cache *cachep, int index)
e498be7d
CL
1953{
1954 int node;
1955
1956 for_each_online_node(node) {
b28a02de 1957 cachep->nodelists[node] = &initkmem_list3[index + node];
e498be7d 1958 cachep->nodelists[node]->next_reap = jiffies +
b28a02de
PE
1959 REAPTIMEOUT_LIST3 +
1960 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
e498be7d
CL
1961 }
1962}
1963
117f6eb1
CL
1964static void __kmem_cache_destroy(struct kmem_cache *cachep)
1965{
1966 int i;
1967 struct kmem_list3 *l3;
1968
1969 for_each_online_cpu(i)
1970 kfree(cachep->array[i]);
1971
1972 /* NUMA: free the list3 structures */
1973 for_each_online_node(i) {
1974 l3 = cachep->nodelists[i];
1975 if (l3) {
1976 kfree(l3->shared);
1977 free_alien_cache(l3->alien);
1978 kfree(l3);
1979 }
1980 }
1981 kmem_cache_free(&cache_cache, cachep);
1982}
1983
1984
4d268eba 1985/**
a70773dd
RD
1986 * calculate_slab_order - calculate size (page order) of slabs
1987 * @cachep: pointer to the cache that is being created
1988 * @size: size of objects to be created in this cache.
1989 * @align: required alignment for the objects.
1990 * @flags: slab allocation flags
1991 *
1992 * Also calculates the number of objects per slab.
4d268eba
PE
1993 *
1994 * This could be made much more intelligent. For now, try to avoid using
1995 * high order pages for slabs. When the gfp() functions are more friendly
1996 * towards high-order requests, this should be changed.
1997 */
a737b3e2 1998static size_t calculate_slab_order(struct kmem_cache *cachep,
ee13d785 1999 size_t size, size_t align, unsigned long flags)
4d268eba 2000{
b1ab41c4 2001 unsigned long offslab_limit;
4d268eba 2002 size_t left_over = 0;
9888e6fa 2003 int gfporder;
4d268eba 2004
a737b3e2 2005 for (gfporder = 0; gfporder <= MAX_GFP_ORDER; gfporder++) {
4d268eba
PE
2006 unsigned int num;
2007 size_t remainder;
2008
9888e6fa 2009 cache_estimate(gfporder, size, align, flags, &remainder, &num);
4d268eba
PE
2010 if (!num)
2011 continue;
9888e6fa 2012
b1ab41c4
IM
2013 if (flags & CFLGS_OFF_SLAB) {
2014 /*
2015 * Max number of objs-per-slab for caches which
2016 * use off-slab slabs. Needed to avoid a possible
2017 * looping condition in cache_grow().
2018 */
2019 offslab_limit = size - sizeof(struct slab);
2020 offslab_limit /= sizeof(kmem_bufctl_t);
2021
2022 if (num > offslab_limit)
2023 break;
2024 }
4d268eba 2025
9888e6fa 2026 /* Found something acceptable - save it away */
4d268eba 2027 cachep->num = num;
9888e6fa 2028 cachep->gfporder = gfporder;
4d268eba
PE
2029 left_over = remainder;
2030
f78bb8ad
LT
2031 /*
2032 * A VFS-reclaimable slab tends to have most allocations
2033 * as GFP_NOFS and we really don't want to have to be allocating
2034 * higher-order pages when we are unable to shrink dcache.
2035 */
2036 if (flags & SLAB_RECLAIM_ACCOUNT)
2037 break;
2038
4d268eba
PE
2039 /*
2040 * Large number of objects is good, but very large slabs are
2041 * currently bad for the gfp()s.
2042 */
9888e6fa 2043 if (gfporder >= slab_break_gfp_order)
4d268eba
PE
2044 break;
2045
9888e6fa
LT
2046 /*
2047 * Acceptable internal fragmentation?
2048 */
a737b3e2 2049 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
2050 break;
2051 }
2052 return left_over;
2053}
2054
2ed3a4ef 2055static int setup_cpu_cache(struct kmem_cache *cachep)
f30cf7d1 2056{
2ed3a4ef
CL
2057 if (g_cpucache_up == FULL)
2058 return enable_cpucache(cachep);
2059
f30cf7d1
PE
2060 if (g_cpucache_up == NONE) {
2061 /*
2062 * Note: the first kmem_cache_create must create the cache
2063 * that's used by kmalloc(24), otherwise the creation of
2064 * further caches will BUG().
2065 */
2066 cachep->array[smp_processor_id()] = &initarray_generic.cache;
2067
2068 /*
2069 * If the cache that's used by kmalloc(sizeof(kmem_list3)) is
2070 * the first cache, then we need to set up all its list3s,
2071 * otherwise the creation of further caches will BUG().
2072 */
2073 set_up_list3s(cachep, SIZE_AC);
2074 if (INDEX_AC == INDEX_L3)
2075 g_cpucache_up = PARTIAL_L3;
2076 else
2077 g_cpucache_up = PARTIAL_AC;
2078 } else {
2079 cachep->array[smp_processor_id()] =
2080 kmalloc(sizeof(struct arraycache_init), GFP_KERNEL);
2081
2082 if (g_cpucache_up == PARTIAL_AC) {
2083 set_up_list3s(cachep, SIZE_L3);
2084 g_cpucache_up = PARTIAL_L3;
2085 } else {
2086 int node;
2087 for_each_online_node(node) {
2088 cachep->nodelists[node] =
2089 kmalloc_node(sizeof(struct kmem_list3),
2090 GFP_KERNEL, node);
2091 BUG_ON(!cachep->nodelists[node]);
2092 kmem_list3_init(cachep->nodelists[node]);
2093 }
2094 }
2095 }
2096 cachep->nodelists[numa_node_id()]->next_reap =
2097 jiffies + REAPTIMEOUT_LIST3 +
2098 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
2099
2100 cpu_cache_get(cachep)->avail = 0;
2101 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
2102 cpu_cache_get(cachep)->batchcount = 1;
2103 cpu_cache_get(cachep)->touched = 0;
2104 cachep->batchcount = 1;
2105 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 2106 return 0;
f30cf7d1
PE
2107}
2108
1da177e4
LT
2109/**
2110 * kmem_cache_create - Create a cache.
2111 * @name: A string which is used in /proc/slabinfo to identify this cache.
2112 * @size: The size of objects to be created in this cache.
2113 * @align: The required alignment for the objects.
2114 * @flags: SLAB flags
2115 * @ctor: A constructor for the objects.
2116 * @dtor: A destructor for the objects.
2117 *
2118 * Returns a ptr to the cache on success, NULL on failure.
2119 * Cannot be called within a int, but can be interrupted.
2120 * The @ctor is run when new pages are allocated by the cache
2121 * and the @dtor is run before the pages are handed back.
2122 *
2123 * @name must be valid until the cache is destroyed. This implies that
a737b3e2
AM
2124 * the module calling this has to destroy the cache before getting unloaded.
2125 *
1da177e4
LT
2126 * The flags are
2127 *
2128 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2129 * to catch references to uninitialised memory.
2130 *
2131 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2132 * for buffer overruns.
2133 *
1da177e4
LT
2134 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2135 * cacheline. This can be beneficial if you're counting cycles as closely
2136 * as davem.
2137 */
343e0d7a 2138struct kmem_cache *
1da177e4 2139kmem_cache_create (const char *name, size_t size, size_t align,
a737b3e2
AM
2140 unsigned long flags,
2141 void (*ctor)(void*, struct kmem_cache *, unsigned long),
343e0d7a 2142 void (*dtor)(void*, struct kmem_cache *, unsigned long))
1da177e4
LT
2143{
2144 size_t left_over, slab_size, ralign;
7a7c381d 2145 struct kmem_cache *cachep = NULL, *pc;
1da177e4
LT
2146
2147 /*
2148 * Sanity checks... these are all serious usage bugs.
2149 */
a737b3e2 2150 if (!name || in_interrupt() || (size < BYTES_PER_WORD) ||
b28a02de 2151 (size > (1 << MAX_OBJ_ORDER) * PAGE_SIZE) || (dtor && !ctor)) {
a737b3e2
AM
2152 printk(KERN_ERR "%s: Early error in slab %s\n", __FUNCTION__,
2153 name);
b28a02de
PE
2154 BUG();
2155 }
1da177e4 2156
f0188f47 2157 /*
8f5be20b
RT
2158 * We use cache_chain_mutex to ensure a consistent view of
2159 * cpu_online_map as well. Please see cpuup_callback
f0188f47 2160 */
fc0abb14 2161 mutex_lock(&cache_chain_mutex);
4f12bb4f 2162
7a7c381d 2163 list_for_each_entry(pc, &cache_chain, next) {
4f12bb4f
AM
2164 char tmp;
2165 int res;
2166
2167 /*
2168 * This happens when the module gets unloaded and doesn't
2169 * destroy its slab cache and no-one else reuses the vmalloc
2170 * area of the module. Print a warning.
2171 */
138ae663 2172 res = probe_kernel_address(pc->name, tmp);
4f12bb4f
AM
2173 if (res) {
2174 printk("SLAB: cache with size %d has lost its name\n",
3dafccf2 2175 pc->buffer_size);
4f12bb4f
AM
2176 continue;
2177 }
2178
b28a02de 2179 if (!strcmp(pc->name, name)) {
4f12bb4f
AM
2180 printk("kmem_cache_create: duplicate cache %s\n", name);
2181 dump_stack();
2182 goto oops;
2183 }
2184 }
2185
1da177e4
LT
2186#if DEBUG
2187 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
2188 if ((flags & SLAB_DEBUG_INITIAL) && !ctor) {
2189 /* No constructor, but inital state check requested */
2190 printk(KERN_ERR "%s: No con, but init state check "
b28a02de 2191 "requested - %s\n", __FUNCTION__, name);
1da177e4
LT
2192 flags &= ~SLAB_DEBUG_INITIAL;
2193 }
1da177e4
LT
2194#if FORCED_DEBUG
2195 /*
2196 * Enable redzoning and last user accounting, except for caches with
2197 * large objects, if the increased size would increase the object size
2198 * above the next power of two: caches with object sizes just above a
2199 * power of two have a significant amount of internal fragmentation.
2200 */
a737b3e2 2201 if (size < 4096 || fls(size - 1) == fls(size-1 + 3 * BYTES_PER_WORD))
b28a02de 2202 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
1da177e4
LT
2203 if (!(flags & SLAB_DESTROY_BY_RCU))
2204 flags |= SLAB_POISON;
2205#endif
2206 if (flags & SLAB_DESTROY_BY_RCU)
2207 BUG_ON(flags & SLAB_POISON);
2208#endif
2209 if (flags & SLAB_DESTROY_BY_RCU)
2210 BUG_ON(dtor);
2211
2212 /*
a737b3e2
AM
2213 * Always checks flags, a caller might be expecting debug support which
2214 * isn't available.
1da177e4 2215 */
40094fa6 2216 BUG_ON(flags & ~CREATE_MASK);
1da177e4 2217
a737b3e2
AM
2218 /*
2219 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2220 * unaligned accesses for some archs when redzoning is used, and makes
2221 * sure any on-slab bufctl's are also correctly aligned.
2222 */
b28a02de
PE
2223 if (size & (BYTES_PER_WORD - 1)) {
2224 size += (BYTES_PER_WORD - 1);
2225 size &= ~(BYTES_PER_WORD - 1);
1da177e4
LT
2226 }
2227
a737b3e2
AM
2228 /* calculate the final buffer alignment: */
2229
1da177e4
LT
2230 /* 1) arch recommendation: can be overridden for debug */
2231 if (flags & SLAB_HWCACHE_ALIGN) {
a737b3e2
AM
2232 /*
2233 * Default alignment: as specified by the arch code. Except if
2234 * an object is really small, then squeeze multiple objects into
2235 * one cacheline.
1da177e4
LT
2236 */
2237 ralign = cache_line_size();
b28a02de 2238 while (size <= ralign / 2)
1da177e4
LT
2239 ralign /= 2;
2240 } else {
2241 ralign = BYTES_PER_WORD;
2242 }
ca5f9703
PE
2243
2244 /*
2245 * Redzoning and user store require word alignment. Note this will be
2246 * overridden by architecture or caller mandated alignment if either
2247 * is greater than BYTES_PER_WORD.
2248 */
2249 if (flags & SLAB_RED_ZONE || flags & SLAB_STORE_USER)
2250 ralign = BYTES_PER_WORD;
2251
a44b56d3 2252 /* 2) arch mandated alignment */
1da177e4
LT
2253 if (ralign < ARCH_SLAB_MINALIGN) {
2254 ralign = ARCH_SLAB_MINALIGN;
1da177e4 2255 }
a44b56d3 2256 /* 3) caller mandated alignment */
1da177e4
LT
2257 if (ralign < align) {
2258 ralign = align;
1da177e4 2259 }
a44b56d3
KH
2260 /* disable debug if necessary */
2261 if (ralign > BYTES_PER_WORD)
2262 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2263 /*
ca5f9703 2264 * 4) Store it.
1da177e4
LT
2265 */
2266 align = ralign;
2267
2268 /* Get cache's description obj. */
e94b1766 2269 cachep = kmem_cache_zalloc(&cache_cache, GFP_KERNEL);
1da177e4 2270 if (!cachep)
4f12bb4f 2271 goto oops;
1da177e4
LT
2272
2273#if DEBUG
3dafccf2 2274 cachep->obj_size = size;
1da177e4 2275
ca5f9703
PE
2276 /*
2277 * Both debugging options require word-alignment which is calculated
2278 * into align above.
2279 */
1da177e4 2280 if (flags & SLAB_RED_ZONE) {
1da177e4 2281 /* add space for red zone words */
3dafccf2 2282 cachep->obj_offset += BYTES_PER_WORD;
b28a02de 2283 size += 2 * BYTES_PER_WORD;
1da177e4
LT
2284 }
2285 if (flags & SLAB_STORE_USER) {
ca5f9703
PE
2286 /* user store requires one word storage behind the end of
2287 * the real object.
1da177e4 2288 */
1da177e4
LT
2289 size += BYTES_PER_WORD;
2290 }
2291#if FORCED_DEBUG && defined(CONFIG_DEBUG_PAGEALLOC)
b28a02de 2292 if (size >= malloc_sizes[INDEX_L3 + 1].cs_size
3dafccf2
MS
2293 && cachep->obj_size > cache_line_size() && size < PAGE_SIZE) {
2294 cachep->obj_offset += PAGE_SIZE - size;
1da177e4
LT
2295 size = PAGE_SIZE;
2296 }
2297#endif
2298#endif
2299
e0a42726
IM
2300 /*
2301 * Determine if the slab management is 'on' or 'off' slab.
2302 * (bootstrapping cannot cope with offslab caches so don't do
2303 * it too early on.)
2304 */
2305 if ((size >= (PAGE_SIZE >> 3)) && !slab_early_init)
1da177e4
LT
2306 /*
2307 * Size is large, assume best to place the slab management obj
2308 * off-slab (should allow better packing of objs).
2309 */
2310 flags |= CFLGS_OFF_SLAB;
2311
2312 size = ALIGN(size, align);
2313
f78bb8ad 2314 left_over = calculate_slab_order(cachep, size, align, flags);
1da177e4
LT
2315
2316 if (!cachep->num) {
2317 printk("kmem_cache_create: couldn't create cache %s.\n", name);
2318 kmem_cache_free(&cache_cache, cachep);
2319 cachep = NULL;
4f12bb4f 2320 goto oops;
1da177e4 2321 }
b28a02de
PE
2322 slab_size = ALIGN(cachep->num * sizeof(kmem_bufctl_t)
2323 + sizeof(struct slab), align);
1da177e4
LT
2324
2325 /*
2326 * If the slab has been placed off-slab, and we have enough space then
2327 * move it on-slab. This is at the expense of any extra colouring.
2328 */
2329 if (flags & CFLGS_OFF_SLAB && left_over >= slab_size) {
2330 flags &= ~CFLGS_OFF_SLAB;
2331 left_over -= slab_size;
2332 }
2333
2334 if (flags & CFLGS_OFF_SLAB) {
2335 /* really off slab. No need for manual alignment */
b28a02de
PE
2336 slab_size =
2337 cachep->num * sizeof(kmem_bufctl_t) + sizeof(struct slab);
1da177e4
LT
2338 }
2339
2340 cachep->colour_off = cache_line_size();
2341 /* Offset must be a multiple of the alignment. */
2342 if (cachep->colour_off < align)
2343 cachep->colour_off = align;
b28a02de 2344 cachep->colour = left_over / cachep->colour_off;
1da177e4
LT
2345 cachep->slab_size = slab_size;
2346 cachep->flags = flags;
2347 cachep->gfpflags = 0;
4b51d669 2348 if (CONFIG_ZONE_DMA_FLAG && (flags & SLAB_CACHE_DMA))
1da177e4 2349 cachep->gfpflags |= GFP_DMA;
3dafccf2 2350 cachep->buffer_size = size;
6a2d7a95 2351 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2352
e5ac9c5a 2353 if (flags & CFLGS_OFF_SLAB) {
b2d55073 2354 cachep->slabp_cache = kmem_find_general_cachep(slab_size, 0u);
e5ac9c5a
RT
2355 /*
2356 * This is a possibility for one of the malloc_sizes caches.
2357 * But since we go off slab only for object size greater than
2358 * PAGE_SIZE/8, and malloc_sizes gets created in ascending order,
2359 * this should not happen at all.
2360 * But leave a BUG_ON for some lucky dude.
2361 */
2362 BUG_ON(!cachep->slabp_cache);
2363 }
1da177e4
LT
2364 cachep->ctor = ctor;
2365 cachep->dtor = dtor;
2366 cachep->name = name;
2367
2ed3a4ef
CL
2368 if (setup_cpu_cache(cachep)) {
2369 __kmem_cache_destroy(cachep);
2370 cachep = NULL;
2371 goto oops;
2372 }
1da177e4 2373
1da177e4
LT
2374 /* cache setup completed, link it into the list */
2375 list_add(&cachep->next, &cache_chain);
a737b3e2 2376oops:
1da177e4
LT
2377 if (!cachep && (flags & SLAB_PANIC))
2378 panic("kmem_cache_create(): failed to create slab `%s'\n",
b28a02de 2379 name);
fc0abb14 2380 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2381 return cachep;
2382}
2383EXPORT_SYMBOL(kmem_cache_create);
2384
2385#if DEBUG
2386static void check_irq_off(void)
2387{
2388 BUG_ON(!irqs_disabled());
2389}
2390
2391static void check_irq_on(void)
2392{
2393 BUG_ON(irqs_disabled());
2394}
2395
343e0d7a 2396static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2397{
2398#ifdef CONFIG_SMP
2399 check_irq_off();
e498be7d 2400 assert_spin_locked(&cachep->nodelists[numa_node_id()]->list_lock);
1da177e4
LT
2401#endif
2402}
e498be7d 2403
343e0d7a 2404static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2405{
2406#ifdef CONFIG_SMP
2407 check_irq_off();
2408 assert_spin_locked(&cachep->nodelists[node]->list_lock);
2409#endif
2410}
2411
1da177e4
LT
2412#else
2413#define check_irq_off() do { } while(0)
2414#define check_irq_on() do { } while(0)
2415#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2416#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2417#endif
2418
aab2207c
CL
2419static void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
2420 struct array_cache *ac,
2421 int force, int node);
2422
1da177e4
LT
2423static void do_drain(void *arg)
2424{
a737b3e2 2425 struct kmem_cache *cachep = arg;
1da177e4 2426 struct array_cache *ac;
ff69416e 2427 int node = numa_node_id();
1da177e4
LT
2428
2429 check_irq_off();
9a2dba4b 2430 ac = cpu_cache_get(cachep);
ff69416e
CL
2431 spin_lock(&cachep->nodelists[node]->list_lock);
2432 free_block(cachep, ac->entry, ac->avail, node);
2433 spin_unlock(&cachep->nodelists[node]->list_lock);
1da177e4
LT
2434 ac->avail = 0;
2435}
2436
343e0d7a 2437static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2438{
e498be7d
CL
2439 struct kmem_list3 *l3;
2440 int node;
2441
a07fa394 2442 on_each_cpu(do_drain, cachep, 1, 1);
1da177e4 2443 check_irq_on();
b28a02de 2444 for_each_online_node(node) {
e498be7d 2445 l3 = cachep->nodelists[node];
a4523a8b
RD
2446 if (l3 && l3->alien)
2447 drain_alien_cache(cachep, l3->alien);
2448 }
2449
2450 for_each_online_node(node) {
2451 l3 = cachep->nodelists[node];
2452 if (l3)
aab2207c 2453 drain_array(cachep, l3, l3->shared, 1, node);
e498be7d 2454 }
1da177e4
LT
2455}
2456
ed11d9eb
CL
2457/*
2458 * Remove slabs from the list of free slabs.
2459 * Specify the number of slabs to drain in tofree.
2460 *
2461 * Returns the actual number of slabs released.
2462 */
2463static int drain_freelist(struct kmem_cache *cache,
2464 struct kmem_list3 *l3, int tofree)
1da177e4 2465{
ed11d9eb
CL
2466 struct list_head *p;
2467 int nr_freed;
1da177e4 2468 struct slab *slabp;
1da177e4 2469
ed11d9eb
CL
2470 nr_freed = 0;
2471 while (nr_freed < tofree && !list_empty(&l3->slabs_free)) {
1da177e4 2472
ed11d9eb 2473 spin_lock_irq(&l3->list_lock);
e498be7d 2474 p = l3->slabs_free.prev;
ed11d9eb
CL
2475 if (p == &l3->slabs_free) {
2476 spin_unlock_irq(&l3->list_lock);
2477 goto out;
2478 }
1da177e4 2479
ed11d9eb 2480 slabp = list_entry(p, struct slab, list);
1da177e4 2481#if DEBUG
40094fa6 2482 BUG_ON(slabp->inuse);
1da177e4
LT
2483#endif
2484 list_del(&slabp->list);
ed11d9eb
CL
2485 /*
2486 * Safe to drop the lock. The slab is no longer linked
2487 * to the cache.
2488 */
2489 l3->free_objects -= cache->num;
e498be7d 2490 spin_unlock_irq(&l3->list_lock);
ed11d9eb
CL
2491 slab_destroy(cache, slabp);
2492 nr_freed++;
1da177e4 2493 }
ed11d9eb
CL
2494out:
2495 return nr_freed;
1da177e4
LT
2496}
2497
8f5be20b 2498/* Called with cache_chain_mutex held to protect against cpu hotplug */
343e0d7a 2499static int __cache_shrink(struct kmem_cache *cachep)
e498be7d
CL
2500{
2501 int ret = 0, i = 0;
2502 struct kmem_list3 *l3;
2503
2504 drain_cpu_caches(cachep);
2505
2506 check_irq_on();
2507 for_each_online_node(i) {
2508 l3 = cachep->nodelists[i];
ed11d9eb
CL
2509 if (!l3)
2510 continue;
2511
2512 drain_freelist(cachep, l3, l3->free_objects);
2513
2514 ret += !list_empty(&l3->slabs_full) ||
2515 !list_empty(&l3->slabs_partial);
e498be7d
CL
2516 }
2517 return (ret ? 1 : 0);
2518}
2519
1da177e4
LT
2520/**
2521 * kmem_cache_shrink - Shrink a cache.
2522 * @cachep: The cache to shrink.
2523 *
2524 * Releases as many slabs as possible for a cache.
2525 * To help debugging, a zero exit status indicates all slabs were released.
2526 */
343e0d7a 2527int kmem_cache_shrink(struct kmem_cache *cachep)
1da177e4 2528{
8f5be20b 2529 int ret;
40094fa6 2530 BUG_ON(!cachep || in_interrupt());
1da177e4 2531
8f5be20b
RT
2532 mutex_lock(&cache_chain_mutex);
2533 ret = __cache_shrink(cachep);
2534 mutex_unlock(&cache_chain_mutex);
2535 return ret;
1da177e4
LT
2536}
2537EXPORT_SYMBOL(kmem_cache_shrink);
2538
2539/**
2540 * kmem_cache_destroy - delete a cache
2541 * @cachep: the cache to destroy
2542 *
72fd4a35 2543 * Remove a &struct kmem_cache object from the slab cache.
1da177e4
LT
2544 *
2545 * It is expected this function will be called by a module when it is
2546 * unloaded. This will remove the cache completely, and avoid a duplicate
2547 * cache being allocated each time a module is loaded and unloaded, if the
2548 * module doesn't have persistent in-kernel storage across loads and unloads.
2549 *
2550 * The cache must be empty before calling this function.
2551 *
2552 * The caller must guarantee that noone will allocate memory from the cache
2553 * during the kmem_cache_destroy().
2554 */
133d205a 2555void kmem_cache_destroy(struct kmem_cache *cachep)
1da177e4 2556{
40094fa6 2557 BUG_ON(!cachep || in_interrupt());
1da177e4 2558
1da177e4 2559 /* Find the cache in the chain of caches. */
fc0abb14 2560 mutex_lock(&cache_chain_mutex);
1da177e4
LT
2561 /*
2562 * the chain is never empty, cache_cache is never destroyed
2563 */
2564 list_del(&cachep->next);
1da177e4
LT
2565 if (__cache_shrink(cachep)) {
2566 slab_error(cachep, "Can't free all objects");
b28a02de 2567 list_add(&cachep->next, &cache_chain);
fc0abb14 2568 mutex_unlock(&cache_chain_mutex);
133d205a 2569 return;
1da177e4
LT
2570 }
2571
2572 if (unlikely(cachep->flags & SLAB_DESTROY_BY_RCU))
fbd568a3 2573 synchronize_rcu();
1da177e4 2574
117f6eb1 2575 __kmem_cache_destroy(cachep);
8f5be20b 2576 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
2577}
2578EXPORT_SYMBOL(kmem_cache_destroy);
2579
e5ac9c5a
RT
2580/*
2581 * Get the memory for a slab management obj.
2582 * For a slab cache when the slab descriptor is off-slab, slab descriptors
2583 * always come from malloc_sizes caches. The slab descriptor cannot
2584 * come from the same cache which is getting created because,
2585 * when we are searching for an appropriate cache for these
2586 * descriptors in kmem_cache_create, we search through the malloc_sizes array.
2587 * If we are creating a malloc_sizes cache here it would not be visible to
2588 * kmem_find_general_cachep till the initialization is complete.
2589 * Hence we cannot have slabp_cache same as the original cache.
2590 */
343e0d7a 2591static struct slab *alloc_slabmgmt(struct kmem_cache *cachep, void *objp,
5b74ada7
RT
2592 int colour_off, gfp_t local_flags,
2593 int nodeid)
1da177e4
LT
2594{
2595 struct slab *slabp;
b28a02de 2596
1da177e4
LT
2597 if (OFF_SLAB(cachep)) {
2598 /* Slab management obj is off-slab. */
5b74ada7 2599 slabp = kmem_cache_alloc_node(cachep->slabp_cache,
3c517a61 2600 local_flags & ~GFP_THISNODE, nodeid);
1da177e4
LT
2601 if (!slabp)
2602 return NULL;
2603 } else {
b28a02de 2604 slabp = objp + colour_off;
1da177e4
LT
2605 colour_off += cachep->slab_size;
2606 }
2607 slabp->inuse = 0;
2608 slabp->colouroff = colour_off;
b28a02de 2609 slabp->s_mem = objp + colour_off;
5b74ada7 2610 slabp->nodeid = nodeid;
1da177e4
LT
2611 return slabp;
2612}
2613
2614static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
2615{
b28a02de 2616 return (kmem_bufctl_t *) (slabp + 1);
1da177e4
LT
2617}
2618
343e0d7a 2619static void cache_init_objs(struct kmem_cache *cachep,
b28a02de 2620 struct slab *slabp, unsigned long ctor_flags)
1da177e4
LT
2621{
2622 int i;
2623
2624 for (i = 0; i < cachep->num; i++) {
8fea4e96 2625 void *objp = index_to_obj(cachep, slabp, i);
1da177e4
LT
2626#if DEBUG
2627 /* need to poison the objs? */
2628 if (cachep->flags & SLAB_POISON)
2629 poison_obj(cachep, objp, POISON_FREE);
2630 if (cachep->flags & SLAB_STORE_USER)
2631 *dbg_userword(cachep, objp) = NULL;
2632
2633 if (cachep->flags & SLAB_RED_ZONE) {
2634 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2635 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2636 }
2637 /*
a737b3e2
AM
2638 * Constructors are not allowed to allocate memory from the same
2639 * cache which they are a constructor for. Otherwise, deadlock.
2640 * They must also be threaded.
1da177e4
LT
2641 */
2642 if (cachep->ctor && !(cachep->flags & SLAB_POISON))
3dafccf2 2643 cachep->ctor(objp + obj_offset(cachep), cachep,
b28a02de 2644 ctor_flags);
1da177e4
LT
2645
2646 if (cachep->flags & SLAB_RED_ZONE) {
2647 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2648 slab_error(cachep, "constructor overwrote the"
b28a02de 2649 " end of an object");
1da177e4
LT
2650 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2651 slab_error(cachep, "constructor overwrote the"
b28a02de 2652 " start of an object");
1da177e4 2653 }
a737b3e2
AM
2654 if ((cachep->buffer_size % PAGE_SIZE) == 0 &&
2655 OFF_SLAB(cachep) && cachep->flags & SLAB_POISON)
b28a02de 2656 kernel_map_pages(virt_to_page(objp),
3dafccf2 2657 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2658#else
2659 if (cachep->ctor)
2660 cachep->ctor(objp, cachep, ctor_flags);
2661#endif
b28a02de 2662 slab_bufctl(slabp)[i] = i + 1;
1da177e4 2663 }
b28a02de 2664 slab_bufctl(slabp)[i - 1] = BUFCTL_END;
1da177e4
LT
2665 slabp->free = 0;
2666}
2667
343e0d7a 2668static void kmem_flagcheck(struct kmem_cache *cachep, gfp_t flags)
1da177e4 2669{
4b51d669
CL
2670 if (CONFIG_ZONE_DMA_FLAG) {
2671 if (flags & GFP_DMA)
2672 BUG_ON(!(cachep->gfpflags & GFP_DMA));
2673 else
2674 BUG_ON(cachep->gfpflags & GFP_DMA);
2675 }
1da177e4
LT
2676}
2677
a737b3e2
AM
2678static void *slab_get_obj(struct kmem_cache *cachep, struct slab *slabp,
2679 int nodeid)
78d382d7 2680{
8fea4e96 2681 void *objp = index_to_obj(cachep, slabp, slabp->free);
78d382d7
MD
2682 kmem_bufctl_t next;
2683
2684 slabp->inuse++;
2685 next = slab_bufctl(slabp)[slabp->free];
2686#if DEBUG
2687 slab_bufctl(slabp)[slabp->free] = BUFCTL_FREE;
2688 WARN_ON(slabp->nodeid != nodeid);
2689#endif
2690 slabp->free = next;
2691
2692 return objp;
2693}
2694
a737b3e2
AM
2695static void slab_put_obj(struct kmem_cache *cachep, struct slab *slabp,
2696 void *objp, int nodeid)
78d382d7 2697{
8fea4e96 2698 unsigned int objnr = obj_to_index(cachep, slabp, objp);
78d382d7
MD
2699
2700#if DEBUG
2701 /* Verify that the slab belongs to the intended node */
2702 WARN_ON(slabp->nodeid != nodeid);
2703
871751e2 2704 if (slab_bufctl(slabp)[objnr] + 1 <= SLAB_LIMIT + 1) {
78d382d7 2705 printk(KERN_ERR "slab: double free detected in cache "
a737b3e2 2706 "'%s', objp %p\n", cachep->name, objp);
78d382d7
MD
2707 BUG();
2708 }
2709#endif
2710 slab_bufctl(slabp)[objnr] = slabp->free;
2711 slabp->free = objnr;
2712 slabp->inuse--;
2713}
2714
4776874f
PE
2715/*
2716 * Map pages beginning at addr to the given cache and slab. This is required
2717 * for the slab allocator to be able to lookup the cache and slab of a
2718 * virtual address for kfree, ksize, kmem_ptr_validate, and slab debugging.
2719 */
2720static void slab_map_pages(struct kmem_cache *cache, struct slab *slab,
2721 void *addr)
1da177e4 2722{
4776874f 2723 int nr_pages;
1da177e4
LT
2724 struct page *page;
2725
4776874f 2726 page = virt_to_page(addr);
84097518 2727
4776874f 2728 nr_pages = 1;
84097518 2729 if (likely(!PageCompound(page)))
4776874f
PE
2730 nr_pages <<= cache->gfporder;
2731
1da177e4 2732 do {
4776874f
PE
2733 page_set_cache(page, cache);
2734 page_set_slab(page, slab);
1da177e4 2735 page++;
4776874f 2736 } while (--nr_pages);
1da177e4
LT
2737}
2738
2739/*
2740 * Grow (by 1) the number of slabs within a cache. This is called by
2741 * kmem_cache_alloc() when there are no active objs left in a cache.
2742 */
3c517a61
CL
2743static int cache_grow(struct kmem_cache *cachep,
2744 gfp_t flags, int nodeid, void *objp)
1da177e4 2745{
b28a02de 2746 struct slab *slabp;
b28a02de
PE
2747 size_t offset;
2748 gfp_t local_flags;
2749 unsigned long ctor_flags;
e498be7d 2750 struct kmem_list3 *l3;
1da177e4 2751
a737b3e2
AM
2752 /*
2753 * Be lazy and only check for valid flags here, keeping it out of the
2754 * critical path in kmem_cache_alloc().
1da177e4 2755 */
441e143e 2756 BUG_ON(flags & ~(GFP_DMA | GFP_LEVEL_MASK | __GFP_NO_GROW));
6e0eaa4b 2757 if (flags & __GFP_NO_GROW)
1da177e4
LT
2758 return 0;
2759
2760 ctor_flags = SLAB_CTOR_CONSTRUCTOR;
a06d72c1 2761 local_flags = (flags & GFP_LEVEL_MASK);
1da177e4
LT
2762 if (!(local_flags & __GFP_WAIT))
2763 /*
2764 * Not allowed to sleep. Need to tell a constructor about
2765 * this - it might need to know...
2766 */
2767 ctor_flags |= SLAB_CTOR_ATOMIC;
2768
2e1217cf 2769 /* Take the l3 list lock to change the colour_next on this node */
1da177e4 2770 check_irq_off();
2e1217cf
RT
2771 l3 = cachep->nodelists[nodeid];
2772 spin_lock(&l3->list_lock);
1da177e4
LT
2773
2774 /* Get colour for the slab, and cal the next value. */
2e1217cf
RT
2775 offset = l3->colour_next;
2776 l3->colour_next++;
2777 if (l3->colour_next >= cachep->colour)
2778 l3->colour_next = 0;
2779 spin_unlock(&l3->list_lock);
1da177e4 2780
2e1217cf 2781 offset *= cachep->colour_off;
1da177e4
LT
2782
2783 if (local_flags & __GFP_WAIT)
2784 local_irq_enable();
2785
2786 /*
2787 * The test for missing atomic flag is performed here, rather than
2788 * the more obvious place, simply to reduce the critical path length
2789 * in kmem_cache_alloc(). If a caller is seriously mis-behaving they
2790 * will eventually be caught here (where it matters).
2791 */
2792 kmem_flagcheck(cachep, flags);
2793
a737b3e2
AM
2794 /*
2795 * Get mem for the objs. Attempt to allocate a physical page from
2796 * 'nodeid'.
e498be7d 2797 */
3c517a61
CL
2798 if (!objp)
2799 objp = kmem_getpages(cachep, flags, nodeid);
a737b3e2 2800 if (!objp)
1da177e4
LT
2801 goto failed;
2802
2803 /* Get slab management. */
3c517a61
CL
2804 slabp = alloc_slabmgmt(cachep, objp, offset,
2805 local_flags & ~GFP_THISNODE, nodeid);
a737b3e2 2806 if (!slabp)
1da177e4
LT
2807 goto opps1;
2808
e498be7d 2809 slabp->nodeid = nodeid;
4776874f 2810 slab_map_pages(cachep, slabp, objp);
1da177e4
LT
2811
2812 cache_init_objs(cachep, slabp, ctor_flags);
2813
2814 if (local_flags & __GFP_WAIT)
2815 local_irq_disable();
2816 check_irq_off();
e498be7d 2817 spin_lock(&l3->list_lock);
1da177e4
LT
2818
2819 /* Make slab active. */
e498be7d 2820 list_add_tail(&slabp->list, &(l3->slabs_free));
1da177e4 2821 STATS_INC_GROWN(cachep);
e498be7d
CL
2822 l3->free_objects += cachep->num;
2823 spin_unlock(&l3->list_lock);
1da177e4 2824 return 1;
a737b3e2 2825opps1:
1da177e4 2826 kmem_freepages(cachep, objp);
a737b3e2 2827failed:
1da177e4
LT
2828 if (local_flags & __GFP_WAIT)
2829 local_irq_disable();
2830 return 0;
2831}
2832
2833#if DEBUG
2834
2835/*
2836 * Perform extra freeing checks:
2837 * - detect bad pointers.
2838 * - POISON/RED_ZONE checking
2839 * - destructor calls, for caches with POISON+dtor
2840 */
2841static void kfree_debugcheck(const void *objp)
2842{
1da177e4
LT
2843 if (!virt_addr_valid(objp)) {
2844 printk(KERN_ERR "kfree_debugcheck: out of range ptr %lxh.\n",
b28a02de
PE
2845 (unsigned long)objp);
2846 BUG();
1da177e4 2847 }
1da177e4
LT
2848}
2849
58ce1fd5
PE
2850static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2851{
2852 unsigned long redzone1, redzone2;
2853
2854 redzone1 = *dbg_redzone1(cache, obj);
2855 redzone2 = *dbg_redzone2(cache, obj);
2856
2857 /*
2858 * Redzone is ok.
2859 */
2860 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2861 return;
2862
2863 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2864 slab_error(cache, "double free detected");
2865 else
2866 slab_error(cache, "memory outside object was overwritten");
2867
2868 printk(KERN_ERR "%p: redzone 1:0x%lx, redzone 2:0x%lx.\n",
2869 obj, redzone1, redzone2);
2870}
2871
343e0d7a 2872static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
b28a02de 2873 void *caller)
1da177e4
LT
2874{
2875 struct page *page;
2876 unsigned int objnr;
2877 struct slab *slabp;
2878
3dafccf2 2879 objp -= obj_offset(cachep);
1da177e4
LT
2880 kfree_debugcheck(objp);
2881 page = virt_to_page(objp);
2882
065d41cb 2883 slabp = page_get_slab(page);
1da177e4
LT
2884
2885 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2886 verify_redzone_free(cachep, objp);
1da177e4
LT
2887 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2888 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2889 }
2890 if (cachep->flags & SLAB_STORE_USER)
2891 *dbg_userword(cachep, objp) = caller;
2892
8fea4e96 2893 objnr = obj_to_index(cachep, slabp, objp);
1da177e4
LT
2894
2895 BUG_ON(objnr >= cachep->num);
8fea4e96 2896 BUG_ON(objp != index_to_obj(cachep, slabp, objnr));
1da177e4
LT
2897
2898 if (cachep->flags & SLAB_DEBUG_INITIAL) {
a737b3e2
AM
2899 /*
2900 * Need to call the slab's constructor so the caller can
2901 * perform a verify of its state (debugging). Called without
2902 * the cache-lock held.
1da177e4 2903 */
3dafccf2 2904 cachep->ctor(objp + obj_offset(cachep),
b28a02de 2905 cachep, SLAB_CTOR_CONSTRUCTOR | SLAB_CTOR_VERIFY);
1da177e4
LT
2906 }
2907 if (cachep->flags & SLAB_POISON && cachep->dtor) {
2908 /* we want to cache poison the object,
2909 * call the destruction callback
2910 */
3dafccf2 2911 cachep->dtor(objp + obj_offset(cachep), cachep, 0);
1da177e4 2912 }
871751e2
AV
2913#ifdef CONFIG_DEBUG_SLAB_LEAK
2914 slab_bufctl(slabp)[objnr] = BUFCTL_FREE;
2915#endif
1da177e4
LT
2916 if (cachep->flags & SLAB_POISON) {
2917#ifdef CONFIG_DEBUG_PAGEALLOC
a737b3e2 2918 if ((cachep->buffer_size % PAGE_SIZE)==0 && OFF_SLAB(cachep)) {
1da177e4 2919 store_stackinfo(cachep, objp, (unsigned long)caller);
b28a02de 2920 kernel_map_pages(virt_to_page(objp),
3dafccf2 2921 cachep->buffer_size / PAGE_SIZE, 0);
1da177e4
LT
2922 } else {
2923 poison_obj(cachep, objp, POISON_FREE);
2924 }
2925#else
2926 poison_obj(cachep, objp, POISON_FREE);
2927#endif
2928 }
2929 return objp;
2930}
2931
343e0d7a 2932static void check_slabp(struct kmem_cache *cachep, struct slab *slabp)
1da177e4
LT
2933{
2934 kmem_bufctl_t i;
2935 int entries = 0;
b28a02de 2936
1da177e4
LT
2937 /* Check slab's freelist to see if this obj is there. */
2938 for (i = slabp->free; i != BUFCTL_END; i = slab_bufctl(slabp)[i]) {
2939 entries++;
2940 if (entries > cachep->num || i >= cachep->num)
2941 goto bad;
2942 }
2943 if (entries != cachep->num - slabp->inuse) {
a737b3e2
AM
2944bad:
2945 printk(KERN_ERR "slab: Internal list corruption detected in "
2946 "cache '%s'(%d), slabp %p(%d). Hexdump:\n",
2947 cachep->name, cachep->num, slabp, slabp->inuse);
b28a02de 2948 for (i = 0;
264132bc 2949 i < sizeof(*slabp) + cachep->num * sizeof(kmem_bufctl_t);
b28a02de 2950 i++) {
a737b3e2 2951 if (i % 16 == 0)
1da177e4 2952 printk("\n%03x:", i);
b28a02de 2953 printk(" %02x", ((unsigned char *)slabp)[i]);
1da177e4
LT
2954 }
2955 printk("\n");
2956 BUG();
2957 }
2958}
2959#else
2960#define kfree_debugcheck(x) do { } while(0)
2961#define cache_free_debugcheck(x,objp,z) (objp)
2962#define check_slabp(x,y) do { } while(0)
2963#endif
2964
343e0d7a 2965static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2966{
2967 int batchcount;
2968 struct kmem_list3 *l3;
2969 struct array_cache *ac;
1ca4cb24
PE
2970 int node;
2971
2972 node = numa_node_id();
1da177e4
LT
2973
2974 check_irq_off();
9a2dba4b 2975 ac = cpu_cache_get(cachep);
a737b3e2 2976retry:
1da177e4
LT
2977 batchcount = ac->batchcount;
2978 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2979 /*
2980 * If there was little recent activity on this cache, then
2981 * perform only a partial refill. Otherwise we could generate
2982 * refill bouncing.
1da177e4
LT
2983 */
2984 batchcount = BATCHREFILL_LIMIT;
2985 }
1ca4cb24 2986 l3 = cachep->nodelists[node];
e498be7d
CL
2987
2988 BUG_ON(ac->avail > 0 || !l3);
2989 spin_lock(&l3->list_lock);
1da177e4 2990
3ded175a
CL
2991 /* See if we can refill from the shared array */
2992 if (l3->shared && transfer_objects(ac, l3->shared, batchcount))
2993 goto alloc_done;
2994
1da177e4
LT
2995 while (batchcount > 0) {
2996 struct list_head *entry;
2997 struct slab *slabp;
2998 /* Get slab alloc is to come from. */
2999 entry = l3->slabs_partial.next;
3000 if (entry == &l3->slabs_partial) {
3001 l3->free_touched = 1;
3002 entry = l3->slabs_free.next;
3003 if (entry == &l3->slabs_free)
3004 goto must_grow;
3005 }
3006
3007 slabp = list_entry(entry, struct slab, list);
3008 check_slabp(cachep, slabp);
3009 check_spinlock_acquired(cachep);
714b8171
PE
3010
3011 /*
3012 * The slab was either on partial or free list so
3013 * there must be at least one object available for
3014 * allocation.
3015 */
3016 BUG_ON(slabp->inuse < 0 || slabp->inuse >= cachep->num);
3017
1da177e4 3018 while (slabp->inuse < cachep->num && batchcount--) {
1da177e4
LT
3019 STATS_INC_ALLOCED(cachep);
3020 STATS_INC_ACTIVE(cachep);
3021 STATS_SET_HIGH(cachep);
3022
78d382d7 3023 ac->entry[ac->avail++] = slab_get_obj(cachep, slabp,
1ca4cb24 3024 node);
1da177e4
LT
3025 }
3026 check_slabp(cachep, slabp);
3027
3028 /* move slabp to correct slabp list: */
3029 list_del(&slabp->list);
3030 if (slabp->free == BUFCTL_END)
3031 list_add(&slabp->list, &l3->slabs_full);
3032 else
3033 list_add(&slabp->list, &l3->slabs_partial);
3034 }
3035
a737b3e2 3036must_grow:
1da177e4 3037 l3->free_objects -= ac->avail;
a737b3e2 3038alloc_done:
e498be7d 3039 spin_unlock(&l3->list_lock);
1da177e4
LT
3040
3041 if (unlikely(!ac->avail)) {
3042 int x;
3c517a61 3043 x = cache_grow(cachep, flags | GFP_THISNODE, node, NULL);
e498be7d 3044
a737b3e2 3045 /* cache_grow can reenable interrupts, then ac could change. */
9a2dba4b 3046 ac = cpu_cache_get(cachep);
a737b3e2 3047 if (!x && ac->avail == 0) /* no objects in sight? abort */
1da177e4
LT
3048 return NULL;
3049
a737b3e2 3050 if (!ac->avail) /* objects refilled by interrupt? */
1da177e4
LT
3051 goto retry;
3052 }
3053 ac->touched = 1;
e498be7d 3054 return ac->entry[--ac->avail];
1da177e4
LT
3055}
3056
a737b3e2
AM
3057static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3058 gfp_t flags)
1da177e4
LT
3059{
3060 might_sleep_if(flags & __GFP_WAIT);
3061#if DEBUG
3062 kmem_flagcheck(cachep, flags);
3063#endif
3064}
3065
3066#if DEBUG
a737b3e2
AM
3067static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3068 gfp_t flags, void *objp, void *caller)
1da177e4 3069{
b28a02de 3070 if (!objp)
1da177e4 3071 return objp;
b28a02de 3072 if (cachep->flags & SLAB_POISON) {
1da177e4 3073#ifdef CONFIG_DEBUG_PAGEALLOC
3dafccf2 3074 if ((cachep->buffer_size % PAGE_SIZE) == 0 && OFF_SLAB(cachep))
b28a02de 3075 kernel_map_pages(virt_to_page(objp),
3dafccf2 3076 cachep->buffer_size / PAGE_SIZE, 1);
1da177e4
LT
3077 else
3078 check_poison_obj(cachep, objp);
3079#else
3080 check_poison_obj(cachep, objp);
3081#endif
3082 poison_obj(cachep, objp, POISON_INUSE);
3083 }
3084 if (cachep->flags & SLAB_STORE_USER)
3085 *dbg_userword(cachep, objp) = caller;
3086
3087 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3088 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3089 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3090 slab_error(cachep, "double free, or memory outside"
3091 " object was overwritten");
b28a02de 3092 printk(KERN_ERR
a737b3e2
AM
3093 "%p: redzone 1:0x%lx, redzone 2:0x%lx\n",
3094 objp, *dbg_redzone1(cachep, objp),
3095 *dbg_redzone2(cachep, objp));
1da177e4
LT
3096 }
3097 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3098 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3099 }
871751e2
AV
3100#ifdef CONFIG_DEBUG_SLAB_LEAK
3101 {
3102 struct slab *slabp;
3103 unsigned objnr;
3104
3105 slabp = page_get_slab(virt_to_page(objp));
3106 objnr = (unsigned)(objp - slabp->s_mem) / cachep->buffer_size;
3107 slab_bufctl(slabp)[objnr] = BUFCTL_ACTIVE;
3108 }
3109#endif
3dafccf2 3110 objp += obj_offset(cachep);
1da177e4 3111 if (cachep->ctor && cachep->flags & SLAB_POISON) {
b28a02de 3112 unsigned long ctor_flags = SLAB_CTOR_CONSTRUCTOR;
1da177e4
LT
3113
3114 if (!(flags & __GFP_WAIT))
3115 ctor_flags |= SLAB_CTOR_ATOMIC;
3116
3117 cachep->ctor(objp, cachep, ctor_flags);
b28a02de 3118 }
a44b56d3
KH
3119#if ARCH_SLAB_MINALIGN
3120 if ((u32)objp & (ARCH_SLAB_MINALIGN-1)) {
3121 printk(KERN_ERR "0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3122 objp, ARCH_SLAB_MINALIGN);
3123 }
3124#endif
1da177e4
LT
3125 return objp;
3126}
3127#else
3128#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3129#endif
3130
8a8b6502
AM
3131#ifdef CONFIG_FAILSLAB
3132
3133static struct failslab_attr {
3134
3135 struct fault_attr attr;
3136
3137 u32 ignore_gfp_wait;
3138#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3139 struct dentry *ignore_gfp_wait_file;
3140#endif
3141
3142} failslab = {
3143 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4 3144 .ignore_gfp_wait = 1,
8a8b6502
AM
3145};
3146
3147static int __init setup_failslab(char *str)
3148{
3149 return setup_fault_attr(&failslab.attr, str);
3150}
3151__setup("failslab=", setup_failslab);
3152
3153static int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3154{
3155 if (cachep == &cache_cache)
3156 return 0;
3157 if (flags & __GFP_NOFAIL)
3158 return 0;
3159 if (failslab.ignore_gfp_wait && (flags & __GFP_WAIT))
3160 return 0;
3161
3162 return should_fail(&failslab.attr, obj_size(cachep));
3163}
3164
3165#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3166
3167static int __init failslab_debugfs(void)
3168{
3169 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
3170 struct dentry *dir;
3171 int err;
3172
3173 err = init_fault_attr_dentries(&failslab.attr, "failslab");
3174 if (err)
3175 return err;
3176 dir = failslab.attr.dentries.dir;
3177
3178 failslab.ignore_gfp_wait_file =
3179 debugfs_create_bool("ignore-gfp-wait", mode, dir,
3180 &failslab.ignore_gfp_wait);
3181
3182 if (!failslab.ignore_gfp_wait_file) {
3183 err = -ENOMEM;
3184 debugfs_remove(failslab.ignore_gfp_wait_file);
3185 cleanup_fault_attr_dentries(&failslab.attr);
3186 }
3187
3188 return err;
3189}
3190
3191late_initcall(failslab_debugfs);
3192
3193#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3194
3195#else /* CONFIG_FAILSLAB */
3196
3197static inline int should_failslab(struct kmem_cache *cachep, gfp_t flags)
3198{
3199 return 0;
3200}
3201
3202#endif /* CONFIG_FAILSLAB */
3203
343e0d7a 3204static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3205{
b28a02de 3206 void *objp;
1da177e4
LT
3207 struct array_cache *ac;
3208
5c382300 3209 check_irq_off();
8a8b6502
AM
3210
3211 if (should_failslab(cachep, flags))
3212 return NULL;
3213
9a2dba4b 3214 ac = cpu_cache_get(cachep);
1da177e4
LT
3215 if (likely(ac->avail)) {
3216 STATS_INC_ALLOCHIT(cachep);
3217 ac->touched = 1;
e498be7d 3218 objp = ac->entry[--ac->avail];
1da177e4
LT
3219 } else {
3220 STATS_INC_ALLOCMISS(cachep);
3221 objp = cache_alloc_refill(cachep, flags);
3222 }
5c382300
AK
3223 return objp;
3224}
3225
e498be7d 3226#ifdef CONFIG_NUMA
c61afb18 3227/*
b2455396 3228 * Try allocating on another node if PF_SPREAD_SLAB|PF_MEMPOLICY.
c61afb18
PJ
3229 *
3230 * If we are in_interrupt, then process context, including cpusets and
3231 * mempolicy, may not apply and should not be used for allocation policy.
3232 */
3233static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3234{
3235 int nid_alloc, nid_here;
3236
765c4507 3237 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18
PJ
3238 return NULL;
3239 nid_alloc = nid_here = numa_node_id();
3240 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3241 nid_alloc = cpuset_mem_spread_node();
3242 else if (current->mempolicy)
3243 nid_alloc = slab_node(current->mempolicy);
3244 if (nid_alloc != nid_here)
8b98c169 3245 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3246 return NULL;
3247}
3248
765c4507
CL
3249/*
3250 * Fallback function if there was no memory available and no objects on a
3c517a61
CL
3251 * certain node and fall back is permitted. First we scan all the
3252 * available nodelists for available objects. If that fails then we
3253 * perform an allocation without specifying a node. This allows the page
3254 * allocator to do its reclaim / fallback magic. We then insert the
3255 * slab into the proper nodelist and then allocate from it.
765c4507 3256 */
8c8cc2c1 3257static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3258{
8c8cc2c1
PE
3259 struct zonelist *zonelist;
3260 gfp_t local_flags;
765c4507
CL
3261 struct zone **z;
3262 void *obj = NULL;
3c517a61 3263 int nid;
8c8cc2c1
PE
3264
3265 if (flags & __GFP_THISNODE)
3266 return NULL;
3267
3268 zonelist = &NODE_DATA(slab_node(current->mempolicy))
3269 ->node_zonelists[gfp_zone(flags)];
3270 local_flags = (flags & GFP_LEVEL_MASK);
765c4507 3271
3c517a61
CL
3272retry:
3273 /*
3274 * Look through allowed nodes for objects available
3275 * from existing per node queues.
3276 */
aedb0eb1 3277 for (z = zonelist->zones; *z && !obj; z++) {
3c517a61 3278 nid = zone_to_nid(*z);
aedb0eb1 3279
02a0e53d 3280 if (cpuset_zone_allowed_hardwall(*z, flags) &&
3c517a61
CL
3281 cache->nodelists[nid] &&
3282 cache->nodelists[nid]->free_objects)
3283 obj = ____cache_alloc_node(cache,
3284 flags | GFP_THISNODE, nid);
3285 }
3286
b6a60451 3287 if (!obj && !(flags & __GFP_NO_GROW)) {
3c517a61
CL
3288 /*
3289 * This allocation will be performed within the constraints
3290 * of the current cpuset / memory policy requirements.
3291 * We may trigger various forms of reclaim on the allowed
3292 * set and go into memory reserves if necessary.
3293 */
dd47ea75
CL
3294 if (local_flags & __GFP_WAIT)
3295 local_irq_enable();
3296 kmem_flagcheck(cache, flags);
3c517a61 3297 obj = kmem_getpages(cache, flags, -1);
dd47ea75
CL
3298 if (local_flags & __GFP_WAIT)
3299 local_irq_disable();
3c517a61
CL
3300 if (obj) {
3301 /*
3302 * Insert into the appropriate per node queues
3303 */
3304 nid = page_to_nid(virt_to_page(obj));
3305 if (cache_grow(cache, flags, nid, obj)) {
3306 obj = ____cache_alloc_node(cache,
3307 flags | GFP_THISNODE, nid);
3308 if (!obj)
3309 /*
3310 * Another processor may allocate the
3311 * objects in the slab since we are
3312 * not holding any locks.
3313 */
3314 goto retry;
3315 } else {
b6a60451 3316 /* cache_grow already freed obj */
3c517a61
CL
3317 obj = NULL;
3318 }
3319 }
aedb0eb1 3320 }
765c4507
CL
3321 return obj;
3322}
3323
e498be7d
CL
3324/*
3325 * A interface to enable slab creation on nodeid
1da177e4 3326 */
8b98c169 3327static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3328 int nodeid)
e498be7d
CL
3329{
3330 struct list_head *entry;
b28a02de
PE
3331 struct slab *slabp;
3332 struct kmem_list3 *l3;
3333 void *obj;
b28a02de
PE
3334 int x;
3335
3336 l3 = cachep->nodelists[nodeid];
3337 BUG_ON(!l3);
3338
a737b3e2 3339retry:
ca3b9b91 3340 check_irq_off();
b28a02de
PE
3341 spin_lock(&l3->list_lock);
3342 entry = l3->slabs_partial.next;
3343 if (entry == &l3->slabs_partial) {
3344 l3->free_touched = 1;
3345 entry = l3->slabs_free.next;
3346 if (entry == &l3->slabs_free)
3347 goto must_grow;
3348 }
3349
3350 slabp = list_entry(entry, struct slab, list);
3351 check_spinlock_acquired_node(cachep, nodeid);
3352 check_slabp(cachep, slabp);
3353
3354 STATS_INC_NODEALLOCS(cachep);
3355 STATS_INC_ACTIVE(cachep);
3356 STATS_SET_HIGH(cachep);
3357
3358 BUG_ON(slabp->inuse == cachep->num);
3359
78d382d7 3360 obj = slab_get_obj(cachep, slabp, nodeid);
b28a02de
PE
3361 check_slabp(cachep, slabp);
3362 l3->free_objects--;
3363 /* move slabp to correct slabp list: */
3364 list_del(&slabp->list);
3365
a737b3e2 3366 if (slabp->free == BUFCTL_END)
b28a02de 3367 list_add(&slabp->list, &l3->slabs_full);
a737b3e2 3368 else
b28a02de 3369 list_add(&slabp->list, &l3->slabs_partial);
e498be7d 3370
b28a02de
PE
3371 spin_unlock(&l3->list_lock);
3372 goto done;
e498be7d 3373
a737b3e2 3374must_grow:
b28a02de 3375 spin_unlock(&l3->list_lock);
3c517a61 3376 x = cache_grow(cachep, flags | GFP_THISNODE, nodeid, NULL);
765c4507
CL
3377 if (x)
3378 goto retry;
1da177e4 3379
8c8cc2c1 3380 return fallback_alloc(cachep, flags);
e498be7d 3381
a737b3e2 3382done:
b28a02de 3383 return obj;
e498be7d 3384}
8c8cc2c1
PE
3385
3386/**
3387 * kmem_cache_alloc_node - Allocate an object on the specified node
3388 * @cachep: The cache to allocate from.
3389 * @flags: See kmalloc().
3390 * @nodeid: node number of the target node.
3391 * @caller: return address of caller, used for debug information
3392 *
3393 * Identical to kmem_cache_alloc but it will allocate memory on the given
3394 * node, which can improve the performance for cpu bound structures.
3395 *
3396 * Fallback to other node is possible if __GFP_THISNODE is not set.
3397 */
3398static __always_inline void *
3399__cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3400 void *caller)
3401{
3402 unsigned long save_flags;
3403 void *ptr;
3404
3405 cache_alloc_debugcheck_before(cachep, flags);
3406 local_irq_save(save_flags);
3407
3408 if (unlikely(nodeid == -1))
3409 nodeid = numa_node_id();
3410
3411 if (unlikely(!cachep->nodelists[nodeid])) {
3412 /* Node not bootstrapped yet */
3413 ptr = fallback_alloc(cachep, flags);
3414 goto out;
3415 }
3416
3417 if (nodeid == numa_node_id()) {
3418 /*
3419 * Use the locally cached objects if possible.
3420 * However ____cache_alloc does not allow fallback
3421 * to other nodes. It may fail while we still have
3422 * objects on other nodes available.
3423 */
3424 ptr = ____cache_alloc(cachep, flags);
3425 if (ptr)
3426 goto out;
3427 }
3428 /* ___cache_alloc_node can fall back to other nodes */
3429 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3430 out:
3431 local_irq_restore(save_flags);
3432 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3433
3434 return ptr;
3435}
3436
3437static __always_inline void *
3438__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3439{
3440 void *objp;
3441
3442 if (unlikely(current->flags & (PF_SPREAD_SLAB | PF_MEMPOLICY))) {
3443 objp = alternate_node_alloc(cache, flags);
3444 if (objp)
3445 goto out;
3446 }
3447 objp = ____cache_alloc(cache, flags);
3448
3449 /*
3450 * We may just have run out of memory on the local node.
3451 * ____cache_alloc_node() knows how to locate memory on other nodes
3452 */
3453 if (!objp)
3454 objp = ____cache_alloc_node(cache, flags, numa_node_id());
3455
3456 out:
3457 return objp;
3458}
3459#else
3460
3461static __always_inline void *
3462__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3463{
3464 return ____cache_alloc(cachep, flags);
3465}
3466
3467#endif /* CONFIG_NUMA */
3468
3469static __always_inline void *
3470__cache_alloc(struct kmem_cache *cachep, gfp_t flags, void *caller)
3471{
3472 unsigned long save_flags;
3473 void *objp;
3474
3475 cache_alloc_debugcheck_before(cachep, flags);
3476 local_irq_save(save_flags);
3477 objp = __do_cache_alloc(cachep, flags);
3478 local_irq_restore(save_flags);
3479 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3480 prefetchw(objp);
3481
3482 return objp;
3483}
e498be7d
CL
3484
3485/*
3486 * Caller needs to acquire correct kmem_list's list_lock
3487 */
343e0d7a 3488static void free_block(struct kmem_cache *cachep, void **objpp, int nr_objects,
b28a02de 3489 int node)
1da177e4
LT
3490{
3491 int i;
e498be7d 3492 struct kmem_list3 *l3;
1da177e4
LT
3493
3494 for (i = 0; i < nr_objects; i++) {
3495 void *objp = objpp[i];
3496 struct slab *slabp;
1da177e4 3497
6ed5eb22 3498 slabp = virt_to_slab(objp);
ff69416e 3499 l3 = cachep->nodelists[node];
1da177e4 3500 list_del(&slabp->list);
ff69416e 3501 check_spinlock_acquired_node(cachep, node);
1da177e4 3502 check_slabp(cachep, slabp);
78d382d7 3503 slab_put_obj(cachep, slabp, objp, node);
1da177e4 3504 STATS_DEC_ACTIVE(cachep);
e498be7d 3505 l3->free_objects++;
1da177e4
LT
3506 check_slabp(cachep, slabp);
3507
3508 /* fixup slab chains */
3509 if (slabp->inuse == 0) {
e498be7d
CL
3510 if (l3->free_objects > l3->free_limit) {
3511 l3->free_objects -= cachep->num;
e5ac9c5a
RT
3512 /* No need to drop any previously held
3513 * lock here, even if we have a off-slab slab
3514 * descriptor it is guaranteed to come from
3515 * a different cache, refer to comments before
3516 * alloc_slabmgmt.
3517 */
1da177e4
LT
3518 slab_destroy(cachep, slabp);
3519 } else {
e498be7d 3520 list_add(&slabp->list, &l3->slabs_free);
1da177e4
LT
3521 }
3522 } else {
3523 /* Unconditionally move a slab to the end of the
3524 * partial list on free - maximum time for the
3525 * other objects to be freed, too.
3526 */
e498be7d 3527 list_add_tail(&slabp->list, &l3->slabs_partial);
1da177e4
LT
3528 }
3529 }
3530}
3531
343e0d7a 3532static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3533{
3534 int batchcount;
e498be7d 3535 struct kmem_list3 *l3;
ff69416e 3536 int node = numa_node_id();
1da177e4
LT
3537
3538 batchcount = ac->batchcount;
3539#if DEBUG
3540 BUG_ON(!batchcount || batchcount > ac->avail);
3541#endif
3542 check_irq_off();
ff69416e 3543 l3 = cachep->nodelists[node];
873623df 3544 spin_lock(&l3->list_lock);
e498be7d
CL
3545 if (l3->shared) {
3546 struct array_cache *shared_array = l3->shared;
b28a02de 3547 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3548 if (max) {
3549 if (batchcount > max)
3550 batchcount = max;
e498be7d 3551 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3552 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3553 shared_array->avail += batchcount;
3554 goto free_done;
3555 }
3556 }
3557
ff69416e 3558 free_block(cachep, ac->entry, batchcount, node);
a737b3e2 3559free_done:
1da177e4
LT
3560#if STATS
3561 {
3562 int i = 0;
3563 struct list_head *p;
3564
e498be7d
CL
3565 p = l3->slabs_free.next;
3566 while (p != &(l3->slabs_free)) {
1da177e4
LT
3567 struct slab *slabp;
3568
3569 slabp = list_entry(p, struct slab, list);
3570 BUG_ON(slabp->inuse);
3571
3572 i++;
3573 p = p->next;
3574 }
3575 STATS_SET_FREEABLE(cachep, i);
3576 }
3577#endif
e498be7d 3578 spin_unlock(&l3->list_lock);
1da177e4 3579 ac->avail -= batchcount;
a737b3e2 3580 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3581}
3582
3583/*
a737b3e2
AM
3584 * Release an obj back to its cache. If the obj has a constructed state, it must
3585 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3586 */
873623df 3587static inline void __cache_free(struct kmem_cache *cachep, void *objp)
1da177e4 3588{
9a2dba4b 3589 struct array_cache *ac = cpu_cache_get(cachep);
1da177e4
LT
3590
3591 check_irq_off();
3592 objp = cache_free_debugcheck(cachep, objp, __builtin_return_address(0));
3593
62918a03 3594 if (use_alien_caches && cache_free_alien(cachep, objp))
729bd0b7
PE
3595 return;
3596
1da177e4
LT
3597 if (likely(ac->avail < ac->limit)) {
3598 STATS_INC_FREEHIT(cachep);
e498be7d 3599 ac->entry[ac->avail++] = objp;
1da177e4
LT
3600 return;
3601 } else {
3602 STATS_INC_FREEMISS(cachep);
3603 cache_flusharray(cachep, ac);
e498be7d 3604 ac->entry[ac->avail++] = objp;
1da177e4
LT
3605 }
3606}
3607
3608/**
3609 * kmem_cache_alloc - Allocate an object
3610 * @cachep: The cache to allocate from.
3611 * @flags: See kmalloc().
3612 *
3613 * Allocate an object from this cache. The flags are only relevant
3614 * if the cache has no available objects.
3615 */
343e0d7a 3616void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3617{
7fd6b141 3618 return __cache_alloc(cachep, flags, __builtin_return_address(0));
1da177e4
LT
3619}
3620EXPORT_SYMBOL(kmem_cache_alloc);
3621
a8c0f9a4 3622/**
b8008b2b 3623 * kmem_cache_zalloc - Allocate an object. The memory is set to zero.
a8c0f9a4
PE
3624 * @cache: The cache to allocate from.
3625 * @flags: See kmalloc().
3626 *
3627 * Allocate an object from this cache and set the allocated memory to zero.
3628 * The flags are only relevant if the cache has no available objects.
3629 */
3630void *kmem_cache_zalloc(struct kmem_cache *cache, gfp_t flags)
3631{
3632 void *ret = __cache_alloc(cache, flags, __builtin_return_address(0));
3633 if (ret)
3634 memset(ret, 0, obj_size(cache));
3635 return ret;
3636}
3637EXPORT_SYMBOL(kmem_cache_zalloc);
3638
1da177e4
LT
3639/**
3640 * kmem_ptr_validate - check if an untrusted pointer might
3641 * be a slab entry.
3642 * @cachep: the cache we're checking against
3643 * @ptr: pointer to validate
3644 *
3645 * This verifies that the untrusted pointer looks sane:
3646 * it is _not_ a guarantee that the pointer is actually
3647 * part of the slab cache in question, but it at least
3648 * validates that the pointer can be dereferenced and
3649 * looks half-way sane.
3650 *
3651 * Currently only used for dentry validation.
3652 */
b7f869a2 3653int kmem_ptr_validate(struct kmem_cache *cachep, const void *ptr)
1da177e4 3654{
b28a02de 3655 unsigned long addr = (unsigned long)ptr;
1da177e4 3656 unsigned long min_addr = PAGE_OFFSET;
b28a02de 3657 unsigned long align_mask = BYTES_PER_WORD - 1;
3dafccf2 3658 unsigned long size = cachep->buffer_size;
1da177e4
LT
3659 struct page *page;
3660
3661 if (unlikely(addr < min_addr))
3662 goto out;
3663 if (unlikely(addr > (unsigned long)high_memory - size))
3664 goto out;
3665 if (unlikely(addr & align_mask))
3666 goto out;
3667 if (unlikely(!kern_addr_valid(addr)))
3668 goto out;
3669 if (unlikely(!kern_addr_valid(addr + size - 1)))
3670 goto out;
3671 page = virt_to_page(ptr);
3672 if (unlikely(!PageSlab(page)))
3673 goto out;
065d41cb 3674 if (unlikely(page_get_cache(page) != cachep))
1da177e4
LT
3675 goto out;
3676 return 1;
a737b3e2 3677out:
1da177e4
LT
3678 return 0;
3679}
3680
3681#ifdef CONFIG_NUMA
8b98c169
CH
3682void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3683{
3684 return __cache_alloc_node(cachep, flags, nodeid,
3685 __builtin_return_address(0));
3686}
1da177e4
LT
3687EXPORT_SYMBOL(kmem_cache_alloc_node);
3688
8b98c169
CH
3689static __always_inline void *
3690__do_kmalloc_node(size_t size, gfp_t flags, int node, void *caller)
97e2bde4 3691{
343e0d7a 3692 struct kmem_cache *cachep;
97e2bde4
MS
3693
3694 cachep = kmem_find_general_cachep(size, flags);
3695 if (unlikely(cachep == NULL))
3696 return NULL;
3697 return kmem_cache_alloc_node(cachep, flags, node);
3698}
8b98c169
CH
3699
3700#ifdef CONFIG_DEBUG_SLAB
3701void *__kmalloc_node(size_t size, gfp_t flags, int node)
3702{
3703 return __do_kmalloc_node(size, flags, node,
3704 __builtin_return_address(0));
3705}
dbe5e69d 3706EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3707
3708void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3709 int node, void *caller)
3710{
3711 return __do_kmalloc_node(size, flags, node, caller);
3712}
3713EXPORT_SYMBOL(__kmalloc_node_track_caller);
3714#else
3715void *__kmalloc_node(size_t size, gfp_t flags, int node)
3716{
3717 return __do_kmalloc_node(size, flags, node, NULL);
3718}
3719EXPORT_SYMBOL(__kmalloc_node);
3720#endif /* CONFIG_DEBUG_SLAB */
3721#endif /* CONFIG_NUMA */
1da177e4
LT
3722
3723/**
800590f5 3724 * __do_kmalloc - allocate memory
1da177e4 3725 * @size: how many bytes of memory are required.
800590f5 3726 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3727 * @caller: function caller for debug tracking of the caller
1da177e4 3728 */
7fd6b141
PE
3729static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3730 void *caller)
1da177e4 3731{
343e0d7a 3732 struct kmem_cache *cachep;
1da177e4 3733
97e2bde4
MS
3734 /* If you want to save a few bytes .text space: replace
3735 * __ with kmem_.
3736 * Then kmalloc uses the uninlined functions instead of the inline
3737 * functions.
3738 */
3739 cachep = __find_general_cachep(size, flags);
dbdb9045
AM
3740 if (unlikely(cachep == NULL))
3741 return NULL;
7fd6b141
PE
3742 return __cache_alloc(cachep, flags, caller);
3743}
3744
7fd6b141 3745
1d2c8eea 3746#ifdef CONFIG_DEBUG_SLAB
7fd6b141
PE
3747void *__kmalloc(size_t size, gfp_t flags)
3748{
871751e2 3749 return __do_kmalloc(size, flags, __builtin_return_address(0));
1da177e4
LT
3750}
3751EXPORT_SYMBOL(__kmalloc);
3752
7fd6b141
PE
3753void *__kmalloc_track_caller(size_t size, gfp_t flags, void *caller)
3754{
3755 return __do_kmalloc(size, flags, caller);
3756}
3757EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea
CH
3758
3759#else
3760void *__kmalloc(size_t size, gfp_t flags)
3761{
3762 return __do_kmalloc(size, flags, NULL);
3763}
3764EXPORT_SYMBOL(__kmalloc);
7fd6b141
PE
3765#endif
3766
fd76bab2
PE
3767/**
3768 * krealloc - reallocate memory. The contents will remain unchanged.
3769 *
3770 * @p: object to reallocate memory for.
3771 * @new_size: how many bytes of memory are required.
3772 * @flags: the type of memory to allocate.
3773 *
3774 * The contents of the object pointed to are preserved up to the
3775 * lesser of the new and old sizes. If @p is %NULL, krealloc()
3776 * behaves exactly like kmalloc(). If @size is 0 and @p is not a
3777 * %NULL pointer, the object pointed to is freed.
3778 */
3779void *krealloc(const void *p, size_t new_size, gfp_t flags)
3780{
3781 struct kmem_cache *cache, *new_cache;
3782 void *ret;
3783
3784 if (unlikely(!p))
3785 return kmalloc_track_caller(new_size, flags);
3786
3787 if (unlikely(!new_size)) {
3788 kfree(p);
3789 return NULL;
3790 }
3791
3792 cache = virt_to_cache(p);
3793 new_cache = __find_general_cachep(new_size, flags);
3794
3795 /*
3796 * If new size fits in the current cache, bail out.
3797 */
3798 if (likely(cache == new_cache))
3799 return (void *)p;
3800
3801 /*
3802 * We are on the slow-path here so do not use __cache_alloc
3803 * because it bloats kernel text.
3804 */
3805 ret = kmalloc_track_caller(new_size, flags);
3806 if (ret) {
3807 memcpy(ret, p, min(new_size, ksize(p)));
3808 kfree(p);
3809 }
3810 return ret;
3811}
3812EXPORT_SYMBOL(krealloc);
3813
1da177e4
LT
3814/**
3815 * kmem_cache_free - Deallocate an object
3816 * @cachep: The cache the allocation was from.
3817 * @objp: The previously allocated object.
3818 *
3819 * Free an object which was previously allocated from this
3820 * cache.
3821 */
343e0d7a 3822void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3823{
3824 unsigned long flags;
3825
ddc2e812
PE
3826 BUG_ON(virt_to_cache(objp) != cachep);
3827
1da177e4 3828 local_irq_save(flags);
898552c9 3829 debug_check_no_locks_freed(objp, obj_size(cachep));
873623df 3830 __cache_free(cachep, objp);
1da177e4
LT
3831 local_irq_restore(flags);
3832}
3833EXPORT_SYMBOL(kmem_cache_free);
3834
1da177e4
LT
3835/**
3836 * kfree - free previously allocated memory
3837 * @objp: pointer returned by kmalloc.
3838 *
80e93eff
PE
3839 * If @objp is NULL, no operation is performed.
3840 *
1da177e4
LT
3841 * Don't free memory not originally allocated by kmalloc()
3842 * or you will run into trouble.
3843 */
3844void kfree(const void *objp)
3845{
343e0d7a 3846 struct kmem_cache *c;
1da177e4
LT
3847 unsigned long flags;
3848
3849 if (unlikely(!objp))
3850 return;
3851 local_irq_save(flags);
3852 kfree_debugcheck(objp);
6ed5eb22 3853 c = virt_to_cache(objp);
f9b8404c 3854 debug_check_no_locks_freed(objp, obj_size(c));
873623df 3855 __cache_free(c, (void *)objp);
1da177e4
LT
3856 local_irq_restore(flags);
3857}
3858EXPORT_SYMBOL(kfree);
3859
343e0d7a 3860unsigned int kmem_cache_size(struct kmem_cache *cachep)
1da177e4 3861{
3dafccf2 3862 return obj_size(cachep);
1da177e4
LT
3863}
3864EXPORT_SYMBOL(kmem_cache_size);
3865
343e0d7a 3866const char *kmem_cache_name(struct kmem_cache *cachep)
1944972d
ACM
3867{
3868 return cachep->name;
3869}
3870EXPORT_SYMBOL_GPL(kmem_cache_name);
3871
e498be7d 3872/*
0718dc2a 3873 * This initializes kmem_list3 or resizes varioius caches for all nodes.
e498be7d 3874 */
343e0d7a 3875static int alloc_kmemlist(struct kmem_cache *cachep)
e498be7d
CL
3876{
3877 int node;
3878 struct kmem_list3 *l3;
cafeb02e 3879 struct array_cache *new_shared;
3395ee05 3880 struct array_cache **new_alien = NULL;
e498be7d
CL
3881
3882 for_each_online_node(node) {
cafeb02e 3883
3395ee05
PM
3884 if (use_alien_caches) {
3885 new_alien = alloc_alien_cache(node, cachep->limit);
3886 if (!new_alien)
3887 goto fail;
3888 }
cafeb02e 3889
63109846
ED
3890 new_shared = NULL;
3891 if (cachep->shared) {
3892 new_shared = alloc_arraycache(node,
0718dc2a 3893 cachep->shared*cachep->batchcount,
a737b3e2 3894 0xbaadf00d);
63109846
ED
3895 if (!new_shared) {
3896 free_alien_cache(new_alien);
3897 goto fail;
3898 }
0718dc2a 3899 }
cafeb02e 3900
a737b3e2
AM
3901 l3 = cachep->nodelists[node];
3902 if (l3) {
cafeb02e
CL
3903 struct array_cache *shared = l3->shared;
3904
e498be7d
CL
3905 spin_lock_irq(&l3->list_lock);
3906
cafeb02e 3907 if (shared)
0718dc2a
CL
3908 free_block(cachep, shared->entry,
3909 shared->avail, node);
e498be7d 3910
cafeb02e
CL
3911 l3->shared = new_shared;
3912 if (!l3->alien) {
e498be7d
CL
3913 l3->alien = new_alien;
3914 new_alien = NULL;
3915 }
b28a02de 3916 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3917 cachep->batchcount + cachep->num;
e498be7d 3918 spin_unlock_irq(&l3->list_lock);
cafeb02e 3919 kfree(shared);
e498be7d
CL
3920 free_alien_cache(new_alien);
3921 continue;
3922 }
a737b3e2 3923 l3 = kmalloc_node(sizeof(struct kmem_list3), GFP_KERNEL, node);
0718dc2a
CL
3924 if (!l3) {
3925 free_alien_cache(new_alien);
3926 kfree(new_shared);
e498be7d 3927 goto fail;
0718dc2a 3928 }
e498be7d
CL
3929
3930 kmem_list3_init(l3);
3931 l3->next_reap = jiffies + REAPTIMEOUT_LIST3 +
a737b3e2 3932 ((unsigned long)cachep) % REAPTIMEOUT_LIST3;
cafeb02e 3933 l3->shared = new_shared;
e498be7d 3934 l3->alien = new_alien;
b28a02de 3935 l3->free_limit = (1 + nr_cpus_node(node)) *
a737b3e2 3936 cachep->batchcount + cachep->num;
e498be7d
CL
3937 cachep->nodelists[node] = l3;
3938 }
cafeb02e 3939 return 0;
0718dc2a 3940
a737b3e2 3941fail:
0718dc2a
CL
3942 if (!cachep->next.next) {
3943 /* Cache is not active yet. Roll back what we did */
3944 node--;
3945 while (node >= 0) {
3946 if (cachep->nodelists[node]) {
3947 l3 = cachep->nodelists[node];
3948
3949 kfree(l3->shared);
3950 free_alien_cache(l3->alien);
3951 kfree(l3);
3952 cachep->nodelists[node] = NULL;
3953 }
3954 node--;
3955 }
3956 }
cafeb02e 3957 return -ENOMEM;
e498be7d
CL
3958}
3959
1da177e4 3960struct ccupdate_struct {
343e0d7a 3961 struct kmem_cache *cachep;
1da177e4
LT
3962 struct array_cache *new[NR_CPUS];
3963};
3964
3965static void do_ccupdate_local(void *info)
3966{
a737b3e2 3967 struct ccupdate_struct *new = info;
1da177e4
LT
3968 struct array_cache *old;
3969
3970 check_irq_off();
9a2dba4b 3971 old = cpu_cache_get(new->cachep);
e498be7d 3972
1da177e4
LT
3973 new->cachep->array[smp_processor_id()] = new->new[smp_processor_id()];
3974 new->new[smp_processor_id()] = old;
3975}
3976
b5d8ca7c 3977/* Always called with the cache_chain_mutex held */
a737b3e2
AM
3978static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3979 int batchcount, int shared)
1da177e4 3980{
d2e7b7d0 3981 struct ccupdate_struct *new;
2ed3a4ef 3982 int i;
1da177e4 3983
d2e7b7d0
SS
3984 new = kzalloc(sizeof(*new), GFP_KERNEL);
3985 if (!new)
3986 return -ENOMEM;
3987
e498be7d 3988 for_each_online_cpu(i) {
d2e7b7d0 3989 new->new[i] = alloc_arraycache(cpu_to_node(i), limit,
a737b3e2 3990 batchcount);
d2e7b7d0 3991 if (!new->new[i]) {
b28a02de 3992 for (i--; i >= 0; i--)
d2e7b7d0
SS
3993 kfree(new->new[i]);
3994 kfree(new);
e498be7d 3995 return -ENOMEM;
1da177e4
LT
3996 }
3997 }
d2e7b7d0 3998 new->cachep = cachep;
1da177e4 3999
d2e7b7d0 4000 on_each_cpu(do_ccupdate_local, (void *)new, 1, 1);
e498be7d 4001
1da177e4 4002 check_irq_on();
1da177e4
LT
4003 cachep->batchcount = batchcount;
4004 cachep->limit = limit;
e498be7d 4005 cachep->shared = shared;
1da177e4 4006
e498be7d 4007 for_each_online_cpu(i) {
d2e7b7d0 4008 struct array_cache *ccold = new->new[i];
1da177e4
LT
4009 if (!ccold)
4010 continue;
e498be7d 4011 spin_lock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
ff69416e 4012 free_block(cachep, ccold->entry, ccold->avail, cpu_to_node(i));
e498be7d 4013 spin_unlock_irq(&cachep->nodelists[cpu_to_node(i)]->list_lock);
1da177e4
LT
4014 kfree(ccold);
4015 }
d2e7b7d0 4016 kfree(new);
2ed3a4ef 4017 return alloc_kmemlist(cachep);
1da177e4
LT
4018}
4019
b5d8ca7c 4020/* Called with cache_chain_mutex held always */
2ed3a4ef 4021static int enable_cpucache(struct kmem_cache *cachep)
1da177e4
LT
4022{
4023 int err;
4024 int limit, shared;
4025
a737b3e2
AM
4026 /*
4027 * The head array serves three purposes:
1da177e4
LT
4028 * - create a LIFO ordering, i.e. return objects that are cache-warm
4029 * - reduce the number of spinlock operations.
a737b3e2 4030 * - reduce the number of linked list operations on the slab and
1da177e4
LT
4031 * bufctl chains: array operations are cheaper.
4032 * The numbers are guessed, we should auto-tune as described by
4033 * Bonwick.
4034 */
3dafccf2 4035 if (cachep->buffer_size > 131072)
1da177e4 4036 limit = 1;
3dafccf2 4037 else if (cachep->buffer_size > PAGE_SIZE)
1da177e4 4038 limit = 8;
3dafccf2 4039 else if (cachep->buffer_size > 1024)
1da177e4 4040 limit = 24;
3dafccf2 4041 else if (cachep->buffer_size > 256)
1da177e4
LT
4042 limit = 54;
4043 else
4044 limit = 120;
4045
a737b3e2
AM
4046 /*
4047 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
4048 * allocation behaviour: Most allocs on one cpu, most free operations
4049 * on another cpu. For these cases, an efficient object passing between
4050 * cpus is necessary. This is provided by a shared array. The array
4051 * replaces Bonwick's magazine layer.
4052 * On uniprocessor, it's functionally equivalent (but less efficient)
4053 * to a larger limit. Thus disabled by default.
4054 */
4055 shared = 0;
364fbb29 4056 if (cachep->buffer_size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 4057 shared = 8;
1da177e4
LT
4058
4059#if DEBUG
a737b3e2
AM
4060 /*
4061 * With debugging enabled, large batchcount lead to excessively long
4062 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
4063 */
4064 if (limit > 32)
4065 limit = 32;
4066#endif
b28a02de 4067 err = do_tune_cpucache(cachep, limit, (limit + 1) / 2, shared);
1da177e4
LT
4068 if (err)
4069 printk(KERN_ERR "enable_cpucache failed for %s, error %d.\n",
b28a02de 4070 cachep->name, -err);
2ed3a4ef 4071 return err;
1da177e4
LT
4072}
4073
1b55253a
CL
4074/*
4075 * Drain an array if it contains any elements taking the l3 lock only if
b18e7e65
CL
4076 * necessary. Note that the l3 listlock also protects the array_cache
4077 * if drain_array() is used on the shared array.
1b55253a
CL
4078 */
4079void drain_array(struct kmem_cache *cachep, struct kmem_list3 *l3,
4080 struct array_cache *ac, int force, int node)
1da177e4
LT
4081{
4082 int tofree;
4083
1b55253a
CL
4084 if (!ac || !ac->avail)
4085 return;
1da177e4
LT
4086 if (ac->touched && !force) {
4087 ac->touched = 0;
b18e7e65 4088 } else {
1b55253a 4089 spin_lock_irq(&l3->list_lock);
b18e7e65
CL
4090 if (ac->avail) {
4091 tofree = force ? ac->avail : (ac->limit + 4) / 5;
4092 if (tofree > ac->avail)
4093 tofree = (ac->avail + 1) / 2;
4094 free_block(cachep, ac->entry, tofree, node);
4095 ac->avail -= tofree;
4096 memmove(ac->entry, &(ac->entry[tofree]),
4097 sizeof(void *) * ac->avail);
4098 }
1b55253a 4099 spin_unlock_irq(&l3->list_lock);
1da177e4
LT
4100 }
4101}
4102
4103/**
4104 * cache_reap - Reclaim memory from caches.
05fb6bf0 4105 * @w: work descriptor
1da177e4
LT
4106 *
4107 * Called from workqueue/eventd every few seconds.
4108 * Purpose:
4109 * - clear the per-cpu caches for this CPU.
4110 * - return freeable pages to the main free memory pool.
4111 *
a737b3e2
AM
4112 * If we cannot acquire the cache chain mutex then just give up - we'll try
4113 * again on the next iteration.
1da177e4 4114 */
7c5cae36 4115static void cache_reap(struct work_struct *w)
1da177e4 4116{
7a7c381d 4117 struct kmem_cache *searchp;
e498be7d 4118 struct kmem_list3 *l3;
aab2207c 4119 int node = numa_node_id();
7c5cae36
CL
4120 struct delayed_work *work =
4121 container_of(w, struct delayed_work, work);
1da177e4 4122
7c5cae36 4123 if (!mutex_trylock(&cache_chain_mutex))
1da177e4 4124 /* Give up. Setup the next iteration. */
7c5cae36 4125 goto out;
1da177e4 4126
7a7c381d 4127 list_for_each_entry(searchp, &cache_chain, next) {
1da177e4
LT
4128 check_irq_on();
4129
35386e3b
CL
4130 /*
4131 * We only take the l3 lock if absolutely necessary and we
4132 * have established with reasonable certainty that
4133 * we can do some work if the lock was obtained.
4134 */
aab2207c 4135 l3 = searchp->nodelists[node];
35386e3b 4136
8fce4d8e 4137 reap_alien(searchp, l3);
1da177e4 4138
aab2207c 4139 drain_array(searchp, l3, cpu_cache_get(searchp), 0, node);
1da177e4 4140
35386e3b
CL
4141 /*
4142 * These are racy checks but it does not matter
4143 * if we skip one check or scan twice.
4144 */
e498be7d 4145 if (time_after(l3->next_reap, jiffies))
35386e3b 4146 goto next;
1da177e4 4147
e498be7d 4148 l3->next_reap = jiffies + REAPTIMEOUT_LIST3;
1da177e4 4149
aab2207c 4150 drain_array(searchp, l3, l3->shared, 0, node);
1da177e4 4151
ed11d9eb 4152 if (l3->free_touched)
e498be7d 4153 l3->free_touched = 0;
ed11d9eb
CL
4154 else {
4155 int freed;
1da177e4 4156
ed11d9eb
CL
4157 freed = drain_freelist(searchp, l3, (l3->free_limit +
4158 5 * searchp->num - 1) / (5 * searchp->num));
4159 STATS_ADD_REAPED(searchp, freed);
4160 }
35386e3b 4161next:
1da177e4
LT
4162 cond_resched();
4163 }
4164 check_irq_on();
fc0abb14 4165 mutex_unlock(&cache_chain_mutex);
8fce4d8e 4166 next_reap_node();
2244b95a 4167 refresh_cpu_vm_stats(smp_processor_id());
7c5cae36 4168out:
a737b3e2 4169 /* Set up the next iteration */
7c5cae36 4170 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_CPUC));
1da177e4
LT
4171}
4172
4173#ifdef CONFIG_PROC_FS
4174
85289f98 4175static void print_slabinfo_header(struct seq_file *m)
1da177e4 4176{
85289f98
PE
4177 /*
4178 * Output format version, so at least we can change it
4179 * without _too_ many complaints.
4180 */
1da177e4 4181#if STATS
85289f98 4182 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1da177e4 4183#else
85289f98 4184 seq_puts(m, "slabinfo - version: 2.1\n");
1da177e4 4185#endif
85289f98
PE
4186 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4187 "<objperslab> <pagesperslab>");
4188 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4189 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1da177e4 4190#if STATS
85289f98 4191 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
fb7faf33 4192 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
85289f98 4193 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1da177e4 4194#endif
85289f98
PE
4195 seq_putc(m, '\n');
4196}
4197
4198static void *s_start(struct seq_file *m, loff_t *pos)
4199{
4200 loff_t n = *pos;
4201 struct list_head *p;
4202
fc0abb14 4203 mutex_lock(&cache_chain_mutex);
85289f98
PE
4204 if (!n)
4205 print_slabinfo_header(m);
1da177e4
LT
4206 p = cache_chain.next;
4207 while (n--) {
4208 p = p->next;
4209 if (p == &cache_chain)
4210 return NULL;
4211 }
343e0d7a 4212 return list_entry(p, struct kmem_cache, next);
1da177e4
LT
4213}
4214
4215static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4216{
343e0d7a 4217 struct kmem_cache *cachep = p;
1da177e4 4218 ++*pos;
a737b3e2
AM
4219 return cachep->next.next == &cache_chain ?
4220 NULL : list_entry(cachep->next.next, struct kmem_cache, next);
1da177e4
LT
4221}
4222
4223static void s_stop(struct seq_file *m, void *p)
4224{
fc0abb14 4225 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4226}
4227
4228static int s_show(struct seq_file *m, void *p)
4229{
343e0d7a 4230 struct kmem_cache *cachep = p;
b28a02de
PE
4231 struct slab *slabp;
4232 unsigned long active_objs;
4233 unsigned long num_objs;
4234 unsigned long active_slabs = 0;
4235 unsigned long num_slabs, free_objects = 0, shared_avail = 0;
e498be7d 4236 const char *name;
1da177e4 4237 char *error = NULL;
e498be7d
CL
4238 int node;
4239 struct kmem_list3 *l3;
1da177e4 4240
1da177e4
LT
4241 active_objs = 0;
4242 num_slabs = 0;
e498be7d
CL
4243 for_each_online_node(node) {
4244 l3 = cachep->nodelists[node];
4245 if (!l3)
4246 continue;
4247
ca3b9b91
RT
4248 check_irq_on();
4249 spin_lock_irq(&l3->list_lock);
e498be7d 4250
7a7c381d 4251 list_for_each_entry(slabp, &l3->slabs_full, list) {
e498be7d
CL
4252 if (slabp->inuse != cachep->num && !error)
4253 error = "slabs_full accounting error";
4254 active_objs += cachep->num;
4255 active_slabs++;
4256 }
7a7c381d 4257 list_for_each_entry(slabp, &l3->slabs_partial, list) {
e498be7d
CL
4258 if (slabp->inuse == cachep->num && !error)
4259 error = "slabs_partial inuse accounting error";
4260 if (!slabp->inuse && !error)
4261 error = "slabs_partial/inuse accounting error";
4262 active_objs += slabp->inuse;
4263 active_slabs++;
4264 }
7a7c381d 4265 list_for_each_entry(slabp, &l3->slabs_free, list) {
e498be7d
CL
4266 if (slabp->inuse && !error)
4267 error = "slabs_free/inuse accounting error";
4268 num_slabs++;
4269 }
4270 free_objects += l3->free_objects;
4484ebf1
RT
4271 if (l3->shared)
4272 shared_avail += l3->shared->avail;
e498be7d 4273
ca3b9b91 4274 spin_unlock_irq(&l3->list_lock);
1da177e4 4275 }
b28a02de
PE
4276 num_slabs += active_slabs;
4277 num_objs = num_slabs * cachep->num;
e498be7d 4278 if (num_objs - active_objs != free_objects && !error)
1da177e4
LT
4279 error = "free_objects accounting error";
4280
b28a02de 4281 name = cachep->name;
1da177e4
LT
4282 if (error)
4283 printk(KERN_ERR "slab: cache %s error: %s\n", name, error);
4284
4285 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
3dafccf2 4286 name, active_objs, num_objs, cachep->buffer_size,
b28a02de 4287 cachep->num, (1 << cachep->gfporder));
1da177e4 4288 seq_printf(m, " : tunables %4u %4u %4u",
b28a02de 4289 cachep->limit, cachep->batchcount, cachep->shared);
e498be7d 4290 seq_printf(m, " : slabdata %6lu %6lu %6lu",
b28a02de 4291 active_slabs, num_slabs, shared_avail);
1da177e4 4292#if STATS
b28a02de 4293 { /* list3 stats */
1da177e4
LT
4294 unsigned long high = cachep->high_mark;
4295 unsigned long allocs = cachep->num_allocations;
4296 unsigned long grown = cachep->grown;
4297 unsigned long reaped = cachep->reaped;
4298 unsigned long errors = cachep->errors;
4299 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4300 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4301 unsigned long node_frees = cachep->node_frees;
fb7faf33 4302 unsigned long overflows = cachep->node_overflow;
1da177e4 4303
e498be7d 4304 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu \
fb7faf33 4305 %4lu %4lu %4lu %4lu %4lu", allocs, high, grown,
a737b3e2 4306 reaped, errors, max_freeable, node_allocs,
fb7faf33 4307 node_frees, overflows);
1da177e4
LT
4308 }
4309 /* cpu stats */
4310 {
4311 unsigned long allochit = atomic_read(&cachep->allochit);
4312 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4313 unsigned long freehit = atomic_read(&cachep->freehit);
4314 unsigned long freemiss = atomic_read(&cachep->freemiss);
4315
4316 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4317 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4318 }
4319#endif
4320 seq_putc(m, '\n');
1da177e4
LT
4321 return 0;
4322}
4323
4324/*
4325 * slabinfo_op - iterator that generates /proc/slabinfo
4326 *
4327 * Output layout:
4328 * cache-name
4329 * num-active-objs
4330 * total-objs
4331 * object size
4332 * num-active-slabs
4333 * total-slabs
4334 * num-pages-per-slab
4335 * + further values on SMP and with statistics enabled
4336 */
4337
15ad7cdc 4338const struct seq_operations slabinfo_op = {
b28a02de
PE
4339 .start = s_start,
4340 .next = s_next,
4341 .stop = s_stop,
4342 .show = s_show,
1da177e4
LT
4343};
4344
4345#define MAX_SLABINFO_WRITE 128
4346/**
4347 * slabinfo_write - Tuning for the slab allocator
4348 * @file: unused
4349 * @buffer: user buffer
4350 * @count: data length
4351 * @ppos: unused
4352 */
b28a02de
PE
4353ssize_t slabinfo_write(struct file *file, const char __user * buffer,
4354 size_t count, loff_t *ppos)
1da177e4 4355{
b28a02de 4356 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4357 int limit, batchcount, shared, res;
7a7c381d 4358 struct kmem_cache *cachep;
b28a02de 4359
1da177e4
LT
4360 if (count > MAX_SLABINFO_WRITE)
4361 return -EINVAL;
4362 if (copy_from_user(&kbuf, buffer, count))
4363 return -EFAULT;
b28a02de 4364 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4365
4366 tmp = strchr(kbuf, ' ');
4367 if (!tmp)
4368 return -EINVAL;
4369 *tmp = '\0';
4370 tmp++;
4371 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4372 return -EINVAL;
4373
4374 /* Find the cache in the chain of caches. */
fc0abb14 4375 mutex_lock(&cache_chain_mutex);
1da177e4 4376 res = -EINVAL;
7a7c381d 4377 list_for_each_entry(cachep, &cache_chain, next) {
1da177e4 4378 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4379 if (limit < 1 || batchcount < 1 ||
4380 batchcount > limit || shared < 0) {
e498be7d 4381 res = 0;
1da177e4 4382 } else {
e498be7d 4383 res = do_tune_cpucache(cachep, limit,
b28a02de 4384 batchcount, shared);
1da177e4
LT
4385 }
4386 break;
4387 }
4388 }
fc0abb14 4389 mutex_unlock(&cache_chain_mutex);
1da177e4
LT
4390 if (res >= 0)
4391 res = count;
4392 return res;
4393}
871751e2
AV
4394
4395#ifdef CONFIG_DEBUG_SLAB_LEAK
4396
4397static void *leaks_start(struct seq_file *m, loff_t *pos)
4398{
4399 loff_t n = *pos;
4400 struct list_head *p;
4401
4402 mutex_lock(&cache_chain_mutex);
4403 p = cache_chain.next;
4404 while (n--) {
4405 p = p->next;
4406 if (p == &cache_chain)
4407 return NULL;
4408 }
4409 return list_entry(p, struct kmem_cache, next);
4410}
4411
4412static inline int add_caller(unsigned long *n, unsigned long v)
4413{
4414 unsigned long *p;
4415 int l;
4416 if (!v)
4417 return 1;
4418 l = n[1];
4419 p = n + 2;
4420 while (l) {
4421 int i = l/2;
4422 unsigned long *q = p + 2 * i;
4423 if (*q == v) {
4424 q[1]++;
4425 return 1;
4426 }
4427 if (*q > v) {
4428 l = i;
4429 } else {
4430 p = q + 2;
4431 l -= i + 1;
4432 }
4433 }
4434 if (++n[1] == n[0])
4435 return 0;
4436 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4437 p[0] = v;
4438 p[1] = 1;
4439 return 1;
4440}
4441
4442static void handle_slab(unsigned long *n, struct kmem_cache *c, struct slab *s)
4443{
4444 void *p;
4445 int i;
4446 if (n[0] == n[1])
4447 return;
4448 for (i = 0, p = s->s_mem; i < c->num; i++, p += c->buffer_size) {
4449 if (slab_bufctl(s)[i] != BUFCTL_ACTIVE)
4450 continue;
4451 if (!add_caller(n, (unsigned long)*dbg_userword(c, p)))
4452 return;
4453 }
4454}
4455
4456static void show_symbol(struct seq_file *m, unsigned long address)
4457{
4458#ifdef CONFIG_KALLSYMS
4459 char *modname;
4460 const char *name;
4461 unsigned long offset, size;
4462 char namebuf[KSYM_NAME_LEN+1];
4463
4464 name = kallsyms_lookup(address, &size, &offset, &modname, namebuf);
4465
4466 if (name) {
4467 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4468 if (modname)
4469 seq_printf(m, " [%s]", modname);
4470 return;
4471 }
4472#endif
4473 seq_printf(m, "%p", (void *)address);
4474}
4475
4476static int leaks_show(struct seq_file *m, void *p)
4477{
4478 struct kmem_cache *cachep = p;
871751e2
AV
4479 struct slab *slabp;
4480 struct kmem_list3 *l3;
4481 const char *name;
4482 unsigned long *n = m->private;
4483 int node;
4484 int i;
4485
4486 if (!(cachep->flags & SLAB_STORE_USER))
4487 return 0;
4488 if (!(cachep->flags & SLAB_RED_ZONE))
4489 return 0;
4490
4491 /* OK, we can do it */
4492
4493 n[1] = 0;
4494
4495 for_each_online_node(node) {
4496 l3 = cachep->nodelists[node];
4497 if (!l3)
4498 continue;
4499
4500 check_irq_on();
4501 spin_lock_irq(&l3->list_lock);
4502
7a7c381d 4503 list_for_each_entry(slabp, &l3->slabs_full, list)
871751e2 4504 handle_slab(n, cachep, slabp);
7a7c381d 4505 list_for_each_entry(slabp, &l3->slabs_partial, list)
871751e2 4506 handle_slab(n, cachep, slabp);
871751e2
AV
4507 spin_unlock_irq(&l3->list_lock);
4508 }
4509 name = cachep->name;
4510 if (n[0] == n[1]) {
4511 /* Increase the buffer size */
4512 mutex_unlock(&cache_chain_mutex);
4513 m->private = kzalloc(n[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4514 if (!m->private) {
4515 /* Too bad, we are really out */
4516 m->private = n;
4517 mutex_lock(&cache_chain_mutex);
4518 return -ENOMEM;
4519 }
4520 *(unsigned long *)m->private = n[0] * 2;
4521 kfree(n);
4522 mutex_lock(&cache_chain_mutex);
4523 /* Now make sure this entry will be retried */
4524 m->count = m->size;
4525 return 0;
4526 }
4527 for (i = 0; i < n[1]; i++) {
4528 seq_printf(m, "%s: %lu ", name, n[2*i+3]);
4529 show_symbol(m, n[2*i+2]);
4530 seq_putc(m, '\n');
4531 }
d2e7b7d0 4532
871751e2
AV
4533 return 0;
4534}
4535
15ad7cdc 4536const struct seq_operations slabstats_op = {
871751e2
AV
4537 .start = leaks_start,
4538 .next = s_next,
4539 .stop = s_stop,
4540 .show = leaks_show,
4541};
4542#endif
1da177e4
LT
4543#endif
4544
00e145b6
MS
4545/**
4546 * ksize - get the actual amount of memory allocated for a given object
4547 * @objp: Pointer to the object
4548 *
4549 * kmalloc may internally round up allocations and return more memory
4550 * than requested. ksize() can be used to determine the actual amount of
4551 * memory allocated. The caller may use this additional memory, even though
4552 * a smaller amount of memory was initially specified with the kmalloc call.
4553 * The caller must guarantee that objp points to a valid object previously
4554 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4555 * must not be freed during the duration of the call.
4556 */
fd76bab2 4557size_t ksize(const void *objp)
1da177e4 4558{
00e145b6
MS
4559 if (unlikely(objp == NULL))
4560 return 0;
1da177e4 4561
6ed5eb22 4562 return obj_size(virt_to_cache(objp));
1da177e4 4563}