mm/memory-failure: call shake_page() when error hits thp tail page
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
28#include <linux/res_counter.h>
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
f64c3f54 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634
KS
47#include <linux/eventfd.h>
48#include <linux/sort.h>
66e1707b 49#include <linux/fs.h>
d2ceb9b7 50#include <linux/seq_file.h>
33327948 51#include <linux/vmalloc.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
52d4b9ac 54#include <linux/page_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
08e552c6 57#include "internal.h"
d1a4c0b3 58#include <net/sock.h>
4bd2c1ee 59#include <net/ip.h>
d1a4c0b3 60#include <net/tcp_memcontrol.h>
8cdea7c0 61
8697d331
BS
62#include <asm/uaccess.h>
63
cc8e970c
KM
64#include <trace/events/vmscan.h>
65
a181b0e8 66struct cgroup_subsys mem_cgroup_subsys __read_mostly;
68ae564b
DR
67EXPORT_SYMBOL(mem_cgroup_subsys);
68
a181b0e8 69#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 70static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 71
c255a458 72#ifdef CONFIG_MEMCG_SWAP
338c8431 73/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 74int do_swap_account __read_mostly;
a42c390c
MH
75
76/* for remember boot option*/
c255a458 77#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
78static int really_do_swap_account __initdata = 1;
79#else
80static int really_do_swap_account __initdata = 0;
81#endif
82
c077719b 83#else
a0db00fc 84#define do_swap_account 0
c077719b
KH
85#endif
86
87
d52aa412
KH
88/*
89 * Statistics for memory cgroup.
90 */
91enum mem_cgroup_stat_index {
92 /*
93 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
94 */
b070e65c
DR
95 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
96 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
97 MEM_CGROUP_STAT_RSS_HUGE, /* # of pages charged as anon huge */
98 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
99 MEM_CGROUP_STAT_SWAP, /* # of pages, swapped out */
d52aa412
KH
100 MEM_CGROUP_STAT_NSTATS,
101};
102
af7c4b0e
JW
103static const char * const mem_cgroup_stat_names[] = {
104 "cache",
105 "rss",
b070e65c 106 "rss_huge",
af7c4b0e
JW
107 "mapped_file",
108 "swap",
109};
110
e9f8974f
JW
111enum mem_cgroup_events_index {
112 MEM_CGROUP_EVENTS_PGPGIN, /* # of pages paged in */
113 MEM_CGROUP_EVENTS_PGPGOUT, /* # of pages paged out */
456f998e
YH
114 MEM_CGROUP_EVENTS_PGFAULT, /* # of page-faults */
115 MEM_CGROUP_EVENTS_PGMAJFAULT, /* # of major page-faults */
e9f8974f
JW
116 MEM_CGROUP_EVENTS_NSTATS,
117};
af7c4b0e
JW
118
119static const char * const mem_cgroup_events_names[] = {
120 "pgpgin",
121 "pgpgout",
122 "pgfault",
123 "pgmajfault",
124};
125
58cf188e
SZ
126static const char * const mem_cgroup_lru_names[] = {
127 "inactive_anon",
128 "active_anon",
129 "inactive_file",
130 "active_file",
131 "unevictable",
132};
133
7a159cc9
JW
134/*
135 * Per memcg event counter is incremented at every pagein/pageout. With THP,
136 * it will be incremated by the number of pages. This counter is used for
137 * for trigger some periodic events. This is straightforward and better
138 * than using jiffies etc. to handle periodic memcg event.
139 */
140enum mem_cgroup_events_target {
141 MEM_CGROUP_TARGET_THRESH,
142 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 143 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
144 MEM_CGROUP_NTARGETS,
145};
a0db00fc
KS
146#define THRESHOLDS_EVENTS_TARGET 128
147#define SOFTLIMIT_EVENTS_TARGET 1024
148#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 149
d52aa412 150struct mem_cgroup_stat_cpu {
7a159cc9 151 long count[MEM_CGROUP_STAT_NSTATS];
e9f8974f 152 unsigned long events[MEM_CGROUP_EVENTS_NSTATS];
13114716 153 unsigned long nr_page_events;
7a159cc9 154 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
155};
156
527a5ec9 157struct mem_cgroup_reclaim_iter {
5f578161
MH
158 /*
159 * last scanned hierarchy member. Valid only if last_dead_count
160 * matches memcg->dead_count of the hierarchy root group.
161 */
542f85f9 162 struct mem_cgroup *last_visited;
5f578161
MH
163 unsigned long last_dead_count;
164
527a5ec9
JW
165 /* scan generation, increased every round-trip */
166 unsigned int generation;
167};
168
6d12e2d8
KH
169/*
170 * per-zone information in memory controller.
171 */
6d12e2d8 172struct mem_cgroup_per_zone {
6290df54 173 struct lruvec lruvec;
1eb49272 174 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 175
527a5ec9
JW
176 struct mem_cgroup_reclaim_iter reclaim_iter[DEF_PRIORITY + 1];
177
f64c3f54
BS
178 struct rb_node tree_node; /* RB tree node */
179 unsigned long long usage_in_excess;/* Set to the value by which */
180 /* the soft limit is exceeded*/
181 bool on_tree;
d79154bb 182 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 183 /* use container_of */
6d12e2d8 184};
6d12e2d8
KH
185
186struct mem_cgroup_per_node {
187 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
188};
189
190struct mem_cgroup_lru_info {
45cf7ebd 191 struct mem_cgroup_per_node *nodeinfo[0];
6d12e2d8
KH
192};
193
f64c3f54
BS
194/*
195 * Cgroups above their limits are maintained in a RB-Tree, independent of
196 * their hierarchy representation
197 */
198
199struct mem_cgroup_tree_per_zone {
200 struct rb_root rb_root;
201 spinlock_t lock;
202};
203
204struct mem_cgroup_tree_per_node {
205 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
206};
207
208struct mem_cgroup_tree {
209 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
210};
211
212static struct mem_cgroup_tree soft_limit_tree __read_mostly;
213
2e72b634
KS
214struct mem_cgroup_threshold {
215 struct eventfd_ctx *eventfd;
216 u64 threshold;
217};
218
9490ff27 219/* For threshold */
2e72b634 220struct mem_cgroup_threshold_ary {
748dad36 221 /* An array index points to threshold just below or equal to usage. */
5407a562 222 int current_threshold;
2e72b634
KS
223 /* Size of entries[] */
224 unsigned int size;
225 /* Array of thresholds */
226 struct mem_cgroup_threshold entries[0];
227};
2c488db2
KS
228
229struct mem_cgroup_thresholds {
230 /* Primary thresholds array */
231 struct mem_cgroup_threshold_ary *primary;
232 /*
233 * Spare threshold array.
234 * This is needed to make mem_cgroup_unregister_event() "never fail".
235 * It must be able to store at least primary->size - 1 entries.
236 */
237 struct mem_cgroup_threshold_ary *spare;
238};
239
9490ff27
KH
240/* for OOM */
241struct mem_cgroup_eventfd_list {
242 struct list_head list;
243 struct eventfd_ctx *eventfd;
244};
2e72b634 245
c0ff4b85
R
246static void mem_cgroup_threshold(struct mem_cgroup *memcg);
247static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 248
8cdea7c0
BS
249/*
250 * The memory controller data structure. The memory controller controls both
251 * page cache and RSS per cgroup. We would eventually like to provide
252 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
253 * to help the administrator determine what knobs to tune.
254 *
255 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
256 * we hit the water mark. May be even add a low water mark, such that
257 * no reclaim occurs from a cgroup at it's low water mark, this is
258 * a feature that will be implemented much later in the future.
8cdea7c0
BS
259 */
260struct mem_cgroup {
261 struct cgroup_subsys_state css;
262 /*
263 * the counter to account for memory usage
264 */
265 struct res_counter res;
59927fb9 266
70ddf637
AV
267 /* vmpressure notifications */
268 struct vmpressure vmpressure;
269
59927fb9
HD
270 union {
271 /*
272 * the counter to account for mem+swap usage.
273 */
274 struct res_counter memsw;
275
276 /*
277 * rcu_freeing is used only when freeing struct mem_cgroup,
278 * so put it into a union to avoid wasting more memory.
279 * It must be disjoint from the css field. It could be
280 * in a union with the res field, but res plays a much
281 * larger part in mem_cgroup life than memsw, and might
282 * be of interest, even at time of free, when debugging.
283 * So share rcu_head with the less interesting memsw.
284 */
285 struct rcu_head rcu_freeing;
286 /*
3afe36b1
GC
287 * We also need some space for a worker in deferred freeing.
288 * By the time we call it, rcu_freeing is no longer in use.
59927fb9
HD
289 */
290 struct work_struct work_freeing;
291 };
292
510fc4e1
GC
293 /*
294 * the counter to account for kernel memory usage.
295 */
296 struct res_counter kmem;
18f59ea7
BS
297 /*
298 * Should the accounting and control be hierarchical, per subtree?
299 */
300 bool use_hierarchy;
510fc4e1 301 unsigned long kmem_account_flags; /* See KMEM_ACCOUNTED_*, below */
79dfdacc
MH
302
303 bool oom_lock;
304 atomic_t under_oom;
f79d6a46 305 atomic_t oom_wakeups;
79dfdacc 306
8c7c6e34 307 atomic_t refcnt;
14797e23 308
1f4c025b 309 int swappiness;
3c11ecf4
KH
310 /* OOM-Killer disable */
311 int oom_kill_disable;
a7885eb8 312
22a668d7
KH
313 /* set when res.limit == memsw.limit */
314 bool memsw_is_minimum;
315
2e72b634
KS
316 /* protect arrays of thresholds */
317 struct mutex thresholds_lock;
318
319 /* thresholds for memory usage. RCU-protected */
2c488db2 320 struct mem_cgroup_thresholds thresholds;
907860ed 321
2e72b634 322 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 323 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 324
9490ff27
KH
325 /* For oom notifier event fd */
326 struct list_head oom_notify;
185efc0f 327
7dc74be0
DN
328 /*
329 * Should we move charges of a task when a task is moved into this
330 * mem_cgroup ? And what type of charges should we move ?
331 */
332 unsigned long move_charge_at_immigrate;
619d094b
KH
333 /*
334 * set > 0 if pages under this cgroup are moving to other cgroup.
335 */
336 atomic_t moving_account;
312734c0
KH
337 /* taken only while moving_account > 0 */
338 spinlock_t move_lock;
d52aa412 339 /*
c62b1a3b 340 * percpu counter.
d52aa412 341 */
3a7951b4 342 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
343 /*
344 * used when a cpu is offlined or other synchronizations
345 * See mem_cgroup_read_stat().
346 */
347 struct mem_cgroup_stat_cpu nocpu_base;
348 spinlock_t pcp_counter_lock;
d1a4c0b3 349
5f578161 350 atomic_t dead_count;
4bd2c1ee 351#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
d1a4c0b3
GC
352 struct tcp_memcontrol tcp_mem;
353#endif
2633d7a0
GC
354#if defined(CONFIG_MEMCG_KMEM)
355 /* analogous to slab_common's slab_caches list. per-memcg */
356 struct list_head memcg_slab_caches;
357 /* Not a spinlock, we can take a lot of time walking the list */
358 struct mutex slab_caches_mutex;
359 /* Index in the kmem_cache->memcg_params->memcg_caches array */
360 int kmemcg_id;
361#endif
45cf7ebd
GC
362
363 int last_scanned_node;
364#if MAX_NUMNODES > 1
365 nodemask_t scan_nodes;
366 atomic_t numainfo_events;
367 atomic_t numainfo_updating;
368#endif
70ddf637 369
45cf7ebd
GC
370 /*
371 * Per cgroup active and inactive list, similar to the
372 * per zone LRU lists.
373 *
374 * WARNING: This has to be the last element of the struct. Don't
375 * add new fields after this point.
376 */
377 struct mem_cgroup_lru_info info;
8cdea7c0
BS
378};
379
45cf7ebd
GC
380static size_t memcg_size(void)
381{
382 return sizeof(struct mem_cgroup) +
76fca229 383 nr_node_ids * sizeof(struct mem_cgroup_per_node *);
45cf7ebd
GC
384}
385
510fc4e1
GC
386/* internal only representation about the status of kmem accounting. */
387enum {
388 KMEM_ACCOUNTED_ACTIVE = 0, /* accounted by this cgroup itself */
a8964b9b 389 KMEM_ACCOUNTED_ACTIVATED, /* static key enabled. */
7de37682 390 KMEM_ACCOUNTED_DEAD, /* dead memcg with pending kmem charges */
510fc4e1
GC
391};
392
a8964b9b
GC
393/* We account when limit is on, but only after call sites are patched */
394#define KMEM_ACCOUNTED_MASK \
395 ((1 << KMEM_ACCOUNTED_ACTIVE) | (1 << KMEM_ACCOUNTED_ACTIVATED))
510fc4e1
GC
396
397#ifdef CONFIG_MEMCG_KMEM
398static inline void memcg_kmem_set_active(struct mem_cgroup *memcg)
399{
400 set_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
401}
7de37682
GC
402
403static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
404{
405 return test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags);
406}
407
a8964b9b
GC
408static void memcg_kmem_set_activated(struct mem_cgroup *memcg)
409{
410 set_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
411}
412
55007d84
GC
413static void memcg_kmem_clear_activated(struct mem_cgroup *memcg)
414{
415 clear_bit(KMEM_ACCOUNTED_ACTIVATED, &memcg->kmem_account_flags);
416}
417
7de37682
GC
418static void memcg_kmem_mark_dead(struct mem_cgroup *memcg)
419{
420 if (test_bit(KMEM_ACCOUNTED_ACTIVE, &memcg->kmem_account_flags))
421 set_bit(KMEM_ACCOUNTED_DEAD, &memcg->kmem_account_flags);
422}
423
424static bool memcg_kmem_test_and_clear_dead(struct mem_cgroup *memcg)
425{
426 return test_and_clear_bit(KMEM_ACCOUNTED_DEAD,
427 &memcg->kmem_account_flags);
428}
510fc4e1
GC
429#endif
430
7dc74be0
DN
431/* Stuffs for move charges at task migration. */
432/*
ee5e8472
GC
433 * Types of charges to be moved. "move_charge_at_immitgrate" and
434 * "immigrate_flags" are treated as a left-shifted bitmap of these types.
7dc74be0
DN
435 */
436enum move_type {
4ffef5fe 437 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
87946a72 438 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
7dc74be0
DN
439 NR_MOVE_TYPE,
440};
441
4ffef5fe
DN
442/* "mc" and its members are protected by cgroup_mutex */
443static struct move_charge_struct {
b1dd693e 444 spinlock_t lock; /* for from, to */
4ffef5fe
DN
445 struct mem_cgroup *from;
446 struct mem_cgroup *to;
ee5e8472 447 unsigned long immigrate_flags;
4ffef5fe 448 unsigned long precharge;
854ffa8d 449 unsigned long moved_charge;
483c30b5 450 unsigned long moved_swap;
8033b97c
DN
451 struct task_struct *moving_task; /* a task moving charges */
452 wait_queue_head_t waitq; /* a waitq for other context */
453} mc = {
2bd9bb20 454 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
455 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
456};
4ffef5fe 457
90254a65
DN
458static bool move_anon(void)
459{
ee5e8472 460 return test_bit(MOVE_CHARGE_TYPE_ANON, &mc.immigrate_flags);
90254a65
DN
461}
462
87946a72
DN
463static bool move_file(void)
464{
ee5e8472 465 return test_bit(MOVE_CHARGE_TYPE_FILE, &mc.immigrate_flags);
87946a72
DN
466}
467
4e416953
BS
468/*
469 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
470 * limit reclaim to prevent infinite loops, if they ever occur.
471 */
a0db00fc
KS
472#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
473#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 474
217bc319
KH
475enum charge_type {
476 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 477 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 478 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 479 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
480 NR_CHARGE_TYPE,
481};
482
8c7c6e34 483/* for encoding cft->private value on file */
86ae53e1
GC
484enum res_type {
485 _MEM,
486 _MEMSWAP,
487 _OOM_TYPE,
510fc4e1 488 _KMEM,
86ae53e1
GC
489};
490
a0db00fc
KS
491#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
492#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 493#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
494/* Used for OOM nofiier */
495#define OOM_CONTROL (0)
8c7c6e34 496
75822b44
BS
497/*
498 * Reclaim flags for mem_cgroup_hierarchical_reclaim
499 */
500#define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
501#define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
502#define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
503#define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
504
0999821b
GC
505/*
506 * The memcg_create_mutex will be held whenever a new cgroup is created.
507 * As a consequence, any change that needs to protect against new child cgroups
508 * appearing has to hold it as well.
509 */
510static DEFINE_MUTEX(memcg_create_mutex);
511
c0ff4b85
R
512static void mem_cgroup_get(struct mem_cgroup *memcg);
513static void mem_cgroup_put(struct mem_cgroup *memcg);
e1aab161 514
b2145145
WL
515static inline
516struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
517{
518 return container_of(s, struct mem_cgroup, css);
519}
520
70ddf637
AV
521/* Some nice accessors for the vmpressure. */
522struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
523{
524 if (!memcg)
525 memcg = root_mem_cgroup;
526 return &memcg->vmpressure;
527}
528
529struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
530{
531 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
532}
533
534struct vmpressure *css_to_vmpressure(struct cgroup_subsys_state *css)
535{
536 return &mem_cgroup_from_css(css)->vmpressure;
537}
538
7ffc0edc
MH
539static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
540{
541 return (memcg == root_mem_cgroup);
542}
543
e1aab161 544/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 545#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 546
e1aab161
GC
547void sock_update_memcg(struct sock *sk)
548{
376be5ff 549 if (mem_cgroup_sockets_enabled) {
e1aab161 550 struct mem_cgroup *memcg;
3f134619 551 struct cg_proto *cg_proto;
e1aab161
GC
552
553 BUG_ON(!sk->sk_prot->proto_cgroup);
554
f3f511e1
GC
555 /* Socket cloning can throw us here with sk_cgrp already
556 * filled. It won't however, necessarily happen from
557 * process context. So the test for root memcg given
558 * the current task's memcg won't help us in this case.
559 *
560 * Respecting the original socket's memcg is a better
561 * decision in this case.
562 */
563 if (sk->sk_cgrp) {
564 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
565 mem_cgroup_get(sk->sk_cgrp->memcg);
566 return;
567 }
568
e1aab161
GC
569 rcu_read_lock();
570 memcg = mem_cgroup_from_task(current);
3f134619
GC
571 cg_proto = sk->sk_prot->proto_cgroup(memcg);
572 if (!mem_cgroup_is_root(memcg) && memcg_proto_active(cg_proto)) {
e1aab161 573 mem_cgroup_get(memcg);
3f134619 574 sk->sk_cgrp = cg_proto;
e1aab161
GC
575 }
576 rcu_read_unlock();
577 }
578}
579EXPORT_SYMBOL(sock_update_memcg);
580
581void sock_release_memcg(struct sock *sk)
582{
376be5ff 583 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
584 struct mem_cgroup *memcg;
585 WARN_ON(!sk->sk_cgrp->memcg);
586 memcg = sk->sk_cgrp->memcg;
587 mem_cgroup_put(memcg);
588 }
589}
d1a4c0b3
GC
590
591struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
592{
593 if (!memcg || mem_cgroup_is_root(memcg))
594 return NULL;
595
596 return &memcg->tcp_mem.cg_proto;
597}
598EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 599
3f134619
GC
600static void disarm_sock_keys(struct mem_cgroup *memcg)
601{
602 if (!memcg_proto_activated(&memcg->tcp_mem.cg_proto))
603 return;
604 static_key_slow_dec(&memcg_socket_limit_enabled);
605}
606#else
607static void disarm_sock_keys(struct mem_cgroup *memcg)
608{
609}
610#endif
611
a8964b9b 612#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
613/*
614 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
615 * There are two main reasons for not using the css_id for this:
616 * 1) this works better in sparse environments, where we have a lot of memcgs,
617 * but only a few kmem-limited. Or also, if we have, for instance, 200
618 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
619 * 200 entry array for that.
620 *
621 * 2) In order not to violate the cgroup API, we would like to do all memory
622 * allocation in ->create(). At that point, we haven't yet allocated the
623 * css_id. Having a separate index prevents us from messing with the cgroup
624 * core for this
625 *
626 * The current size of the caches array is stored in
627 * memcg_limited_groups_array_size. It will double each time we have to
628 * increase it.
629 */
630static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
631int memcg_limited_groups_array_size;
632
55007d84
GC
633/*
634 * MIN_SIZE is different than 1, because we would like to avoid going through
635 * the alloc/free process all the time. In a small machine, 4 kmem-limited
636 * cgroups is a reasonable guess. In the future, it could be a parameter or
637 * tunable, but that is strictly not necessary.
638 *
639 * MAX_SIZE should be as large as the number of css_ids. Ideally, we could get
640 * this constant directly from cgroup, but it is understandable that this is
641 * better kept as an internal representation in cgroup.c. In any case, the
642 * css_id space is not getting any smaller, and we don't have to necessarily
643 * increase ours as well if it increases.
644 */
645#define MEMCG_CACHES_MIN_SIZE 4
646#define MEMCG_CACHES_MAX_SIZE 65535
647
d7f25f8a
GC
648/*
649 * A lot of the calls to the cache allocation functions are expected to be
650 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
651 * conditional to this static branch, we'll have to allow modules that does
652 * kmem_cache_alloc and the such to see this symbol as well
653 */
a8964b9b 654struct static_key memcg_kmem_enabled_key;
d7f25f8a 655EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b
GC
656
657static void disarm_kmem_keys(struct mem_cgroup *memcg)
658{
55007d84 659 if (memcg_kmem_is_active(memcg)) {
a8964b9b 660 static_key_slow_dec(&memcg_kmem_enabled_key);
55007d84
GC
661 ida_simple_remove(&kmem_limited_groups, memcg->kmemcg_id);
662 }
bea207c8
GC
663 /*
664 * This check can't live in kmem destruction function,
665 * since the charges will outlive the cgroup
666 */
667 WARN_ON(res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0);
a8964b9b
GC
668}
669#else
670static void disarm_kmem_keys(struct mem_cgroup *memcg)
671{
672}
673#endif /* CONFIG_MEMCG_KMEM */
674
675static void disarm_static_keys(struct mem_cgroup *memcg)
676{
677 disarm_sock_keys(memcg);
678 disarm_kmem_keys(memcg);
679}
680
c0ff4b85 681static void drain_all_stock_async(struct mem_cgroup *memcg);
8c7c6e34 682
f64c3f54 683static struct mem_cgroup_per_zone *
c0ff4b85 684mem_cgroup_zoneinfo(struct mem_cgroup *memcg, int nid, int zid)
f64c3f54 685{
45cf7ebd 686 VM_BUG_ON((unsigned)nid >= nr_node_ids);
c0ff4b85 687 return &memcg->info.nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
688}
689
c0ff4b85 690struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 691{
c0ff4b85 692 return &memcg->css;
d324236b
WF
693}
694
f64c3f54 695static struct mem_cgroup_per_zone *
c0ff4b85 696page_cgroup_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 697{
97a6c37b
JW
698 int nid = page_to_nid(page);
699 int zid = page_zonenum(page);
f64c3f54 700
c0ff4b85 701 return mem_cgroup_zoneinfo(memcg, nid, zid);
f64c3f54
BS
702}
703
704static struct mem_cgroup_tree_per_zone *
705soft_limit_tree_node_zone(int nid, int zid)
706{
707 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
708}
709
710static struct mem_cgroup_tree_per_zone *
711soft_limit_tree_from_page(struct page *page)
712{
713 int nid = page_to_nid(page);
714 int zid = page_zonenum(page);
715
716 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
717}
718
719static void
c0ff4b85 720__mem_cgroup_insert_exceeded(struct mem_cgroup *memcg,
f64c3f54 721 struct mem_cgroup_per_zone *mz,
ef8745c1
KH
722 struct mem_cgroup_tree_per_zone *mctz,
723 unsigned long long new_usage_in_excess)
f64c3f54
BS
724{
725 struct rb_node **p = &mctz->rb_root.rb_node;
726 struct rb_node *parent = NULL;
727 struct mem_cgroup_per_zone *mz_node;
728
729 if (mz->on_tree)
730 return;
731
ef8745c1
KH
732 mz->usage_in_excess = new_usage_in_excess;
733 if (!mz->usage_in_excess)
734 return;
f64c3f54
BS
735 while (*p) {
736 parent = *p;
737 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
738 tree_node);
739 if (mz->usage_in_excess < mz_node->usage_in_excess)
740 p = &(*p)->rb_left;
741 /*
742 * We can't avoid mem cgroups that are over their soft
743 * limit by the same amount
744 */
745 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
746 p = &(*p)->rb_right;
747 }
748 rb_link_node(&mz->tree_node, parent, p);
749 rb_insert_color(&mz->tree_node, &mctz->rb_root);
750 mz->on_tree = true;
4e416953
BS
751}
752
753static void
c0ff4b85 754__mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
4e416953
BS
755 struct mem_cgroup_per_zone *mz,
756 struct mem_cgroup_tree_per_zone *mctz)
757{
758 if (!mz->on_tree)
759 return;
760 rb_erase(&mz->tree_node, &mctz->rb_root);
761 mz->on_tree = false;
762}
763
f64c3f54 764static void
c0ff4b85 765mem_cgroup_remove_exceeded(struct mem_cgroup *memcg,
f64c3f54
BS
766 struct mem_cgroup_per_zone *mz,
767 struct mem_cgroup_tree_per_zone *mctz)
768{
769 spin_lock(&mctz->lock);
c0ff4b85 770 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
771 spin_unlock(&mctz->lock);
772}
773
f64c3f54 774
c0ff4b85 775static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
f64c3f54 776{
ef8745c1 777 unsigned long long excess;
f64c3f54
BS
778 struct mem_cgroup_per_zone *mz;
779 struct mem_cgroup_tree_per_zone *mctz;
4e649152
KH
780 int nid = page_to_nid(page);
781 int zid = page_zonenum(page);
f64c3f54
BS
782 mctz = soft_limit_tree_from_page(page);
783
784 /*
4e649152
KH
785 * Necessary to update all ancestors when hierarchy is used.
786 * because their event counter is not touched.
f64c3f54 787 */
c0ff4b85
R
788 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
789 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
790 excess = res_counter_soft_limit_excess(&memcg->res);
4e649152
KH
791 /*
792 * We have to update the tree if mz is on RB-tree or
793 * mem is over its softlimit.
794 */
ef8745c1 795 if (excess || mz->on_tree) {
4e649152
KH
796 spin_lock(&mctz->lock);
797 /* if on-tree, remove it */
798 if (mz->on_tree)
c0ff4b85 799 __mem_cgroup_remove_exceeded(memcg, mz, mctz);
4e649152 800 /*
ef8745c1
KH
801 * Insert again. mz->usage_in_excess will be updated.
802 * If excess is 0, no tree ops.
4e649152 803 */
c0ff4b85 804 __mem_cgroup_insert_exceeded(memcg, mz, mctz, excess);
4e649152
KH
805 spin_unlock(&mctz->lock);
806 }
f64c3f54
BS
807 }
808}
809
c0ff4b85 810static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
f64c3f54
BS
811{
812 int node, zone;
813 struct mem_cgroup_per_zone *mz;
814 struct mem_cgroup_tree_per_zone *mctz;
815
3ed28fa1 816 for_each_node(node) {
f64c3f54 817 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
c0ff4b85 818 mz = mem_cgroup_zoneinfo(memcg, node, zone);
f64c3f54 819 mctz = soft_limit_tree_node_zone(node, zone);
c0ff4b85 820 mem_cgroup_remove_exceeded(memcg, mz, mctz);
f64c3f54
BS
821 }
822 }
823}
824
4e416953
BS
825static struct mem_cgroup_per_zone *
826__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
827{
828 struct rb_node *rightmost = NULL;
26251eaf 829 struct mem_cgroup_per_zone *mz;
4e416953
BS
830
831retry:
26251eaf 832 mz = NULL;
4e416953
BS
833 rightmost = rb_last(&mctz->rb_root);
834 if (!rightmost)
835 goto done; /* Nothing to reclaim from */
836
837 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
838 /*
839 * Remove the node now but someone else can add it back,
840 * we will to add it back at the end of reclaim to its correct
841 * position in the tree.
842 */
d79154bb
HD
843 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
844 if (!res_counter_soft_limit_excess(&mz->memcg->res) ||
845 !css_tryget(&mz->memcg->css))
4e416953
BS
846 goto retry;
847done:
848 return mz;
849}
850
851static struct mem_cgroup_per_zone *
852mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
853{
854 struct mem_cgroup_per_zone *mz;
855
856 spin_lock(&mctz->lock);
857 mz = __mem_cgroup_largest_soft_limit_node(mctz);
858 spin_unlock(&mctz->lock);
859 return mz;
860}
861
711d3d2c
KH
862/*
863 * Implementation Note: reading percpu statistics for memcg.
864 *
865 * Both of vmstat[] and percpu_counter has threshold and do periodic
866 * synchronization to implement "quick" read. There are trade-off between
867 * reading cost and precision of value. Then, we may have a chance to implement
868 * a periodic synchronizion of counter in memcg's counter.
869 *
870 * But this _read() function is used for user interface now. The user accounts
871 * memory usage by memory cgroup and he _always_ requires exact value because
872 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
873 * have to visit all online cpus and make sum. So, for now, unnecessary
874 * synchronization is not implemented. (just implemented for cpu hotplug)
875 *
876 * If there are kernel internal actions which can make use of some not-exact
877 * value, and reading all cpu value can be performance bottleneck in some
878 * common workload, threashold and synchonization as vmstat[] should be
879 * implemented.
880 */
c0ff4b85 881static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 882 enum mem_cgroup_stat_index idx)
c62b1a3b 883{
7a159cc9 884 long val = 0;
c62b1a3b 885 int cpu;
c62b1a3b 886
711d3d2c
KH
887 get_online_cpus();
888 for_each_online_cpu(cpu)
c0ff4b85 889 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 890#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
891 spin_lock(&memcg->pcp_counter_lock);
892 val += memcg->nocpu_base.count[idx];
893 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
894#endif
895 put_online_cpus();
c62b1a3b
KH
896 return val;
897}
898
c0ff4b85 899static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
0c3e73e8
BS
900 bool charge)
901{
902 int val = (charge) ? 1 : -1;
bff6bb83 903 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
0c3e73e8
BS
904}
905
c0ff4b85 906static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
907 enum mem_cgroup_events_index idx)
908{
909 unsigned long val = 0;
910 int cpu;
911
912 for_each_online_cpu(cpu)
c0ff4b85 913 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 914#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
915 spin_lock(&memcg->pcp_counter_lock);
916 val += memcg->nocpu_base.events[idx];
917 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f
JW
918#endif
919 return val;
920}
921
c0ff4b85 922static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 923 struct page *page,
b2402857 924 bool anon, int nr_pages)
d52aa412 925{
c62b1a3b
KH
926 preempt_disable();
927
b2402857
KH
928 /*
929 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
930 * counted as CACHE even if it's on ANON LRU.
931 */
932 if (anon)
933 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 934 nr_pages);
d52aa412 935 else
b2402857 936 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 937 nr_pages);
55e462b0 938
b070e65c
DR
939 if (PageTransHuge(page))
940 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
941 nr_pages);
942
e401f176
KH
943 /* pagein of a big page is an event. So, ignore page size */
944 if (nr_pages > 0)
c0ff4b85 945 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 946 else {
c0ff4b85 947 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
948 nr_pages = -nr_pages; /* for event */
949 }
e401f176 950
13114716 951 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
2e72b634 952
c62b1a3b 953 preempt_enable();
6d12e2d8
KH
954}
955
bb2a0de9 956unsigned long
4d7dcca2 957mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
958{
959 struct mem_cgroup_per_zone *mz;
960
961 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
962 return mz->lru_size[lru];
963}
964
965static unsigned long
c0ff4b85 966mem_cgroup_zone_nr_lru_pages(struct mem_cgroup *memcg, int nid, int zid,
bb2a0de9 967 unsigned int lru_mask)
889976db
YH
968{
969 struct mem_cgroup_per_zone *mz;
f156ab93 970 enum lru_list lru;
bb2a0de9
KH
971 unsigned long ret = 0;
972
c0ff4b85 973 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
bb2a0de9 974
f156ab93
HD
975 for_each_lru(lru) {
976 if (BIT(lru) & lru_mask)
977 ret += mz->lru_size[lru];
bb2a0de9
KH
978 }
979 return ret;
980}
981
982static unsigned long
c0ff4b85 983mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9
KH
984 int nid, unsigned int lru_mask)
985{
889976db
YH
986 u64 total = 0;
987 int zid;
988
bb2a0de9 989 for (zid = 0; zid < MAX_NR_ZONES; zid++)
c0ff4b85
R
990 total += mem_cgroup_zone_nr_lru_pages(memcg,
991 nid, zid, lru_mask);
bb2a0de9 992
889976db
YH
993 return total;
994}
bb2a0de9 995
c0ff4b85 996static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 997 unsigned int lru_mask)
6d12e2d8 998{
889976db 999 int nid;
6d12e2d8
KH
1000 u64 total = 0;
1001
31aaea4a 1002 for_each_node_state(nid, N_MEMORY)
c0ff4b85 1003 total += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
6d12e2d8 1004 return total;
d52aa412
KH
1005}
1006
f53d7ce3
JW
1007static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
1008 enum mem_cgroup_events_target target)
7a159cc9
JW
1009{
1010 unsigned long val, next;
1011
13114716 1012 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 1013 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 1014 /* from time_after() in jiffies.h */
f53d7ce3
JW
1015 if ((long)next - (long)val < 0) {
1016 switch (target) {
1017 case MEM_CGROUP_TARGET_THRESH:
1018 next = val + THRESHOLDS_EVENTS_TARGET;
1019 break;
1020 case MEM_CGROUP_TARGET_SOFTLIMIT:
1021 next = val + SOFTLIMIT_EVENTS_TARGET;
1022 break;
1023 case MEM_CGROUP_TARGET_NUMAINFO:
1024 next = val + NUMAINFO_EVENTS_TARGET;
1025 break;
1026 default:
1027 break;
1028 }
1029 __this_cpu_write(memcg->stat->targets[target], next);
1030 return true;
7a159cc9 1031 }
f53d7ce3 1032 return false;
d2265e6f
KH
1033}
1034
1035/*
1036 * Check events in order.
1037 *
1038 */
c0ff4b85 1039static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f 1040{
4799401f 1041 preempt_disable();
d2265e6f 1042 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
1043 if (unlikely(mem_cgroup_event_ratelimit(memcg,
1044 MEM_CGROUP_TARGET_THRESH))) {
82b3f2a7
AM
1045 bool do_softlimit;
1046 bool do_numainfo __maybe_unused;
f53d7ce3
JW
1047
1048 do_softlimit = mem_cgroup_event_ratelimit(memcg,
1049 MEM_CGROUP_TARGET_SOFTLIMIT);
1050#if MAX_NUMNODES > 1
1051 do_numainfo = mem_cgroup_event_ratelimit(memcg,
1052 MEM_CGROUP_TARGET_NUMAINFO);
1053#endif
1054 preempt_enable();
1055
c0ff4b85 1056 mem_cgroup_threshold(memcg);
f53d7ce3 1057 if (unlikely(do_softlimit))
c0ff4b85 1058 mem_cgroup_update_tree(memcg, page);
453a9bf3 1059#if MAX_NUMNODES > 1
f53d7ce3 1060 if (unlikely(do_numainfo))
c0ff4b85 1061 atomic_inc(&memcg->numainfo_events);
453a9bf3 1062#endif
f53d7ce3
JW
1063 } else
1064 preempt_enable();
d2265e6f
KH
1065}
1066
d1a4c0b3 1067struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0 1068{
b2145145
WL
1069 return mem_cgroup_from_css(
1070 cgroup_subsys_state(cont, mem_cgroup_subsys_id));
8cdea7c0
BS
1071}
1072
cf475ad2 1073struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 1074{
31a78f23
BS
1075 /*
1076 * mm_update_next_owner() may clear mm->owner to NULL
1077 * if it races with swapoff, page migration, etc.
1078 * So this can be called with p == NULL.
1079 */
1080 if (unlikely(!p))
1081 return NULL;
1082
b2145145 1083 return mem_cgroup_from_css(task_subsys_state(p, mem_cgroup_subsys_id));
78fb7466
PE
1084}
1085
a433658c 1086struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 1087{
c0ff4b85 1088 struct mem_cgroup *memcg = NULL;
0b7f569e
KH
1089
1090 if (!mm)
1091 return NULL;
54595fe2
KH
1092 /*
1093 * Because we have no locks, mm->owner's may be being moved to other
1094 * cgroup. We use css_tryget() here even if this looks
1095 * pessimistic (rather than adding locks here).
1096 */
1097 rcu_read_lock();
1098 do {
c0ff4b85
R
1099 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1100 if (unlikely(!memcg))
54595fe2 1101 break;
c0ff4b85 1102 } while (!css_tryget(&memcg->css));
54595fe2 1103 rcu_read_unlock();
c0ff4b85 1104 return memcg;
54595fe2
KH
1105}
1106
16248d8f
MH
1107/*
1108 * Returns a next (in a pre-order walk) alive memcg (with elevated css
1109 * ref. count) or NULL if the whole root's subtree has been visited.
1110 *
1111 * helper function to be used by mem_cgroup_iter
1112 */
1113static struct mem_cgroup *__mem_cgroup_iter_next(struct mem_cgroup *root,
1114 struct mem_cgroup *last_visited)
1115{
1116 struct cgroup *prev_cgroup, *next_cgroup;
1117
1118 /*
1119 * Root is not visited by cgroup iterators so it needs an
1120 * explicit visit.
1121 */
1122 if (!last_visited)
1123 return root;
1124
1125 prev_cgroup = (last_visited == root) ? NULL
1126 : last_visited->css.cgroup;
1127skip_node:
1128 next_cgroup = cgroup_next_descendant_pre(
1129 prev_cgroup, root->css.cgroup);
1130
1131 /*
1132 * Even if we found a group we have to make sure it is
1133 * alive. css && !memcg means that the groups should be
1134 * skipped and we should continue the tree walk.
1135 * last_visited css is safe to use because it is
1136 * protected by css_get and the tree walk is rcu safe.
1137 */
1138 if (next_cgroup) {
1139 struct mem_cgroup *mem = mem_cgroup_from_cont(
1140 next_cgroup);
1141 if (css_tryget(&mem->css))
1142 return mem;
1143 else {
1144 prev_cgroup = next_cgroup;
1145 goto skip_node;
1146 }
1147 }
1148
1149 return NULL;
1150}
1151
5660048c
JW
1152/**
1153 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1154 * @root: hierarchy root
1155 * @prev: previously returned memcg, NULL on first invocation
1156 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1157 *
1158 * Returns references to children of the hierarchy below @root, or
1159 * @root itself, or %NULL after a full round-trip.
1160 *
1161 * Caller must pass the return value in @prev on subsequent
1162 * invocations for reference counting, or use mem_cgroup_iter_break()
1163 * to cancel a hierarchy walk before the round-trip is complete.
1164 *
1165 * Reclaimers can specify a zone and a priority level in @reclaim to
1166 * divide up the memcgs in the hierarchy among all concurrent
1167 * reclaimers operating on the same zone and priority.
1168 */
1169struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
1170 struct mem_cgroup *prev,
1171 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1172{
9f3a0d09 1173 struct mem_cgroup *memcg = NULL;
542f85f9 1174 struct mem_cgroup *last_visited = NULL;
5f578161 1175 unsigned long uninitialized_var(dead_count);
711d3d2c 1176
5660048c
JW
1177 if (mem_cgroup_disabled())
1178 return NULL;
1179
9f3a0d09
JW
1180 if (!root)
1181 root = root_mem_cgroup;
7d74b06f 1182
9f3a0d09 1183 if (prev && !reclaim)
542f85f9 1184 last_visited = prev;
14067bb3 1185
9f3a0d09
JW
1186 if (!root->use_hierarchy && root != root_mem_cgroup) {
1187 if (prev)
c40046f3 1188 goto out_css_put;
9f3a0d09
JW
1189 return root;
1190 }
14067bb3 1191
542f85f9 1192 rcu_read_lock();
9f3a0d09 1193 while (!memcg) {
527a5ec9 1194 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
711d3d2c 1195
527a5ec9
JW
1196 if (reclaim) {
1197 int nid = zone_to_nid(reclaim->zone);
1198 int zid = zone_idx(reclaim->zone);
1199 struct mem_cgroup_per_zone *mz;
1200
1201 mz = mem_cgroup_zoneinfo(root, nid, zid);
1202 iter = &mz->reclaim_iter[reclaim->priority];
542f85f9 1203 if (prev && reclaim->generation != iter->generation) {
5f578161 1204 iter->last_visited = NULL;
542f85f9
MH
1205 goto out_unlock;
1206 }
5f578161
MH
1207
1208 /*
1209 * If the dead_count mismatches, a destruction
1210 * has happened or is happening concurrently.
1211 * If the dead_count matches, a destruction
1212 * might still happen concurrently, but since
1213 * we checked under RCU, that destruction
1214 * won't free the object until we release the
1215 * RCU reader lock. Thus, the dead_count
1216 * check verifies the pointer is still valid,
1217 * css_tryget() verifies the cgroup pointed to
1218 * is alive.
1219 */
1220 dead_count = atomic_read(&root->dead_count);
89dc991f
JW
1221 if (dead_count == iter->last_dead_count) {
1222 smp_rmb();
1223 last_visited = iter->last_visited;
5fb67b91 1224 if (last_visited && last_visited != root &&
89dc991f 1225 !css_tryget(&last_visited->css))
5f578161 1226 last_visited = NULL;
5f578161 1227 }
527a5ec9 1228 }
7d74b06f 1229
16248d8f 1230 memcg = __mem_cgroup_iter_next(root, last_visited);
14067bb3 1231
527a5ec9 1232 if (reclaim) {
5fb67b91 1233 if (last_visited && last_visited != root)
542f85f9
MH
1234 css_put(&last_visited->css);
1235
19f39402 1236 iter->last_visited = memcg;
5f578161
MH
1237 smp_wmb();
1238 iter->last_dead_count = dead_count;
542f85f9 1239
19f39402 1240 if (!memcg)
527a5ec9
JW
1241 iter->generation++;
1242 else if (!prev && memcg)
1243 reclaim->generation = iter->generation;
1244 }
9f3a0d09 1245
19f39402 1246 if (prev && !memcg)
542f85f9 1247 goto out_unlock;
9f3a0d09 1248 }
542f85f9
MH
1249out_unlock:
1250 rcu_read_unlock();
c40046f3
MH
1251out_css_put:
1252 if (prev && prev != root)
1253 css_put(&prev->css);
1254
9f3a0d09 1255 return memcg;
14067bb3 1256}
7d74b06f 1257
5660048c
JW
1258/**
1259 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1260 * @root: hierarchy root
1261 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1262 */
1263void mem_cgroup_iter_break(struct mem_cgroup *root,
1264 struct mem_cgroup *prev)
9f3a0d09
JW
1265{
1266 if (!root)
1267 root = root_mem_cgroup;
1268 if (prev && prev != root)
1269 css_put(&prev->css);
1270}
7d74b06f 1271
9f3a0d09
JW
1272/*
1273 * Iteration constructs for visiting all cgroups (under a tree). If
1274 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1275 * be used for reference counting.
1276 */
1277#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1278 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1279 iter != NULL; \
527a5ec9 1280 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1281
9f3a0d09 1282#define for_each_mem_cgroup(iter) \
527a5ec9 1283 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1284 iter != NULL; \
527a5ec9 1285 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1286
68ae564b 1287void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1288{
c0ff4b85 1289 struct mem_cgroup *memcg;
456f998e 1290
456f998e 1291 rcu_read_lock();
c0ff4b85
R
1292 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1293 if (unlikely(!memcg))
456f998e
YH
1294 goto out;
1295
1296 switch (idx) {
456f998e 1297 case PGFAULT:
0e574a93
JW
1298 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1299 break;
1300 case PGMAJFAULT:
1301 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1302 break;
1303 default:
1304 BUG();
1305 }
1306out:
1307 rcu_read_unlock();
1308}
68ae564b 1309EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1310
925b7673
JW
1311/**
1312 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1313 * @zone: zone of the wanted lruvec
fa9add64 1314 * @memcg: memcg of the wanted lruvec
925b7673
JW
1315 *
1316 * Returns the lru list vector holding pages for the given @zone and
1317 * @mem. This can be the global zone lruvec, if the memory controller
1318 * is disabled.
1319 */
1320struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1321 struct mem_cgroup *memcg)
1322{
1323 struct mem_cgroup_per_zone *mz;
bea8c150 1324 struct lruvec *lruvec;
925b7673 1325
bea8c150
HD
1326 if (mem_cgroup_disabled()) {
1327 lruvec = &zone->lruvec;
1328 goto out;
1329 }
925b7673
JW
1330
1331 mz = mem_cgroup_zoneinfo(memcg, zone_to_nid(zone), zone_idx(zone));
bea8c150
HD
1332 lruvec = &mz->lruvec;
1333out:
1334 /*
1335 * Since a node can be onlined after the mem_cgroup was created,
1336 * we have to be prepared to initialize lruvec->zone here;
1337 * and if offlined then reonlined, we need to reinitialize it.
1338 */
1339 if (unlikely(lruvec->zone != zone))
1340 lruvec->zone = zone;
1341 return lruvec;
925b7673
JW
1342}
1343
08e552c6
KH
1344/*
1345 * Following LRU functions are allowed to be used without PCG_LOCK.
1346 * Operations are called by routine of global LRU independently from memcg.
1347 * What we have to take care of here is validness of pc->mem_cgroup.
1348 *
1349 * Changes to pc->mem_cgroup happens when
1350 * 1. charge
1351 * 2. moving account
1352 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
1353 * It is added to LRU before charge.
1354 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
1355 * When moving account, the page is not on LRU. It's isolated.
1356 */
4f98a2fe 1357
925b7673 1358/**
fa9add64 1359 * mem_cgroup_page_lruvec - return lruvec for adding an lru page
925b7673 1360 * @page: the page
fa9add64 1361 * @zone: zone of the page
925b7673 1362 */
fa9add64 1363struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1364{
08e552c6 1365 struct mem_cgroup_per_zone *mz;
925b7673
JW
1366 struct mem_cgroup *memcg;
1367 struct page_cgroup *pc;
bea8c150 1368 struct lruvec *lruvec;
6d12e2d8 1369
bea8c150
HD
1370 if (mem_cgroup_disabled()) {
1371 lruvec = &zone->lruvec;
1372 goto out;
1373 }
925b7673 1374
08e552c6 1375 pc = lookup_page_cgroup(page);
38c5d72f 1376 memcg = pc->mem_cgroup;
7512102c
HD
1377
1378 /*
fa9add64 1379 * Surreptitiously switch any uncharged offlist page to root:
7512102c
HD
1380 * an uncharged page off lru does nothing to secure
1381 * its former mem_cgroup from sudden removal.
1382 *
1383 * Our caller holds lru_lock, and PageCgroupUsed is updated
1384 * under page_cgroup lock: between them, they make all uses
1385 * of pc->mem_cgroup safe.
1386 */
fa9add64 1387 if (!PageLRU(page) && !PageCgroupUsed(pc) && memcg != root_mem_cgroup)
7512102c
HD
1388 pc->mem_cgroup = memcg = root_mem_cgroup;
1389
925b7673 1390 mz = page_cgroup_zoneinfo(memcg, page);
bea8c150
HD
1391 lruvec = &mz->lruvec;
1392out:
1393 /*
1394 * Since a node can be onlined after the mem_cgroup was created,
1395 * we have to be prepared to initialize lruvec->zone here;
1396 * and if offlined then reonlined, we need to reinitialize it.
1397 */
1398 if (unlikely(lruvec->zone != zone))
1399 lruvec->zone = zone;
1400 return lruvec;
08e552c6 1401}
b69408e8 1402
925b7673 1403/**
fa9add64
HD
1404 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1405 * @lruvec: mem_cgroup per zone lru vector
1406 * @lru: index of lru list the page is sitting on
1407 * @nr_pages: positive when adding or negative when removing
925b7673 1408 *
fa9add64
HD
1409 * This function must be called when a page is added to or removed from an
1410 * lru list.
3f58a829 1411 */
fa9add64
HD
1412void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1413 int nr_pages)
3f58a829
MK
1414{
1415 struct mem_cgroup_per_zone *mz;
fa9add64 1416 unsigned long *lru_size;
3f58a829
MK
1417
1418 if (mem_cgroup_disabled())
1419 return;
1420
fa9add64
HD
1421 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1422 lru_size = mz->lru_size + lru;
1423 *lru_size += nr_pages;
1424 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1425}
544122e5 1426
3e92041d 1427/*
c0ff4b85 1428 * Checks whether given mem is same or in the root_mem_cgroup's
3e92041d
MH
1429 * hierarchy subtree
1430 */
c3ac9a8a
JW
1431bool __mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1432 struct mem_cgroup *memcg)
3e92041d 1433{
91c63734
JW
1434 if (root_memcg == memcg)
1435 return true;
3a981f48 1436 if (!root_memcg->use_hierarchy || !memcg)
91c63734 1437 return false;
c3ac9a8a
JW
1438 return css_is_ancestor(&memcg->css, &root_memcg->css);
1439}
1440
1441static bool mem_cgroup_same_or_subtree(const struct mem_cgroup *root_memcg,
1442 struct mem_cgroup *memcg)
1443{
1444 bool ret;
1445
91c63734 1446 rcu_read_lock();
c3ac9a8a 1447 ret = __mem_cgroup_same_or_subtree(root_memcg, memcg);
91c63734
JW
1448 rcu_read_unlock();
1449 return ret;
3e92041d
MH
1450}
1451
c0ff4b85 1452int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *memcg)
4c4a2214
DR
1453{
1454 int ret;
0b7f569e 1455 struct mem_cgroup *curr = NULL;
158e0a2d 1456 struct task_struct *p;
4c4a2214 1457
158e0a2d 1458 p = find_lock_task_mm(task);
de077d22
DR
1459 if (p) {
1460 curr = try_get_mem_cgroup_from_mm(p->mm);
1461 task_unlock(p);
1462 } else {
1463 /*
1464 * All threads may have already detached their mm's, but the oom
1465 * killer still needs to detect if they have already been oom
1466 * killed to prevent needlessly killing additional tasks.
1467 */
1468 task_lock(task);
1469 curr = mem_cgroup_from_task(task);
1470 if (curr)
1471 css_get(&curr->css);
1472 task_unlock(task);
1473 }
0b7f569e
KH
1474 if (!curr)
1475 return 0;
d31f56db 1476 /*
c0ff4b85 1477 * We should check use_hierarchy of "memcg" not "curr". Because checking
d31f56db 1478 * use_hierarchy of "curr" here make this function true if hierarchy is
c0ff4b85
R
1479 * enabled in "curr" and "curr" is a child of "memcg" in *cgroup*
1480 * hierarchy(even if use_hierarchy is disabled in "memcg").
d31f56db 1481 */
c0ff4b85 1482 ret = mem_cgroup_same_or_subtree(memcg, curr);
0b7f569e 1483 css_put(&curr->css);
4c4a2214
DR
1484 return ret;
1485}
1486
c56d5c7d 1487int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1488{
9b272977 1489 unsigned long inactive_ratio;
14797e23 1490 unsigned long inactive;
9b272977 1491 unsigned long active;
c772be93 1492 unsigned long gb;
14797e23 1493
4d7dcca2
HD
1494 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1495 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1496
c772be93
KM
1497 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1498 if (gb)
1499 inactive_ratio = int_sqrt(10 * gb);
1500 else
1501 inactive_ratio = 1;
1502
9b272977 1503 return inactive * inactive_ratio < active;
14797e23
KM
1504}
1505
6d61ef40
BS
1506#define mem_cgroup_from_res_counter(counter, member) \
1507 container_of(counter, struct mem_cgroup, member)
1508
19942822 1509/**
9d11ea9f 1510 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1511 * @memcg: the memory cgroup
19942822 1512 *
9d11ea9f 1513 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1514 * pages.
19942822 1515 */
c0ff4b85 1516static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1517{
9d11ea9f
JW
1518 unsigned long long margin;
1519
c0ff4b85 1520 margin = res_counter_margin(&memcg->res);
9d11ea9f 1521 if (do_swap_account)
c0ff4b85 1522 margin = min(margin, res_counter_margin(&memcg->memsw));
7ec99d62 1523 return margin >> PAGE_SHIFT;
19942822
JW
1524}
1525
1f4c025b 1526int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8
KM
1527{
1528 struct cgroup *cgrp = memcg->css.cgroup;
a7885eb8
KM
1529
1530 /* root ? */
1531 if (cgrp->parent == NULL)
1532 return vm_swappiness;
1533
bf1ff263 1534 return memcg->swappiness;
a7885eb8
KM
1535}
1536
619d094b
KH
1537/*
1538 * memcg->moving_account is used for checking possibility that some thread is
1539 * calling move_account(). When a thread on CPU-A starts moving pages under
1540 * a memcg, other threads should check memcg->moving_account under
1541 * rcu_read_lock(), like this:
1542 *
1543 * CPU-A CPU-B
1544 * rcu_read_lock()
1545 * memcg->moving_account+1 if (memcg->mocing_account)
1546 * take heavy locks.
1547 * synchronize_rcu() update something.
1548 * rcu_read_unlock()
1549 * start move here.
1550 */
4331f7d3
KH
1551
1552/* for quick checking without looking up memcg */
1553atomic_t memcg_moving __read_mostly;
1554
c0ff4b85 1555static void mem_cgroup_start_move(struct mem_cgroup *memcg)
32047e2a 1556{
4331f7d3 1557 atomic_inc(&memcg_moving);
619d094b 1558 atomic_inc(&memcg->moving_account);
32047e2a
KH
1559 synchronize_rcu();
1560}
1561
c0ff4b85 1562static void mem_cgroup_end_move(struct mem_cgroup *memcg)
32047e2a 1563{
619d094b
KH
1564 /*
1565 * Now, mem_cgroup_clear_mc() may call this function with NULL.
1566 * We check NULL in callee rather than caller.
1567 */
4331f7d3
KH
1568 if (memcg) {
1569 atomic_dec(&memcg_moving);
619d094b 1570 atomic_dec(&memcg->moving_account);
4331f7d3 1571 }
32047e2a 1572}
619d094b 1573
32047e2a
KH
1574/*
1575 * 2 routines for checking "mem" is under move_account() or not.
1576 *
13fd1dd9
AM
1577 * mem_cgroup_stolen() - checking whether a cgroup is mc.from or not. This
1578 * is used for avoiding races in accounting. If true,
32047e2a
KH
1579 * pc->mem_cgroup may be overwritten.
1580 *
1581 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1582 * under hierarchy of moving cgroups. This is for
1583 * waiting at hith-memory prressure caused by "move".
1584 */
1585
13fd1dd9 1586static bool mem_cgroup_stolen(struct mem_cgroup *memcg)
32047e2a
KH
1587{
1588 VM_BUG_ON(!rcu_read_lock_held());
619d094b 1589 return atomic_read(&memcg->moving_account) > 0;
32047e2a 1590}
4b534334 1591
c0ff4b85 1592static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1593{
2bd9bb20
KH
1594 struct mem_cgroup *from;
1595 struct mem_cgroup *to;
4b534334 1596 bool ret = false;
2bd9bb20
KH
1597 /*
1598 * Unlike task_move routines, we access mc.to, mc.from not under
1599 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1600 */
1601 spin_lock(&mc.lock);
1602 from = mc.from;
1603 to = mc.to;
1604 if (!from)
1605 goto unlock;
3e92041d 1606
c0ff4b85
R
1607 ret = mem_cgroup_same_or_subtree(memcg, from)
1608 || mem_cgroup_same_or_subtree(memcg, to);
2bd9bb20
KH
1609unlock:
1610 spin_unlock(&mc.lock);
4b534334
KH
1611 return ret;
1612}
1613
c0ff4b85 1614static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1615{
1616 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1617 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1618 DEFINE_WAIT(wait);
1619 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1620 /* moving charge context might have finished. */
1621 if (mc.moving_task)
1622 schedule();
1623 finish_wait(&mc.waitq, &wait);
1624 return true;
1625 }
1626 }
1627 return false;
1628}
1629
312734c0
KH
1630/*
1631 * Take this lock when
1632 * - a code tries to modify page's memcg while it's USED.
1633 * - a code tries to modify page state accounting in a memcg.
13fd1dd9 1634 * see mem_cgroup_stolen(), too.
312734c0
KH
1635 */
1636static void move_lock_mem_cgroup(struct mem_cgroup *memcg,
1637 unsigned long *flags)
1638{
1639 spin_lock_irqsave(&memcg->move_lock, *flags);
1640}
1641
1642static void move_unlock_mem_cgroup(struct mem_cgroup *memcg,
1643 unsigned long *flags)
1644{
1645 spin_unlock_irqrestore(&memcg->move_lock, *flags);
1646}
1647
58cf188e 1648#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1649/**
58cf188e 1650 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1651 * @memcg: The memory cgroup that went over limit
1652 * @p: Task that is going to be killed
1653 *
1654 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1655 * enabled
1656 */
1657void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1658{
1659 struct cgroup *task_cgrp;
1660 struct cgroup *mem_cgrp;
1661 /*
1662 * Need a buffer in BSS, can't rely on allocations. The code relies
1663 * on the assumption that OOM is serialized for memory controller.
1664 * If this assumption is broken, revisit this code.
1665 */
1666 static char memcg_name[PATH_MAX];
1667 int ret;
58cf188e
SZ
1668 struct mem_cgroup *iter;
1669 unsigned int i;
e222432b 1670
58cf188e 1671 if (!p)
e222432b
BS
1672 return;
1673
e222432b
BS
1674 rcu_read_lock();
1675
1676 mem_cgrp = memcg->css.cgroup;
1677 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1678
1679 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1680 if (ret < 0) {
1681 /*
1682 * Unfortunately, we are unable to convert to a useful name
1683 * But we'll still print out the usage information
1684 */
1685 rcu_read_unlock();
1686 goto done;
1687 }
1688 rcu_read_unlock();
1689
d045197f 1690 pr_info("Task in %s killed", memcg_name);
e222432b
BS
1691
1692 rcu_read_lock();
1693 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1694 if (ret < 0) {
1695 rcu_read_unlock();
1696 goto done;
1697 }
1698 rcu_read_unlock();
1699
1700 /*
1701 * Continues from above, so we don't need an KERN_ level
1702 */
d045197f 1703 pr_cont(" as a result of limit of %s\n", memcg_name);
e222432b
BS
1704done:
1705
d045197f 1706 pr_info("memory: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1707 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1708 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1709 res_counter_read_u64(&memcg->res, RES_FAILCNT));
d045197f 1710 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %llu\n",
e222432b
BS
1711 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1712 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1713 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
d045197f 1714 pr_info("kmem: usage %llukB, limit %llukB, failcnt %llu\n",
510fc4e1
GC
1715 res_counter_read_u64(&memcg->kmem, RES_USAGE) >> 10,
1716 res_counter_read_u64(&memcg->kmem, RES_LIMIT) >> 10,
1717 res_counter_read_u64(&memcg->kmem, RES_FAILCNT));
58cf188e
SZ
1718
1719 for_each_mem_cgroup_tree(iter, memcg) {
1720 pr_info("Memory cgroup stats");
1721
1722 rcu_read_lock();
1723 ret = cgroup_path(iter->css.cgroup, memcg_name, PATH_MAX);
1724 if (!ret)
1725 pr_cont(" for %s", memcg_name);
1726 rcu_read_unlock();
1727 pr_cont(":");
1728
1729 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1730 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1731 continue;
1732 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1733 K(mem_cgroup_read_stat(iter, i)));
1734 }
1735
1736 for (i = 0; i < NR_LRU_LISTS; i++)
1737 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1738 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1739
1740 pr_cont("\n");
1741 }
e222432b
BS
1742}
1743
81d39c20
KH
1744/*
1745 * This function returns the number of memcg under hierarchy tree. Returns
1746 * 1(self count) if no children.
1747 */
c0ff4b85 1748static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1749{
1750 int num = 0;
7d74b06f
KH
1751 struct mem_cgroup *iter;
1752
c0ff4b85 1753 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1754 num++;
81d39c20
KH
1755 return num;
1756}
1757
a63d83f4
DR
1758/*
1759 * Return the memory (and swap, if configured) limit for a memcg.
1760 */
9cbb78bb 1761static u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4
DR
1762{
1763 u64 limit;
a63d83f4 1764
f3e8eb70 1765 limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
f3e8eb70 1766
a63d83f4 1767 /*
9a5a8f19 1768 * Do not consider swap space if we cannot swap due to swappiness
a63d83f4 1769 */
9a5a8f19
MH
1770 if (mem_cgroup_swappiness(memcg)) {
1771 u64 memsw;
1772
1773 limit += total_swap_pages << PAGE_SHIFT;
1774 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1775
1776 /*
1777 * If memsw is finite and limits the amount of swap space
1778 * available to this memcg, return that limit.
1779 */
1780 limit = min(limit, memsw);
1781 }
1782
1783 return limit;
a63d83f4
DR
1784}
1785
19965460
DR
1786static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1787 int order)
9cbb78bb
DR
1788{
1789 struct mem_cgroup *iter;
1790 unsigned long chosen_points = 0;
1791 unsigned long totalpages;
1792 unsigned int points = 0;
1793 struct task_struct *chosen = NULL;
1794
876aafbf 1795 /*
465adcf1
DR
1796 * If current has a pending SIGKILL or is exiting, then automatically
1797 * select it. The goal is to allow it to allocate so that it may
1798 * quickly exit and free its memory.
876aafbf 1799 */
465adcf1 1800 if (fatal_signal_pending(current) || current->flags & PF_EXITING) {
876aafbf
DR
1801 set_thread_flag(TIF_MEMDIE);
1802 return;
1803 }
1804
1805 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
9cbb78bb
DR
1806 totalpages = mem_cgroup_get_limit(memcg) >> PAGE_SHIFT ? : 1;
1807 for_each_mem_cgroup_tree(iter, memcg) {
1808 struct cgroup *cgroup = iter->css.cgroup;
1809 struct cgroup_iter it;
1810 struct task_struct *task;
1811
1812 cgroup_iter_start(cgroup, &it);
1813 while ((task = cgroup_iter_next(cgroup, &it))) {
1814 switch (oom_scan_process_thread(task, totalpages, NULL,
1815 false)) {
1816 case OOM_SCAN_SELECT:
1817 if (chosen)
1818 put_task_struct(chosen);
1819 chosen = task;
1820 chosen_points = ULONG_MAX;
1821 get_task_struct(chosen);
1822 /* fall through */
1823 case OOM_SCAN_CONTINUE:
1824 continue;
1825 case OOM_SCAN_ABORT:
1826 cgroup_iter_end(cgroup, &it);
1827 mem_cgroup_iter_break(memcg, iter);
1828 if (chosen)
1829 put_task_struct(chosen);
1830 return;
1831 case OOM_SCAN_OK:
1832 break;
1833 };
1834 points = oom_badness(task, memcg, NULL, totalpages);
1835 if (points > chosen_points) {
1836 if (chosen)
1837 put_task_struct(chosen);
1838 chosen = task;
1839 chosen_points = points;
1840 get_task_struct(chosen);
1841 }
1842 }
1843 cgroup_iter_end(cgroup, &it);
1844 }
1845
1846 if (!chosen)
1847 return;
1848 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1849 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1850 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1851}
1852
5660048c
JW
1853static unsigned long mem_cgroup_reclaim(struct mem_cgroup *memcg,
1854 gfp_t gfp_mask,
1855 unsigned long flags)
1856{
1857 unsigned long total = 0;
1858 bool noswap = false;
1859 int loop;
1860
1861 if (flags & MEM_CGROUP_RECLAIM_NOSWAP)
1862 noswap = true;
1863 if (!(flags & MEM_CGROUP_RECLAIM_SHRINK) && memcg->memsw_is_minimum)
1864 noswap = true;
1865
1866 for (loop = 0; loop < MEM_CGROUP_MAX_RECLAIM_LOOPS; loop++) {
1867 if (loop)
1868 drain_all_stock_async(memcg);
1869 total += try_to_free_mem_cgroup_pages(memcg, gfp_mask, noswap);
1870 /*
1871 * Allow limit shrinkers, which are triggered directly
1872 * by userspace, to catch signals and stop reclaim
1873 * after minimal progress, regardless of the margin.
1874 */
1875 if (total && (flags & MEM_CGROUP_RECLAIM_SHRINK))
1876 break;
1877 if (mem_cgroup_margin(memcg))
1878 break;
1879 /*
1880 * If nothing was reclaimed after two attempts, there
1881 * may be no reclaimable pages in this hierarchy.
1882 */
1883 if (loop && !total)
1884 break;
1885 }
1886 return total;
1887}
1888
4d0c066d
KH
1889/**
1890 * test_mem_cgroup_node_reclaimable
dad7557e 1891 * @memcg: the target memcg
4d0c066d
KH
1892 * @nid: the node ID to be checked.
1893 * @noswap : specify true here if the user wants flle only information.
1894 *
1895 * This function returns whether the specified memcg contains any
1896 * reclaimable pages on a node. Returns true if there are any reclaimable
1897 * pages in the node.
1898 */
c0ff4b85 1899static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1900 int nid, bool noswap)
1901{
c0ff4b85 1902 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1903 return true;
1904 if (noswap || !total_swap_pages)
1905 return false;
c0ff4b85 1906 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1907 return true;
1908 return false;
1909
1910}
889976db
YH
1911#if MAX_NUMNODES > 1
1912
1913/*
1914 * Always updating the nodemask is not very good - even if we have an empty
1915 * list or the wrong list here, we can start from some node and traverse all
1916 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1917 *
1918 */
c0ff4b85 1919static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1920{
1921 int nid;
453a9bf3
KH
1922 /*
1923 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1924 * pagein/pageout changes since the last update.
1925 */
c0ff4b85 1926 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1927 return;
c0ff4b85 1928 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1929 return;
1930
889976db 1931 /* make a nodemask where this memcg uses memory from */
31aaea4a 1932 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1933
31aaea4a 1934 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1935
c0ff4b85
R
1936 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1937 node_clear(nid, memcg->scan_nodes);
889976db 1938 }
453a9bf3 1939
c0ff4b85
R
1940 atomic_set(&memcg->numainfo_events, 0);
1941 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1942}
1943
1944/*
1945 * Selecting a node where we start reclaim from. Because what we need is just
1946 * reducing usage counter, start from anywhere is O,K. Considering
1947 * memory reclaim from current node, there are pros. and cons.
1948 *
1949 * Freeing memory from current node means freeing memory from a node which
1950 * we'll use or we've used. So, it may make LRU bad. And if several threads
1951 * hit limits, it will see a contention on a node. But freeing from remote
1952 * node means more costs for memory reclaim because of memory latency.
1953 *
1954 * Now, we use round-robin. Better algorithm is welcomed.
1955 */
c0ff4b85 1956int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1957{
1958 int node;
1959
c0ff4b85
R
1960 mem_cgroup_may_update_nodemask(memcg);
1961 node = memcg->last_scanned_node;
889976db 1962
c0ff4b85 1963 node = next_node(node, memcg->scan_nodes);
889976db 1964 if (node == MAX_NUMNODES)
c0ff4b85 1965 node = first_node(memcg->scan_nodes);
889976db
YH
1966 /*
1967 * We call this when we hit limit, not when pages are added to LRU.
1968 * No LRU may hold pages because all pages are UNEVICTABLE or
1969 * memcg is too small and all pages are not on LRU. In that case,
1970 * we use curret node.
1971 */
1972 if (unlikely(node == MAX_NUMNODES))
1973 node = numa_node_id();
1974
c0ff4b85 1975 memcg->last_scanned_node = node;
889976db
YH
1976 return node;
1977}
1978
4d0c066d
KH
1979/*
1980 * Check all nodes whether it contains reclaimable pages or not.
1981 * For quick scan, we make use of scan_nodes. This will allow us to skip
1982 * unused nodes. But scan_nodes is lazily updated and may not cotain
1983 * enough new information. We need to do double check.
1984 */
6bbda35c 1985static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d
KH
1986{
1987 int nid;
1988
1989 /*
1990 * quick check...making use of scan_node.
1991 * We can skip unused nodes.
1992 */
c0ff4b85
R
1993 if (!nodes_empty(memcg->scan_nodes)) {
1994 for (nid = first_node(memcg->scan_nodes);
4d0c066d 1995 nid < MAX_NUMNODES;
c0ff4b85 1996 nid = next_node(nid, memcg->scan_nodes)) {
4d0c066d 1997
c0ff4b85 1998 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
1999 return true;
2000 }
2001 }
2002 /*
2003 * Check rest of nodes.
2004 */
31aaea4a 2005 for_each_node_state(nid, N_MEMORY) {
c0ff4b85 2006 if (node_isset(nid, memcg->scan_nodes))
4d0c066d 2007 continue;
c0ff4b85 2008 if (test_mem_cgroup_node_reclaimable(memcg, nid, noswap))
4d0c066d
KH
2009 return true;
2010 }
2011 return false;
2012}
2013
889976db 2014#else
c0ff4b85 2015int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
2016{
2017 return 0;
2018}
4d0c066d 2019
6bbda35c 2020static bool mem_cgroup_reclaimable(struct mem_cgroup *memcg, bool noswap)
4d0c066d 2021{
c0ff4b85 2022 return test_mem_cgroup_node_reclaimable(memcg, 0, noswap);
4d0c066d 2023}
889976db
YH
2024#endif
2025
5660048c
JW
2026static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
2027 struct zone *zone,
2028 gfp_t gfp_mask,
2029 unsigned long *total_scanned)
6d61ef40 2030{
9f3a0d09 2031 struct mem_cgroup *victim = NULL;
5660048c 2032 int total = 0;
04046e1a 2033 int loop = 0;
9d11ea9f 2034 unsigned long excess;
185efc0f 2035 unsigned long nr_scanned;
527a5ec9
JW
2036 struct mem_cgroup_reclaim_cookie reclaim = {
2037 .zone = zone,
2038 .priority = 0,
2039 };
9d11ea9f 2040
c0ff4b85 2041 excess = res_counter_soft_limit_excess(&root_memcg->res) >> PAGE_SHIFT;
04046e1a 2042
4e416953 2043 while (1) {
527a5ec9 2044 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
9f3a0d09 2045 if (!victim) {
04046e1a 2046 loop++;
4e416953
BS
2047 if (loop >= 2) {
2048 /*
2049 * If we have not been able to reclaim
2050 * anything, it might because there are
2051 * no reclaimable pages under this hierarchy
2052 */
5660048c 2053 if (!total)
4e416953 2054 break;
4e416953 2055 /*
25985edc 2056 * We want to do more targeted reclaim.
4e416953
BS
2057 * excess >> 2 is not to excessive so as to
2058 * reclaim too much, nor too less that we keep
2059 * coming back to reclaim from this cgroup
2060 */
2061 if (total >= (excess >> 2) ||
9f3a0d09 2062 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
4e416953 2063 break;
4e416953 2064 }
9f3a0d09 2065 continue;
4e416953 2066 }
5660048c 2067 if (!mem_cgroup_reclaimable(victim, false))
6d61ef40 2068 continue;
5660048c
JW
2069 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
2070 zone, &nr_scanned);
2071 *total_scanned += nr_scanned;
2072 if (!res_counter_soft_limit_excess(&root_memcg->res))
9f3a0d09 2073 break;
6d61ef40 2074 }
9f3a0d09 2075 mem_cgroup_iter_break(root_memcg, victim);
04046e1a 2076 return total;
6d61ef40
BS
2077}
2078
7a147e0c
JW
2079static DEFINE_SPINLOCK(memcg_oom_lock);
2080
867578cb
KH
2081/*
2082 * Check OOM-Killer is already running under our hierarchy.
2083 * If someone is running, return false.
2084 */
7a147e0c 2085static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 2086{
79dfdacc 2087 struct mem_cgroup *iter, *failed = NULL;
a636b327 2088
7a147e0c
JW
2089 spin_lock(&memcg_oom_lock);
2090
9f3a0d09 2091 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 2092 if (iter->oom_lock) {
79dfdacc
MH
2093 /*
2094 * this subtree of our hierarchy is already locked
2095 * so we cannot give a lock.
2096 */
79dfdacc 2097 failed = iter;
9f3a0d09
JW
2098 mem_cgroup_iter_break(memcg, iter);
2099 break;
23751be0
JW
2100 } else
2101 iter->oom_lock = true;
7d74b06f 2102 }
867578cb 2103
7a147e0c
JW
2104 if (failed) {
2105 /*
2106 * OK, we failed to lock the whole subtree so we have
2107 * to clean up what we set up to the failing subtree
2108 */
2109 for_each_mem_cgroup_tree(iter, memcg) {
2110 if (iter == failed) {
2111 mem_cgroup_iter_break(memcg, iter);
2112 break;
2113 }
2114 iter->oom_lock = false;
79dfdacc 2115 }
79dfdacc 2116 }
7a147e0c
JW
2117
2118 spin_unlock(&memcg_oom_lock);
2119
2120 return !failed;
a636b327 2121}
0b7f569e 2122
7a147e0c 2123static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 2124{
7d74b06f
KH
2125 struct mem_cgroup *iter;
2126
7a147e0c 2127 spin_lock(&memcg_oom_lock);
c0ff4b85 2128 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2129 iter->oom_lock = false;
7a147e0c 2130 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
2131}
2132
c0ff4b85 2133static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2134{
2135 struct mem_cgroup *iter;
2136
c0ff4b85 2137 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
2138 atomic_inc(&iter->under_oom);
2139}
2140
c0ff4b85 2141static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
2142{
2143 struct mem_cgroup *iter;
2144
867578cb
KH
2145 /*
2146 * When a new child is created while the hierarchy is under oom,
2147 * mem_cgroup_oom_lock() may not be called. We have to use
2148 * atomic_add_unless() here.
2149 */
c0ff4b85 2150 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 2151 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
2152}
2153
867578cb
KH
2154static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
2155
dc98df5a 2156struct oom_wait_info {
d79154bb 2157 struct mem_cgroup *memcg;
dc98df5a
KH
2158 wait_queue_t wait;
2159};
2160
2161static int memcg_oom_wake_function(wait_queue_t *wait,
2162 unsigned mode, int sync, void *arg)
2163{
d79154bb
HD
2164 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
2165 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
2166 struct oom_wait_info *oom_wait_info;
2167
2168 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 2169 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 2170
dc98df5a 2171 /*
d79154bb 2172 * Both of oom_wait_info->memcg and wake_memcg are stable under us.
dc98df5a
KH
2173 * Then we can use css_is_ancestor without taking care of RCU.
2174 */
c0ff4b85
R
2175 if (!mem_cgroup_same_or_subtree(oom_wait_memcg, wake_memcg)
2176 && !mem_cgroup_same_or_subtree(wake_memcg, oom_wait_memcg))
dc98df5a 2177 return 0;
dc98df5a
KH
2178 return autoremove_wake_function(wait, mode, sync, arg);
2179}
2180
c0ff4b85 2181static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 2182{
f79d6a46 2183 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
2184 /* for filtering, pass "memcg" as argument. */
2185 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
2186}
2187
c0ff4b85 2188static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 2189{
c0ff4b85
R
2190 if (memcg && atomic_read(&memcg->under_oom))
2191 memcg_wakeup_oom(memcg);
3c11ecf4
KH
2192}
2193
f79d6a46 2194static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 2195{
f79d6a46
JW
2196 if (!current->memcg_oom.may_oom)
2197 return;
867578cb 2198 /*
f8a51179
JW
2199 * We are in the middle of the charge context here, so we
2200 * don't want to block when potentially sitting on a callstack
2201 * that holds all kinds of filesystem and mm locks.
2202 *
2203 * Also, the caller may handle a failed allocation gracefully
2204 * (like optional page cache readahead) and so an OOM killer
2205 * invocation might not even be necessary.
2206 *
2207 * That's why we don't do anything here except remember the
2208 * OOM context and then deal with it at the end of the page
2209 * fault when the stack is unwound, the locks are released,
2210 * and when we know whether the fault was overall successful.
867578cb 2211 */
f8a51179
JW
2212 css_get(&memcg->css);
2213 current->memcg_oom.memcg = memcg;
2214 current->memcg_oom.gfp_mask = mask;
2215 current->memcg_oom.order = order;
f79d6a46
JW
2216}
2217
2218/**
2219 * mem_cgroup_oom_synchronize - complete memcg OOM handling
f8a51179 2220 * @handle: actually kill/wait or just clean up the OOM state
f79d6a46 2221 *
f8a51179
JW
2222 * This has to be called at the end of a page fault if the memcg OOM
2223 * handler was enabled.
f79d6a46 2224 *
f8a51179 2225 * Memcg supports userspace OOM handling where failed allocations must
f79d6a46
JW
2226 * sleep on a waitqueue until the userspace task resolves the
2227 * situation. Sleeping directly in the charge context with all kinds
2228 * of locks held is not a good idea, instead we remember an OOM state
2229 * in the task and mem_cgroup_oom_synchronize() has to be called at
f8a51179 2230 * the end of the page fault to complete the OOM handling.
f79d6a46
JW
2231 *
2232 * Returns %true if an ongoing memcg OOM situation was detected and
f8a51179 2233 * completed, %false otherwise.
f79d6a46 2234 */
f8a51179 2235bool mem_cgroup_oom_synchronize(bool handle)
f79d6a46 2236{
f8a51179 2237 struct mem_cgroup *memcg = current->memcg_oom.memcg;
f79d6a46 2238 struct oom_wait_info owait;
f8a51179 2239 bool locked;
f79d6a46
JW
2240
2241 /* OOM is global, do not handle */
f79d6a46 2242 if (!memcg)
f8a51179 2243 return false;
f79d6a46 2244
f8a51179
JW
2245 if (!handle)
2246 goto cleanup;
f79d6a46
JW
2247
2248 owait.memcg = memcg;
2249 owait.wait.flags = 0;
2250 owait.wait.func = memcg_oom_wake_function;
2251 owait.wait.private = current;
2252 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 2253
f79d6a46 2254 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
f8a51179
JW
2255 mem_cgroup_mark_under_oom(memcg);
2256
2257 locked = mem_cgroup_oom_trylock(memcg);
2258
2259 if (locked)
2260 mem_cgroup_oom_notify(memcg);
2261
2262 if (locked && !memcg->oom_kill_disable) {
2263 mem_cgroup_unmark_under_oom(memcg);
2264 finish_wait(&memcg_oom_waitq, &owait.wait);
2265 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
2266 current->memcg_oom.order);
2267 } else {
f79d6a46 2268 schedule();
f8a51179
JW
2269 mem_cgroup_unmark_under_oom(memcg);
2270 finish_wait(&memcg_oom_waitq, &owait.wait);
2271 }
2272
2273 if (locked) {
7a147e0c
JW
2274 mem_cgroup_oom_unlock(memcg);
2275 /*
2276 * There is no guarantee that an OOM-lock contender
2277 * sees the wakeups triggered by the OOM kill
2278 * uncharges. Wake any sleepers explicitely.
2279 */
2280 memcg_oom_recover(memcg);
2281 }
f8a51179
JW
2282cleanup:
2283 current->memcg_oom.memcg = NULL;
f79d6a46 2284 css_put(&memcg->css);
867578cb 2285 return true;
0b7f569e
KH
2286}
2287
d69b042f
BS
2288/*
2289 * Currently used to update mapped file statistics, but the routine can be
2290 * generalized to update other statistics as well.
32047e2a
KH
2291 *
2292 * Notes: Race condition
2293 *
2294 * We usually use page_cgroup_lock() for accessing page_cgroup member but
2295 * it tends to be costly. But considering some conditions, we doesn't need
2296 * to do so _always_.
2297 *
2298 * Considering "charge", lock_page_cgroup() is not required because all
2299 * file-stat operations happen after a page is attached to radix-tree. There
2300 * are no race with "charge".
2301 *
2302 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
2303 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
2304 * if there are race with "uncharge". Statistics itself is properly handled
2305 * by flags.
2306 *
2307 * Considering "move", this is an only case we see a race. To make the race
619d094b
KH
2308 * small, we check mm->moving_account and detect there are possibility of race
2309 * If there is, we take a lock.
d69b042f 2310 */
26174efd 2311
89c06bd5
KH
2312void __mem_cgroup_begin_update_page_stat(struct page *page,
2313 bool *locked, unsigned long *flags)
2314{
2315 struct mem_cgroup *memcg;
2316 struct page_cgroup *pc;
2317
2318 pc = lookup_page_cgroup(page);
2319again:
2320 memcg = pc->mem_cgroup;
2321 if (unlikely(!memcg || !PageCgroupUsed(pc)))
2322 return;
2323 /*
2324 * If this memory cgroup is not under account moving, we don't
da92c47d 2325 * need to take move_lock_mem_cgroup(). Because we already hold
89c06bd5 2326 * rcu_read_lock(), any calls to move_account will be delayed until
13fd1dd9 2327 * rcu_read_unlock() if mem_cgroup_stolen() == true.
89c06bd5 2328 */
13fd1dd9 2329 if (!mem_cgroup_stolen(memcg))
89c06bd5
KH
2330 return;
2331
2332 move_lock_mem_cgroup(memcg, flags);
2333 if (memcg != pc->mem_cgroup || !PageCgroupUsed(pc)) {
2334 move_unlock_mem_cgroup(memcg, flags);
2335 goto again;
2336 }
2337 *locked = true;
2338}
2339
2340void __mem_cgroup_end_update_page_stat(struct page *page, unsigned long *flags)
2341{
2342 struct page_cgroup *pc = lookup_page_cgroup(page);
2343
2344 /*
2345 * It's guaranteed that pc->mem_cgroup never changes while
2346 * lock is held because a routine modifies pc->mem_cgroup
da92c47d 2347 * should take move_lock_mem_cgroup().
89c06bd5
KH
2348 */
2349 move_unlock_mem_cgroup(pc->mem_cgroup, flags);
2350}
2351
2a7106f2
GT
2352void mem_cgroup_update_page_stat(struct page *page,
2353 enum mem_cgroup_page_stat_item idx, int val)
d69b042f 2354{
c0ff4b85 2355 struct mem_cgroup *memcg;
32047e2a 2356 struct page_cgroup *pc = lookup_page_cgroup(page);
dbd4ea78 2357 unsigned long uninitialized_var(flags);
d69b042f 2358
cfa44946 2359 if (mem_cgroup_disabled())
d69b042f 2360 return;
89c06bd5 2361
c0ff4b85
R
2362 memcg = pc->mem_cgroup;
2363 if (unlikely(!memcg || !PageCgroupUsed(pc)))
89c06bd5 2364 return;
26174efd 2365
26174efd 2366 switch (idx) {
2a7106f2 2367 case MEMCG_NR_FILE_MAPPED:
2a7106f2 2368 idx = MEM_CGROUP_STAT_FILE_MAPPED;
26174efd
KH
2369 break;
2370 default:
2371 BUG();
8725d541 2372 }
d69b042f 2373
c0ff4b85 2374 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2375}
26174efd 2376
cdec2e42
KH
2377/*
2378 * size of first charge trial. "32" comes from vmscan.c's magic value.
2379 * TODO: maybe necessary to use big numbers in big irons.
2380 */
7ec99d62 2381#define CHARGE_BATCH 32U
cdec2e42
KH
2382struct memcg_stock_pcp {
2383 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2384 unsigned int nr_pages;
cdec2e42 2385 struct work_struct work;
26fe6168 2386 unsigned long flags;
a0db00fc 2387#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2388};
2389static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2390static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2391
a0956d54
SS
2392/**
2393 * consume_stock: Try to consume stocked charge on this cpu.
2394 * @memcg: memcg to consume from.
2395 * @nr_pages: how many pages to charge.
2396 *
2397 * The charges will only happen if @memcg matches the current cpu's memcg
2398 * stock, and at least @nr_pages are available in that stock. Failure to
2399 * service an allocation will refill the stock.
2400 *
2401 * returns true if successful, false otherwise.
cdec2e42 2402 */
a0956d54 2403static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2404{
2405 struct memcg_stock_pcp *stock;
2406 bool ret = true;
2407
a0956d54
SS
2408 if (nr_pages > CHARGE_BATCH)
2409 return false;
2410
cdec2e42 2411 stock = &get_cpu_var(memcg_stock);
a0956d54
SS
2412 if (memcg == stock->cached && stock->nr_pages >= nr_pages)
2413 stock->nr_pages -= nr_pages;
cdec2e42
KH
2414 else /* need to call res_counter_charge */
2415 ret = false;
2416 put_cpu_var(memcg_stock);
2417 return ret;
2418}
2419
2420/*
2421 * Returns stocks cached in percpu to res_counter and reset cached information.
2422 */
2423static void drain_stock(struct memcg_stock_pcp *stock)
2424{
2425 struct mem_cgroup *old = stock->cached;
2426
11c9ea4e
JW
2427 if (stock->nr_pages) {
2428 unsigned long bytes = stock->nr_pages * PAGE_SIZE;
2429
2430 res_counter_uncharge(&old->res, bytes);
cdec2e42 2431 if (do_swap_account)
11c9ea4e
JW
2432 res_counter_uncharge(&old->memsw, bytes);
2433 stock->nr_pages = 0;
cdec2e42
KH
2434 }
2435 stock->cached = NULL;
cdec2e42
KH
2436}
2437
2438/*
2439 * This must be called under preempt disabled or must be called by
2440 * a thread which is pinned to local cpu.
2441 */
2442static void drain_local_stock(struct work_struct *dummy)
2443{
2444 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
2445 drain_stock(stock);
26fe6168 2446 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2447}
2448
e4777496
MH
2449static void __init memcg_stock_init(void)
2450{
2451 int cpu;
2452
2453 for_each_possible_cpu(cpu) {
2454 struct memcg_stock_pcp *stock =
2455 &per_cpu(memcg_stock, cpu);
2456 INIT_WORK(&stock->work, drain_local_stock);
2457 }
2458}
2459
cdec2e42
KH
2460/*
2461 * Cache charges(val) which is from res_counter, to local per_cpu area.
320cc51d 2462 * This will be consumed by consume_stock() function, later.
cdec2e42 2463 */
c0ff4b85 2464static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2465{
2466 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2467
c0ff4b85 2468 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2469 drain_stock(stock);
c0ff4b85 2470 stock->cached = memcg;
cdec2e42 2471 }
11c9ea4e 2472 stock->nr_pages += nr_pages;
cdec2e42
KH
2473 put_cpu_var(memcg_stock);
2474}
2475
2476/*
c0ff4b85 2477 * Drains all per-CPU charge caches for given root_memcg resp. subtree
d38144b7
MH
2478 * of the hierarchy under it. sync flag says whether we should block
2479 * until the work is done.
cdec2e42 2480 */
c0ff4b85 2481static void drain_all_stock(struct mem_cgroup *root_memcg, bool sync)
cdec2e42 2482{
26fe6168 2483 int cpu, curcpu;
d38144b7 2484
cdec2e42 2485 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2486 get_online_cpus();
5af12d0e 2487 curcpu = get_cpu();
cdec2e42
KH
2488 for_each_online_cpu(cpu) {
2489 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2490 struct mem_cgroup *memcg;
26fe6168 2491
c0ff4b85
R
2492 memcg = stock->cached;
2493 if (!memcg || !stock->nr_pages)
26fe6168 2494 continue;
c0ff4b85 2495 if (!mem_cgroup_same_or_subtree(root_memcg, memcg))
3e92041d 2496 continue;
d1a05b69
MH
2497 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2498 if (cpu == curcpu)
2499 drain_local_stock(&stock->work);
2500 else
2501 schedule_work_on(cpu, &stock->work);
2502 }
cdec2e42 2503 }
5af12d0e 2504 put_cpu();
d38144b7
MH
2505
2506 if (!sync)
2507 goto out;
2508
2509 for_each_online_cpu(cpu) {
2510 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
9f50fad6 2511 if (test_bit(FLUSHING_CACHED_CHARGE, &stock->flags))
d38144b7
MH
2512 flush_work(&stock->work);
2513 }
2514out:
cdec2e42 2515 put_online_cpus();
d38144b7
MH
2516}
2517
2518/*
2519 * Tries to drain stocked charges in other cpus. This function is asynchronous
2520 * and just put a work per cpu for draining localy on each cpu. Caller can
2521 * expects some charges will be back to res_counter later but cannot wait for
2522 * it.
2523 */
c0ff4b85 2524static void drain_all_stock_async(struct mem_cgroup *root_memcg)
d38144b7 2525{
9f50fad6
MH
2526 /*
2527 * If someone calls draining, avoid adding more kworker runs.
2528 */
2529 if (!mutex_trylock(&percpu_charge_mutex))
2530 return;
c0ff4b85 2531 drain_all_stock(root_memcg, false);
9f50fad6 2532 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2533}
2534
2535/* This is a synchronous drain interface. */
c0ff4b85 2536static void drain_all_stock_sync(struct mem_cgroup *root_memcg)
cdec2e42
KH
2537{
2538 /* called when force_empty is called */
9f50fad6 2539 mutex_lock(&percpu_charge_mutex);
c0ff4b85 2540 drain_all_stock(root_memcg, true);
9f50fad6 2541 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2542}
2543
711d3d2c
KH
2544/*
2545 * This function drains percpu counter value from DEAD cpu and
2546 * move it to local cpu. Note that this function can be preempted.
2547 */
c0ff4b85 2548static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2549{
2550 int i;
2551
c0ff4b85 2552 spin_lock(&memcg->pcp_counter_lock);
6104621d 2553 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2554 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2555
c0ff4b85
R
2556 per_cpu(memcg->stat->count[i], cpu) = 0;
2557 memcg->nocpu_base.count[i] += x;
711d3d2c 2558 }
e9f8974f 2559 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2560 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2561
c0ff4b85
R
2562 per_cpu(memcg->stat->events[i], cpu) = 0;
2563 memcg->nocpu_base.events[i] += x;
e9f8974f 2564 }
c0ff4b85 2565 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2566}
2567
2568static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2569 unsigned long action,
2570 void *hcpu)
2571{
2572 int cpu = (unsigned long)hcpu;
2573 struct memcg_stock_pcp *stock;
711d3d2c 2574 struct mem_cgroup *iter;
cdec2e42 2575
619d094b 2576 if (action == CPU_ONLINE)
1489ebad 2577 return NOTIFY_OK;
1489ebad 2578
d833049b 2579 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2580 return NOTIFY_OK;
711d3d2c 2581
9f3a0d09 2582 for_each_mem_cgroup(iter)
711d3d2c
KH
2583 mem_cgroup_drain_pcp_counter(iter, cpu);
2584
cdec2e42
KH
2585 stock = &per_cpu(memcg_stock, cpu);
2586 drain_stock(stock);
2587 return NOTIFY_OK;
2588}
2589
4b534334
KH
2590
2591/* See __mem_cgroup_try_charge() for details */
2592enum {
2593 CHARGE_OK, /* success */
2594 CHARGE_RETRY, /* need to retry but retry is not bad */
2595 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
2596 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
4b534334
KH
2597};
2598
c0ff4b85 2599static int mem_cgroup_do_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
4c9c5359 2600 unsigned int nr_pages, unsigned int min_pages,
f79d6a46 2601 bool invoke_oom)
4b534334 2602{
7ec99d62 2603 unsigned long csize = nr_pages * PAGE_SIZE;
4b534334
KH
2604 struct mem_cgroup *mem_over_limit;
2605 struct res_counter *fail_res;
2606 unsigned long flags = 0;
2607 int ret;
2608
c0ff4b85 2609 ret = res_counter_charge(&memcg->res, csize, &fail_res);
4b534334
KH
2610
2611 if (likely(!ret)) {
2612 if (!do_swap_account)
2613 return CHARGE_OK;
c0ff4b85 2614 ret = res_counter_charge(&memcg->memsw, csize, &fail_res);
4b534334
KH
2615 if (likely(!ret))
2616 return CHARGE_OK;
2617
c0ff4b85 2618 res_counter_uncharge(&memcg->res, csize);
4b534334
KH
2619 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
2620 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
2621 } else
2622 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
9221edb7 2623 /*
9221edb7
JW
2624 * Never reclaim on behalf of optional batching, retry with a
2625 * single page instead.
2626 */
4c9c5359 2627 if (nr_pages > min_pages)
4b534334
KH
2628 return CHARGE_RETRY;
2629
2630 if (!(gfp_mask & __GFP_WAIT))
2631 return CHARGE_WOULDBLOCK;
2632
4c9c5359
SS
2633 if (gfp_mask & __GFP_NORETRY)
2634 return CHARGE_NOMEM;
2635
5660048c 2636 ret = mem_cgroup_reclaim(mem_over_limit, gfp_mask, flags);
7ec99d62 2637 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
19942822 2638 return CHARGE_RETRY;
4b534334 2639 /*
19942822
JW
2640 * Even though the limit is exceeded at this point, reclaim
2641 * may have been able to free some pages. Retry the charge
2642 * before killing the task.
2643 *
2644 * Only for regular pages, though: huge pages are rather
2645 * unlikely to succeed so close to the limit, and we fall back
2646 * to regular pages anyway in case of failure.
4b534334 2647 */
4c9c5359 2648 if (nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER) && ret)
4b534334
KH
2649 return CHARGE_RETRY;
2650
2651 /*
2652 * At task move, charge accounts can be doubly counted. So, it's
2653 * better to wait until the end of task_move if something is going on.
2654 */
2655 if (mem_cgroup_wait_acct_move(mem_over_limit))
2656 return CHARGE_RETRY;
2657
f79d6a46
JW
2658 if (invoke_oom)
2659 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(csize));
4b534334 2660
f79d6a46 2661 return CHARGE_NOMEM;
4b534334
KH
2662}
2663
f817ed48 2664/*
38c5d72f
KH
2665 * __mem_cgroup_try_charge() does
2666 * 1. detect memcg to be charged against from passed *mm and *ptr,
2667 * 2. update res_counter
2668 * 3. call memory reclaim if necessary.
2669 *
2670 * In some special case, if the task is fatal, fatal_signal_pending() or
2671 * has TIF_MEMDIE, this function returns -EINTR while writing root_mem_cgroup
2672 * to *ptr. There are two reasons for this. 1: fatal threads should quit as soon
2673 * as possible without any hazards. 2: all pages should have a valid
2674 * pc->mem_cgroup. If mm is NULL and the caller doesn't pass a valid memcg
2675 * pointer, that is treated as a charge to root_mem_cgroup.
2676 *
2677 * So __mem_cgroup_try_charge() will return
2678 * 0 ... on success, filling *ptr with a valid memcg pointer.
2679 * -ENOMEM ... charge failure because of resource limits.
2680 * -EINTR ... if thread is fatal. *ptr is filled with root_mem_cgroup.
2681 *
2682 * Unlike the exported interface, an "oom" parameter is added. if oom==true,
2683 * the oom-killer can be invoked.
8a9f3ccd 2684 */
f817ed48 2685static int __mem_cgroup_try_charge(struct mm_struct *mm,
ec168510 2686 gfp_t gfp_mask,
7ec99d62 2687 unsigned int nr_pages,
c0ff4b85 2688 struct mem_cgroup **ptr,
7ec99d62 2689 bool oom)
8a9f3ccd 2690{
7ec99d62 2691 unsigned int batch = max(CHARGE_BATCH, nr_pages);
4b534334 2692 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
c0ff4b85 2693 struct mem_cgroup *memcg = NULL;
4b534334 2694 int ret;
a636b327 2695
867578cb
KH
2696 /*
2697 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
2698 * in system level. So, allow to go ahead dying process in addition to
2699 * MEMDIE process.
2700 */
2701 if (unlikely(test_thread_flag(TIF_MEMDIE)
2702 || fatal_signal_pending(current)))
2703 goto bypass;
a636b327 2704
f8a51179
JW
2705 if (unlikely(task_in_memcg_oom(current)))
2706 goto bypass;
2707
8a9f3ccd 2708 /*
3be91277
HD
2709 * We always charge the cgroup the mm_struct belongs to.
2710 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd 2711 * thread group leader migrates. It's possible that mm is not
24467cac 2712 * set, if so charge the root memcg (happens for pagecache usage).
8a9f3ccd 2713 */
c0ff4b85 2714 if (!*ptr && !mm)
38c5d72f 2715 *ptr = root_mem_cgroup;
f75ca962 2716again:
c0ff4b85
R
2717 if (*ptr) { /* css should be a valid one */
2718 memcg = *ptr;
c0ff4b85 2719 if (mem_cgroup_is_root(memcg))
f75ca962 2720 goto done;
a0956d54 2721 if (consume_stock(memcg, nr_pages))
f75ca962 2722 goto done;
c0ff4b85 2723 css_get(&memcg->css);
4b534334 2724 } else {
f75ca962 2725 struct task_struct *p;
54595fe2 2726
f75ca962
KH
2727 rcu_read_lock();
2728 p = rcu_dereference(mm->owner);
f75ca962 2729 /*
ebb76ce1 2730 * Because we don't have task_lock(), "p" can exit.
c0ff4b85 2731 * In that case, "memcg" can point to root or p can be NULL with
ebb76ce1
KH
2732 * race with swapoff. Then, we have small risk of mis-accouning.
2733 * But such kind of mis-account by race always happens because
2734 * we don't have cgroup_mutex(). It's overkill and we allo that
2735 * small race, here.
2736 * (*) swapoff at el will charge against mm-struct not against
2737 * task-struct. So, mm->owner can be NULL.
f75ca962 2738 */
c0ff4b85 2739 memcg = mem_cgroup_from_task(p);
38c5d72f
KH
2740 if (!memcg)
2741 memcg = root_mem_cgroup;
2742 if (mem_cgroup_is_root(memcg)) {
f75ca962
KH
2743 rcu_read_unlock();
2744 goto done;
2745 }
a0956d54 2746 if (consume_stock(memcg, nr_pages)) {
f75ca962
KH
2747 /*
2748 * It seems dagerous to access memcg without css_get().
2749 * But considering how consume_stok works, it's not
2750 * necessary. If consume_stock success, some charges
2751 * from this memcg are cached on this cpu. So, we
2752 * don't need to call css_get()/css_tryget() before
2753 * calling consume_stock().
2754 */
2755 rcu_read_unlock();
2756 goto done;
2757 }
2758 /* after here, we may be blocked. we need to get refcnt */
c0ff4b85 2759 if (!css_tryget(&memcg->css)) {
f75ca962
KH
2760 rcu_read_unlock();
2761 goto again;
2762 }
2763 rcu_read_unlock();
2764 }
8a9f3ccd 2765
4b534334 2766 do {
f79d6a46 2767 bool invoke_oom = oom && !nr_oom_retries;
7a81b88c 2768
4b534334 2769 /* If killed, bypass charge */
f75ca962 2770 if (fatal_signal_pending(current)) {
c0ff4b85 2771 css_put(&memcg->css);
4b534334 2772 goto bypass;
f75ca962 2773 }
6d61ef40 2774
f79d6a46
JW
2775 ret = mem_cgroup_do_charge(memcg, gfp_mask, batch,
2776 nr_pages, invoke_oom);
4b534334
KH
2777 switch (ret) {
2778 case CHARGE_OK:
2779 break;
2780 case CHARGE_RETRY: /* not in OOM situation but retry */
7ec99d62 2781 batch = nr_pages;
c0ff4b85
R
2782 css_put(&memcg->css);
2783 memcg = NULL;
f75ca962 2784 goto again;
4b534334 2785 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
c0ff4b85 2786 css_put(&memcg->css);
4b534334
KH
2787 goto nomem;
2788 case CHARGE_NOMEM: /* OOM routine works */
f79d6a46 2789 if (!oom || invoke_oom) {
c0ff4b85 2790 css_put(&memcg->css);
867578cb 2791 goto nomem;
f75ca962 2792 }
4b534334
KH
2793 nr_oom_retries--;
2794 break;
66e1707b 2795 }
4b534334
KH
2796 } while (ret != CHARGE_OK);
2797
7ec99d62 2798 if (batch > nr_pages)
c0ff4b85
R
2799 refill_stock(memcg, batch - nr_pages);
2800 css_put(&memcg->css);
0c3e73e8 2801done:
c0ff4b85 2802 *ptr = memcg;
7a81b88c
KH
2803 return 0;
2804nomem:
c0ff4b85 2805 *ptr = NULL;
7a81b88c 2806 return -ENOMEM;
867578cb 2807bypass:
38c5d72f
KH
2808 *ptr = root_mem_cgroup;
2809 return -EINTR;
7a81b88c 2810}
8a9f3ccd 2811
a3032a2c
DN
2812/*
2813 * Somemtimes we have to undo a charge we got by try_charge().
2814 * This function is for that and do uncharge, put css's refcnt.
2815 * gotten by try_charge().
2816 */
c0ff4b85 2817static void __mem_cgroup_cancel_charge(struct mem_cgroup *memcg,
e7018b8d 2818 unsigned int nr_pages)
a3032a2c 2819{
c0ff4b85 2820 if (!mem_cgroup_is_root(memcg)) {
e7018b8d
JW
2821 unsigned long bytes = nr_pages * PAGE_SIZE;
2822
c0ff4b85 2823 res_counter_uncharge(&memcg->res, bytes);
a3032a2c 2824 if (do_swap_account)
c0ff4b85 2825 res_counter_uncharge(&memcg->memsw, bytes);
a3032a2c 2826 }
854ffa8d
DN
2827}
2828
d01dd17f
KH
2829/*
2830 * Cancel chrages in this cgroup....doesn't propagate to parent cgroup.
2831 * This is useful when moving usage to parent cgroup.
2832 */
2833static void __mem_cgroup_cancel_local_charge(struct mem_cgroup *memcg,
2834 unsigned int nr_pages)
2835{
2836 unsigned long bytes = nr_pages * PAGE_SIZE;
2837
2838 if (mem_cgroup_is_root(memcg))
2839 return;
2840
2841 res_counter_uncharge_until(&memcg->res, memcg->res.parent, bytes);
2842 if (do_swap_account)
2843 res_counter_uncharge_until(&memcg->memsw,
2844 memcg->memsw.parent, bytes);
2845}
2846
a3b2d692
KH
2847/*
2848 * A helper function to get mem_cgroup from ID. must be called under
e9316080
TH
2849 * rcu_read_lock(). The caller is responsible for calling css_tryget if
2850 * the mem_cgroup is used for charging. (dropping refcnt from swap can be
2851 * called against removed memcg.)
a3b2d692
KH
2852 */
2853static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2854{
2855 struct cgroup_subsys_state *css;
2856
2857 /* ID 0 is unused ID */
2858 if (!id)
2859 return NULL;
2860 css = css_lookup(&mem_cgroup_subsys, id);
2861 if (!css)
2862 return NULL;
b2145145 2863 return mem_cgroup_from_css(css);
a3b2d692
KH
2864}
2865
e42d9d5d 2866struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2867{
c0ff4b85 2868 struct mem_cgroup *memcg = NULL;
3c776e64 2869 struct page_cgroup *pc;
a3b2d692 2870 unsigned short id;
b5a84319
KH
2871 swp_entry_t ent;
2872
3c776e64
DN
2873 VM_BUG_ON(!PageLocked(page));
2874
3c776e64 2875 pc = lookup_page_cgroup(page);
c0bd3f63 2876 lock_page_cgroup(pc);
a3b2d692 2877 if (PageCgroupUsed(pc)) {
c0ff4b85
R
2878 memcg = pc->mem_cgroup;
2879 if (memcg && !css_tryget(&memcg->css))
2880 memcg = NULL;
e42d9d5d 2881 } else if (PageSwapCache(page)) {
3c776e64 2882 ent.val = page_private(page);
9fb4b7cc 2883 id = lookup_swap_cgroup_id(ent);
a3b2d692 2884 rcu_read_lock();
c0ff4b85
R
2885 memcg = mem_cgroup_lookup(id);
2886 if (memcg && !css_tryget(&memcg->css))
2887 memcg = NULL;
a3b2d692 2888 rcu_read_unlock();
3c776e64 2889 }
c0bd3f63 2890 unlock_page_cgroup(pc);
c0ff4b85 2891 return memcg;
b5a84319
KH
2892}
2893
c0ff4b85 2894static void __mem_cgroup_commit_charge(struct mem_cgroup *memcg,
5564e88b 2895 struct page *page,
7ec99d62 2896 unsigned int nr_pages,
9ce70c02
HD
2897 enum charge_type ctype,
2898 bool lrucare)
7a81b88c 2899{
ce587e65 2900 struct page_cgroup *pc = lookup_page_cgroup(page);
9ce70c02 2901 struct zone *uninitialized_var(zone);
fa9add64 2902 struct lruvec *lruvec;
9ce70c02 2903 bool was_on_lru = false;
b2402857 2904 bool anon;
9ce70c02 2905
ca3e0214 2906 lock_page_cgroup(pc);
90deb788 2907 VM_BUG_ON(PageCgroupUsed(pc));
ca3e0214
KH
2908 /*
2909 * we don't need page_cgroup_lock about tail pages, becase they are not
2910 * accessed by any other context at this point.
2911 */
9ce70c02
HD
2912
2913 /*
2914 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2915 * may already be on some other mem_cgroup's LRU. Take care of it.
2916 */
2917 if (lrucare) {
2918 zone = page_zone(page);
2919 spin_lock_irq(&zone->lru_lock);
2920 if (PageLRU(page)) {
fa9add64 2921 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02 2922 ClearPageLRU(page);
fa9add64 2923 del_page_from_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2924 was_on_lru = true;
2925 }
2926 }
2927
c0ff4b85 2928 pc->mem_cgroup = memcg;
261fb61a
KH
2929 /*
2930 * We access a page_cgroup asynchronously without lock_page_cgroup().
2931 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2932 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2933 * before USED bit, we need memory barrier here.
2934 * See mem_cgroup_add_lru_list(), etc.
2935 */
08e552c6 2936 smp_wmb();
b2402857 2937 SetPageCgroupUsed(pc);
3be91277 2938
9ce70c02
HD
2939 if (lrucare) {
2940 if (was_on_lru) {
fa9add64 2941 lruvec = mem_cgroup_zone_lruvec(zone, pc->mem_cgroup);
9ce70c02
HD
2942 VM_BUG_ON(PageLRU(page));
2943 SetPageLRU(page);
fa9add64 2944 add_page_to_lru_list(page, lruvec, page_lru(page));
9ce70c02
HD
2945 }
2946 spin_unlock_irq(&zone->lru_lock);
2947 }
2948
41326c17 2949 if (ctype == MEM_CGROUP_CHARGE_TYPE_ANON)
b2402857
KH
2950 anon = true;
2951 else
2952 anon = false;
2953
b070e65c 2954 mem_cgroup_charge_statistics(memcg, page, anon, nr_pages);
52d4b9ac 2955 unlock_page_cgroup(pc);
9ce70c02 2956
430e4863
KH
2957 /*
2958 * "charge_statistics" updated event counter. Then, check it.
2959 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2960 * if they exceeds softlimit.
2961 */
c0ff4b85 2962 memcg_check_events(memcg, page);
7a81b88c 2963}
66e1707b 2964
7cf27982
GC
2965static DEFINE_MUTEX(set_limit_mutex);
2966
7ae1e1d0
GC
2967#ifdef CONFIG_MEMCG_KMEM
2968static inline bool memcg_can_account_kmem(struct mem_cgroup *memcg)
2969{
2970 return !mem_cgroup_disabled() && !mem_cgroup_is_root(memcg) &&
2971 (memcg->kmem_account_flags & KMEM_ACCOUNTED_MASK);
2972}
2973
1f458cbf
GC
2974/*
2975 * This is a bit cumbersome, but it is rarely used and avoids a backpointer
2976 * in the memcg_cache_params struct.
2977 */
2978static struct kmem_cache *memcg_params_to_cache(struct memcg_cache_params *p)
2979{
2980 struct kmem_cache *cachep;
2981
2982 VM_BUG_ON(p->is_root_cache);
2983 cachep = p->root_cache;
2984 return cachep->memcg_params->memcg_caches[memcg_cache_id(p->memcg)];
2985}
2986
749c5415
GC
2987#ifdef CONFIG_SLABINFO
2988static int mem_cgroup_slabinfo_read(struct cgroup *cont, struct cftype *cft,
2989 struct seq_file *m)
2990{
2991 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
2992 struct memcg_cache_params *params;
2993
2994 if (!memcg_can_account_kmem(memcg))
2995 return -EIO;
2996
2997 print_slabinfo_header(m);
2998
2999 mutex_lock(&memcg->slab_caches_mutex);
3000 list_for_each_entry(params, &memcg->memcg_slab_caches, list)
3001 cache_show(memcg_params_to_cache(params), m);
3002 mutex_unlock(&memcg->slab_caches_mutex);
3003
3004 return 0;
3005}
3006#endif
3007
7ae1e1d0
GC
3008static int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp, u64 size)
3009{
3010 struct res_counter *fail_res;
3011 struct mem_cgroup *_memcg;
3012 int ret = 0;
3013 bool may_oom;
3014
3015 ret = res_counter_charge(&memcg->kmem, size, &fail_res);
3016 if (ret)
3017 return ret;
3018
3019 /*
3020 * Conditions under which we can wait for the oom_killer. Those are
3021 * the same conditions tested by the core page allocator
3022 */
3023 may_oom = (gfp & __GFP_FS) && !(gfp & __GFP_NORETRY);
3024
3025 _memcg = memcg;
3026 ret = __mem_cgroup_try_charge(NULL, gfp, size >> PAGE_SHIFT,
3027 &_memcg, may_oom);
3028
3029 if (ret == -EINTR) {
3030 /*
3031 * __mem_cgroup_try_charge() chosed to bypass to root due to
3032 * OOM kill or fatal signal. Since our only options are to
3033 * either fail the allocation or charge it to this cgroup, do
3034 * it as a temporary condition. But we can't fail. From a
3035 * kmem/slab perspective, the cache has already been selected,
3036 * by mem_cgroup_kmem_get_cache(), so it is too late to change
3037 * our minds.
3038 *
3039 * This condition will only trigger if the task entered
3040 * memcg_charge_kmem in a sane state, but was OOM-killed during
3041 * __mem_cgroup_try_charge() above. Tasks that were already
3042 * dying when the allocation triggers should have been already
3043 * directed to the root cgroup in memcontrol.h
3044 */
3045 res_counter_charge_nofail(&memcg->res, size, &fail_res);
3046 if (do_swap_account)
3047 res_counter_charge_nofail(&memcg->memsw, size,
3048 &fail_res);
3049 ret = 0;
3050 } else if (ret)
3051 res_counter_uncharge(&memcg->kmem, size);
3052
3053 return ret;
3054}
3055
3056static void memcg_uncharge_kmem(struct mem_cgroup *memcg, u64 size)
3057{
7ae1e1d0
GC
3058 res_counter_uncharge(&memcg->res, size);
3059 if (do_swap_account)
3060 res_counter_uncharge(&memcg->memsw, size);
7de37682
GC
3061
3062 /* Not down to 0 */
3063 if (res_counter_uncharge(&memcg->kmem, size))
3064 return;
3065
3066 if (memcg_kmem_test_and_clear_dead(memcg))
3067 mem_cgroup_put(memcg);
7ae1e1d0
GC
3068}
3069
2633d7a0
GC
3070void memcg_cache_list_add(struct mem_cgroup *memcg, struct kmem_cache *cachep)
3071{
3072 if (!memcg)
3073 return;
3074
3075 mutex_lock(&memcg->slab_caches_mutex);
3076 list_add(&cachep->memcg_params->list, &memcg->memcg_slab_caches);
3077 mutex_unlock(&memcg->slab_caches_mutex);
3078}
3079
3080/*
3081 * helper for acessing a memcg's index. It will be used as an index in the
3082 * child cache array in kmem_cache, and also to derive its name. This function
3083 * will return -1 when this is not a kmem-limited memcg.
3084 */
3085int memcg_cache_id(struct mem_cgroup *memcg)
3086{
3087 return memcg ? memcg->kmemcg_id : -1;
3088}
3089
55007d84
GC
3090/*
3091 * This ends up being protected by the set_limit mutex, during normal
3092 * operation, because that is its main call site.
3093 *
3094 * But when we create a new cache, we can call this as well if its parent
3095 * is kmem-limited. That will have to hold set_limit_mutex as well.
3096 */
3097int memcg_update_cache_sizes(struct mem_cgroup *memcg)
3098{
3099 int num, ret;
3100
3101 num = ida_simple_get(&kmem_limited_groups,
3102 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
3103 if (num < 0)
3104 return num;
3105 /*
3106 * After this point, kmem_accounted (that we test atomically in
3107 * the beginning of this conditional), is no longer 0. This
3108 * guarantees only one process will set the following boolean
3109 * to true. We don't need test_and_set because we're protected
3110 * by the set_limit_mutex anyway.
3111 */
3112 memcg_kmem_set_activated(memcg);
3113
3114 ret = memcg_update_all_caches(num+1);
3115 if (ret) {
3116 ida_simple_remove(&kmem_limited_groups, num);
3117 memcg_kmem_clear_activated(memcg);
3118 return ret;
3119 }
3120
3121 memcg->kmemcg_id = num;
3122 INIT_LIST_HEAD(&memcg->memcg_slab_caches);
3123 mutex_init(&memcg->slab_caches_mutex);
3124 return 0;
3125}
3126
3127static size_t memcg_caches_array_size(int num_groups)
3128{
3129 ssize_t size;
3130 if (num_groups <= 0)
3131 return 0;
3132
3133 size = 2 * num_groups;
3134 if (size < MEMCG_CACHES_MIN_SIZE)
3135 size = MEMCG_CACHES_MIN_SIZE;
3136 else if (size > MEMCG_CACHES_MAX_SIZE)
3137 size = MEMCG_CACHES_MAX_SIZE;
3138
3139 return size;
3140}
3141
3142/*
3143 * We should update the current array size iff all caches updates succeed. This
3144 * can only be done from the slab side. The slab mutex needs to be held when
3145 * calling this.
3146 */
3147void memcg_update_array_size(int num)
3148{
3149 if (num > memcg_limited_groups_array_size)
3150 memcg_limited_groups_array_size = memcg_caches_array_size(num);
3151}
3152
15cf17d2
KK
3153static void kmem_cache_destroy_work_func(struct work_struct *w);
3154
55007d84
GC
3155int memcg_update_cache_size(struct kmem_cache *s, int num_groups)
3156{
3157 struct memcg_cache_params *cur_params = s->memcg_params;
3158
3159 VM_BUG_ON(s->memcg_params && !s->memcg_params->is_root_cache);
3160
3161 if (num_groups > memcg_limited_groups_array_size) {
3162 int i;
3163 ssize_t size = memcg_caches_array_size(num_groups);
3164
3165 size *= sizeof(void *);
3166 size += sizeof(struct memcg_cache_params);
3167
3168 s->memcg_params = kzalloc(size, GFP_KERNEL);
3169 if (!s->memcg_params) {
3170 s->memcg_params = cur_params;
3171 return -ENOMEM;
3172 }
3173
3174 s->memcg_params->is_root_cache = true;
3175
3176 /*
3177 * There is the chance it will be bigger than
3178 * memcg_limited_groups_array_size, if we failed an allocation
3179 * in a cache, in which case all caches updated before it, will
3180 * have a bigger array.
3181 *
3182 * But if that is the case, the data after
3183 * memcg_limited_groups_array_size is certainly unused
3184 */
3185 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3186 if (!cur_params->memcg_caches[i])
3187 continue;
3188 s->memcg_params->memcg_caches[i] =
3189 cur_params->memcg_caches[i];
3190 }
3191
3192 /*
3193 * Ideally, we would wait until all caches succeed, and only
3194 * then free the old one. But this is not worth the extra
3195 * pointer per-cache we'd have to have for this.
3196 *
3197 * It is not a big deal if some caches are left with a size
3198 * bigger than the others. And all updates will reset this
3199 * anyway.
3200 */
3201 kfree(cur_params);
3202 }
3203 return 0;
3204}
3205
943a451a
GC
3206int memcg_register_cache(struct mem_cgroup *memcg, struct kmem_cache *s,
3207 struct kmem_cache *root_cache)
2633d7a0
GC
3208{
3209 size_t size = sizeof(struct memcg_cache_params);
3210
3211 if (!memcg_kmem_enabled())
3212 return 0;
3213
55007d84
GC
3214 if (!memcg)
3215 size += memcg_limited_groups_array_size * sizeof(void *);
3216
2633d7a0
GC
3217 s->memcg_params = kzalloc(size, GFP_KERNEL);
3218 if (!s->memcg_params)
3219 return -ENOMEM;
3220
943a451a 3221 if (memcg) {
2633d7a0 3222 s->memcg_params->memcg = memcg;
943a451a 3223 s->memcg_params->root_cache = root_cache;
0dcf19b4
AV
3224 INIT_WORK(&s->memcg_params->destroy,
3225 kmem_cache_destroy_work_func);
4ba902b5
GC
3226 } else
3227 s->memcg_params->is_root_cache = true;
3228
2633d7a0
GC
3229 return 0;
3230}
3231
3232void memcg_release_cache(struct kmem_cache *s)
3233{
d7f25f8a
GC
3234 struct kmem_cache *root;
3235 struct mem_cgroup *memcg;
3236 int id;
3237
3238 /*
3239 * This happens, for instance, when a root cache goes away before we
3240 * add any memcg.
3241 */
3242 if (!s->memcg_params)
3243 return;
3244
3245 if (s->memcg_params->is_root_cache)
3246 goto out;
3247
3248 memcg = s->memcg_params->memcg;
3249 id = memcg_cache_id(memcg);
3250
3251 root = s->memcg_params->root_cache;
3252 root->memcg_params->memcg_caches[id] = NULL;
d7f25f8a
GC
3253
3254 mutex_lock(&memcg->slab_caches_mutex);
3255 list_del(&s->memcg_params->list);
3256 mutex_unlock(&memcg->slab_caches_mutex);
3257
fd0ccaf2 3258 mem_cgroup_put(memcg);
d7f25f8a 3259out:
2633d7a0
GC
3260 kfree(s->memcg_params);
3261}
3262
0e9d92f2
GC
3263/*
3264 * During the creation a new cache, we need to disable our accounting mechanism
3265 * altogether. This is true even if we are not creating, but rather just
3266 * enqueing new caches to be created.
3267 *
3268 * This is because that process will trigger allocations; some visible, like
3269 * explicit kmallocs to auxiliary data structures, name strings and internal
3270 * cache structures; some well concealed, like INIT_WORK() that can allocate
3271 * objects during debug.
3272 *
3273 * If any allocation happens during memcg_kmem_get_cache, we will recurse back
3274 * to it. This may not be a bounded recursion: since the first cache creation
3275 * failed to complete (waiting on the allocation), we'll just try to create the
3276 * cache again, failing at the same point.
3277 *
3278 * memcg_kmem_get_cache is prepared to abort after seeing a positive count of
3279 * memcg_kmem_skip_account. So we enclose anything that might allocate memory
3280 * inside the following two functions.
3281 */
3282static inline void memcg_stop_kmem_account(void)
3283{
3284 VM_BUG_ON(!current->mm);
3285 current->memcg_kmem_skip_account++;
3286}
3287
3288static inline void memcg_resume_kmem_account(void)
3289{
3290 VM_BUG_ON(!current->mm);
3291 current->memcg_kmem_skip_account--;
3292}
3293
1f458cbf
GC
3294static void kmem_cache_destroy_work_func(struct work_struct *w)
3295{
3296 struct kmem_cache *cachep;
3297 struct memcg_cache_params *p;
3298
3299 p = container_of(w, struct memcg_cache_params, destroy);
3300
3301 cachep = memcg_params_to_cache(p);
3302
22933152
GC
3303 /*
3304 * If we get down to 0 after shrink, we could delete right away.
3305 * However, memcg_release_pages() already puts us back in the workqueue
3306 * in that case. If we proceed deleting, we'll get a dangling
3307 * reference, and removing the object from the workqueue in that case
3308 * is unnecessary complication. We are not a fast path.
3309 *
3310 * Note that this case is fundamentally different from racing with
3311 * shrink_slab(): if memcg_cgroup_destroy_cache() is called in
3312 * kmem_cache_shrink, not only we would be reinserting a dead cache
3313 * into the queue, but doing so from inside the worker racing to
3314 * destroy it.
3315 *
3316 * So if we aren't down to zero, we'll just schedule a worker and try
3317 * again
3318 */
3319 if (atomic_read(&cachep->memcg_params->nr_pages) != 0) {
3320 kmem_cache_shrink(cachep);
3321 if (atomic_read(&cachep->memcg_params->nr_pages) == 0)
3322 return;
3323 } else
1f458cbf
GC
3324 kmem_cache_destroy(cachep);
3325}
3326
3327void mem_cgroup_destroy_cache(struct kmem_cache *cachep)
3328{
3329 if (!cachep->memcg_params->dead)
3330 return;
3331
22933152
GC
3332 /*
3333 * There are many ways in which we can get here.
3334 *
3335 * We can get to a memory-pressure situation while the delayed work is
3336 * still pending to run. The vmscan shrinkers can then release all
3337 * cache memory and get us to destruction. If this is the case, we'll
3338 * be executed twice, which is a bug (the second time will execute over
3339 * bogus data). In this case, cancelling the work should be fine.
3340 *
3341 * But we can also get here from the worker itself, if
3342 * kmem_cache_shrink is enough to shake all the remaining objects and
3343 * get the page count to 0. In this case, we'll deadlock if we try to
3344 * cancel the work (the worker runs with an internal lock held, which
3345 * is the same lock we would hold for cancel_work_sync().)
3346 *
3347 * Since we can't possibly know who got us here, just refrain from
3348 * running if there is already work pending
3349 */
3350 if (work_pending(&cachep->memcg_params->destroy))
3351 return;
1f458cbf
GC
3352 /*
3353 * We have to defer the actual destroying to a workqueue, because
3354 * we might currently be in a context that cannot sleep.
3355 */
3356 schedule_work(&cachep->memcg_params->destroy);
3357}
3358
d9c10ddd
MH
3359/*
3360 * This lock protects updaters, not readers. We want readers to be as fast as
3361 * they can, and they will either see NULL or a valid cache value. Our model
3362 * allow them to see NULL, in which case the root memcg will be selected.
3363 *
3364 * We need this lock because multiple allocations to the same cache from a non
3365 * will span more than one worker. Only one of them can create the cache.
3366 */
3367static DEFINE_MUTEX(memcg_cache_mutex);
d7f25f8a 3368
d9c10ddd
MH
3369/*
3370 * Called with memcg_cache_mutex held
3371 */
d7f25f8a
GC
3372static struct kmem_cache *kmem_cache_dup(struct mem_cgroup *memcg,
3373 struct kmem_cache *s)
3374{
d7f25f8a 3375 struct kmem_cache *new;
d9c10ddd 3376 static char *tmp_name = NULL;
d7f25f8a 3377
d9c10ddd
MH
3378 lockdep_assert_held(&memcg_cache_mutex);
3379
3380 /*
3381 * kmem_cache_create_memcg duplicates the given name and
3382 * cgroup_name for this name requires RCU context.
3383 * This static temporary buffer is used to prevent from
3384 * pointless shortliving allocation.
3385 */
3386 if (!tmp_name) {
3387 tmp_name = kmalloc(PATH_MAX, GFP_KERNEL);
3388 if (!tmp_name)
3389 return NULL;
3390 }
3391
3392 rcu_read_lock();
3393 snprintf(tmp_name, PATH_MAX, "%s(%d:%s)", s->name,
3394 memcg_cache_id(memcg), cgroup_name(memcg->css.cgroup));
3395 rcu_read_unlock();
d7f25f8a 3396
d9c10ddd 3397 new = kmem_cache_create_memcg(memcg, tmp_name, s->object_size, s->align,
943a451a 3398 (s->flags & ~SLAB_PANIC), s->ctor, s);
d7f25f8a 3399
d79923fa
GC
3400 if (new)
3401 new->allocflags |= __GFP_KMEMCG;
3402
d7f25f8a
GC
3403 return new;
3404}
3405
d7f25f8a
GC
3406static struct kmem_cache *memcg_create_kmem_cache(struct mem_cgroup *memcg,
3407 struct kmem_cache *cachep)
3408{
3409 struct kmem_cache *new_cachep;
3410 int idx;
3411
3412 BUG_ON(!memcg_can_account_kmem(memcg));
3413
3414 idx = memcg_cache_id(memcg);
3415
3416 mutex_lock(&memcg_cache_mutex);
3417 new_cachep = cachep->memcg_params->memcg_caches[idx];
3418 if (new_cachep)
3419 goto out;
3420
3421 new_cachep = kmem_cache_dup(memcg, cachep);
d7f25f8a
GC
3422 if (new_cachep == NULL) {
3423 new_cachep = cachep;
3424 goto out;
3425 }
3426
3427 mem_cgroup_get(memcg);
1f458cbf 3428 atomic_set(&new_cachep->memcg_params->nr_pages , 0);
d7f25f8a
GC
3429
3430 cachep->memcg_params->memcg_caches[idx] = new_cachep;
3431 /*
3432 * the readers won't lock, make sure everybody sees the updated value,
3433 * so they won't put stuff in the queue again for no reason
3434 */
3435 wmb();
3436out:
3437 mutex_unlock(&memcg_cache_mutex);
3438 return new_cachep;
3439}
3440
7cf27982
GC
3441void kmem_cache_destroy_memcg_children(struct kmem_cache *s)
3442{
3443 struct kmem_cache *c;
3444 int i;
3445
3446 if (!s->memcg_params)
3447 return;
3448 if (!s->memcg_params->is_root_cache)
3449 return;
3450
3451 /*
3452 * If the cache is being destroyed, we trust that there is no one else
3453 * requesting objects from it. Even if there are, the sanity checks in
3454 * kmem_cache_destroy should caught this ill-case.
3455 *
3456 * Still, we don't want anyone else freeing memcg_caches under our
3457 * noses, which can happen if a new memcg comes to life. As usual,
3458 * we'll take the set_limit_mutex to protect ourselves against this.
3459 */
3460 mutex_lock(&set_limit_mutex);
3461 for (i = 0; i < memcg_limited_groups_array_size; i++) {
3462 c = s->memcg_params->memcg_caches[i];
3463 if (!c)
3464 continue;
3465
3466 /*
3467 * We will now manually delete the caches, so to avoid races
3468 * we need to cancel all pending destruction workers and
3469 * proceed with destruction ourselves.
3470 *
3471 * kmem_cache_destroy() will call kmem_cache_shrink internally,
3472 * and that could spawn the workers again: it is likely that
3473 * the cache still have active pages until this very moment.
3474 * This would lead us back to mem_cgroup_destroy_cache.
3475 *
3476 * But that will not execute at all if the "dead" flag is not
3477 * set, so flip it down to guarantee we are in control.
3478 */
3479 c->memcg_params->dead = false;
22933152 3480 cancel_work_sync(&c->memcg_params->destroy);
7cf27982
GC
3481 kmem_cache_destroy(c);
3482 }
3483 mutex_unlock(&set_limit_mutex);
3484}
3485
d7f25f8a
GC
3486struct create_work {
3487 struct mem_cgroup *memcg;
3488 struct kmem_cache *cachep;
3489 struct work_struct work;
3490};
3491
1f458cbf
GC
3492static void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3493{
3494 struct kmem_cache *cachep;
3495 struct memcg_cache_params *params;
3496
3497 if (!memcg_kmem_is_active(memcg))
3498 return;
3499
3500 mutex_lock(&memcg->slab_caches_mutex);
3501 list_for_each_entry(params, &memcg->memcg_slab_caches, list) {
3502 cachep = memcg_params_to_cache(params);
3503 cachep->memcg_params->dead = true;
1f458cbf
GC
3504 schedule_work(&cachep->memcg_params->destroy);
3505 }
3506 mutex_unlock(&memcg->slab_caches_mutex);
3507}
3508
d7f25f8a
GC
3509static void memcg_create_cache_work_func(struct work_struct *w)
3510{
3511 struct create_work *cw;
3512
3513 cw = container_of(w, struct create_work, work);
3514 memcg_create_kmem_cache(cw->memcg, cw->cachep);
3515 /* Drop the reference gotten when we enqueued. */
3516 css_put(&cw->memcg->css);
3517 kfree(cw);
3518}
3519
3520/*
3521 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 3522 */
0e9d92f2
GC
3523static void __memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3524 struct kmem_cache *cachep)
d7f25f8a
GC
3525{
3526 struct create_work *cw;
3527
3528 cw = kmalloc(sizeof(struct create_work), GFP_NOWAIT);
ca0dde97
LZ
3529 if (cw == NULL) {
3530 css_put(&memcg->css);
d7f25f8a
GC
3531 return;
3532 }
3533
3534 cw->memcg = memcg;
3535 cw->cachep = cachep;
3536
3537 INIT_WORK(&cw->work, memcg_create_cache_work_func);
3538 schedule_work(&cw->work);
3539}
3540
0e9d92f2
GC
3541static void memcg_create_cache_enqueue(struct mem_cgroup *memcg,
3542 struct kmem_cache *cachep)
3543{
3544 /*
3545 * We need to stop accounting when we kmalloc, because if the
3546 * corresponding kmalloc cache is not yet created, the first allocation
3547 * in __memcg_create_cache_enqueue will recurse.
3548 *
3549 * However, it is better to enclose the whole function. Depending on
3550 * the debugging options enabled, INIT_WORK(), for instance, can
3551 * trigger an allocation. This too, will make us recurse. Because at
3552 * this point we can't allow ourselves back into memcg_kmem_get_cache,
3553 * the safest choice is to do it like this, wrapping the whole function.
3554 */
3555 memcg_stop_kmem_account();
3556 __memcg_create_cache_enqueue(memcg, cachep);
3557 memcg_resume_kmem_account();
3558}
d7f25f8a
GC
3559/*
3560 * Return the kmem_cache we're supposed to use for a slab allocation.
3561 * We try to use the current memcg's version of the cache.
3562 *
3563 * If the cache does not exist yet, if we are the first user of it,
3564 * we either create it immediately, if possible, or create it asynchronously
3565 * in a workqueue.
3566 * In the latter case, we will let the current allocation go through with
3567 * the original cache.
3568 *
3569 * Can't be called in interrupt context or from kernel threads.
3570 * This function needs to be called with rcu_read_lock() held.
3571 */
3572struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep,
3573 gfp_t gfp)
3574{
3575 struct mem_cgroup *memcg;
3576 int idx;
3577
3578 VM_BUG_ON(!cachep->memcg_params);
3579 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
3580
0e9d92f2
GC
3581 if (!current->mm || current->memcg_kmem_skip_account)
3582 return cachep;
3583
d7f25f8a
GC
3584 rcu_read_lock();
3585 memcg = mem_cgroup_from_task(rcu_dereference(current->mm->owner));
d7f25f8a
GC
3586
3587 if (!memcg_can_account_kmem(memcg))
ca0dde97 3588 goto out;
d7f25f8a
GC
3589
3590 idx = memcg_cache_id(memcg);
3591
3592 /*
3593 * barrier to mare sure we're always seeing the up to date value. The
3594 * code updating memcg_caches will issue a write barrier to match this.
3595 */
3596 read_barrier_depends();
ca0dde97
LZ
3597 if (likely(cachep->memcg_params->memcg_caches[idx])) {
3598 cachep = cachep->memcg_params->memcg_caches[idx];
3599 goto out;
d7f25f8a
GC
3600 }
3601
ca0dde97
LZ
3602 /* The corresponding put will be done in the workqueue. */
3603 if (!css_tryget(&memcg->css))
3604 goto out;
3605 rcu_read_unlock();
3606
3607 /*
3608 * If we are in a safe context (can wait, and not in interrupt
3609 * context), we could be be predictable and return right away.
3610 * This would guarantee that the allocation being performed
3611 * already belongs in the new cache.
3612 *
3613 * However, there are some clashes that can arrive from locking.
3614 * For instance, because we acquire the slab_mutex while doing
3615 * kmem_cache_dup, this means no further allocation could happen
3616 * with the slab_mutex held.
3617 *
3618 * Also, because cache creation issue get_online_cpus(), this
3619 * creates a lock chain: memcg_slab_mutex -> cpu_hotplug_mutex,
3620 * that ends up reversed during cpu hotplug. (cpuset allocates
3621 * a bunch of GFP_KERNEL memory during cpuup). Due to all that,
3622 * better to defer everything.
3623 */
3624 memcg_create_cache_enqueue(memcg, cachep);
3625 return cachep;
3626out:
3627 rcu_read_unlock();
3628 return cachep;
d7f25f8a
GC
3629}
3630EXPORT_SYMBOL(__memcg_kmem_get_cache);
3631
7ae1e1d0
GC
3632/*
3633 * We need to verify if the allocation against current->mm->owner's memcg is
3634 * possible for the given order. But the page is not allocated yet, so we'll
3635 * need a further commit step to do the final arrangements.
3636 *
3637 * It is possible for the task to switch cgroups in this mean time, so at
3638 * commit time, we can't rely on task conversion any longer. We'll then use
3639 * the handle argument to return to the caller which cgroup we should commit
3640 * against. We could also return the memcg directly and avoid the pointer
3641 * passing, but a boolean return value gives better semantics considering
3642 * the compiled-out case as well.
3643 *
3644 * Returning true means the allocation is possible.
3645 */
3646bool
3647__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
3648{
3649 struct mem_cgroup *memcg;
3650 int ret;
3651
3652 *_memcg = NULL;
3653 memcg = try_get_mem_cgroup_from_mm(current->mm);
3654
3655 /*
3656 * very rare case described in mem_cgroup_from_task. Unfortunately there
3657 * isn't much we can do without complicating this too much, and it would
3658 * be gfp-dependent anyway. Just let it go
3659 */
3660 if (unlikely(!memcg))
3661 return true;
3662
3663 if (!memcg_can_account_kmem(memcg)) {
3664 css_put(&memcg->css);
3665 return true;
3666 }
3667
7ae1e1d0
GC
3668 ret = memcg_charge_kmem(memcg, gfp, PAGE_SIZE << order);
3669 if (!ret)
3670 *_memcg = memcg;
7ae1e1d0
GC
3671
3672 css_put(&memcg->css);
3673 return (ret == 0);
3674}
3675
3676void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
3677 int order)
3678{
3679 struct page_cgroup *pc;
3680
3681 VM_BUG_ON(mem_cgroup_is_root(memcg));
3682
3683 /* The page allocation failed. Revert */
3684 if (!page) {
3685 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0
GC
3686 return;
3687 }
3688
3689 pc = lookup_page_cgroup(page);
3690 lock_page_cgroup(pc);
3691 pc->mem_cgroup = memcg;
3692 SetPageCgroupUsed(pc);
3693 unlock_page_cgroup(pc);
3694}
3695
3696void __memcg_kmem_uncharge_pages(struct page *page, int order)
3697{
3698 struct mem_cgroup *memcg = NULL;
3699 struct page_cgroup *pc;
3700
3701
3702 pc = lookup_page_cgroup(page);
3703 /*
3704 * Fast unlocked return. Theoretically might have changed, have to
3705 * check again after locking.
3706 */
3707 if (!PageCgroupUsed(pc))
3708 return;
3709
3710 lock_page_cgroup(pc);
3711 if (PageCgroupUsed(pc)) {
3712 memcg = pc->mem_cgroup;
3713 ClearPageCgroupUsed(pc);
3714 }
3715 unlock_page_cgroup(pc);
3716
3717 /*
3718 * We trust that only if there is a memcg associated with the page, it
3719 * is a valid allocation
3720 */
3721 if (!memcg)
3722 return;
3723
3724 VM_BUG_ON(mem_cgroup_is_root(memcg));
3725 memcg_uncharge_kmem(memcg, PAGE_SIZE << order);
7ae1e1d0 3726}
1f458cbf
GC
3727#else
3728static inline void mem_cgroup_destroy_all_caches(struct mem_cgroup *memcg)
3729{
3730}
7ae1e1d0
GC
3731#endif /* CONFIG_MEMCG_KMEM */
3732
ca3e0214
KH
3733#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3734
a0db00fc 3735#define PCGF_NOCOPY_AT_SPLIT (1 << PCG_LOCK | 1 << PCG_MIGRATION)
ca3e0214
KH
3736/*
3737 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
3738 * zone->lru_lock, 'splitting on pmd' and compound_lock.
3739 * charge/uncharge will be never happen and move_account() is done under
3740 * compound_lock(), so we don't have to take care of races.
ca3e0214 3741 */
e94c8a9c 3742void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214
KH
3743{
3744 struct page_cgroup *head_pc = lookup_page_cgroup(head);
e94c8a9c 3745 struct page_cgroup *pc;
b070e65c 3746 struct mem_cgroup *memcg;
e94c8a9c 3747 int i;
ca3e0214 3748
3d37c4a9
KH
3749 if (mem_cgroup_disabled())
3750 return;
b070e65c
DR
3751
3752 memcg = head_pc->mem_cgroup;
e94c8a9c
KH
3753 for (i = 1; i < HPAGE_PMD_NR; i++) {
3754 pc = head_pc + i;
b070e65c 3755 pc->mem_cgroup = memcg;
e94c8a9c 3756 smp_wmb();/* see __commit_charge() */
e94c8a9c
KH
3757 pc->flags = head_pc->flags & ~PCGF_NOCOPY_AT_SPLIT;
3758 }
b070e65c
DR
3759 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
3760 HPAGE_PMD_NR);
ca3e0214 3761}
12d27107 3762#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 3763
f817ed48 3764/**
de3638d9 3765 * mem_cgroup_move_account - move account of the page
5564e88b 3766 * @page: the page
7ec99d62 3767 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
3768 * @pc: page_cgroup of the page.
3769 * @from: mem_cgroup which the page is moved from.
3770 * @to: mem_cgroup which the page is moved to. @from != @to.
3771 *
3772 * The caller must confirm following.
08e552c6 3773 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 3774 * - compound_lock is held when nr_pages > 1
f817ed48 3775 *
2f3479b1
KH
3776 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
3777 * from old cgroup.
f817ed48 3778 */
7ec99d62
JW
3779static int mem_cgroup_move_account(struct page *page,
3780 unsigned int nr_pages,
3781 struct page_cgroup *pc,
3782 struct mem_cgroup *from,
2f3479b1 3783 struct mem_cgroup *to)
f817ed48 3784{
de3638d9
JW
3785 unsigned long flags;
3786 int ret;
b2402857 3787 bool anon = PageAnon(page);
987eba66 3788
f817ed48 3789 VM_BUG_ON(from == to);
5564e88b 3790 VM_BUG_ON(PageLRU(page));
de3638d9
JW
3791 /*
3792 * The page is isolated from LRU. So, collapse function
3793 * will not handle this page. But page splitting can happen.
3794 * Do this check under compound_page_lock(). The caller should
3795 * hold it.
3796 */
3797 ret = -EBUSY;
7ec99d62 3798 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
3799 goto out;
3800
3801 lock_page_cgroup(pc);
3802
3803 ret = -EINVAL;
3804 if (!PageCgroupUsed(pc) || pc->mem_cgroup != from)
3805 goto unlock;
3806
312734c0 3807 move_lock_mem_cgroup(from, &flags);
f817ed48 3808
2ff76f11 3809 if (!anon && page_mapped(page)) {
c62b1a3b
KH
3810 /* Update mapped_file data for mem_cgroup */
3811 preempt_disable();
3812 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3813 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
3814 preempt_enable();
d69b042f 3815 }
b070e65c 3816 mem_cgroup_charge_statistics(from, page, anon, -nr_pages);
d69b042f 3817
854ffa8d 3818 /* caller should have done css_get */
08e552c6 3819 pc->mem_cgroup = to;
b070e65c 3820 mem_cgroup_charge_statistics(to, page, anon, nr_pages);
312734c0 3821 move_unlock_mem_cgroup(from, &flags);
de3638d9
JW
3822 ret = 0;
3823unlock:
57f9fd7d 3824 unlock_page_cgroup(pc);
d2265e6f
KH
3825 /*
3826 * check events
3827 */
5564e88b
JW
3828 memcg_check_events(to, page);
3829 memcg_check_events(from, page);
de3638d9 3830out:
f817ed48
KH
3831 return ret;
3832}
3833
2ef37d3f
MH
3834/**
3835 * mem_cgroup_move_parent - moves page to the parent group
3836 * @page: the page to move
3837 * @pc: page_cgroup of the page
3838 * @child: page's cgroup
3839 *
3840 * move charges to its parent or the root cgroup if the group has no
3841 * parent (aka use_hierarchy==0).
3842 * Although this might fail (get_page_unless_zero, isolate_lru_page or
3843 * mem_cgroup_move_account fails) the failure is always temporary and
3844 * it signals a race with a page removal/uncharge or migration. In the
3845 * first case the page is on the way out and it will vanish from the LRU
3846 * on the next attempt and the call should be retried later.
3847 * Isolation from the LRU fails only if page has been isolated from
3848 * the LRU since we looked at it and that usually means either global
3849 * reclaim or migration going on. The page will either get back to the
3850 * LRU or vanish.
3851 * Finaly mem_cgroup_move_account fails only if the page got uncharged
3852 * (!PageCgroupUsed) or moved to a different group. The page will
3853 * disappear in the next attempt.
f817ed48 3854 */
5564e88b
JW
3855static int mem_cgroup_move_parent(struct page *page,
3856 struct page_cgroup *pc,
6068bf01 3857 struct mem_cgroup *child)
f817ed48 3858{
f817ed48 3859 struct mem_cgroup *parent;
7ec99d62 3860 unsigned int nr_pages;
4be4489f 3861 unsigned long uninitialized_var(flags);
f817ed48
KH
3862 int ret;
3863
d8423011 3864 VM_BUG_ON(mem_cgroup_is_root(child));
f817ed48 3865
57f9fd7d
DN
3866 ret = -EBUSY;
3867 if (!get_page_unless_zero(page))
3868 goto out;
3869 if (isolate_lru_page(page))
3870 goto put;
52dbb905 3871
7ec99d62 3872 nr_pages = hpage_nr_pages(page);
08e552c6 3873
cc926f78
KH
3874 parent = parent_mem_cgroup(child);
3875 /*
3876 * If no parent, move charges to root cgroup.
3877 */
3878 if (!parent)
3879 parent = root_mem_cgroup;
f817ed48 3880
2ef37d3f
MH
3881 if (nr_pages > 1) {
3882 VM_BUG_ON(!PageTransHuge(page));
987eba66 3883 flags = compound_lock_irqsave(page);
2ef37d3f 3884 }
987eba66 3885
cc926f78 3886 ret = mem_cgroup_move_account(page, nr_pages,
2f3479b1 3887 pc, child, parent);
cc926f78
KH
3888 if (!ret)
3889 __mem_cgroup_cancel_local_charge(child, nr_pages);
8dba474f 3890
7ec99d62 3891 if (nr_pages > 1)
987eba66 3892 compound_unlock_irqrestore(page, flags);
08e552c6 3893 putback_lru_page(page);
57f9fd7d 3894put:
40d58138 3895 put_page(page);
57f9fd7d 3896out:
f817ed48
KH
3897 return ret;
3898}
3899
7a81b88c
KH
3900/*
3901 * Charge the memory controller for page usage.
3902 * Return
3903 * 0 if the charge was successful
3904 * < 0 if the cgroup is over its limit
3905 */
3906static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
73045c47 3907 gfp_t gfp_mask, enum charge_type ctype)
7a81b88c 3908{
c0ff4b85 3909 struct mem_cgroup *memcg = NULL;
7ec99d62 3910 unsigned int nr_pages = 1;
8493ae43 3911 bool oom = true;
7a81b88c 3912 int ret;
ec168510 3913
37c2ac78 3914 if (PageTransHuge(page)) {
7ec99d62 3915 nr_pages <<= compound_order(page);
37c2ac78 3916 VM_BUG_ON(!PageTransHuge(page));
8493ae43
JW
3917 /*
3918 * Never OOM-kill a process for a huge page. The
3919 * fault handler will fall back to regular pages.
3920 */
3921 oom = false;
37c2ac78 3922 }
7a81b88c 3923
c0ff4b85 3924 ret = __mem_cgroup_try_charge(mm, gfp_mask, nr_pages, &memcg, oom);
38c5d72f 3925 if (ret == -ENOMEM)
7a81b88c 3926 return ret;
ce587e65 3927 __mem_cgroup_commit_charge(memcg, page, nr_pages, ctype, false);
8a9f3ccd 3928 return 0;
8a9f3ccd
BS
3929}
3930
7a81b88c
KH
3931int mem_cgroup_newpage_charge(struct page *page,
3932 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 3933{
f8d66542 3934 if (mem_cgroup_disabled())
cede86ac 3935 return 0;
7a0524cf
JW
3936 VM_BUG_ON(page_mapped(page));
3937 VM_BUG_ON(page->mapping && !PageAnon(page));
3938 VM_BUG_ON(!mm);
217bc319 3939 return mem_cgroup_charge_common(page, mm, gfp_mask,
41326c17 3940 MEM_CGROUP_CHARGE_TYPE_ANON);
217bc319
KH
3941}
3942
54595fe2
KH
3943/*
3944 * While swap-in, try_charge -> commit or cancel, the page is locked.
3945 * And when try_charge() successfully returns, one refcnt to memcg without
21ae2956 3946 * struct page_cgroup is acquired. This refcnt will be consumed by
54595fe2
KH
3947 * "commit()" or removed by "cancel()"
3948 */
0435a2fd
JW
3949static int __mem_cgroup_try_charge_swapin(struct mm_struct *mm,
3950 struct page *page,
3951 gfp_t mask,
3952 struct mem_cgroup **memcgp)
8c7c6e34 3953{
c0ff4b85 3954 struct mem_cgroup *memcg;
90deb788 3955 struct page_cgroup *pc;
54595fe2 3956 int ret;
8c7c6e34 3957
90deb788
JW
3958 pc = lookup_page_cgroup(page);
3959 /*
3960 * Every swap fault against a single page tries to charge the
3961 * page, bail as early as possible. shmem_unuse() encounters
3962 * already charged pages, too. The USED bit is protected by
3963 * the page lock, which serializes swap cache removal, which
3964 * in turn serializes uncharging.
3965 */
3966 if (PageCgroupUsed(pc))
3967 return 0;
8c7c6e34
KH
3968 if (!do_swap_account)
3969 goto charge_cur_mm;
c0ff4b85
R
3970 memcg = try_get_mem_cgroup_from_page(page);
3971 if (!memcg)
54595fe2 3972 goto charge_cur_mm;
72835c86
JW
3973 *memcgp = memcg;
3974 ret = __mem_cgroup_try_charge(NULL, mask, 1, memcgp, true);
c0ff4b85 3975 css_put(&memcg->css);
38c5d72f
KH
3976 if (ret == -EINTR)
3977 ret = 0;
54595fe2 3978 return ret;
8c7c6e34 3979charge_cur_mm:
38c5d72f
KH
3980 ret = __mem_cgroup_try_charge(mm, mask, 1, memcgp, true);
3981 if (ret == -EINTR)
3982 ret = 0;
3983 return ret;
8c7c6e34
KH
3984}
3985
0435a2fd
JW
3986int mem_cgroup_try_charge_swapin(struct mm_struct *mm, struct page *page,
3987 gfp_t gfp_mask, struct mem_cgroup **memcgp)
3988{
3989 *memcgp = NULL;
3990 if (mem_cgroup_disabled())
3991 return 0;
bdf4f4d2
JW
3992 /*
3993 * A racing thread's fault, or swapoff, may have already
3994 * updated the pte, and even removed page from swap cache: in
3995 * those cases unuse_pte()'s pte_same() test will fail; but
3996 * there's also a KSM case which does need to charge the page.
3997 */
3998 if (!PageSwapCache(page)) {
3999 int ret;
4000
4001 ret = __mem_cgroup_try_charge(mm, gfp_mask, 1, memcgp, true);
4002 if (ret == -EINTR)
4003 ret = 0;
4004 return ret;
4005 }
0435a2fd
JW
4006 return __mem_cgroup_try_charge_swapin(mm, page, gfp_mask, memcgp);
4007}
4008
827a03d2
JW
4009void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *memcg)
4010{
4011 if (mem_cgroup_disabled())
4012 return;
4013 if (!memcg)
4014 return;
4015 __mem_cgroup_cancel_charge(memcg, 1);
4016}
4017
83aae4c7 4018static void
72835c86 4019__mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *memcg,
83aae4c7 4020 enum charge_type ctype)
7a81b88c 4021{
f8d66542 4022 if (mem_cgroup_disabled())
7a81b88c 4023 return;
72835c86 4024 if (!memcg)
7a81b88c 4025 return;
5a6475a4 4026
ce587e65 4027 __mem_cgroup_commit_charge(memcg, page, 1, ctype, true);
8c7c6e34
KH
4028 /*
4029 * Now swap is on-memory. This means this page may be
4030 * counted both as mem and swap....double count.
03f3c433
KH
4031 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
4032 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
4033 * may call delete_from_swap_cache() before reach here.
8c7c6e34 4034 */
03f3c433 4035 if (do_swap_account && PageSwapCache(page)) {
8c7c6e34 4036 swp_entry_t ent = {.val = page_private(page)};
86493009 4037 mem_cgroup_uncharge_swap(ent);
8c7c6e34 4038 }
7a81b88c
KH
4039}
4040
72835c86
JW
4041void mem_cgroup_commit_charge_swapin(struct page *page,
4042 struct mem_cgroup *memcg)
83aae4c7 4043{
72835c86 4044 __mem_cgroup_commit_charge_swapin(page, memcg,
41326c17 4045 MEM_CGROUP_CHARGE_TYPE_ANON);
83aae4c7
DN
4046}
4047
827a03d2
JW
4048int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
4049 gfp_t gfp_mask)
7a81b88c 4050{
827a03d2
JW
4051 struct mem_cgroup *memcg = NULL;
4052 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
4053 int ret;
4054
f8d66542 4055 if (mem_cgroup_disabled())
827a03d2
JW
4056 return 0;
4057 if (PageCompound(page))
4058 return 0;
4059
827a03d2
JW
4060 if (!PageSwapCache(page))
4061 ret = mem_cgroup_charge_common(page, mm, gfp_mask, type);
4062 else { /* page is swapcache/shmem */
0435a2fd
JW
4063 ret = __mem_cgroup_try_charge_swapin(mm, page,
4064 gfp_mask, &memcg);
827a03d2
JW
4065 if (!ret)
4066 __mem_cgroup_commit_charge_swapin(page, memcg, type);
4067 }
4068 return ret;
7a81b88c
KH
4069}
4070
c0ff4b85 4071static void mem_cgroup_do_uncharge(struct mem_cgroup *memcg,
7ec99d62
JW
4072 unsigned int nr_pages,
4073 const enum charge_type ctype)
569b846d
KH
4074{
4075 struct memcg_batch_info *batch = NULL;
4076 bool uncharge_memsw = true;
7ec99d62 4077
569b846d
KH
4078 /* If swapout, usage of swap doesn't decrease */
4079 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
4080 uncharge_memsw = false;
569b846d
KH
4081
4082 batch = &current->memcg_batch;
4083 /*
4084 * In usual, we do css_get() when we remember memcg pointer.
4085 * But in this case, we keep res->usage until end of a series of
4086 * uncharges. Then, it's ok to ignore memcg's refcnt.
4087 */
4088 if (!batch->memcg)
c0ff4b85 4089 batch->memcg = memcg;
3c11ecf4
KH
4090 /*
4091 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
25985edc 4092 * In those cases, all pages freed continuously can be expected to be in
3c11ecf4
KH
4093 * the same cgroup and we have chance to coalesce uncharges.
4094 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
4095 * because we want to do uncharge as soon as possible.
4096 */
4097
4098 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
4099 goto direct_uncharge;
4100
7ec99d62 4101 if (nr_pages > 1)
ec168510
AA
4102 goto direct_uncharge;
4103
569b846d
KH
4104 /*
4105 * In typical case, batch->memcg == mem. This means we can
4106 * merge a series of uncharges to an uncharge of res_counter.
4107 * If not, we uncharge res_counter ony by one.
4108 */
c0ff4b85 4109 if (batch->memcg != memcg)
569b846d
KH
4110 goto direct_uncharge;
4111 /* remember freed charge and uncharge it later */
7ffd4ca7 4112 batch->nr_pages++;
569b846d 4113 if (uncharge_memsw)
7ffd4ca7 4114 batch->memsw_nr_pages++;
569b846d
KH
4115 return;
4116direct_uncharge:
c0ff4b85 4117 res_counter_uncharge(&memcg->res, nr_pages * PAGE_SIZE);
569b846d 4118 if (uncharge_memsw)
c0ff4b85
R
4119 res_counter_uncharge(&memcg->memsw, nr_pages * PAGE_SIZE);
4120 if (unlikely(batch->memcg != memcg))
4121 memcg_oom_recover(memcg);
569b846d 4122}
7a81b88c 4123
8a9f3ccd 4124/*
69029cd5 4125 * uncharge if !page_mapped(page)
8a9f3ccd 4126 */
8c7c6e34 4127static struct mem_cgroup *
0030f535
JW
4128__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype,
4129 bool end_migration)
8a9f3ccd 4130{
c0ff4b85 4131 struct mem_cgroup *memcg = NULL;
7ec99d62
JW
4132 unsigned int nr_pages = 1;
4133 struct page_cgroup *pc;
b2402857 4134 bool anon;
8a9f3ccd 4135
f8d66542 4136 if (mem_cgroup_disabled())
8c7c6e34 4137 return NULL;
4077960e 4138
37c2ac78 4139 if (PageTransHuge(page)) {
7ec99d62 4140 nr_pages <<= compound_order(page);
37c2ac78
AA
4141 VM_BUG_ON(!PageTransHuge(page));
4142 }
8697d331 4143 /*
3c541e14 4144 * Check if our page_cgroup is valid
8697d331 4145 */
52d4b9ac 4146 pc = lookup_page_cgroup(page);
cfa44946 4147 if (unlikely(!PageCgroupUsed(pc)))
8c7c6e34 4148 return NULL;
b9c565d5 4149
52d4b9ac 4150 lock_page_cgroup(pc);
d13d1443 4151
c0ff4b85 4152 memcg = pc->mem_cgroup;
8c7c6e34 4153
d13d1443
KH
4154 if (!PageCgroupUsed(pc))
4155 goto unlock_out;
4156
b2402857
KH
4157 anon = PageAnon(page);
4158
d13d1443 4159 switch (ctype) {
41326c17 4160 case MEM_CGROUP_CHARGE_TYPE_ANON:
2ff76f11
KH
4161 /*
4162 * Generally PageAnon tells if it's the anon statistics to be
4163 * updated; but sometimes e.g. mem_cgroup_uncharge_page() is
4164 * used before page reached the stage of being marked PageAnon.
4165 */
b2402857
KH
4166 anon = true;
4167 /* fallthrough */
8a9478ca 4168 case MEM_CGROUP_CHARGE_TYPE_DROP:
ac39cf8c 4169 /* See mem_cgroup_prepare_migration() */
0030f535
JW
4170 if (page_mapped(page))
4171 goto unlock_out;
4172 /*
4173 * Pages under migration may not be uncharged. But
4174 * end_migration() /must/ be the one uncharging the
4175 * unused post-migration page and so it has to call
4176 * here with the migration bit still set. See the
4177 * res_counter handling below.
4178 */
4179 if (!end_migration && PageCgroupMigration(pc))
d13d1443
KH
4180 goto unlock_out;
4181 break;
4182 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
4183 if (!PageAnon(page)) { /* Shared memory */
4184 if (page->mapping && !page_is_file_cache(page))
4185 goto unlock_out;
4186 } else if (page_mapped(page)) /* Anon */
4187 goto unlock_out;
4188 break;
4189 default:
4190 break;
52d4b9ac 4191 }
d13d1443 4192
b070e65c 4193 mem_cgroup_charge_statistics(memcg, page, anon, -nr_pages);
04046e1a 4194
52d4b9ac 4195 ClearPageCgroupUsed(pc);
544122e5
KH
4196 /*
4197 * pc->mem_cgroup is not cleared here. It will be accessed when it's
4198 * freed from LRU. This is safe because uncharged page is expected not
4199 * to be reused (freed soon). Exception is SwapCache, it's handled by
4200 * special functions.
4201 */
b9c565d5 4202
52d4b9ac 4203 unlock_page_cgroup(pc);
f75ca962 4204 /*
c0ff4b85 4205 * even after unlock, we have memcg->res.usage here and this memcg
f75ca962
KH
4206 * will never be freed.
4207 */
c0ff4b85 4208 memcg_check_events(memcg, page);
f75ca962 4209 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
c0ff4b85
R
4210 mem_cgroup_swap_statistics(memcg, true);
4211 mem_cgroup_get(memcg);
f75ca962 4212 }
0030f535
JW
4213 /*
4214 * Migration does not charge the res_counter for the
4215 * replacement page, so leave it alone when phasing out the
4216 * page that is unused after the migration.
4217 */
4218 if (!end_migration && !mem_cgroup_is_root(memcg))
c0ff4b85 4219 mem_cgroup_do_uncharge(memcg, nr_pages, ctype);
6d12e2d8 4220
c0ff4b85 4221 return memcg;
d13d1443
KH
4222
4223unlock_out:
4224 unlock_page_cgroup(pc);
8c7c6e34 4225 return NULL;
3c541e14
BS
4226}
4227
69029cd5
KH
4228void mem_cgroup_uncharge_page(struct page *page)
4229{
52d4b9ac
KH
4230 /* early check. */
4231 if (page_mapped(page))
4232 return;
40f23a21 4233 VM_BUG_ON(page->mapping && !PageAnon(page));
28ccddf7
JW
4234 /*
4235 * If the page is in swap cache, uncharge should be deferred
4236 * to the swap path, which also properly accounts swap usage
4237 * and handles memcg lifetime.
4238 *
4239 * Note that this check is not stable and reclaim may add the
4240 * page to swap cache at any time after this. However, if the
4241 * page is not in swap cache by the time page->mapcount hits
4242 * 0, there won't be any page table references to the swap
4243 * slot, and reclaim will free it and not actually write the
4244 * page to disk.
4245 */
0c59b89c
JW
4246 if (PageSwapCache(page))
4247 return;
0030f535 4248 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_ANON, false);
69029cd5
KH
4249}
4250
4251void mem_cgroup_uncharge_cache_page(struct page *page)
4252{
4253 VM_BUG_ON(page_mapped(page));
b7abea96 4254 VM_BUG_ON(page->mapping);
0030f535 4255 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE, false);
69029cd5
KH
4256}
4257
569b846d
KH
4258/*
4259 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
4260 * In that cases, pages are freed continuously and we can expect pages
4261 * are in the same memcg. All these calls itself limits the number of
4262 * pages freed at once, then uncharge_start/end() is called properly.
4263 * This may be called prural(2) times in a context,
4264 */
4265
4266void mem_cgroup_uncharge_start(void)
4267{
4268 current->memcg_batch.do_batch++;
4269 /* We can do nest. */
4270 if (current->memcg_batch.do_batch == 1) {
4271 current->memcg_batch.memcg = NULL;
7ffd4ca7
JW
4272 current->memcg_batch.nr_pages = 0;
4273 current->memcg_batch.memsw_nr_pages = 0;
569b846d
KH
4274 }
4275}
4276
4277void mem_cgroup_uncharge_end(void)
4278{
4279 struct memcg_batch_info *batch = &current->memcg_batch;
4280
4281 if (!batch->do_batch)
4282 return;
4283
4284 batch->do_batch--;
4285 if (batch->do_batch) /* If stacked, do nothing. */
4286 return;
4287
4288 if (!batch->memcg)
4289 return;
4290 /*
4291 * This "batch->memcg" is valid without any css_get/put etc...
4292 * bacause we hide charges behind us.
4293 */
7ffd4ca7
JW
4294 if (batch->nr_pages)
4295 res_counter_uncharge(&batch->memcg->res,
4296 batch->nr_pages * PAGE_SIZE);
4297 if (batch->memsw_nr_pages)
4298 res_counter_uncharge(&batch->memcg->memsw,
4299 batch->memsw_nr_pages * PAGE_SIZE);
3c11ecf4 4300 memcg_oom_recover(batch->memcg);
569b846d
KH
4301 /* forget this pointer (for sanity check) */
4302 batch->memcg = NULL;
4303}
4304
e767e056 4305#ifdef CONFIG_SWAP
8c7c6e34 4306/*
e767e056 4307 * called after __delete_from_swap_cache() and drop "page" account.
8c7c6e34
KH
4308 * memcg information is recorded to swap_cgroup of "ent"
4309 */
8a9478ca
KH
4310void
4311mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
8c7c6e34
KH
4312{
4313 struct mem_cgroup *memcg;
8a9478ca
KH
4314 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
4315
4316 if (!swapout) /* this was a swap cache but the swap is unused ! */
4317 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
4318
0030f535 4319 memcg = __mem_cgroup_uncharge_common(page, ctype, false);
8c7c6e34 4320
f75ca962
KH
4321 /*
4322 * record memcg information, if swapout && memcg != NULL,
4323 * mem_cgroup_get() was called in uncharge().
4324 */
4325 if (do_swap_account && swapout && memcg)
a3b2d692 4326 swap_cgroup_record(ent, css_id(&memcg->css));
8c7c6e34 4327}
e767e056 4328#endif
8c7c6e34 4329
c255a458 4330#ifdef CONFIG_MEMCG_SWAP
8c7c6e34
KH
4331/*
4332 * called from swap_entry_free(). remove record in swap_cgroup and
4333 * uncharge "memsw" account.
4334 */
4335void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 4336{
8c7c6e34 4337 struct mem_cgroup *memcg;
a3b2d692 4338 unsigned short id;
8c7c6e34
KH
4339
4340 if (!do_swap_account)
4341 return;
4342
a3b2d692
KH
4343 id = swap_cgroup_record(ent, 0);
4344 rcu_read_lock();
4345 memcg = mem_cgroup_lookup(id);
8c7c6e34 4346 if (memcg) {
a3b2d692
KH
4347 /*
4348 * We uncharge this because swap is freed.
4349 * This memcg can be obsolete one. We avoid calling css_tryget
4350 */
0c3e73e8 4351 if (!mem_cgroup_is_root(memcg))
4e649152 4352 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
0c3e73e8 4353 mem_cgroup_swap_statistics(memcg, false);
8c7c6e34
KH
4354 mem_cgroup_put(memcg);
4355 }
a3b2d692 4356 rcu_read_unlock();
d13d1443 4357}
02491447
DN
4358
4359/**
4360 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
4361 * @entry: swap entry to be moved
4362 * @from: mem_cgroup which the entry is moved from
4363 * @to: mem_cgroup which the entry is moved to
4364 *
4365 * It succeeds only when the swap_cgroup's record for this entry is the same
4366 * as the mem_cgroup's id of @from.
4367 *
4368 * Returns 0 on success, -EINVAL on failure.
4369 *
4370 * The caller must have charged to @to, IOW, called res_counter_charge() about
4371 * both res and memsw, and called css_get().
4372 */
4373static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4374 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4375{
4376 unsigned short old_id, new_id;
4377
4378 old_id = css_id(&from->css);
4379 new_id = css_id(&to->css);
4380
4381 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 4382 mem_cgroup_swap_statistics(from, false);
483c30b5 4383 mem_cgroup_swap_statistics(to, true);
02491447 4384 /*
483c30b5
DN
4385 * This function is only called from task migration context now.
4386 * It postpones res_counter and refcount handling till the end
4387 * of task migration(mem_cgroup_clear_mc()) for performance
4388 * improvement. But we cannot postpone mem_cgroup_get(to)
4389 * because if the process that has been moved to @to does
4390 * swap-in, the refcount of @to might be decreased to 0.
02491447 4391 */
02491447 4392 mem_cgroup_get(to);
02491447
DN
4393 return 0;
4394 }
4395 return -EINVAL;
4396}
4397#else
4398static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 4399 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
4400{
4401 return -EINVAL;
4402}
8c7c6e34 4403#endif
d13d1443 4404
ae41be37 4405/*
01b1ae63
KH
4406 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
4407 * page belongs to.
ae41be37 4408 */
0030f535
JW
4409void mem_cgroup_prepare_migration(struct page *page, struct page *newpage,
4410 struct mem_cgroup **memcgp)
ae41be37 4411{
c0ff4b85 4412 struct mem_cgroup *memcg = NULL;
b32967ff 4413 unsigned int nr_pages = 1;
7ec99d62 4414 struct page_cgroup *pc;
ac39cf8c 4415 enum charge_type ctype;
8869b8f6 4416
72835c86 4417 *memcgp = NULL;
56039efa 4418
f8d66542 4419 if (mem_cgroup_disabled())
0030f535 4420 return;
4077960e 4421
b32967ff
MG
4422 if (PageTransHuge(page))
4423 nr_pages <<= compound_order(page);
4424
52d4b9ac
KH
4425 pc = lookup_page_cgroup(page);
4426 lock_page_cgroup(pc);
4427 if (PageCgroupUsed(pc)) {
c0ff4b85
R
4428 memcg = pc->mem_cgroup;
4429 css_get(&memcg->css);
ac39cf8c 4430 /*
4431 * At migrating an anonymous page, its mapcount goes down
4432 * to 0 and uncharge() will be called. But, even if it's fully
4433 * unmapped, migration may fail and this page has to be
4434 * charged again. We set MIGRATION flag here and delay uncharge
4435 * until end_migration() is called
4436 *
4437 * Corner Case Thinking
4438 * A)
4439 * When the old page was mapped as Anon and it's unmap-and-freed
4440 * while migration was ongoing.
4441 * If unmap finds the old page, uncharge() of it will be delayed
4442 * until end_migration(). If unmap finds a new page, it's
4443 * uncharged when it make mapcount to be 1->0. If unmap code
4444 * finds swap_migration_entry, the new page will not be mapped
4445 * and end_migration() will find it(mapcount==0).
4446 *
4447 * B)
4448 * When the old page was mapped but migraion fails, the kernel
4449 * remaps it. A charge for it is kept by MIGRATION flag even
4450 * if mapcount goes down to 0. We can do remap successfully
4451 * without charging it again.
4452 *
4453 * C)
4454 * The "old" page is under lock_page() until the end of
4455 * migration, so, the old page itself will not be swapped-out.
4456 * If the new page is swapped out before end_migraton, our
4457 * hook to usual swap-out path will catch the event.
4458 */
4459 if (PageAnon(page))
4460 SetPageCgroupMigration(pc);
e8589cc1 4461 }
52d4b9ac 4462 unlock_page_cgroup(pc);
ac39cf8c 4463 /*
4464 * If the page is not charged at this point,
4465 * we return here.
4466 */
c0ff4b85 4467 if (!memcg)
0030f535 4468 return;
01b1ae63 4469
72835c86 4470 *memcgp = memcg;
ac39cf8c 4471 /*
4472 * We charge new page before it's used/mapped. So, even if unlock_page()
4473 * is called before end_migration, we can catch all events on this new
4474 * page. In the case new page is migrated but not remapped, new page's
4475 * mapcount will be finally 0 and we call uncharge in end_migration().
4476 */
ac39cf8c 4477 if (PageAnon(page))
41326c17 4478 ctype = MEM_CGROUP_CHARGE_TYPE_ANON;
ac39cf8c 4479 else
62ba7442 4480 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
0030f535
JW
4481 /*
4482 * The page is committed to the memcg, but it's not actually
4483 * charged to the res_counter since we plan on replacing the
4484 * old one and only one page is going to be left afterwards.
4485 */
b32967ff 4486 __mem_cgroup_commit_charge(memcg, newpage, nr_pages, ctype, false);
ae41be37 4487}
8869b8f6 4488
69029cd5 4489/* remove redundant charge if migration failed*/
c0ff4b85 4490void mem_cgroup_end_migration(struct mem_cgroup *memcg,
50de1dd9 4491 struct page *oldpage, struct page *newpage, bool migration_ok)
ae41be37 4492{
ac39cf8c 4493 struct page *used, *unused;
01b1ae63 4494 struct page_cgroup *pc;
b2402857 4495 bool anon;
01b1ae63 4496
c0ff4b85 4497 if (!memcg)
01b1ae63 4498 return;
b25ed609 4499
50de1dd9 4500 if (!migration_ok) {
ac39cf8c 4501 used = oldpage;
4502 unused = newpage;
01b1ae63 4503 } else {
ac39cf8c 4504 used = newpage;
01b1ae63
KH
4505 unused = oldpage;
4506 }
0030f535 4507 anon = PageAnon(used);
7d188958
JW
4508 __mem_cgroup_uncharge_common(unused,
4509 anon ? MEM_CGROUP_CHARGE_TYPE_ANON
4510 : MEM_CGROUP_CHARGE_TYPE_CACHE,
4511 true);
0030f535 4512 css_put(&memcg->css);
69029cd5 4513 /*
ac39cf8c 4514 * We disallowed uncharge of pages under migration because mapcount
4515 * of the page goes down to zero, temporarly.
4516 * Clear the flag and check the page should be charged.
01b1ae63 4517 */
ac39cf8c 4518 pc = lookup_page_cgroup(oldpage);
4519 lock_page_cgroup(pc);
4520 ClearPageCgroupMigration(pc);
4521 unlock_page_cgroup(pc);
ac39cf8c 4522
01b1ae63 4523 /*
ac39cf8c 4524 * If a page is a file cache, radix-tree replacement is very atomic
4525 * and we can skip this check. When it was an Anon page, its mapcount
4526 * goes down to 0. But because we added MIGRATION flage, it's not
4527 * uncharged yet. There are several case but page->mapcount check
4528 * and USED bit check in mem_cgroup_uncharge_page() will do enough
4529 * check. (see prepare_charge() also)
69029cd5 4530 */
b2402857 4531 if (anon)
ac39cf8c 4532 mem_cgroup_uncharge_page(used);
ae41be37 4533}
78fb7466 4534
ab936cbc
KH
4535/*
4536 * At replace page cache, newpage is not under any memcg but it's on
4537 * LRU. So, this function doesn't touch res_counter but handles LRU
4538 * in correct way. Both pages are locked so we cannot race with uncharge.
4539 */
4540void mem_cgroup_replace_page_cache(struct page *oldpage,
4541 struct page *newpage)
4542{
bde05d1c 4543 struct mem_cgroup *memcg = NULL;
ab936cbc 4544 struct page_cgroup *pc;
ab936cbc 4545 enum charge_type type = MEM_CGROUP_CHARGE_TYPE_CACHE;
ab936cbc
KH
4546
4547 if (mem_cgroup_disabled())
4548 return;
4549
4550 pc = lookup_page_cgroup(oldpage);
4551 /* fix accounting on old pages */
4552 lock_page_cgroup(pc);
bde05d1c
HD
4553 if (PageCgroupUsed(pc)) {
4554 memcg = pc->mem_cgroup;
b070e65c 4555 mem_cgroup_charge_statistics(memcg, oldpage, false, -1);
bde05d1c
HD
4556 ClearPageCgroupUsed(pc);
4557 }
ab936cbc
KH
4558 unlock_page_cgroup(pc);
4559
bde05d1c
HD
4560 /*
4561 * When called from shmem_replace_page(), in some cases the
4562 * oldpage has already been charged, and in some cases not.
4563 */
4564 if (!memcg)
4565 return;
ab936cbc
KH
4566 /*
4567 * Even if newpage->mapping was NULL before starting replacement,
4568 * the newpage may be on LRU(or pagevec for LRU) already. We lock
4569 * LRU while we overwrite pc->mem_cgroup.
4570 */
ce587e65 4571 __mem_cgroup_commit_charge(memcg, newpage, 1, type, true);
ab936cbc
KH
4572}
4573
f212ad7c
DN
4574#ifdef CONFIG_DEBUG_VM
4575static struct page_cgroup *lookup_page_cgroup_used(struct page *page)
4576{
4577 struct page_cgroup *pc;
4578
4579 pc = lookup_page_cgroup(page);
cfa44946
JW
4580 /*
4581 * Can be NULL while feeding pages into the page allocator for
4582 * the first time, i.e. during boot or memory hotplug;
4583 * or when mem_cgroup_disabled().
4584 */
f212ad7c
DN
4585 if (likely(pc) && PageCgroupUsed(pc))
4586 return pc;
4587 return NULL;
4588}
4589
4590bool mem_cgroup_bad_page_check(struct page *page)
4591{
4592 if (mem_cgroup_disabled())
4593 return false;
4594
4595 return lookup_page_cgroup_used(page) != NULL;
4596}
4597
4598void mem_cgroup_print_bad_page(struct page *page)
4599{
4600 struct page_cgroup *pc;
4601
4602 pc = lookup_page_cgroup_used(page);
4603 if (pc) {
d045197f
AM
4604 pr_alert("pc:%p pc->flags:%lx pc->mem_cgroup:%p\n",
4605 pc, pc->flags, pc->mem_cgroup);
f212ad7c
DN
4606 }
4607}
4608#endif
4609
d38d2a75 4610static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 4611 unsigned long long val)
628f4235 4612{
81d39c20 4613 int retry_count;
3c11ecf4 4614 u64 memswlimit, memlimit;
628f4235 4615 int ret = 0;
81d39c20
KH
4616 int children = mem_cgroup_count_children(memcg);
4617 u64 curusage, oldusage;
3c11ecf4 4618 int enlarge;
81d39c20
KH
4619
4620 /*
4621 * For keeping hierarchical_reclaim simple, how long we should retry
4622 * is depends on callers. We set our retry-count to be function
4623 * of # of children which we should visit in this loop.
4624 */
4625 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
4626
4627 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
628f4235 4628
3c11ecf4 4629 enlarge = 0;
8c7c6e34 4630 while (retry_count) {
628f4235
KH
4631 if (signal_pending(current)) {
4632 ret = -EINTR;
4633 break;
4634 }
8c7c6e34
KH
4635 /*
4636 * Rather than hide all in some function, I do this in
4637 * open coded manner. You see what this really does.
aaad153e 4638 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4639 */
4640 mutex_lock(&set_limit_mutex);
4641 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4642 if (memswlimit < val) {
4643 ret = -EINVAL;
4644 mutex_unlock(&set_limit_mutex);
628f4235
KH
4645 break;
4646 }
3c11ecf4
KH
4647
4648 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4649 if (memlimit < val)
4650 enlarge = 1;
4651
8c7c6e34 4652 ret = res_counter_set_limit(&memcg->res, val);
22a668d7
KH
4653 if (!ret) {
4654 if (memswlimit == val)
4655 memcg->memsw_is_minimum = true;
4656 else
4657 memcg->memsw_is_minimum = false;
4658 }
8c7c6e34
KH
4659 mutex_unlock(&set_limit_mutex);
4660
4661 if (!ret)
4662 break;
4663
5660048c
JW
4664 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4665 MEM_CGROUP_RECLAIM_SHRINK);
81d39c20
KH
4666 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
4667 /* Usage is reduced ? */
4668 if (curusage >= oldusage)
4669 retry_count--;
4670 else
4671 oldusage = curusage;
8c7c6e34 4672 }
3c11ecf4
KH
4673 if (!ret && enlarge)
4674 memcg_oom_recover(memcg);
14797e23 4675
8c7c6e34
KH
4676 return ret;
4677}
4678
338c8431
LZ
4679static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
4680 unsigned long long val)
8c7c6e34 4681{
81d39c20 4682 int retry_count;
3c11ecf4 4683 u64 memlimit, memswlimit, oldusage, curusage;
81d39c20
KH
4684 int children = mem_cgroup_count_children(memcg);
4685 int ret = -EBUSY;
3c11ecf4 4686 int enlarge = 0;
8c7c6e34 4687
81d39c20
KH
4688 /* see mem_cgroup_resize_res_limit */
4689 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
4690 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
8c7c6e34
KH
4691 while (retry_count) {
4692 if (signal_pending(current)) {
4693 ret = -EINTR;
4694 break;
4695 }
4696 /*
4697 * Rather than hide all in some function, I do this in
4698 * open coded manner. You see what this really does.
aaad153e 4699 * We have to guarantee memcg->res.limit <= memcg->memsw.limit.
8c7c6e34
KH
4700 */
4701 mutex_lock(&set_limit_mutex);
4702 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
4703 if (memlimit > val) {
4704 ret = -EINVAL;
4705 mutex_unlock(&set_limit_mutex);
4706 break;
4707 }
3c11ecf4
KH
4708 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
4709 if (memswlimit < val)
4710 enlarge = 1;
8c7c6e34 4711 ret = res_counter_set_limit(&memcg->memsw, val);
22a668d7
KH
4712 if (!ret) {
4713 if (memlimit == val)
4714 memcg->memsw_is_minimum = true;
4715 else
4716 memcg->memsw_is_minimum = false;
4717 }
8c7c6e34
KH
4718 mutex_unlock(&set_limit_mutex);
4719
4720 if (!ret)
4721 break;
4722
5660048c
JW
4723 mem_cgroup_reclaim(memcg, GFP_KERNEL,
4724 MEM_CGROUP_RECLAIM_NOSWAP |
4725 MEM_CGROUP_RECLAIM_SHRINK);
8c7c6e34 4726 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
81d39c20 4727 /* Usage is reduced ? */
8c7c6e34 4728 if (curusage >= oldusage)
628f4235 4729 retry_count--;
81d39c20
KH
4730 else
4731 oldusage = curusage;
628f4235 4732 }
3c11ecf4
KH
4733 if (!ret && enlarge)
4734 memcg_oom_recover(memcg);
628f4235
KH
4735 return ret;
4736}
4737
4e416953 4738unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
0ae5e89c
YH
4739 gfp_t gfp_mask,
4740 unsigned long *total_scanned)
4e416953
BS
4741{
4742 unsigned long nr_reclaimed = 0;
4743 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
4744 unsigned long reclaimed;
4745 int loop = 0;
4746 struct mem_cgroup_tree_per_zone *mctz;
ef8745c1 4747 unsigned long long excess;
0ae5e89c 4748 unsigned long nr_scanned;
4e416953
BS
4749
4750 if (order > 0)
4751 return 0;
4752
00918b6a 4753 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
4e416953
BS
4754 /*
4755 * This loop can run a while, specially if mem_cgroup's continuously
4756 * keep exceeding their soft limit and putting the system under
4757 * pressure
4758 */
4759 do {
4760 if (next_mz)
4761 mz = next_mz;
4762 else
4763 mz = mem_cgroup_largest_soft_limit_node(mctz);
4764 if (!mz)
4765 break;
4766
0ae5e89c 4767 nr_scanned = 0;
d79154bb 4768 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
5660048c 4769 gfp_mask, &nr_scanned);
4e416953 4770 nr_reclaimed += reclaimed;
0ae5e89c 4771 *total_scanned += nr_scanned;
4e416953
BS
4772 spin_lock(&mctz->lock);
4773
4774 /*
4775 * If we failed to reclaim anything from this memory cgroup
4776 * it is time to move on to the next cgroup
4777 */
4778 next_mz = NULL;
4779 if (!reclaimed) {
4780 do {
4781 /*
4782 * Loop until we find yet another one.
4783 *
4784 * By the time we get the soft_limit lock
4785 * again, someone might have aded the
4786 * group back on the RB tree. Iterate to
4787 * make sure we get a different mem.
4788 * mem_cgroup_largest_soft_limit_node returns
4789 * NULL if no other cgroup is present on
4790 * the tree
4791 */
4792 next_mz =
4793 __mem_cgroup_largest_soft_limit_node(mctz);
39cc98f1 4794 if (next_mz == mz)
d79154bb 4795 css_put(&next_mz->memcg->css);
39cc98f1 4796 else /* next_mz == NULL or other memcg */
4e416953
BS
4797 break;
4798 } while (1);
4799 }
d79154bb
HD
4800 __mem_cgroup_remove_exceeded(mz->memcg, mz, mctz);
4801 excess = res_counter_soft_limit_excess(&mz->memcg->res);
4e416953
BS
4802 /*
4803 * One school of thought says that we should not add
4804 * back the node to the tree if reclaim returns 0.
4805 * But our reclaim could return 0, simply because due
4806 * to priority we are exposing a smaller subset of
4807 * memory to reclaim from. Consider this as a longer
4808 * term TODO.
4809 */
ef8745c1 4810 /* If excess == 0, no tree ops */
d79154bb 4811 __mem_cgroup_insert_exceeded(mz->memcg, mz, mctz, excess);
4e416953 4812 spin_unlock(&mctz->lock);
d79154bb 4813 css_put(&mz->memcg->css);
4e416953
BS
4814 loop++;
4815 /*
4816 * Could not reclaim anything and there are no more
4817 * mem cgroups to try or we seem to be looping without
4818 * reclaiming anything.
4819 */
4820 if (!nr_reclaimed &&
4821 (next_mz == NULL ||
4822 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
4823 break;
4824 } while (!nr_reclaimed);
4825 if (next_mz)
d79154bb 4826 css_put(&next_mz->memcg->css);
4e416953
BS
4827 return nr_reclaimed;
4828}
4829
2ef37d3f
MH
4830/**
4831 * mem_cgroup_force_empty_list - clears LRU of a group
4832 * @memcg: group to clear
4833 * @node: NUMA node
4834 * @zid: zone id
4835 * @lru: lru to to clear
4836 *
3c935d18 4837 * Traverse a specified page_cgroup list and try to drop them all. This doesn't
2ef37d3f
MH
4838 * reclaim the pages page themselves - pages are moved to the parent (or root)
4839 * group.
cc847582 4840 */
2ef37d3f 4841static void mem_cgroup_force_empty_list(struct mem_cgroup *memcg,
08e552c6 4842 int node, int zid, enum lru_list lru)
cc847582 4843{
bea8c150 4844 struct lruvec *lruvec;
2ef37d3f 4845 unsigned long flags;
072c56c1 4846 struct list_head *list;
925b7673
JW
4847 struct page *busy;
4848 struct zone *zone;
072c56c1 4849
08e552c6 4850 zone = &NODE_DATA(node)->node_zones[zid];
bea8c150
HD
4851 lruvec = mem_cgroup_zone_lruvec(zone, memcg);
4852 list = &lruvec->lists[lru];
cc847582 4853
f817ed48 4854 busy = NULL;
2ef37d3f 4855 do {
925b7673 4856 struct page_cgroup *pc;
5564e88b
JW
4857 struct page *page;
4858
08e552c6 4859 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 4860 if (list_empty(list)) {
08e552c6 4861 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 4862 break;
f817ed48 4863 }
925b7673
JW
4864 page = list_entry(list->prev, struct page, lru);
4865 if (busy == page) {
4866 list_move(&page->lru, list);
648bcc77 4867 busy = NULL;
08e552c6 4868 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
4869 continue;
4870 }
08e552c6 4871 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48 4872
925b7673 4873 pc = lookup_page_cgroup(page);
5564e88b 4874
3c935d18 4875 if (mem_cgroup_move_parent(page, pc, memcg)) {
f817ed48 4876 /* found lock contention or "pc" is obsolete. */
925b7673 4877 busy = page;
f817ed48
KH
4878 cond_resched();
4879 } else
4880 busy = NULL;
2ef37d3f 4881 } while (!list_empty(list));
cc847582
KH
4882}
4883
4884/*
c26251f9
MH
4885 * make mem_cgroup's charge to be 0 if there is no task by moving
4886 * all the charges and pages to the parent.
cc847582 4887 * This enables deleting this mem_cgroup.
c26251f9
MH
4888 *
4889 * Caller is responsible for holding css reference on the memcg.
cc847582 4890 */
ab5196c2 4891static void mem_cgroup_reparent_charges(struct mem_cgroup *memcg)
cc847582 4892{
c26251f9 4893 int node, zid;
bea207c8 4894 u64 usage;
f817ed48 4895
fce66477 4896 do {
52d4b9ac
KH
4897 /* This is for making all *used* pages to be on LRU. */
4898 lru_add_drain_all();
c0ff4b85 4899 drain_all_stock_sync(memcg);
c0ff4b85 4900 mem_cgroup_start_move(memcg);
31aaea4a 4901 for_each_node_state(node, N_MEMORY) {
2ef37d3f 4902 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
f156ab93
HD
4903 enum lru_list lru;
4904 for_each_lru(lru) {
2ef37d3f 4905 mem_cgroup_force_empty_list(memcg,
f156ab93 4906 node, zid, lru);
f817ed48 4907 }
1ecaab2b 4908 }
f817ed48 4909 }
c0ff4b85
R
4910 mem_cgroup_end_move(memcg);
4911 memcg_oom_recover(memcg);
52d4b9ac 4912 cond_resched();
f817ed48 4913
2ef37d3f 4914 /*
bea207c8
GC
4915 * Kernel memory may not necessarily be trackable to a specific
4916 * process. So they are not migrated, and therefore we can't
4917 * expect their value to drop to 0 here.
4918 * Having res filled up with kmem only is enough.
4919 *
2ef37d3f
MH
4920 * This is a safety check because mem_cgroup_force_empty_list
4921 * could have raced with mem_cgroup_replace_page_cache callers
4922 * so the lru seemed empty but the page could have been added
4923 * right after the check. RES_USAGE should be safe as we always
4924 * charge before adding to the LRU.
4925 */
bea207c8
GC
4926 usage = res_counter_read_u64(&memcg->res, RES_USAGE) -
4927 res_counter_read_u64(&memcg->kmem, RES_USAGE);
4928 } while (usage > 0);
c26251f9
MH
4929}
4930
b5f99b53
GC
4931/*
4932 * This mainly exists for tests during the setting of set of use_hierarchy.
4933 * Since this is the very setting we are changing, the current hierarchy value
4934 * is meaningless
4935 */
4936static inline bool __memcg_has_children(struct mem_cgroup *memcg)
4937{
4938 struct cgroup *pos;
4939
4940 /* bounce at first found */
4941 cgroup_for_each_child(pos, memcg->css.cgroup)
4942 return true;
4943 return false;
4944}
4945
4946/*
0999821b
GC
4947 * Must be called with memcg_create_mutex held, unless the cgroup is guaranteed
4948 * to be already dead (as in mem_cgroup_force_empty, for instance). This is
b5f99b53
GC
4949 * from mem_cgroup_count_children(), in the sense that we don't really care how
4950 * many children we have; we only need to know if we have any. It also counts
4951 * any memcg without hierarchy as infertile.
4952 */
4953static inline bool memcg_has_children(struct mem_cgroup *memcg)
4954{
4955 return memcg->use_hierarchy && __memcg_has_children(memcg);
4956}
4957
c26251f9
MH
4958/*
4959 * Reclaims as many pages from the given memcg as possible and moves
4960 * the rest to the parent.
4961 *
4962 * Caller is responsible for holding css reference for memcg.
4963 */
4964static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
4965{
4966 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
4967 struct cgroup *cgrp = memcg->css.cgroup;
f817ed48 4968
c1e862c1 4969 /* returns EBUSY if there is a task or if we come here twice. */
c26251f9
MH
4970 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
4971 return -EBUSY;
4972
c1e862c1
KH
4973 /* we call try-to-free pages for make this cgroup empty */
4974 lru_add_drain_all();
f817ed48 4975 /* try to free all pages in this cgroup */
569530fb 4976 while (nr_retries && res_counter_read_u64(&memcg->res, RES_USAGE) > 0) {
f817ed48 4977 int progress;
c1e862c1 4978
c26251f9
MH
4979 if (signal_pending(current))
4980 return -EINTR;
4981
c0ff4b85 4982 progress = try_to_free_mem_cgroup_pages(memcg, GFP_KERNEL,
185efc0f 4983 false);
c1e862c1 4984 if (!progress) {
f817ed48 4985 nr_retries--;
c1e862c1 4986 /* maybe some writeback is necessary */
8aa7e847 4987 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 4988 }
f817ed48
KH
4989
4990 }
08e552c6 4991 lru_add_drain();
ab5196c2
MH
4992 mem_cgroup_reparent_charges(memcg);
4993
4994 return 0;
cc847582
KH
4995}
4996
6bbda35c 4997static int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
c1e862c1 4998{
c26251f9
MH
4999 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5000 int ret;
5001
d8423011
MH
5002 if (mem_cgroup_is_root(memcg))
5003 return -EINVAL;
c26251f9
MH
5004 css_get(&memcg->css);
5005 ret = mem_cgroup_force_empty(memcg);
5006 css_put(&memcg->css);
5007
5008 return ret;
c1e862c1
KH
5009}
5010
5011
18f59ea7
BS
5012static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
5013{
5014 return mem_cgroup_from_cont(cont)->use_hierarchy;
5015}
5016
5017static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
5018 u64 val)
5019{
5020 int retval = 0;
c0ff4b85 5021 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
18f59ea7 5022 struct cgroup *parent = cont->parent;
c0ff4b85 5023 struct mem_cgroup *parent_memcg = NULL;
18f59ea7
BS
5024
5025 if (parent)
c0ff4b85 5026 parent_memcg = mem_cgroup_from_cont(parent);
18f59ea7 5027
0999821b 5028 mutex_lock(&memcg_create_mutex);
567fb435
GC
5029
5030 if (memcg->use_hierarchy == val)
5031 goto out;
5032
18f59ea7 5033 /*
af901ca1 5034 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
5035 * in the child subtrees. If it is unset, then the change can
5036 * occur, provided the current cgroup has no children.
5037 *
5038 * For the root cgroup, parent_mem is NULL, we allow value to be
5039 * set if there are no children.
5040 */
c0ff4b85 5041 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 5042 (val == 1 || val == 0)) {
b5f99b53 5043 if (!__memcg_has_children(memcg))
c0ff4b85 5044 memcg->use_hierarchy = val;
18f59ea7
BS
5045 else
5046 retval = -EBUSY;
5047 } else
5048 retval = -EINVAL;
567fb435
GC
5049
5050out:
0999821b 5051 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
5052
5053 return retval;
5054}
5055
0c3e73e8 5056
c0ff4b85 5057static unsigned long mem_cgroup_recursive_stat(struct mem_cgroup *memcg,
7a159cc9 5058 enum mem_cgroup_stat_index idx)
0c3e73e8 5059{
7d74b06f 5060 struct mem_cgroup *iter;
7a159cc9 5061 long val = 0;
0c3e73e8 5062
7a159cc9 5063 /* Per-cpu values can be negative, use a signed accumulator */
c0ff4b85 5064 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f
KH
5065 val += mem_cgroup_read_stat(iter, idx);
5066
5067 if (val < 0) /* race ? */
5068 val = 0;
5069 return val;
0c3e73e8
BS
5070}
5071
c0ff4b85 5072static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
104f3928 5073{
7d74b06f 5074 u64 val;
104f3928 5075
c0ff4b85 5076 if (!mem_cgroup_is_root(memcg)) {
104f3928 5077 if (!swap)
65c64ce8 5078 return res_counter_read_u64(&memcg->res, RES_USAGE);
104f3928 5079 else
65c64ce8 5080 return res_counter_read_u64(&memcg->memsw, RES_USAGE);
104f3928
KS
5081 }
5082
b070e65c
DR
5083 /*
5084 * Transparent hugepages are still accounted for in MEM_CGROUP_STAT_RSS
5085 * as well as in MEM_CGROUP_STAT_RSS_HUGE.
5086 */
c0ff4b85
R
5087 val = mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_CACHE);
5088 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_RSS);
104f3928 5089
7d74b06f 5090 if (swap)
bff6bb83 5091 val += mem_cgroup_recursive_stat(memcg, MEM_CGROUP_STAT_SWAP);
104f3928
KS
5092
5093 return val << PAGE_SHIFT;
5094}
5095
af36f906
TH
5096static ssize_t mem_cgroup_read(struct cgroup *cont, struct cftype *cft,
5097 struct file *file, char __user *buf,
5098 size_t nbytes, loff_t *ppos)
8cdea7c0 5099{
c0ff4b85 5100 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af36f906 5101 char str[64];
104f3928 5102 u64 val;
86ae53e1
GC
5103 int name, len;
5104 enum res_type type;
8c7c6e34
KH
5105
5106 type = MEMFILE_TYPE(cft->private);
5107 name = MEMFILE_ATTR(cft->private);
af36f906 5108
8c7c6e34
KH
5109 switch (type) {
5110 case _MEM:
104f3928 5111 if (name == RES_USAGE)
c0ff4b85 5112 val = mem_cgroup_usage(memcg, false);
104f3928 5113 else
c0ff4b85 5114 val = res_counter_read_u64(&memcg->res, name);
8c7c6e34
KH
5115 break;
5116 case _MEMSWAP:
104f3928 5117 if (name == RES_USAGE)
c0ff4b85 5118 val = mem_cgroup_usage(memcg, true);
104f3928 5119 else
c0ff4b85 5120 val = res_counter_read_u64(&memcg->memsw, name);
8c7c6e34 5121 break;
510fc4e1
GC
5122 case _KMEM:
5123 val = res_counter_read_u64(&memcg->kmem, name);
5124 break;
8c7c6e34
KH
5125 default:
5126 BUG();
8c7c6e34 5127 }
af36f906
TH
5128
5129 len = scnprintf(str, sizeof(str), "%llu\n", (unsigned long long)val);
5130 return simple_read_from_buffer(buf, nbytes, ppos, str, len);
8cdea7c0 5131}
510fc4e1
GC
5132
5133static int memcg_update_kmem_limit(struct cgroup *cont, u64 val)
5134{
5135 int ret = -EINVAL;
5136#ifdef CONFIG_MEMCG_KMEM
5137 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
5138 /*
5139 * For simplicity, we won't allow this to be disabled. It also can't
5140 * be changed if the cgroup has children already, or if tasks had
5141 * already joined.
5142 *
5143 * If tasks join before we set the limit, a person looking at
5144 * kmem.usage_in_bytes will have no way to determine when it took
5145 * place, which makes the value quite meaningless.
5146 *
5147 * After it first became limited, changes in the value of the limit are
5148 * of course permitted.
510fc4e1 5149 */
0999821b 5150 mutex_lock(&memcg_create_mutex);
510fc4e1
GC
5151 mutex_lock(&set_limit_mutex);
5152 if (!memcg->kmem_account_flags && val != RESOURCE_MAX) {
b5f99b53 5153 if (cgroup_task_count(cont) || memcg_has_children(memcg)) {
510fc4e1
GC
5154 ret = -EBUSY;
5155 goto out;
5156 }
5157 ret = res_counter_set_limit(&memcg->kmem, val);
5158 VM_BUG_ON(ret);
5159
55007d84
GC
5160 ret = memcg_update_cache_sizes(memcg);
5161 if (ret) {
5162 res_counter_set_limit(&memcg->kmem, RESOURCE_MAX);
5163 goto out;
5164 }
692e89ab
GC
5165 static_key_slow_inc(&memcg_kmem_enabled_key);
5166 /*
5167 * setting the active bit after the inc will guarantee no one
5168 * starts accounting before all call sites are patched
5169 */
5170 memcg_kmem_set_active(memcg);
5171
7de37682
GC
5172 /*
5173 * kmem charges can outlive the cgroup. In the case of slab
5174 * pages, for instance, a page contain objects from various
5175 * processes, so it is unfeasible to migrate them away. We
5176 * need to reference count the memcg because of that.
5177 */
5178 mem_cgroup_get(memcg);
510fc4e1
GC
5179 } else
5180 ret = res_counter_set_limit(&memcg->kmem, val);
5181out:
5182 mutex_unlock(&set_limit_mutex);
0999821b 5183 mutex_unlock(&memcg_create_mutex);
510fc4e1
GC
5184#endif
5185 return ret;
5186}
5187
6d043990 5188#ifdef CONFIG_MEMCG_KMEM
55007d84 5189static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 5190{
55007d84 5191 int ret = 0;
510fc4e1
GC
5192 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
5193 if (!parent)
55007d84
GC
5194 goto out;
5195
510fc4e1 5196 memcg->kmem_account_flags = parent->kmem_account_flags;
a8964b9b
GC
5197 /*
5198 * When that happen, we need to disable the static branch only on those
5199 * memcgs that enabled it. To achieve this, we would be forced to
5200 * complicate the code by keeping track of which memcgs were the ones
5201 * that actually enabled limits, and which ones got it from its
5202 * parents.
5203 *
5204 * It is a lot simpler just to do static_key_slow_inc() on every child
5205 * that is accounted.
5206 */
55007d84
GC
5207 if (!memcg_kmem_is_active(memcg))
5208 goto out;
5209
5210 /*
5211 * destroy(), called if we fail, will issue static_key_slow_inc() and
5212 * mem_cgroup_put() if kmem is enabled. We have to either call them
5213 * unconditionally, or clear the KMEM_ACTIVE flag. I personally find
5214 * this more consistent, since it always leads to the same destroy path
5215 */
5216 mem_cgroup_get(memcg);
5217 static_key_slow_inc(&memcg_kmem_enabled_key);
5218
5219 mutex_lock(&set_limit_mutex);
5220 ret = memcg_update_cache_sizes(memcg);
5221 mutex_unlock(&set_limit_mutex);
55007d84
GC
5222out:
5223 return ret;
510fc4e1 5224}
6d043990 5225#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 5226
628f4235
KH
5227/*
5228 * The user of this function is...
5229 * RES_LIMIT.
5230 */
856c13aa
PM
5231static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
5232 const char *buffer)
8cdea7c0 5233{
628f4235 5234 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5235 enum res_type type;
5236 int name;
628f4235
KH
5237 unsigned long long val;
5238 int ret;
5239
8c7c6e34
KH
5240 type = MEMFILE_TYPE(cft->private);
5241 name = MEMFILE_ATTR(cft->private);
af36f906 5242
8c7c6e34 5243 switch (name) {
628f4235 5244 case RES_LIMIT:
4b3bde4c
BS
5245 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
5246 ret = -EINVAL;
5247 break;
5248 }
628f4235
KH
5249 /* This function does all necessary parse...reuse it */
5250 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
5251 if (ret)
5252 break;
5253 if (type == _MEM)
628f4235 5254 ret = mem_cgroup_resize_limit(memcg, val);
510fc4e1 5255 else if (type == _MEMSWAP)
8c7c6e34 5256 ret = mem_cgroup_resize_memsw_limit(memcg, val);
510fc4e1
GC
5257 else if (type == _KMEM)
5258 ret = memcg_update_kmem_limit(cont, val);
5259 else
5260 return -EINVAL;
628f4235 5261 break;
296c81d8
BS
5262 case RES_SOFT_LIMIT:
5263 ret = res_counter_memparse_write_strategy(buffer, &val);
5264 if (ret)
5265 break;
5266 /*
5267 * For memsw, soft limits are hard to implement in terms
5268 * of semantics, for now, we support soft limits for
5269 * control without swap
5270 */
5271 if (type == _MEM)
5272 ret = res_counter_set_soft_limit(&memcg->res, val);
5273 else
5274 ret = -EINVAL;
5275 break;
628f4235
KH
5276 default:
5277 ret = -EINVAL; /* should be BUG() ? */
5278 break;
5279 }
5280 return ret;
8cdea7c0
BS
5281}
5282
fee7b548
KH
5283static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
5284 unsigned long long *mem_limit, unsigned long long *memsw_limit)
5285{
5286 struct cgroup *cgroup;
5287 unsigned long long min_limit, min_memsw_limit, tmp;
5288
5289 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
5290 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5291 cgroup = memcg->css.cgroup;
5292 if (!memcg->use_hierarchy)
5293 goto out;
5294
5295 while (cgroup->parent) {
5296 cgroup = cgroup->parent;
5297 memcg = mem_cgroup_from_cont(cgroup);
5298 if (!memcg->use_hierarchy)
5299 break;
5300 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
5301 min_limit = min(min_limit, tmp);
5302 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
5303 min_memsw_limit = min(min_memsw_limit, tmp);
5304 }
5305out:
5306 *mem_limit = min_limit;
5307 *memsw_limit = min_memsw_limit;
fee7b548
KH
5308}
5309
29f2a4da 5310static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1 5311{
af36f906 5312 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
86ae53e1
GC
5313 int name;
5314 enum res_type type;
c84872e1 5315
8c7c6e34
KH
5316 type = MEMFILE_TYPE(event);
5317 name = MEMFILE_ATTR(event);
af36f906 5318
8c7c6e34 5319 switch (name) {
29f2a4da 5320 case RES_MAX_USAGE:
8c7c6e34 5321 if (type == _MEM)
c0ff4b85 5322 res_counter_reset_max(&memcg->res);
510fc4e1 5323 else if (type == _MEMSWAP)
c0ff4b85 5324 res_counter_reset_max(&memcg->memsw);
510fc4e1
GC
5325 else if (type == _KMEM)
5326 res_counter_reset_max(&memcg->kmem);
5327 else
5328 return -EINVAL;
29f2a4da
PE
5329 break;
5330 case RES_FAILCNT:
8c7c6e34 5331 if (type == _MEM)
c0ff4b85 5332 res_counter_reset_failcnt(&memcg->res);
510fc4e1 5333 else if (type == _MEMSWAP)
c0ff4b85 5334 res_counter_reset_failcnt(&memcg->memsw);
510fc4e1
GC
5335 else if (type == _KMEM)
5336 res_counter_reset_failcnt(&memcg->kmem);
5337 else
5338 return -EINVAL;
29f2a4da
PE
5339 break;
5340 }
f64c3f54 5341
85cc59db 5342 return 0;
c84872e1
PE
5343}
5344
7dc74be0
DN
5345static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
5346 struct cftype *cft)
5347{
5348 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
5349}
5350
02491447 5351#ifdef CONFIG_MMU
7dc74be0
DN
5352static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5353 struct cftype *cft, u64 val)
5354{
c0ff4b85 5355 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
7dc74be0
DN
5356
5357 if (val >= (1 << NR_MOVE_TYPE))
5358 return -EINVAL;
ee5e8472 5359
7dc74be0 5360 /*
ee5e8472
GC
5361 * No kind of locking is needed in here, because ->can_attach() will
5362 * check this value once in the beginning of the process, and then carry
5363 * on with stale data. This means that changes to this value will only
5364 * affect task migrations starting after the change.
7dc74be0 5365 */
c0ff4b85 5366 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
5367 return 0;
5368}
02491447
DN
5369#else
5370static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
5371 struct cftype *cft, u64 val)
5372{
5373 return -ENOSYS;
5374}
5375#endif
7dc74be0 5376
406eb0c9 5377#ifdef CONFIG_NUMA
ab215884 5378static int memcg_numa_stat_show(struct cgroup *cont, struct cftype *cft,
fada52ca 5379 struct seq_file *m)
406eb0c9
YH
5380{
5381 int nid;
5382 unsigned long total_nr, file_nr, anon_nr, unevictable_nr;
5383 unsigned long node_nr;
d79154bb 5384 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
406eb0c9 5385
d79154bb 5386 total_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL);
406eb0c9 5387 seq_printf(m, "total=%lu", total_nr);
31aaea4a 5388 for_each_node_state(nid, N_MEMORY) {
d79154bb 5389 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL);
406eb0c9
YH
5390 seq_printf(m, " N%d=%lu", nid, node_nr);
5391 }
5392 seq_putc(m, '\n');
5393
d79154bb 5394 file_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_FILE);
406eb0c9 5395 seq_printf(m, "file=%lu", file_nr);
31aaea4a 5396 for_each_node_state(nid, N_MEMORY) {
d79154bb 5397 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5398 LRU_ALL_FILE);
406eb0c9
YH
5399 seq_printf(m, " N%d=%lu", nid, node_nr);
5400 }
5401 seq_putc(m, '\n');
5402
d79154bb 5403 anon_nr = mem_cgroup_nr_lru_pages(memcg, LRU_ALL_ANON);
406eb0c9 5404 seq_printf(m, "anon=%lu", anon_nr);
31aaea4a 5405 for_each_node_state(nid, N_MEMORY) {
d79154bb 5406 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5407 LRU_ALL_ANON);
406eb0c9
YH
5408 seq_printf(m, " N%d=%lu", nid, node_nr);
5409 }
5410 seq_putc(m, '\n');
5411
d79154bb 5412 unevictable_nr = mem_cgroup_nr_lru_pages(memcg, BIT(LRU_UNEVICTABLE));
406eb0c9 5413 seq_printf(m, "unevictable=%lu", unevictable_nr);
31aaea4a 5414 for_each_node_state(nid, N_MEMORY) {
d79154bb 5415 node_nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
bb2a0de9 5416 BIT(LRU_UNEVICTABLE));
406eb0c9
YH
5417 seq_printf(m, " N%d=%lu", nid, node_nr);
5418 }
5419 seq_putc(m, '\n');
5420 return 0;
5421}
5422#endif /* CONFIG_NUMA */
5423
af7c4b0e
JW
5424static inline void mem_cgroup_lru_names_not_uptodate(void)
5425{
5426 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
5427}
5428
ab215884 5429static int memcg_stat_show(struct cgroup *cont, struct cftype *cft,
78ccf5b5 5430 struct seq_file *m)
d2ceb9b7 5431{
d79154bb 5432 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
af7c4b0e
JW
5433 struct mem_cgroup *mi;
5434 unsigned int i;
406eb0c9 5435
af7c4b0e 5436 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 5437 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5438 continue;
af7c4b0e
JW
5439 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
5440 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 5441 }
7b854121 5442
af7c4b0e
JW
5443 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
5444 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
5445 mem_cgroup_read_events(memcg, i));
5446
5447 for (i = 0; i < NR_LRU_LISTS; i++)
5448 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
5449 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
5450
14067bb3 5451 /* Hierarchical information */
fee7b548
KH
5452 {
5453 unsigned long long limit, memsw_limit;
d79154bb 5454 memcg_get_hierarchical_limit(memcg, &limit, &memsw_limit);
78ccf5b5 5455 seq_printf(m, "hierarchical_memory_limit %llu\n", limit);
fee7b548 5456 if (do_swap_account)
78ccf5b5
JW
5457 seq_printf(m, "hierarchical_memsw_limit %llu\n",
5458 memsw_limit);
fee7b548 5459 }
7f016ee8 5460
af7c4b0e
JW
5461 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
5462 long long val = 0;
5463
bff6bb83 5464 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 5465 continue;
af7c4b0e
JW
5466 for_each_mem_cgroup_tree(mi, memcg)
5467 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
5468 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
5469 }
5470
5471 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
5472 unsigned long long val = 0;
5473
5474 for_each_mem_cgroup_tree(mi, memcg)
5475 val += mem_cgroup_read_events(mi, i);
5476 seq_printf(m, "total_%s %llu\n",
5477 mem_cgroup_events_names[i], val);
5478 }
5479
5480 for (i = 0; i < NR_LRU_LISTS; i++) {
5481 unsigned long long val = 0;
5482
5483 for_each_mem_cgroup_tree(mi, memcg)
5484 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
5485 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 5486 }
14067bb3 5487
7f016ee8 5488#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
5489 {
5490 int nid, zid;
5491 struct mem_cgroup_per_zone *mz;
89abfab1 5492 struct zone_reclaim_stat *rstat;
7f016ee8
KM
5493 unsigned long recent_rotated[2] = {0, 0};
5494 unsigned long recent_scanned[2] = {0, 0};
5495
5496 for_each_online_node(nid)
5497 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
d79154bb 5498 mz = mem_cgroup_zoneinfo(memcg, nid, zid);
89abfab1 5499 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 5500
89abfab1
HD
5501 recent_rotated[0] += rstat->recent_rotated[0];
5502 recent_rotated[1] += rstat->recent_rotated[1];
5503 recent_scanned[0] += rstat->recent_scanned[0];
5504 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 5505 }
78ccf5b5
JW
5506 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
5507 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
5508 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
5509 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
5510 }
5511#endif
5512
d2ceb9b7
KH
5513 return 0;
5514}
5515
a7885eb8
KM
5516static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
5517{
5518 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5519
1f4c025b 5520 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
5521}
5522
5523static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
5524 u64 val)
5525{
5526 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5527 struct mem_cgroup *parent;
068b38c1 5528
a7885eb8
KM
5529 if (val > 100)
5530 return -EINVAL;
5531
5532 if (cgrp->parent == NULL)
5533 return -EINVAL;
5534
5535 parent = mem_cgroup_from_cont(cgrp->parent);
068b38c1 5536
0999821b 5537 mutex_lock(&memcg_create_mutex);
068b38c1 5538
a7885eb8 5539 /* If under hierarchy, only empty-root can set this value */
b5f99b53 5540 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5541 mutex_unlock(&memcg_create_mutex);
a7885eb8 5542 return -EINVAL;
068b38c1 5543 }
a7885eb8 5544
a7885eb8 5545 memcg->swappiness = val;
a7885eb8 5546
0999821b 5547 mutex_unlock(&memcg_create_mutex);
068b38c1 5548
a7885eb8
KM
5549 return 0;
5550}
5551
2e72b634
KS
5552static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
5553{
5554 struct mem_cgroup_threshold_ary *t;
5555 u64 usage;
5556 int i;
5557
5558 rcu_read_lock();
5559 if (!swap)
2c488db2 5560 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 5561 else
2c488db2 5562 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
5563
5564 if (!t)
5565 goto unlock;
5566
5567 usage = mem_cgroup_usage(memcg, swap);
5568
5569 /*
748dad36 5570 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
5571 * If it's not true, a threshold was crossed after last
5572 * call of __mem_cgroup_threshold().
5573 */
5407a562 5574 i = t->current_threshold;
2e72b634
KS
5575
5576 /*
5577 * Iterate backward over array of thresholds starting from
5578 * current_threshold and check if a threshold is crossed.
5579 * If none of thresholds below usage is crossed, we read
5580 * only one element of the array here.
5581 */
5582 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
5583 eventfd_signal(t->entries[i].eventfd, 1);
5584
5585 /* i = current_threshold + 1 */
5586 i++;
5587
5588 /*
5589 * Iterate forward over array of thresholds starting from
5590 * current_threshold+1 and check if a threshold is crossed.
5591 * If none of thresholds above usage is crossed, we read
5592 * only one element of the array here.
5593 */
5594 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
5595 eventfd_signal(t->entries[i].eventfd, 1);
5596
5597 /* Update current_threshold */
5407a562 5598 t->current_threshold = i - 1;
2e72b634
KS
5599unlock:
5600 rcu_read_unlock();
5601}
5602
5603static void mem_cgroup_threshold(struct mem_cgroup *memcg)
5604{
ad4ca5f4
KS
5605 while (memcg) {
5606 __mem_cgroup_threshold(memcg, false);
5607 if (do_swap_account)
5608 __mem_cgroup_threshold(memcg, true);
5609
5610 memcg = parent_mem_cgroup(memcg);
5611 }
2e72b634
KS
5612}
5613
5614static int compare_thresholds(const void *a, const void *b)
5615{
5616 const struct mem_cgroup_threshold *_a = a;
5617 const struct mem_cgroup_threshold *_b = b;
5618
d96fa179
GT
5619 if (_a->threshold > _b->threshold)
5620 return 1;
5621
5622 if (_a->threshold < _b->threshold)
5623 return -1;
5624
5625 return 0;
2e72b634
KS
5626}
5627
c0ff4b85 5628static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
5629{
5630 struct mem_cgroup_eventfd_list *ev;
5631
c0ff4b85 5632 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27
KH
5633 eventfd_signal(ev->eventfd, 1);
5634 return 0;
5635}
5636
c0ff4b85 5637static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 5638{
7d74b06f
KH
5639 struct mem_cgroup *iter;
5640
c0ff4b85 5641 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 5642 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
5643}
5644
5645static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
5646 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
2e72b634
KS
5647{
5648 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5649 struct mem_cgroup_thresholds *thresholds;
5650 struct mem_cgroup_threshold_ary *new;
86ae53e1 5651 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5652 u64 threshold, usage;
2c488db2 5653 int i, size, ret;
2e72b634
KS
5654
5655 ret = res_counter_memparse_write_strategy(args, &threshold);
5656 if (ret)
5657 return ret;
5658
5659 mutex_lock(&memcg->thresholds_lock);
2c488db2 5660
2e72b634 5661 if (type == _MEM)
2c488db2 5662 thresholds = &memcg->thresholds;
2e72b634 5663 else if (type == _MEMSWAP)
2c488db2 5664 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5665 else
5666 BUG();
5667
5668 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5669
5670 /* Check if a threshold crossed before adding a new one */
2c488db2 5671 if (thresholds->primary)
2e72b634
KS
5672 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5673
2c488db2 5674 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
5675
5676 /* Allocate memory for new array of thresholds */
2c488db2 5677 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 5678 GFP_KERNEL);
2c488db2 5679 if (!new) {
2e72b634
KS
5680 ret = -ENOMEM;
5681 goto unlock;
5682 }
2c488db2 5683 new->size = size;
2e72b634
KS
5684
5685 /* Copy thresholds (if any) to new array */
2c488db2
KS
5686 if (thresholds->primary) {
5687 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 5688 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
5689 }
5690
2e72b634 5691 /* Add new threshold */
2c488db2
KS
5692 new->entries[size - 1].eventfd = eventfd;
5693 new->entries[size - 1].threshold = threshold;
2e72b634
KS
5694
5695 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 5696 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
5697 compare_thresholds, NULL);
5698
5699 /* Find current threshold */
2c488db2 5700 new->current_threshold = -1;
2e72b634 5701 for (i = 0; i < size; i++) {
748dad36 5702 if (new->entries[i].threshold <= usage) {
2e72b634 5703 /*
2c488db2
KS
5704 * new->current_threshold will not be used until
5705 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
5706 * it here.
5707 */
2c488db2 5708 ++new->current_threshold;
748dad36
SZ
5709 } else
5710 break;
2e72b634
KS
5711 }
5712
2c488db2
KS
5713 /* Free old spare buffer and save old primary buffer as spare */
5714 kfree(thresholds->spare);
5715 thresholds->spare = thresholds->primary;
5716
5717 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5718
907860ed 5719 /* To be sure that nobody uses thresholds */
2e72b634
KS
5720 synchronize_rcu();
5721
2e72b634
KS
5722unlock:
5723 mutex_unlock(&memcg->thresholds_lock);
5724
5725 return ret;
5726}
5727
907860ed 5728static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
9490ff27 5729 struct cftype *cft, struct eventfd_ctx *eventfd)
2e72b634
KS
5730{
5731 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
2c488db2
KS
5732 struct mem_cgroup_thresholds *thresholds;
5733 struct mem_cgroup_threshold_ary *new;
86ae53e1 5734 enum res_type type = MEMFILE_TYPE(cft->private);
2e72b634 5735 u64 usage;
2c488db2 5736 int i, j, size;
2e72b634
KS
5737
5738 mutex_lock(&memcg->thresholds_lock);
5739 if (type == _MEM)
2c488db2 5740 thresholds = &memcg->thresholds;
2e72b634 5741 else if (type == _MEMSWAP)
2c488db2 5742 thresholds = &memcg->memsw_thresholds;
2e72b634
KS
5743 else
5744 BUG();
5745
371528ca
AV
5746 if (!thresholds->primary)
5747 goto unlock;
5748
2e72b634
KS
5749 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
5750
5751 /* Check if a threshold crossed before removing */
5752 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
5753
5754 /* Calculate new number of threshold */
2c488db2
KS
5755 size = 0;
5756 for (i = 0; i < thresholds->primary->size; i++) {
5757 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
5758 size++;
5759 }
5760
2c488db2 5761 new = thresholds->spare;
907860ed 5762
2e72b634
KS
5763 /* Set thresholds array to NULL if we don't have thresholds */
5764 if (!size) {
2c488db2
KS
5765 kfree(new);
5766 new = NULL;
907860ed 5767 goto swap_buffers;
2e72b634
KS
5768 }
5769
2c488db2 5770 new->size = size;
2e72b634
KS
5771
5772 /* Copy thresholds and find current threshold */
2c488db2
KS
5773 new->current_threshold = -1;
5774 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
5775 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
5776 continue;
5777
2c488db2 5778 new->entries[j] = thresholds->primary->entries[i];
748dad36 5779 if (new->entries[j].threshold <= usage) {
2e72b634 5780 /*
2c488db2 5781 * new->current_threshold will not be used
2e72b634
KS
5782 * until rcu_assign_pointer(), so it's safe to increment
5783 * it here.
5784 */
2c488db2 5785 ++new->current_threshold;
2e72b634
KS
5786 }
5787 j++;
5788 }
5789
907860ed 5790swap_buffers:
2c488db2
KS
5791 /* Swap primary and spare array */
5792 thresholds->spare = thresholds->primary;
8c757763
SZ
5793 /* If all events are unregistered, free the spare array */
5794 if (!new) {
5795 kfree(thresholds->spare);
5796 thresholds->spare = NULL;
5797 }
5798
2c488db2 5799 rcu_assign_pointer(thresholds->primary, new);
2e72b634 5800
907860ed 5801 /* To be sure that nobody uses thresholds */
2e72b634 5802 synchronize_rcu();
371528ca 5803unlock:
2e72b634 5804 mutex_unlock(&memcg->thresholds_lock);
2e72b634 5805}
c1e862c1 5806
9490ff27
KH
5807static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
5808 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
5809{
5810 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
5811 struct mem_cgroup_eventfd_list *event;
86ae53e1 5812 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5813
5814 BUG_ON(type != _OOM_TYPE);
5815 event = kmalloc(sizeof(*event), GFP_KERNEL);
5816 if (!event)
5817 return -ENOMEM;
5818
1af8efe9 5819 spin_lock(&memcg_oom_lock);
9490ff27
KH
5820
5821 event->eventfd = eventfd;
5822 list_add(&event->list, &memcg->oom_notify);
5823
5824 /* already in OOM ? */
79dfdacc 5825 if (atomic_read(&memcg->under_oom))
9490ff27 5826 eventfd_signal(eventfd, 1);
1af8efe9 5827 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5828
5829 return 0;
5830}
5831
907860ed 5832static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
9490ff27
KH
5833 struct cftype *cft, struct eventfd_ctx *eventfd)
5834{
c0ff4b85 5835 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
9490ff27 5836 struct mem_cgroup_eventfd_list *ev, *tmp;
86ae53e1 5837 enum res_type type = MEMFILE_TYPE(cft->private);
9490ff27
KH
5838
5839 BUG_ON(type != _OOM_TYPE);
5840
1af8efe9 5841 spin_lock(&memcg_oom_lock);
9490ff27 5842
c0ff4b85 5843 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
5844 if (ev->eventfd == eventfd) {
5845 list_del(&ev->list);
5846 kfree(ev);
5847 }
5848 }
5849
1af8efe9 5850 spin_unlock(&memcg_oom_lock);
9490ff27
KH
5851}
5852
3c11ecf4
KH
5853static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
5854 struct cftype *cft, struct cgroup_map_cb *cb)
5855{
c0ff4b85 5856 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4 5857
c0ff4b85 5858 cb->fill(cb, "oom_kill_disable", memcg->oom_kill_disable);
3c11ecf4 5859
c0ff4b85 5860 if (atomic_read(&memcg->under_oom))
3c11ecf4
KH
5861 cb->fill(cb, "under_oom", 1);
5862 else
5863 cb->fill(cb, "under_oom", 0);
5864 return 0;
5865}
5866
3c11ecf4
KH
5867static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
5868 struct cftype *cft, u64 val)
5869{
c0ff4b85 5870 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3c11ecf4
KH
5871 struct mem_cgroup *parent;
5872
5873 /* cannot set to root cgroup and only 0 and 1 are allowed */
5874 if (!cgrp->parent || !((val == 0) || (val == 1)))
5875 return -EINVAL;
5876
5877 parent = mem_cgroup_from_cont(cgrp->parent);
5878
0999821b 5879 mutex_lock(&memcg_create_mutex);
3c11ecf4 5880 /* oom-kill-disable is a flag for subhierarchy. */
b5f99b53 5881 if ((parent->use_hierarchy) || memcg_has_children(memcg)) {
0999821b 5882 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5883 return -EINVAL;
5884 }
c0ff4b85 5885 memcg->oom_kill_disable = val;
4d845ebf 5886 if (!val)
c0ff4b85 5887 memcg_oom_recover(memcg);
0999821b 5888 mutex_unlock(&memcg_create_mutex);
3c11ecf4
KH
5889 return 0;
5890}
5891
c255a458 5892#ifdef CONFIG_MEMCG_KMEM
cbe128e3 5893static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 5894{
55007d84
GC
5895 int ret;
5896
2633d7a0 5897 memcg->kmemcg_id = -1;
55007d84
GC
5898 ret = memcg_propagate_kmem(memcg);
5899 if (ret)
5900 return ret;
2633d7a0 5901
1d62e436 5902 return mem_cgroup_sockets_init(memcg, ss);
573b400d 5903}
e5671dfa 5904
1d62e436 5905static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3 5906{
1d62e436 5907 mem_cgroup_sockets_destroy(memcg);
7de37682
GC
5908
5909 memcg_kmem_mark_dead(memcg);
5910
5911 if (res_counter_read_u64(&memcg->kmem, RES_USAGE) != 0)
5912 return;
5913
5914 /*
5915 * Charges already down to 0, undo mem_cgroup_get() done in the charge
5916 * path here, being careful not to race with memcg_uncharge_kmem: it is
5917 * possible that the charges went down to 0 between mark_dead and the
5918 * res_counter read, so in that case, we don't need the put
5919 */
5920 if (memcg_kmem_test_and_clear_dead(memcg))
5921 mem_cgroup_put(memcg);
d1a4c0b3 5922}
e5671dfa 5923#else
cbe128e3 5924static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
5925{
5926 return 0;
5927}
d1a4c0b3 5928
1d62e436 5929static void kmem_cgroup_destroy(struct mem_cgroup *memcg)
d1a4c0b3
GC
5930{
5931}
e5671dfa
GC
5932#endif
5933
8cdea7c0
BS
5934static struct cftype mem_cgroup_files[] = {
5935 {
0eea1030 5936 .name = "usage_in_bytes",
8c7c6e34 5937 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
af36f906 5938 .read = mem_cgroup_read,
9490ff27
KH
5939 .register_event = mem_cgroup_usage_register_event,
5940 .unregister_event = mem_cgroup_usage_unregister_event,
8cdea7c0 5941 },
c84872e1
PE
5942 {
5943 .name = "max_usage_in_bytes",
8c7c6e34 5944 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 5945 .trigger = mem_cgroup_reset,
af36f906 5946 .read = mem_cgroup_read,
c84872e1 5947 },
8cdea7c0 5948 {
0eea1030 5949 .name = "limit_in_bytes",
8c7c6e34 5950 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 5951 .write_string = mem_cgroup_write,
af36f906 5952 .read = mem_cgroup_read,
8cdea7c0 5953 },
296c81d8
BS
5954 {
5955 .name = "soft_limit_in_bytes",
5956 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
5957 .write_string = mem_cgroup_write,
af36f906 5958 .read = mem_cgroup_read,
296c81d8 5959 },
8cdea7c0
BS
5960 {
5961 .name = "failcnt",
8c7c6e34 5962 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 5963 .trigger = mem_cgroup_reset,
af36f906 5964 .read = mem_cgroup_read,
8cdea7c0 5965 },
d2ceb9b7
KH
5966 {
5967 .name = "stat",
ab215884 5968 .read_seq_string = memcg_stat_show,
d2ceb9b7 5969 },
c1e862c1
KH
5970 {
5971 .name = "force_empty",
5972 .trigger = mem_cgroup_force_empty_write,
5973 },
18f59ea7
BS
5974 {
5975 .name = "use_hierarchy",
f00baae7 5976 .flags = CFTYPE_INSANE,
18f59ea7
BS
5977 .write_u64 = mem_cgroup_hierarchy_write,
5978 .read_u64 = mem_cgroup_hierarchy_read,
5979 },
a7885eb8
KM
5980 {
5981 .name = "swappiness",
5982 .read_u64 = mem_cgroup_swappiness_read,
5983 .write_u64 = mem_cgroup_swappiness_write,
5984 },
7dc74be0
DN
5985 {
5986 .name = "move_charge_at_immigrate",
5987 .read_u64 = mem_cgroup_move_charge_read,
5988 .write_u64 = mem_cgroup_move_charge_write,
5989 },
9490ff27
KH
5990 {
5991 .name = "oom_control",
3c11ecf4
KH
5992 .read_map = mem_cgroup_oom_control_read,
5993 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
5994 .register_event = mem_cgroup_oom_register_event,
5995 .unregister_event = mem_cgroup_oom_unregister_event,
5996 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
5997 },
70ddf637
AV
5998 {
5999 .name = "pressure_level",
6000 .register_event = vmpressure_register_event,
6001 .unregister_event = vmpressure_unregister_event,
6002 },
406eb0c9
YH
6003#ifdef CONFIG_NUMA
6004 {
6005 .name = "numa_stat",
ab215884 6006 .read_seq_string = memcg_numa_stat_show,
406eb0c9
YH
6007 },
6008#endif
510fc4e1
GC
6009#ifdef CONFIG_MEMCG_KMEM
6010 {
6011 .name = "kmem.limit_in_bytes",
6012 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
6013 .write_string = mem_cgroup_write,
6014 .read = mem_cgroup_read,
6015 },
6016 {
6017 .name = "kmem.usage_in_bytes",
6018 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
6019 .read = mem_cgroup_read,
6020 },
6021 {
6022 .name = "kmem.failcnt",
6023 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6024 .trigger = mem_cgroup_reset,
6025 .read = mem_cgroup_read,
6026 },
6027 {
6028 .name = "kmem.max_usage_in_bytes",
6029 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6030 .trigger = mem_cgroup_reset,
6031 .read = mem_cgroup_read,
6032 },
749c5415
GC
6033#ifdef CONFIG_SLABINFO
6034 {
6035 .name = "kmem.slabinfo",
6036 .read_seq_string = mem_cgroup_slabinfo_read,
6037 },
6038#endif
8c7c6e34 6039#endif
6bc10349 6040 { }, /* terminate */
af36f906 6041};
8c7c6e34 6042
2d11085e
MH
6043#ifdef CONFIG_MEMCG_SWAP
6044static struct cftype memsw_cgroup_files[] = {
6045 {
6046 .name = "memsw.usage_in_bytes",
6047 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6048 .read = mem_cgroup_read,
6049 .register_event = mem_cgroup_usage_register_event,
6050 .unregister_event = mem_cgroup_usage_unregister_event,
6051 },
6052 {
6053 .name = "memsw.max_usage_in_bytes",
6054 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6055 .trigger = mem_cgroup_reset,
6056 .read = mem_cgroup_read,
6057 },
6058 {
6059 .name = "memsw.limit_in_bytes",
6060 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6061 .write_string = mem_cgroup_write,
6062 .read = mem_cgroup_read,
6063 },
6064 {
6065 .name = "memsw.failcnt",
6066 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6067 .trigger = mem_cgroup_reset,
6068 .read = mem_cgroup_read,
6069 },
6070 { }, /* terminate */
6071};
6072#endif
c0ff4b85 6073static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
6074{
6075 struct mem_cgroup_per_node *pn;
1ecaab2b 6076 struct mem_cgroup_per_zone *mz;
41e3355d 6077 int zone, tmp = node;
1ecaab2b
KH
6078 /*
6079 * This routine is called against possible nodes.
6080 * But it's BUG to call kmalloc() against offline node.
6081 *
6082 * TODO: this routine can waste much memory for nodes which will
6083 * never be onlined. It's better to use memory hotplug callback
6084 * function.
6085 */
41e3355d
KH
6086 if (!node_state(node, N_NORMAL_MEMORY))
6087 tmp = -1;
17295c88 6088 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
6089 if (!pn)
6090 return 1;
1ecaab2b 6091
1ecaab2b
KH
6092 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6093 mz = &pn->zoneinfo[zone];
bea8c150 6094 lruvec_init(&mz->lruvec);
f64c3f54 6095 mz->usage_in_excess = 0;
4e416953 6096 mz->on_tree = false;
d79154bb 6097 mz->memcg = memcg;
1ecaab2b 6098 }
0a619e58 6099 memcg->info.nodeinfo[node] = pn;
6d12e2d8
KH
6100 return 0;
6101}
6102
c0ff4b85 6103static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 6104{
c0ff4b85 6105 kfree(memcg->info.nodeinfo[node]);
1ecaab2b
KH
6106}
6107
33327948
KH
6108static struct mem_cgroup *mem_cgroup_alloc(void)
6109{
d79154bb 6110 struct mem_cgroup *memcg;
45cf7ebd 6111 size_t size = memcg_size();
33327948 6112
45cf7ebd 6113 /* Can be very big if nr_node_ids is very big */
c8dad2bb 6114 if (size < PAGE_SIZE)
d79154bb 6115 memcg = kzalloc(size, GFP_KERNEL);
33327948 6116 else
d79154bb 6117 memcg = vzalloc(size);
33327948 6118
d79154bb 6119 if (!memcg)
e7bbcdf3
DC
6120 return NULL;
6121
d79154bb
HD
6122 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
6123 if (!memcg->stat)
d2e61b8d 6124 goto out_free;
d79154bb
HD
6125 spin_lock_init(&memcg->pcp_counter_lock);
6126 return memcg;
d2e61b8d
DC
6127
6128out_free:
6129 if (size < PAGE_SIZE)
d79154bb 6130 kfree(memcg);
d2e61b8d 6131 else
d79154bb 6132 vfree(memcg);
d2e61b8d 6133 return NULL;
33327948
KH
6134}
6135
59927fb9 6136/*
c8b2a36f
GC
6137 * At destroying mem_cgroup, references from swap_cgroup can remain.
6138 * (scanning all at force_empty is too costly...)
6139 *
6140 * Instead of clearing all references at force_empty, we remember
6141 * the number of reference from swap_cgroup and free mem_cgroup when
6142 * it goes down to 0.
6143 *
6144 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 6145 */
c8b2a36f
GC
6146
6147static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 6148{
c8b2a36f 6149 int node;
45cf7ebd 6150 size_t size = memcg_size();
59927fb9 6151
c8b2a36f
GC
6152 mem_cgroup_remove_from_trees(memcg);
6153 free_css_id(&mem_cgroup_subsys, &memcg->css);
6154
6155 for_each_node(node)
6156 free_mem_cgroup_per_zone_info(memcg, node);
6157
6158 free_percpu(memcg->stat);
6159
3f134619
GC
6160 /*
6161 * We need to make sure that (at least for now), the jump label
6162 * destruction code runs outside of the cgroup lock. This is because
6163 * get_online_cpus(), which is called from the static_branch update,
6164 * can't be called inside the cgroup_lock. cpusets are the ones
6165 * enforcing this dependency, so if they ever change, we might as well.
6166 *
6167 * schedule_work() will guarantee this happens. Be careful if you need
6168 * to move this code around, and make sure it is outside
6169 * the cgroup_lock.
6170 */
a8964b9b 6171 disarm_static_keys(memcg);
3afe36b1
GC
6172 if (size < PAGE_SIZE)
6173 kfree(memcg);
6174 else
6175 vfree(memcg);
59927fb9 6176}
3afe36b1 6177
59927fb9 6178
8c7c6e34 6179/*
c8b2a36f
GC
6180 * Helpers for freeing a kmalloc()ed/vzalloc()ed mem_cgroup by RCU,
6181 * but in process context. The work_freeing structure is overlaid
6182 * on the rcu_freeing structure, which itself is overlaid on memsw.
8c7c6e34 6183 */
c8b2a36f 6184static void free_work(struct work_struct *work)
33327948 6185{
c8b2a36f 6186 struct mem_cgroup *memcg;
08e552c6 6187
c8b2a36f
GC
6188 memcg = container_of(work, struct mem_cgroup, work_freeing);
6189 __mem_cgroup_free(memcg);
6190}
04046e1a 6191
c8b2a36f
GC
6192static void free_rcu(struct rcu_head *rcu_head)
6193{
6194 struct mem_cgroup *memcg;
08e552c6 6195
c8b2a36f
GC
6196 memcg = container_of(rcu_head, struct mem_cgroup, rcu_freeing);
6197 INIT_WORK(&memcg->work_freeing, free_work);
6198 schedule_work(&memcg->work_freeing);
33327948
KH
6199}
6200
c0ff4b85 6201static void mem_cgroup_get(struct mem_cgroup *memcg)
8c7c6e34 6202{
c0ff4b85 6203 atomic_inc(&memcg->refcnt);
8c7c6e34
KH
6204}
6205
c0ff4b85 6206static void __mem_cgroup_put(struct mem_cgroup *memcg, int count)
8c7c6e34 6207{
c0ff4b85
R
6208 if (atomic_sub_and_test(count, &memcg->refcnt)) {
6209 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
c8b2a36f 6210 call_rcu(&memcg->rcu_freeing, free_rcu);
7bcc1bb1
DN
6211 if (parent)
6212 mem_cgroup_put(parent);
6213 }
8c7c6e34
KH
6214}
6215
c0ff4b85 6216static void mem_cgroup_put(struct mem_cgroup *memcg)
483c30b5 6217{
c0ff4b85 6218 __mem_cgroup_put(memcg, 1);
483c30b5
DN
6219}
6220
7bcc1bb1
DN
6221/*
6222 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
6223 */
e1aab161 6224struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 6225{
c0ff4b85 6226 if (!memcg->res.parent)
7bcc1bb1 6227 return NULL;
c0ff4b85 6228 return mem_cgroup_from_res_counter(memcg->res.parent, res);
7bcc1bb1 6229}
e1aab161 6230EXPORT_SYMBOL(parent_mem_cgroup);
33327948 6231
8787a1df 6232static void __init mem_cgroup_soft_limit_tree_init(void)
f64c3f54
BS
6233{
6234 struct mem_cgroup_tree_per_node *rtpn;
6235 struct mem_cgroup_tree_per_zone *rtpz;
6236 int tmp, node, zone;
6237
3ed28fa1 6238 for_each_node(node) {
f64c3f54
BS
6239 tmp = node;
6240 if (!node_state(node, N_NORMAL_MEMORY))
6241 tmp = -1;
6242 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
8787a1df 6243 BUG_ON(!rtpn);
f64c3f54
BS
6244
6245 soft_limit_tree.rb_tree_per_node[node] = rtpn;
6246
6247 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
6248 rtpz = &rtpn->rb_tree_per_zone[zone];
6249 rtpz->rb_root = RB_ROOT;
6250 spin_lock_init(&rtpz->lock);
6251 }
6252 }
f64c3f54
BS
6253}
6254
0eb253e2 6255static struct cgroup_subsys_state * __ref
92fb9748 6256mem_cgroup_css_alloc(struct cgroup *cont)
8cdea7c0 6257{
d142e3e6 6258 struct mem_cgroup *memcg;
04046e1a 6259 long error = -ENOMEM;
6d12e2d8 6260 int node;
8cdea7c0 6261
c0ff4b85
R
6262 memcg = mem_cgroup_alloc();
6263 if (!memcg)
04046e1a 6264 return ERR_PTR(error);
78fb7466 6265
3ed28fa1 6266 for_each_node(node)
c0ff4b85 6267 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 6268 goto free_out;
f64c3f54 6269
c077719b 6270 /* root ? */
28dbc4b6 6271 if (cont->parent == NULL) {
a41c58a6 6272 root_mem_cgroup = memcg;
d142e3e6
GC
6273 res_counter_init(&memcg->res, NULL);
6274 res_counter_init(&memcg->memsw, NULL);
6275 res_counter_init(&memcg->kmem, NULL);
18f59ea7 6276 }
28dbc4b6 6277
d142e3e6
GC
6278 memcg->last_scanned_node = MAX_NUMNODES;
6279 INIT_LIST_HEAD(&memcg->oom_notify);
6280 atomic_set(&memcg->refcnt, 1);
6281 memcg->move_charge_at_immigrate = 0;
6282 mutex_init(&memcg->thresholds_lock);
6283 spin_lock_init(&memcg->move_lock);
70ddf637 6284 vmpressure_init(&memcg->vmpressure);
d142e3e6
GC
6285
6286 return &memcg->css;
6287
6288free_out:
6289 __mem_cgroup_free(memcg);
6290 return ERR_PTR(error);
6291}
6292
6293static int
6294mem_cgroup_css_online(struct cgroup *cont)
6295{
6296 struct mem_cgroup *memcg, *parent;
6297 int error = 0;
6298
6299 if (!cont->parent)
6300 return 0;
6301
0999821b 6302 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
6303 memcg = mem_cgroup_from_cont(cont);
6304 parent = mem_cgroup_from_cont(cont->parent);
6305
6306 memcg->use_hierarchy = parent->use_hierarchy;
6307 memcg->oom_kill_disable = parent->oom_kill_disable;
6308 memcg->swappiness = mem_cgroup_swappiness(parent);
6309
6310 if (parent->use_hierarchy) {
c0ff4b85
R
6311 res_counter_init(&memcg->res, &parent->res);
6312 res_counter_init(&memcg->memsw, &parent->memsw);
510fc4e1 6313 res_counter_init(&memcg->kmem, &parent->kmem);
55007d84 6314
7bcc1bb1
DN
6315 /*
6316 * We increment refcnt of the parent to ensure that we can
6317 * safely access it on res_counter_charge/uncharge.
6318 * This refcnt will be decremented when freeing this
6319 * mem_cgroup(see mem_cgroup_put).
6320 */
6321 mem_cgroup_get(parent);
18f59ea7 6322 } else {
c0ff4b85
R
6323 res_counter_init(&memcg->res, NULL);
6324 res_counter_init(&memcg->memsw, NULL);
510fc4e1 6325 res_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
6326 /*
6327 * Deeper hierachy with use_hierarchy == false doesn't make
6328 * much sense so let cgroup subsystem know about this
6329 * unfortunate state in our controller.
6330 */
d142e3e6 6331 if (parent != root_mem_cgroup)
8c7f6edb 6332 mem_cgroup_subsys.broken_hierarchy = true;
18f59ea7 6333 }
cbe128e3
GC
6334
6335 error = memcg_init_kmem(memcg, &mem_cgroup_subsys);
0999821b 6336 mutex_unlock(&memcg_create_mutex);
d142e3e6 6337 return error;
8cdea7c0
BS
6338}
6339
5f578161
MH
6340/*
6341 * Announce all parents that a group from their hierarchy is gone.
6342 */
6343static void mem_cgroup_invalidate_reclaim_iterators(struct mem_cgroup *memcg)
6344{
6345 struct mem_cgroup *parent = memcg;
6346
6347 while ((parent = parent_mem_cgroup(parent)))
6348 atomic_inc(&parent->dead_count);
6349
6350 /*
6351 * if the root memcg is not hierarchical we have to check it
6352 * explicitely.
6353 */
6354 if (!root_mem_cgroup->use_hierarchy)
6355 atomic_inc(&root_mem_cgroup->dead_count);
6356}
6357
92fb9748 6358static void mem_cgroup_css_offline(struct cgroup *cont)
df878fb0 6359{
c0ff4b85 6360 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
ba9a7297 6361 struct cgroup *iter;
ec64f515 6362
5f578161 6363 mem_cgroup_invalidate_reclaim_iterators(memcg);
ba9a7297
FB
6364
6365 /*
6366 * This requires that offlining is serialized. Right now that is
6367 * guaranteed because css_killed_work_fn() holds the cgroup_mutex.
6368 */
6369 rcu_read_lock();
6370 cgroup_for_each_descendant_post(iter, cont) {
6371 rcu_read_unlock();
6372 mem_cgroup_reparent_charges(mem_cgroup_from_cont(iter));
6373 rcu_read_lock();
6374 }
6375 rcu_read_unlock();
ab5196c2 6376 mem_cgroup_reparent_charges(memcg);
ba9a7297 6377
1f458cbf 6378 mem_cgroup_destroy_all_caches(memcg);
df878fb0
KH
6379}
6380
92fb9748 6381static void mem_cgroup_css_free(struct cgroup *cont)
8cdea7c0 6382{
c0ff4b85 6383 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
c268e994 6384
1d62e436 6385 kmem_cgroup_destroy(memcg);
d1a4c0b3 6386
c0ff4b85 6387 mem_cgroup_put(memcg);
8cdea7c0
BS
6388}
6389
02491447 6390#ifdef CONFIG_MMU
7dc74be0 6391/* Handlers for move charge at task migration. */
854ffa8d
DN
6392#define PRECHARGE_COUNT_AT_ONCE 256
6393static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 6394{
854ffa8d
DN
6395 int ret = 0;
6396 int batch_count = PRECHARGE_COUNT_AT_ONCE;
c0ff4b85 6397 struct mem_cgroup *memcg = mc.to;
4ffef5fe 6398
c0ff4b85 6399 if (mem_cgroup_is_root(memcg)) {
854ffa8d
DN
6400 mc.precharge += count;
6401 /* we don't need css_get for root */
6402 return ret;
6403 }
6404 /* try to charge at once */
6405 if (count > 1) {
6406 struct res_counter *dummy;
6407 /*
c0ff4b85 6408 * "memcg" cannot be under rmdir() because we've already checked
854ffa8d
DN
6409 * by cgroup_lock_live_cgroup() that it is not removed and we
6410 * are still under the same cgroup_mutex. So we can postpone
6411 * css_get().
6412 */
c0ff4b85 6413 if (res_counter_charge(&memcg->res, PAGE_SIZE * count, &dummy))
854ffa8d 6414 goto one_by_one;
c0ff4b85 6415 if (do_swap_account && res_counter_charge(&memcg->memsw,
854ffa8d 6416 PAGE_SIZE * count, &dummy)) {
c0ff4b85 6417 res_counter_uncharge(&memcg->res, PAGE_SIZE * count);
854ffa8d
DN
6418 goto one_by_one;
6419 }
6420 mc.precharge += count;
854ffa8d
DN
6421 return ret;
6422 }
6423one_by_one:
6424 /* fall back to one by one charge */
6425 while (count--) {
6426 if (signal_pending(current)) {
6427 ret = -EINTR;
6428 break;
6429 }
6430 if (!batch_count--) {
6431 batch_count = PRECHARGE_COUNT_AT_ONCE;
6432 cond_resched();
6433 }
c0ff4b85
R
6434 ret = __mem_cgroup_try_charge(NULL,
6435 GFP_KERNEL, 1, &memcg, false);
38c5d72f 6436 if (ret)
854ffa8d 6437 /* mem_cgroup_clear_mc() will do uncharge later */
38c5d72f 6438 return ret;
854ffa8d
DN
6439 mc.precharge++;
6440 }
4ffef5fe
DN
6441 return ret;
6442}
6443
6444/**
8d32ff84 6445 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
6446 * @vma: the vma the pte to be checked belongs
6447 * @addr: the address corresponding to the pte to be checked
6448 * @ptent: the pte to be checked
02491447 6449 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
6450 *
6451 * Returns
6452 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
6453 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
6454 * move charge. if @target is not NULL, the page is stored in target->page
6455 * with extra refcnt got(Callers should handle it).
02491447
DN
6456 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
6457 * target for charge migration. if @target is not NULL, the entry is stored
6458 * in target->ent.
4ffef5fe
DN
6459 *
6460 * Called with pte lock held.
6461 */
4ffef5fe
DN
6462union mc_target {
6463 struct page *page;
02491447 6464 swp_entry_t ent;
4ffef5fe
DN
6465};
6466
4ffef5fe 6467enum mc_target_type {
8d32ff84 6468 MC_TARGET_NONE = 0,
4ffef5fe 6469 MC_TARGET_PAGE,
02491447 6470 MC_TARGET_SWAP,
4ffef5fe
DN
6471};
6472
90254a65
DN
6473static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
6474 unsigned long addr, pte_t ptent)
4ffef5fe 6475{
90254a65 6476 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 6477
90254a65
DN
6478 if (!page || !page_mapped(page))
6479 return NULL;
6480 if (PageAnon(page)) {
6481 /* we don't move shared anon */
4b91355e 6482 if (!move_anon())
90254a65 6483 return NULL;
87946a72
DN
6484 } else if (!move_file())
6485 /* we ignore mapcount for file pages */
90254a65
DN
6486 return NULL;
6487 if (!get_page_unless_zero(page))
6488 return NULL;
6489
6490 return page;
6491}
6492
4b91355e 6493#ifdef CONFIG_SWAP
90254a65
DN
6494static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6495 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6496{
90254a65
DN
6497 struct page *page = NULL;
6498 swp_entry_t ent = pte_to_swp_entry(ptent);
6499
6500 if (!move_anon() || non_swap_entry(ent))
6501 return NULL;
4b91355e
KH
6502 /*
6503 * Because lookup_swap_cache() updates some statistics counter,
6504 * we call find_get_page() with swapper_space directly.
6505 */
33806f06 6506 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
6507 if (do_swap_account)
6508 entry->val = ent.val;
6509
6510 return page;
6511}
4b91355e
KH
6512#else
6513static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
6514 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6515{
6516 return NULL;
6517}
6518#endif
90254a65 6519
87946a72
DN
6520static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
6521 unsigned long addr, pte_t ptent, swp_entry_t *entry)
6522{
6523 struct page *page = NULL;
87946a72
DN
6524 struct address_space *mapping;
6525 pgoff_t pgoff;
6526
6527 if (!vma->vm_file) /* anonymous vma */
6528 return NULL;
6529 if (!move_file())
6530 return NULL;
6531
87946a72
DN
6532 mapping = vma->vm_file->f_mapping;
6533 if (pte_none(ptent))
6534 pgoff = linear_page_index(vma, addr);
6535 else /* pte_file(ptent) is true */
6536 pgoff = pte_to_pgoff(ptent);
6537
6538 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
6539 page = find_get_page(mapping, pgoff);
6540
6541#ifdef CONFIG_SWAP
6542 /* shmem/tmpfs may report page out on swap: account for that too. */
6543 if (radix_tree_exceptional_entry(page)) {
6544 swp_entry_t swap = radix_to_swp_entry(page);
87946a72 6545 if (do_swap_account)
aa3b1895 6546 *entry = swap;
33806f06 6547 page = find_get_page(swap_address_space(swap), swap.val);
87946a72 6548 }
aa3b1895 6549#endif
87946a72
DN
6550 return page;
6551}
6552
8d32ff84 6553static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
6554 unsigned long addr, pte_t ptent, union mc_target *target)
6555{
6556 struct page *page = NULL;
6557 struct page_cgroup *pc;
8d32ff84 6558 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
6559 swp_entry_t ent = { .val = 0 };
6560
6561 if (pte_present(ptent))
6562 page = mc_handle_present_pte(vma, addr, ptent);
6563 else if (is_swap_pte(ptent))
6564 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
87946a72
DN
6565 else if (pte_none(ptent) || pte_file(ptent))
6566 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
6567
6568 if (!page && !ent.val)
8d32ff84 6569 return ret;
02491447
DN
6570 if (page) {
6571 pc = lookup_page_cgroup(page);
6572 /*
6573 * Do only loose check w/o page_cgroup lock.
6574 * mem_cgroup_move_account() checks the pc is valid or not under
6575 * the lock.
6576 */
6577 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6578 ret = MC_TARGET_PAGE;
6579 if (target)
6580 target->page = page;
6581 }
6582 if (!ret || !target)
6583 put_page(page);
6584 }
90254a65
DN
6585 /* There is a swap entry and a page doesn't exist or isn't charged */
6586 if (ent.val && !ret &&
9fb4b7cc 6587 css_id(&mc.from->css) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
6588 ret = MC_TARGET_SWAP;
6589 if (target)
6590 target->ent = ent;
4ffef5fe 6591 }
4ffef5fe
DN
6592 return ret;
6593}
6594
12724850
NH
6595#ifdef CONFIG_TRANSPARENT_HUGEPAGE
6596/*
6597 * We don't consider swapping or file mapped pages because THP does not
6598 * support them for now.
6599 * Caller should make sure that pmd_trans_huge(pmd) is true.
6600 */
6601static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6602 unsigned long addr, pmd_t pmd, union mc_target *target)
6603{
6604 struct page *page = NULL;
6605 struct page_cgroup *pc;
6606 enum mc_target_type ret = MC_TARGET_NONE;
6607
6608 page = pmd_page(pmd);
6609 VM_BUG_ON(!page || !PageHead(page));
6610 if (!move_anon())
6611 return ret;
6612 pc = lookup_page_cgroup(page);
6613 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
6614 ret = MC_TARGET_PAGE;
6615 if (target) {
6616 get_page(page);
6617 target->page = page;
6618 }
6619 }
6620 return ret;
6621}
6622#else
6623static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
6624 unsigned long addr, pmd_t pmd, union mc_target *target)
6625{
6626 return MC_TARGET_NONE;
6627}
6628#endif
6629
4ffef5fe
DN
6630static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
6631 unsigned long addr, unsigned long end,
6632 struct mm_walk *walk)
6633{
6634 struct vm_area_struct *vma = walk->private;
6635 pte_t *pte;
6636 spinlock_t *ptl;
6637
12724850
NH
6638 if (pmd_trans_huge_lock(pmd, vma) == 1) {
6639 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
6640 mc.precharge += HPAGE_PMD_NR;
6641 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6642 return 0;
12724850 6643 }
03319327 6644
45f83cef
AA
6645 if (pmd_trans_unstable(pmd))
6646 return 0;
4ffef5fe
DN
6647 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6648 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 6649 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
6650 mc.precharge++; /* increment precharge temporarily */
6651 pte_unmap_unlock(pte - 1, ptl);
6652 cond_resched();
6653
7dc74be0
DN
6654 return 0;
6655}
6656
4ffef5fe
DN
6657static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
6658{
6659 unsigned long precharge;
6660 struct vm_area_struct *vma;
6661
dfe076b0 6662 down_read(&mm->mmap_sem);
4ffef5fe
DN
6663 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6664 struct mm_walk mem_cgroup_count_precharge_walk = {
6665 .pmd_entry = mem_cgroup_count_precharge_pte_range,
6666 .mm = mm,
6667 .private = vma,
6668 };
6669 if (is_vm_hugetlb_page(vma))
6670 continue;
4ffef5fe
DN
6671 walk_page_range(vma->vm_start, vma->vm_end,
6672 &mem_cgroup_count_precharge_walk);
6673 }
dfe076b0 6674 up_read(&mm->mmap_sem);
4ffef5fe
DN
6675
6676 precharge = mc.precharge;
6677 mc.precharge = 0;
6678
6679 return precharge;
6680}
6681
4ffef5fe
DN
6682static int mem_cgroup_precharge_mc(struct mm_struct *mm)
6683{
dfe076b0
DN
6684 unsigned long precharge = mem_cgroup_count_precharge(mm);
6685
6686 VM_BUG_ON(mc.moving_task);
6687 mc.moving_task = current;
6688 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
6689}
6690
dfe076b0
DN
6691/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
6692static void __mem_cgroup_clear_mc(void)
4ffef5fe 6693{
2bd9bb20
KH
6694 struct mem_cgroup *from = mc.from;
6695 struct mem_cgroup *to = mc.to;
6696
4ffef5fe 6697 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d
DN
6698 if (mc.precharge) {
6699 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
6700 mc.precharge = 0;
6701 }
6702 /*
6703 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
6704 * we must uncharge here.
6705 */
6706 if (mc.moved_charge) {
6707 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
6708 mc.moved_charge = 0;
4ffef5fe 6709 }
483c30b5
DN
6710 /* we must fixup refcnts and charges */
6711 if (mc.moved_swap) {
483c30b5
DN
6712 /* uncharge swap account from the old cgroup */
6713 if (!mem_cgroup_is_root(mc.from))
6714 res_counter_uncharge(&mc.from->memsw,
6715 PAGE_SIZE * mc.moved_swap);
6716 __mem_cgroup_put(mc.from, mc.moved_swap);
6717
6718 if (!mem_cgroup_is_root(mc.to)) {
6719 /*
6720 * we charged both to->res and to->memsw, so we should
6721 * uncharge to->res.
6722 */
6723 res_counter_uncharge(&mc.to->res,
6724 PAGE_SIZE * mc.moved_swap);
483c30b5
DN
6725 }
6726 /* we've already done mem_cgroup_get(mc.to) */
483c30b5
DN
6727 mc.moved_swap = 0;
6728 }
dfe076b0
DN
6729 memcg_oom_recover(from);
6730 memcg_oom_recover(to);
6731 wake_up_all(&mc.waitq);
6732}
6733
6734static void mem_cgroup_clear_mc(void)
6735{
6736 struct mem_cgroup *from = mc.from;
6737
6738 /*
6739 * we must clear moving_task before waking up waiters at the end of
6740 * task migration.
6741 */
6742 mc.moving_task = NULL;
6743 __mem_cgroup_clear_mc();
2bd9bb20 6744 spin_lock(&mc.lock);
4ffef5fe
DN
6745 mc.from = NULL;
6746 mc.to = NULL;
2bd9bb20 6747 spin_unlock(&mc.lock);
32047e2a 6748 mem_cgroup_end_move(from);
4ffef5fe
DN
6749}
6750
761b3ef5
LZ
6751static int mem_cgroup_can_attach(struct cgroup *cgroup,
6752 struct cgroup_taskset *tset)
7dc74be0 6753{
2f7ee569 6754 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 6755 int ret = 0;
c0ff4b85 6756 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgroup);
ee5e8472 6757 unsigned long move_charge_at_immigrate;
7dc74be0 6758
ee5e8472
GC
6759 /*
6760 * We are now commited to this value whatever it is. Changes in this
6761 * tunable will only affect upcoming migrations, not the current one.
6762 * So we need to save it, and keep it going.
6763 */
6764 move_charge_at_immigrate = memcg->move_charge_at_immigrate;
6765 if (move_charge_at_immigrate) {
7dc74be0
DN
6766 struct mm_struct *mm;
6767 struct mem_cgroup *from = mem_cgroup_from_task(p);
6768
c0ff4b85 6769 VM_BUG_ON(from == memcg);
7dc74be0
DN
6770
6771 mm = get_task_mm(p);
6772 if (!mm)
6773 return 0;
7dc74be0 6774 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
6775 if (mm->owner == p) {
6776 VM_BUG_ON(mc.from);
6777 VM_BUG_ON(mc.to);
6778 VM_BUG_ON(mc.precharge);
854ffa8d 6779 VM_BUG_ON(mc.moved_charge);
483c30b5 6780 VM_BUG_ON(mc.moved_swap);
32047e2a 6781 mem_cgroup_start_move(from);
2bd9bb20 6782 spin_lock(&mc.lock);
4ffef5fe 6783 mc.from = from;
c0ff4b85 6784 mc.to = memcg;
ee5e8472 6785 mc.immigrate_flags = move_charge_at_immigrate;
2bd9bb20 6786 spin_unlock(&mc.lock);
dfe076b0 6787 /* We set mc.moving_task later */
4ffef5fe
DN
6788
6789 ret = mem_cgroup_precharge_mc(mm);
6790 if (ret)
6791 mem_cgroup_clear_mc();
dfe076b0
DN
6792 }
6793 mmput(mm);
7dc74be0
DN
6794 }
6795 return ret;
6796}
6797
761b3ef5
LZ
6798static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6799 struct cgroup_taskset *tset)
7dc74be0 6800{
4ffef5fe 6801 mem_cgroup_clear_mc();
7dc74be0
DN
6802}
6803
4ffef5fe
DN
6804static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
6805 unsigned long addr, unsigned long end,
6806 struct mm_walk *walk)
7dc74be0 6807{
4ffef5fe
DN
6808 int ret = 0;
6809 struct vm_area_struct *vma = walk->private;
6810 pte_t *pte;
6811 spinlock_t *ptl;
12724850
NH
6812 enum mc_target_type target_type;
6813 union mc_target target;
6814 struct page *page;
6815 struct page_cgroup *pc;
4ffef5fe 6816
12724850
NH
6817 /*
6818 * We don't take compound_lock() here but no race with splitting thp
6819 * happens because:
6820 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
6821 * under splitting, which means there's no concurrent thp split,
6822 * - if another thread runs into split_huge_page() just after we
6823 * entered this if-block, the thread must wait for page table lock
6824 * to be unlocked in __split_huge_page_splitting(), where the main
6825 * part of thp split is not executed yet.
6826 */
6827 if (pmd_trans_huge_lock(pmd, vma) == 1) {
62ade86a 6828 if (mc.precharge < HPAGE_PMD_NR) {
12724850
NH
6829 spin_unlock(&vma->vm_mm->page_table_lock);
6830 return 0;
6831 }
6832 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
6833 if (target_type == MC_TARGET_PAGE) {
6834 page = target.page;
6835 if (!isolate_lru_page(page)) {
6836 pc = lookup_page_cgroup(page);
6837 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
2f3479b1 6838 pc, mc.from, mc.to)) {
12724850
NH
6839 mc.precharge -= HPAGE_PMD_NR;
6840 mc.moved_charge += HPAGE_PMD_NR;
6841 }
6842 putback_lru_page(page);
6843 }
6844 put_page(page);
6845 }
6846 spin_unlock(&vma->vm_mm->page_table_lock);
1a5a9906 6847 return 0;
12724850
NH
6848 }
6849
45f83cef
AA
6850 if (pmd_trans_unstable(pmd))
6851 return 0;
4ffef5fe
DN
6852retry:
6853 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
6854 for (; addr != end; addr += PAGE_SIZE) {
6855 pte_t ptent = *(pte++);
02491447 6856 swp_entry_t ent;
4ffef5fe
DN
6857
6858 if (!mc.precharge)
6859 break;
6860
8d32ff84 6861 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
6862 case MC_TARGET_PAGE:
6863 page = target.page;
6864 if (isolate_lru_page(page))
6865 goto put;
6866 pc = lookup_page_cgroup(page);
7ec99d62 6867 if (!mem_cgroup_move_account(page, 1, pc,
2f3479b1 6868 mc.from, mc.to)) {
4ffef5fe 6869 mc.precharge--;
854ffa8d
DN
6870 /* we uncharge from mc.from later. */
6871 mc.moved_charge++;
4ffef5fe
DN
6872 }
6873 putback_lru_page(page);
8d32ff84 6874put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
6875 put_page(page);
6876 break;
02491447
DN
6877 case MC_TARGET_SWAP:
6878 ent = target.ent;
e91cbb42 6879 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 6880 mc.precharge--;
483c30b5
DN
6881 /* we fixup refcnts and charges later. */
6882 mc.moved_swap++;
6883 }
02491447 6884 break;
4ffef5fe
DN
6885 default:
6886 break;
6887 }
6888 }
6889 pte_unmap_unlock(pte - 1, ptl);
6890 cond_resched();
6891
6892 if (addr != end) {
6893 /*
6894 * We have consumed all precharges we got in can_attach().
6895 * We try charge one by one, but don't do any additional
6896 * charges to mc.to if we have failed in charge once in attach()
6897 * phase.
6898 */
854ffa8d 6899 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
6900 if (!ret)
6901 goto retry;
6902 }
6903
6904 return ret;
6905}
6906
6907static void mem_cgroup_move_charge(struct mm_struct *mm)
6908{
6909 struct vm_area_struct *vma;
6910
6911 lru_add_drain_all();
dfe076b0
DN
6912retry:
6913 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
6914 /*
6915 * Someone who are holding the mmap_sem might be waiting in
6916 * waitq. So we cancel all extra charges, wake up all waiters,
6917 * and retry. Because we cancel precharges, we might not be able
6918 * to move enough charges, but moving charge is a best-effort
6919 * feature anyway, so it wouldn't be a big problem.
6920 */
6921 __mem_cgroup_clear_mc();
6922 cond_resched();
6923 goto retry;
6924 }
4ffef5fe
DN
6925 for (vma = mm->mmap; vma; vma = vma->vm_next) {
6926 int ret;
6927 struct mm_walk mem_cgroup_move_charge_walk = {
6928 .pmd_entry = mem_cgroup_move_charge_pte_range,
6929 .mm = mm,
6930 .private = vma,
6931 };
6932 if (is_vm_hugetlb_page(vma))
6933 continue;
4ffef5fe
DN
6934 ret = walk_page_range(vma->vm_start, vma->vm_end,
6935 &mem_cgroup_move_charge_walk);
6936 if (ret)
6937 /*
6938 * means we have consumed all precharges and failed in
6939 * doing additional charge. Just abandon here.
6940 */
6941 break;
6942 }
dfe076b0 6943 up_read(&mm->mmap_sem);
7dc74be0
DN
6944}
6945
761b3ef5
LZ
6946static void mem_cgroup_move_task(struct cgroup *cont,
6947 struct cgroup_taskset *tset)
67e465a7 6948{
2f7ee569 6949 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 6950 struct mm_struct *mm = get_task_mm(p);
dfe076b0 6951
dfe076b0 6952 if (mm) {
a433658c
KM
6953 if (mc.to)
6954 mem_cgroup_move_charge(mm);
dfe076b0
DN
6955 mmput(mm);
6956 }
a433658c
KM
6957 if (mc.to)
6958 mem_cgroup_clear_mc();
67e465a7 6959}
5cfb80a7 6960#else /* !CONFIG_MMU */
761b3ef5
LZ
6961static int mem_cgroup_can_attach(struct cgroup *cgroup,
6962 struct cgroup_taskset *tset)
5cfb80a7
DN
6963{
6964 return 0;
6965}
761b3ef5
LZ
6966static void mem_cgroup_cancel_attach(struct cgroup *cgroup,
6967 struct cgroup_taskset *tset)
5cfb80a7
DN
6968{
6969}
761b3ef5
LZ
6970static void mem_cgroup_move_task(struct cgroup *cont,
6971 struct cgroup_taskset *tset)
5cfb80a7
DN
6972{
6973}
6974#endif
67e465a7 6975
f00baae7
TH
6976/*
6977 * Cgroup retains root cgroups across [un]mount cycles making it necessary
6978 * to verify sane_behavior flag on each mount attempt.
6979 */
6980static void mem_cgroup_bind(struct cgroup *root)
6981{
6982 /*
6983 * use_hierarchy is forced with sane_behavior. cgroup core
6984 * guarantees that @root doesn't have any children, so turning it
6985 * on for the root memcg is enough.
6986 */
6987 if (cgroup_sane_behavior(root))
6988 mem_cgroup_from_cont(root)->use_hierarchy = true;
6989}
6990
8cdea7c0
BS
6991struct cgroup_subsys mem_cgroup_subsys = {
6992 .name = "memory",
6993 .subsys_id = mem_cgroup_subsys_id,
92fb9748 6994 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 6995 .css_online = mem_cgroup_css_online,
92fb9748
TH
6996 .css_offline = mem_cgroup_css_offline,
6997 .css_free = mem_cgroup_css_free,
7dc74be0
DN
6998 .can_attach = mem_cgroup_can_attach,
6999 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 7000 .attach = mem_cgroup_move_task,
f00baae7 7001 .bind = mem_cgroup_bind,
6bc10349 7002 .base_cftypes = mem_cgroup_files,
6d12e2d8 7003 .early_init = 0,
04046e1a 7004 .use_id = 1,
8cdea7c0 7005};
c077719b 7006
c255a458 7007#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
7008static int __init enable_swap_account(char *s)
7009{
7010 /* consider enabled if no parameter or 1 is given */
a2c8990a 7011 if (!strcmp(s, "1"))
a42c390c 7012 really_do_swap_account = 1;
a2c8990a 7013 else if (!strcmp(s, "0"))
a42c390c
MH
7014 really_do_swap_account = 0;
7015 return 1;
7016}
a2c8990a 7017__setup("swapaccount=", enable_swap_account);
c077719b 7018
2d11085e
MH
7019static void __init memsw_file_init(void)
7020{
6acc8b02
MH
7021 WARN_ON(cgroup_add_cftypes(&mem_cgroup_subsys, memsw_cgroup_files));
7022}
7023
7024static void __init enable_swap_cgroup(void)
7025{
7026 if (!mem_cgroup_disabled() && really_do_swap_account) {
7027 do_swap_account = 1;
7028 memsw_file_init();
7029 }
2d11085e 7030}
6acc8b02 7031
2d11085e 7032#else
6acc8b02 7033static void __init enable_swap_cgroup(void)
2d11085e
MH
7034{
7035}
c077719b 7036#endif
2d11085e
MH
7037
7038/*
1081312f
MH
7039 * subsys_initcall() for memory controller.
7040 *
7041 * Some parts like hotcpu_notifier() have to be initialized from this context
7042 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
7043 * everything that doesn't depend on a specific mem_cgroup structure should
7044 * be initialized from here.
2d11085e
MH
7045 */
7046static int __init mem_cgroup_init(void)
7047{
7048 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 7049 enable_swap_cgroup();
8787a1df 7050 mem_cgroup_soft_limit_tree_init();
e4777496 7051 memcg_stock_init();
2d11085e
MH
7052 return 0;
7053}
7054subsys_initcall(mem_cgroup_init);