memcg: memory cgroup resource counters for hierarchy
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
8cdea7c0
BS
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
13 *
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
18 */
19
20#include <linux/res_counter.h>
21#include <linux/memcontrol.h>
22#include <linux/cgroup.h>
78fb7466 23#include <linux/mm.h>
d13d1443 24#include <linux/pagemap.h>
d52aa412 25#include <linux/smp.h>
8a9f3ccd 26#include <linux/page-flags.h>
66e1707b 27#include <linux/backing-dev.h>
8a9f3ccd
BS
28#include <linux/bit_spinlock.h>
29#include <linux/rcupdate.h>
8c7c6e34 30#include <linux/mutex.h>
b6ac57d5 31#include <linux/slab.h>
66e1707b
BS
32#include <linux/swap.h>
33#include <linux/spinlock.h>
34#include <linux/fs.h>
d2ceb9b7 35#include <linux/seq_file.h>
33327948 36#include <linux/vmalloc.h>
b69408e8 37#include <linux/mm_inline.h>
52d4b9ac 38#include <linux/page_cgroup.h>
08e552c6 39#include "internal.h"
8cdea7c0 40
8697d331
BS
41#include <asm/uaccess.h>
42
a181b0e8 43struct cgroup_subsys mem_cgroup_subsys __read_mostly;
a181b0e8 44#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 45
c077719b
KH
46#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47/* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48int do_swap_account __read_mostly;
49static int really_do_swap_account __initdata = 1; /* for remember boot option*/
50#else
51#define do_swap_account (0)
52#endif
53
54
d52aa412
KH
55/*
56 * Statistics for memory cgroup.
57 */
58enum mem_cgroup_stat_index {
59 /*
60 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
61 */
62 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
63 MEM_CGROUP_STAT_RSS, /* # of pages charged as rss */
55e462b0
BR
64 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
65 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
d52aa412
KH
66
67 MEM_CGROUP_STAT_NSTATS,
68};
69
70struct mem_cgroup_stat_cpu {
71 s64 count[MEM_CGROUP_STAT_NSTATS];
72} ____cacheline_aligned_in_smp;
73
74struct mem_cgroup_stat {
c8dad2bb 75 struct mem_cgroup_stat_cpu cpustat[0];
d52aa412
KH
76};
77
78/*
79 * For accounting under irq disable, no need for increment preempt count.
80 */
addb9efe 81static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu *stat,
d52aa412
KH
82 enum mem_cgroup_stat_index idx, int val)
83{
addb9efe 84 stat->count[idx] += val;
d52aa412
KH
85}
86
87static s64 mem_cgroup_read_stat(struct mem_cgroup_stat *stat,
88 enum mem_cgroup_stat_index idx)
89{
90 int cpu;
91 s64 ret = 0;
92 for_each_possible_cpu(cpu)
93 ret += stat->cpustat[cpu].count[idx];
94 return ret;
95}
96
6d12e2d8
KH
97/*
98 * per-zone information in memory controller.
99 */
6d12e2d8 100struct mem_cgroup_per_zone {
072c56c1
KH
101 /*
102 * spin_lock to protect the per cgroup LRU
103 */
b69408e8
CL
104 struct list_head lists[NR_LRU_LISTS];
105 unsigned long count[NR_LRU_LISTS];
6d12e2d8
KH
106};
107/* Macro for accessing counter */
108#define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
109
110struct mem_cgroup_per_node {
111 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
112};
113
114struct mem_cgroup_lru_info {
115 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
116};
117
8cdea7c0
BS
118/*
119 * The memory controller data structure. The memory controller controls both
120 * page cache and RSS per cgroup. We would eventually like to provide
121 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
122 * to help the administrator determine what knobs to tune.
123 *
124 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
125 * we hit the water mark. May be even add a low water mark, such that
126 * no reclaim occurs from a cgroup at it's low water mark, this is
127 * a feature that will be implemented much later in the future.
8cdea7c0
BS
128 */
129struct mem_cgroup {
130 struct cgroup_subsys_state css;
131 /*
132 * the counter to account for memory usage
133 */
134 struct res_counter res;
8c7c6e34
KH
135 /*
136 * the counter to account for mem+swap usage.
137 */
138 struct res_counter memsw;
78fb7466
PE
139 /*
140 * Per cgroup active and inactive list, similar to the
141 * per zone LRU lists.
78fb7466 142 */
6d12e2d8 143 struct mem_cgroup_lru_info info;
072c56c1 144
6c48a1d0 145 int prev_priority; /* for recording reclaim priority */
8c7c6e34
KH
146 int obsolete;
147 atomic_t refcnt;
d52aa412 148 /*
c8dad2bb 149 * statistics. This must be placed at the end of memcg.
d52aa412
KH
150 */
151 struct mem_cgroup_stat stat;
8cdea7c0
BS
152};
153
217bc319
KH
154enum charge_type {
155 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
156 MEM_CGROUP_CHARGE_TYPE_MAPPED,
4f98a2fe 157 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
c05555b5 158 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
d13d1443 159 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
c05555b5
KH
160 NR_CHARGE_TYPE,
161};
162
52d4b9ac
KH
163/* only for here (for easy reading.) */
164#define PCGF_CACHE (1UL << PCG_CACHE)
165#define PCGF_USED (1UL << PCG_USED)
52d4b9ac 166#define PCGF_LOCK (1UL << PCG_LOCK)
c05555b5
KH
167static const unsigned long
168pcg_default_flags[NR_CHARGE_TYPE] = {
08e552c6
KH
169 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* File Cache */
170 PCGF_USED | PCGF_LOCK, /* Anon */
171 PCGF_CACHE | PCGF_USED | PCGF_LOCK, /* Shmem */
52d4b9ac 172 0, /* FORCE */
217bc319
KH
173};
174
8c7c6e34
KH
175
176/* for encoding cft->private value on file */
177#define _MEM (0)
178#define _MEMSWAP (1)
179#define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
180#define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
181#define MEMFILE_ATTR(val) ((val) & 0xffff)
182
183static void mem_cgroup_get(struct mem_cgroup *mem);
184static void mem_cgroup_put(struct mem_cgroup *mem);
185
c05555b5
KH
186static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
187 struct page_cgroup *pc,
188 bool charge)
d52aa412
KH
189{
190 int val = (charge)? 1 : -1;
191 struct mem_cgroup_stat *stat = &mem->stat;
addb9efe 192 struct mem_cgroup_stat_cpu *cpustat;
08e552c6 193 int cpu = get_cpu();
d52aa412 194
08e552c6 195 cpustat = &stat->cpustat[cpu];
c05555b5 196 if (PageCgroupCache(pc))
addb9efe 197 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_CACHE, val);
d52aa412 198 else
addb9efe 199 __mem_cgroup_stat_add_safe(cpustat, MEM_CGROUP_STAT_RSS, val);
55e462b0
BR
200
201 if (charge)
addb9efe 202 __mem_cgroup_stat_add_safe(cpustat,
55e462b0
BR
203 MEM_CGROUP_STAT_PGPGIN_COUNT, 1);
204 else
addb9efe 205 __mem_cgroup_stat_add_safe(cpustat,
55e462b0 206 MEM_CGROUP_STAT_PGPGOUT_COUNT, 1);
08e552c6 207 put_cpu();
6d12e2d8
KH
208}
209
d5b69e38 210static struct mem_cgroup_per_zone *
6d12e2d8
KH
211mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
212{
6d12e2d8
KH
213 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
214}
215
d5b69e38 216static struct mem_cgroup_per_zone *
6d12e2d8
KH
217page_cgroup_zoneinfo(struct page_cgroup *pc)
218{
219 struct mem_cgroup *mem = pc->mem_cgroup;
220 int nid = page_cgroup_nid(pc);
221 int zid = page_cgroup_zid(pc);
d52aa412 222
6d12e2d8
KH
223 return mem_cgroup_zoneinfo(mem, nid, zid);
224}
225
226static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup *mem,
b69408e8 227 enum lru_list idx)
6d12e2d8
KH
228{
229 int nid, zid;
230 struct mem_cgroup_per_zone *mz;
231 u64 total = 0;
232
233 for_each_online_node(nid)
234 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
235 mz = mem_cgroup_zoneinfo(mem, nid, zid);
236 total += MEM_CGROUP_ZSTAT(mz, idx);
237 }
238 return total;
d52aa412
KH
239}
240
d5b69e38 241static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
8cdea7c0
BS
242{
243 return container_of(cgroup_subsys_state(cont,
244 mem_cgroup_subsys_id), struct mem_cgroup,
245 css);
246}
247
cf475ad2 248struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 249{
31a78f23
BS
250 /*
251 * mm_update_next_owner() may clear mm->owner to NULL
252 * if it races with swapoff, page migration, etc.
253 * So this can be called with p == NULL.
254 */
255 if (unlikely(!p))
256 return NULL;
257
78fb7466
PE
258 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
259 struct mem_cgroup, css);
260}
261
08e552c6
KH
262/*
263 * Following LRU functions are allowed to be used without PCG_LOCK.
264 * Operations are called by routine of global LRU independently from memcg.
265 * What we have to take care of here is validness of pc->mem_cgroup.
266 *
267 * Changes to pc->mem_cgroup happens when
268 * 1. charge
269 * 2. moving account
270 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
271 * It is added to LRU before charge.
272 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
273 * When moving account, the page is not on LRU. It's isolated.
274 */
4f98a2fe 275
08e552c6
KH
276void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
277{
278 struct page_cgroup *pc;
279 struct mem_cgroup *mem;
280 struct mem_cgroup_per_zone *mz;
6d12e2d8 281
f8d66542 282 if (mem_cgroup_disabled())
08e552c6
KH
283 return;
284 pc = lookup_page_cgroup(page);
285 /* can happen while we handle swapcache. */
286 if (list_empty(&pc->lru))
287 return;
288 mz = page_cgroup_zoneinfo(pc);
289 mem = pc->mem_cgroup;
b69408e8 290 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
08e552c6
KH
291 list_del_init(&pc->lru);
292 return;
6d12e2d8
KH
293}
294
08e552c6 295void mem_cgroup_del_lru(struct page *page)
6d12e2d8 296{
08e552c6
KH
297 mem_cgroup_del_lru_list(page, page_lru(page));
298}
b69408e8 299
08e552c6
KH
300void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
301{
302 struct mem_cgroup_per_zone *mz;
303 struct page_cgroup *pc;
b69408e8 304
f8d66542 305 if (mem_cgroup_disabled())
08e552c6 306 return;
6d12e2d8 307
08e552c6
KH
308 pc = lookup_page_cgroup(page);
309 smp_rmb();
310 /* unused page is not rotated. */
311 if (!PageCgroupUsed(pc))
312 return;
313 mz = page_cgroup_zoneinfo(pc);
314 list_move(&pc->lru, &mz->lists[lru]);
6d12e2d8
KH
315}
316
08e552c6 317void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
66e1707b 318{
08e552c6
KH
319 struct page_cgroup *pc;
320 struct mem_cgroup_per_zone *mz;
6d12e2d8 321
f8d66542 322 if (mem_cgroup_disabled())
08e552c6
KH
323 return;
324 pc = lookup_page_cgroup(page);
325 /* barrier to sync with "charge" */
326 smp_rmb();
327 if (!PageCgroupUsed(pc))
894bc310 328 return;
b69408e8 329
08e552c6 330 mz = page_cgroup_zoneinfo(pc);
b69408e8 331 MEM_CGROUP_ZSTAT(mz, lru) += 1;
08e552c6
KH
332 list_add(&pc->lru, &mz->lists[lru]);
333}
334/*
335 * To add swapcache into LRU. Be careful to all this function.
336 * zone->lru_lock shouldn't be held and irq must not be disabled.
337 */
338static void mem_cgroup_lru_fixup(struct page *page)
339{
340 if (!isolate_lru_page(page))
341 putback_lru_page(page);
342}
343
344void mem_cgroup_move_lists(struct page *page,
345 enum lru_list from, enum lru_list to)
346{
f8d66542 347 if (mem_cgroup_disabled())
08e552c6
KH
348 return;
349 mem_cgroup_del_lru_list(page, from);
350 mem_cgroup_add_lru_list(page, to);
66e1707b
BS
351}
352
4c4a2214
DR
353int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
354{
355 int ret;
356
357 task_lock(task);
bd845e38 358 ret = task->mm && mm_match_cgroup(task->mm, mem);
4c4a2214
DR
359 task_unlock(task);
360 return ret;
361}
362
58ae83db
KH
363/*
364 * Calculate mapped_ratio under memory controller. This will be used in
365 * vmscan.c for deteremining we have to reclaim mapped pages.
366 */
367int mem_cgroup_calc_mapped_ratio(struct mem_cgroup *mem)
368{
369 long total, rss;
370
371 /*
372 * usage is recorded in bytes. But, here, we assume the number of
373 * physical pages can be represented by "long" on any arch.
374 */
375 total = (long) (mem->res.usage >> PAGE_SHIFT) + 1L;
376 rss = (long)mem_cgroup_read_stat(&mem->stat, MEM_CGROUP_STAT_RSS);
377 return (int)((rss * 100L) / total);
378}
8869b8f6 379
6c48a1d0
KH
380/*
381 * prev_priority control...this will be used in memory reclaim path.
382 */
383int mem_cgroup_get_reclaim_priority(struct mem_cgroup *mem)
384{
385 return mem->prev_priority;
386}
387
388void mem_cgroup_note_reclaim_priority(struct mem_cgroup *mem, int priority)
389{
390 if (priority < mem->prev_priority)
391 mem->prev_priority = priority;
392}
393
394void mem_cgroup_record_reclaim_priority(struct mem_cgroup *mem, int priority)
395{
396 mem->prev_priority = priority;
397}
398
cc38108e
KH
399/*
400 * Calculate # of pages to be scanned in this priority/zone.
401 * See also vmscan.c
402 *
403 * priority starts from "DEF_PRIORITY" and decremented in each loop.
404 * (see include/linux/mmzone.h)
405 */
406
b69408e8
CL
407long mem_cgroup_calc_reclaim(struct mem_cgroup *mem, struct zone *zone,
408 int priority, enum lru_list lru)
cc38108e 409{
b69408e8 410 long nr_pages;
cc38108e
KH
411 int nid = zone->zone_pgdat->node_id;
412 int zid = zone_idx(zone);
413 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(mem, nid, zid);
414
b69408e8 415 nr_pages = MEM_CGROUP_ZSTAT(mz, lru);
cc38108e 416
b69408e8 417 return (nr_pages >> priority);
cc38108e
KH
418}
419
66e1707b
BS
420unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
421 struct list_head *dst,
422 unsigned long *scanned, int order,
423 int mode, struct zone *z,
424 struct mem_cgroup *mem_cont,
4f98a2fe 425 int active, int file)
66e1707b
BS
426{
427 unsigned long nr_taken = 0;
428 struct page *page;
429 unsigned long scan;
430 LIST_HEAD(pc_list);
431 struct list_head *src;
ff7283fa 432 struct page_cgroup *pc, *tmp;
1ecaab2b
KH
433 int nid = z->zone_pgdat->node_id;
434 int zid = zone_idx(z);
435 struct mem_cgroup_per_zone *mz;
4f98a2fe 436 int lru = LRU_FILE * !!file + !!active;
66e1707b 437
cf475ad2 438 BUG_ON(!mem_cont);
1ecaab2b 439 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
b69408e8 440 src = &mz->lists[lru];
66e1707b 441
ff7283fa
KH
442 scan = 0;
443 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
436c6541 444 if (scan >= nr_to_scan)
ff7283fa 445 break;
08e552c6
KH
446
447 page = pc->page;
52d4b9ac
KH
448 if (unlikely(!PageCgroupUsed(pc)))
449 continue;
436c6541 450 if (unlikely(!PageLRU(page)))
ff7283fa 451 continue;
ff7283fa 452
436c6541 453 scan++;
4f98a2fe 454 if (__isolate_lru_page(page, mode, file) == 0) {
66e1707b
BS
455 list_move(&page->lru, dst);
456 nr_taken++;
457 }
458 }
459
66e1707b
BS
460 *scanned = scan;
461 return nr_taken;
462}
463
f817ed48
KH
464/*
465 * Unlike exported interface, "oom" parameter is added. if oom==true,
466 * oom-killer can be invoked.
8a9f3ccd 467 */
f817ed48 468static int __mem_cgroup_try_charge(struct mm_struct *mm,
8c7c6e34
KH
469 gfp_t gfp_mask, struct mem_cgroup **memcg,
470 bool oom)
8a9f3ccd
BS
471{
472 struct mem_cgroup *mem;
7a81b88c 473 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
28dbc4b6 474 struct res_counter *fail_res;
8a9f3ccd 475 /*
3be91277
HD
476 * We always charge the cgroup the mm_struct belongs to.
477 * The mm_struct's mem_cgroup changes on task migration if the
8a9f3ccd
BS
478 * thread group leader migrates. It's possible that mm is not
479 * set, if so charge the init_mm (happens for pagecache usage).
480 */
7a81b88c 481 if (likely(!*memcg)) {
e8589cc1
KH
482 rcu_read_lock();
483 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
484 if (unlikely(!mem)) {
485 rcu_read_unlock();
31a78f23
BS
486 return 0;
487 }
e8589cc1
KH
488 /*
489 * For every charge from the cgroup, increment reference count
490 */
491 css_get(&mem->css);
7a81b88c 492 *memcg = mem;
e8589cc1
KH
493 rcu_read_unlock();
494 } else {
7a81b88c
KH
495 mem = *memcg;
496 css_get(&mem->css);
e8589cc1 497 }
8a9f3ccd 498
8c7c6e34
KH
499 while (1) {
500 int ret;
501 bool noswap = false;
7a81b88c 502
28dbc4b6 503 ret = res_counter_charge(&mem->res, PAGE_SIZE, &fail_res);
8c7c6e34
KH
504 if (likely(!ret)) {
505 if (!do_swap_account)
506 break;
28dbc4b6
BS
507 ret = res_counter_charge(&mem->memsw, PAGE_SIZE,
508 &fail_res);
8c7c6e34
KH
509 if (likely(!ret))
510 break;
511 /* mem+swap counter fails */
512 res_counter_uncharge(&mem->res, PAGE_SIZE);
513 noswap = true;
514 }
3be91277 515 if (!(gfp_mask & __GFP_WAIT))
7a81b88c 516 goto nomem;
e1a1cd59 517
8c7c6e34 518 if (try_to_free_mem_cgroup_pages(mem, gfp_mask, noswap))
66e1707b
BS
519 continue;
520
521 /*
8869b8f6
HD
522 * try_to_free_mem_cgroup_pages() might not give us a full
523 * picture of reclaim. Some pages are reclaimed and might be
524 * moved to swap cache or just unmapped from the cgroup.
525 * Check the limit again to see if the reclaim reduced the
526 * current usage of the cgroup before giving up
8c7c6e34 527 *
8869b8f6 528 */
8c7c6e34
KH
529 if (!do_swap_account &&
530 res_counter_check_under_limit(&mem->res))
531 continue;
532 if (do_swap_account &&
533 res_counter_check_under_limit(&mem->memsw))
66e1707b 534 continue;
3be91277
HD
535
536 if (!nr_retries--) {
f817ed48
KH
537 if (oom)
538 mem_cgroup_out_of_memory(mem, gfp_mask);
7a81b88c 539 goto nomem;
66e1707b 540 }
8a9f3ccd 541 }
7a81b88c
KH
542 return 0;
543nomem:
544 css_put(&mem->css);
545 return -ENOMEM;
546}
8a9f3ccd 547
f817ed48
KH
548/**
549 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
550 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
551 * @gfp_mask: gfp_mask for reclaim.
552 * @memcg: a pointer to memory cgroup which is charged against.
553 *
554 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
555 * memory cgroup from @mm is got and stored in *memcg.
556 *
557 * Returns 0 if success. -ENOMEM at failure.
558 * This call can invoke OOM-Killer.
559 */
560
561int mem_cgroup_try_charge(struct mm_struct *mm,
562 gfp_t mask, struct mem_cgroup **memcg)
563{
564 return __mem_cgroup_try_charge(mm, mask, memcg, true);
565}
566
7a81b88c
KH
567/*
568 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
569 * USED state. If already USED, uncharge and return.
570 */
571
572static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
573 struct page_cgroup *pc,
574 enum charge_type ctype)
575{
7a81b88c
KH
576 /* try_charge() can return NULL to *memcg, taking care of it. */
577 if (!mem)
578 return;
52d4b9ac
KH
579
580 lock_page_cgroup(pc);
581 if (unlikely(PageCgroupUsed(pc))) {
582 unlock_page_cgroup(pc);
583 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
584 if (do_swap_account)
585 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
52d4b9ac 586 css_put(&mem->css);
7a81b88c 587 return;
52d4b9ac 588 }
8a9f3ccd 589 pc->mem_cgroup = mem;
08e552c6 590 smp_wmb();
c05555b5 591 pc->flags = pcg_default_flags[ctype];
3be91277 592
08e552c6 593 mem_cgroup_charge_statistics(mem, pc, true);
52d4b9ac 594
52d4b9ac 595 unlock_page_cgroup(pc);
7a81b88c 596}
66e1707b 597
f817ed48
KH
598/**
599 * mem_cgroup_move_account - move account of the page
600 * @pc: page_cgroup of the page.
601 * @from: mem_cgroup which the page is moved from.
602 * @to: mem_cgroup which the page is moved to. @from != @to.
603 *
604 * The caller must confirm following.
08e552c6 605 * - page is not on LRU (isolate_page() is useful.)
f817ed48
KH
606 *
607 * returns 0 at success,
608 * returns -EBUSY when lock is busy or "pc" is unstable.
609 *
610 * This function does "uncharge" from old cgroup but doesn't do "charge" to
611 * new cgroup. It should be done by a caller.
612 */
613
614static int mem_cgroup_move_account(struct page_cgroup *pc,
615 struct mem_cgroup *from, struct mem_cgroup *to)
616{
617 struct mem_cgroup_per_zone *from_mz, *to_mz;
618 int nid, zid;
619 int ret = -EBUSY;
620
f817ed48 621 VM_BUG_ON(from == to);
08e552c6 622 VM_BUG_ON(PageLRU(pc->page));
f817ed48
KH
623
624 nid = page_cgroup_nid(pc);
625 zid = page_cgroup_zid(pc);
626 from_mz = mem_cgroup_zoneinfo(from, nid, zid);
627 to_mz = mem_cgroup_zoneinfo(to, nid, zid);
628
f817ed48
KH
629 if (!trylock_page_cgroup(pc))
630 return ret;
631
632 if (!PageCgroupUsed(pc))
633 goto out;
634
635 if (pc->mem_cgroup != from)
636 goto out;
637
08e552c6
KH
638 css_put(&from->css);
639 res_counter_uncharge(&from->res, PAGE_SIZE);
640 mem_cgroup_charge_statistics(from, pc, false);
641 if (do_swap_account)
642 res_counter_uncharge(&from->memsw, PAGE_SIZE);
643 pc->mem_cgroup = to;
644 mem_cgroup_charge_statistics(to, pc, true);
645 css_get(&to->css);
646 ret = 0;
f817ed48
KH
647out:
648 unlock_page_cgroup(pc);
649 return ret;
650}
651
652/*
653 * move charges to its parent.
654 */
655
656static int mem_cgroup_move_parent(struct page_cgroup *pc,
657 struct mem_cgroup *child,
658 gfp_t gfp_mask)
659{
08e552c6 660 struct page *page = pc->page;
f817ed48
KH
661 struct cgroup *cg = child->css.cgroup;
662 struct cgroup *pcg = cg->parent;
663 struct mem_cgroup *parent;
f817ed48
KH
664 int ret;
665
666 /* Is ROOT ? */
667 if (!pcg)
668 return -EINVAL;
669
08e552c6 670
f817ed48
KH
671 parent = mem_cgroup_from_cont(pcg);
672
08e552c6 673
f817ed48
KH
674 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false);
675 if (ret)
676 return ret;
677
08e552c6
KH
678 if (!get_page_unless_zero(page))
679 return -EBUSY;
680
681 ret = isolate_lru_page(page);
682
683 if (ret)
684 goto cancel;
f817ed48 685
f817ed48 686 ret = mem_cgroup_move_account(pc, child, parent);
f817ed48 687
08e552c6 688 /* drop extra refcnt by try_charge() (move_account increment one) */
f817ed48 689 css_put(&parent->css);
08e552c6
KH
690 putback_lru_page(page);
691 if (!ret) {
692 put_page(page);
693 return 0;
8c7c6e34 694 }
08e552c6
KH
695 /* uncharge if move fails */
696cancel:
697 res_counter_uncharge(&parent->res, PAGE_SIZE);
698 if (do_swap_account)
699 res_counter_uncharge(&parent->memsw, PAGE_SIZE);
700 put_page(page);
f817ed48
KH
701 return ret;
702}
703
7a81b88c
KH
704/*
705 * Charge the memory controller for page usage.
706 * Return
707 * 0 if the charge was successful
708 * < 0 if the cgroup is over its limit
709 */
710static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
711 gfp_t gfp_mask, enum charge_type ctype,
712 struct mem_cgroup *memcg)
713{
714 struct mem_cgroup *mem;
715 struct page_cgroup *pc;
716 int ret;
717
718 pc = lookup_page_cgroup(page);
719 /* can happen at boot */
720 if (unlikely(!pc))
721 return 0;
722 prefetchw(pc);
723
724 mem = memcg;
f817ed48 725 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true);
7a81b88c
KH
726 if (ret)
727 return ret;
728
729 __mem_cgroup_commit_charge(mem, pc, ctype);
8a9f3ccd 730 return 0;
8a9f3ccd
BS
731}
732
7a81b88c
KH
733int mem_cgroup_newpage_charge(struct page *page,
734 struct mm_struct *mm, gfp_t gfp_mask)
217bc319 735{
f8d66542 736 if (mem_cgroup_disabled())
cede86ac 737 return 0;
52d4b9ac
KH
738 if (PageCompound(page))
739 return 0;
69029cd5
KH
740 /*
741 * If already mapped, we don't have to account.
742 * If page cache, page->mapping has address_space.
743 * But page->mapping may have out-of-use anon_vma pointer,
744 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
745 * is NULL.
746 */
747 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
748 return 0;
749 if (unlikely(!mm))
750 mm = &init_mm;
217bc319 751 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 752 MEM_CGROUP_CHARGE_TYPE_MAPPED, NULL);
217bc319
KH
753}
754
e1a1cd59
BS
755int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
756 gfp_t gfp_mask)
8697d331 757{
f8d66542 758 if (mem_cgroup_disabled())
cede86ac 759 return 0;
52d4b9ac
KH
760 if (PageCompound(page))
761 return 0;
accf163e
KH
762 /*
763 * Corner case handling. This is called from add_to_page_cache()
764 * in usual. But some FS (shmem) precharges this page before calling it
765 * and call add_to_page_cache() with GFP_NOWAIT.
766 *
767 * For GFP_NOWAIT case, the page may be pre-charged before calling
768 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
769 * charge twice. (It works but has to pay a bit larger cost.)
770 */
771 if (!(gfp_mask & __GFP_WAIT)) {
772 struct page_cgroup *pc;
773
52d4b9ac
KH
774
775 pc = lookup_page_cgroup(page);
776 if (!pc)
777 return 0;
778 lock_page_cgroup(pc);
779 if (PageCgroupUsed(pc)) {
780 unlock_page_cgroup(pc);
accf163e
KH
781 return 0;
782 }
52d4b9ac 783 unlock_page_cgroup(pc);
accf163e
KH
784 }
785
69029cd5 786 if (unlikely(!mm))
8697d331 787 mm = &init_mm;
accf163e 788
c05555b5
KH
789 if (page_is_file_cache(page))
790 return mem_cgroup_charge_common(page, mm, gfp_mask,
e8589cc1 791 MEM_CGROUP_CHARGE_TYPE_CACHE, NULL);
c05555b5
KH
792 else
793 return mem_cgroup_charge_common(page, mm, gfp_mask,
794 MEM_CGROUP_CHARGE_TYPE_SHMEM, NULL);
e8589cc1
KH
795}
796
8c7c6e34
KH
797int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
798 struct page *page,
799 gfp_t mask, struct mem_cgroup **ptr)
800{
801 struct mem_cgroup *mem;
802 swp_entry_t ent;
803
f8d66542 804 if (mem_cgroup_disabled())
8c7c6e34
KH
805 return 0;
806
807 if (!do_swap_account)
808 goto charge_cur_mm;
809
810 /*
811 * A racing thread's fault, or swapoff, may have already updated
812 * the pte, and even removed page from swap cache: return success
813 * to go on to do_swap_page()'s pte_same() test, which should fail.
814 */
815 if (!PageSwapCache(page))
816 return 0;
817
818 ent.val = page_private(page);
819
820 mem = lookup_swap_cgroup(ent);
821 if (!mem || mem->obsolete)
822 goto charge_cur_mm;
823 *ptr = mem;
824 return __mem_cgroup_try_charge(NULL, mask, ptr, true);
825charge_cur_mm:
826 if (unlikely(!mm))
827 mm = &init_mm;
828 return __mem_cgroup_try_charge(mm, mask, ptr, true);
829}
830
d13d1443 831#ifdef CONFIG_SWAP
8c7c6e34 832
d13d1443
KH
833int mem_cgroup_cache_charge_swapin(struct page *page,
834 struct mm_struct *mm, gfp_t mask, bool locked)
835{
836 int ret = 0;
837
f8d66542 838 if (mem_cgroup_disabled())
d13d1443
KH
839 return 0;
840 if (unlikely(!mm))
841 mm = &init_mm;
842 if (!locked)
843 lock_page(page);
844 /*
845 * If not locked, the page can be dropped from SwapCache until
846 * we reach here.
847 */
848 if (PageSwapCache(page)) {
8c7c6e34
KH
849 struct mem_cgroup *mem = NULL;
850 swp_entry_t ent;
851
852 ent.val = page_private(page);
853 if (do_swap_account) {
854 mem = lookup_swap_cgroup(ent);
855 if (mem && mem->obsolete)
856 mem = NULL;
857 if (mem)
858 mm = NULL;
859 }
d13d1443 860 ret = mem_cgroup_charge_common(page, mm, mask,
8c7c6e34
KH
861 MEM_CGROUP_CHARGE_TYPE_SHMEM, mem);
862
863 if (!ret && do_swap_account) {
864 /* avoid double counting */
865 mem = swap_cgroup_record(ent, NULL);
866 if (mem) {
867 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
868 mem_cgroup_put(mem);
869 }
870 }
d13d1443
KH
871 }
872 if (!locked)
873 unlock_page(page);
08e552c6
KH
874 /* add this page(page_cgroup) to the LRU we want. */
875 mem_cgroup_lru_fixup(page);
d13d1443
KH
876
877 return ret;
878}
879#endif
880
7a81b88c
KH
881void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
882{
883 struct page_cgroup *pc;
884
f8d66542 885 if (mem_cgroup_disabled())
7a81b88c
KH
886 return;
887 if (!ptr)
888 return;
889 pc = lookup_page_cgroup(page);
890 __mem_cgroup_commit_charge(ptr, pc, MEM_CGROUP_CHARGE_TYPE_MAPPED);
8c7c6e34
KH
891 /*
892 * Now swap is on-memory. This means this page may be
893 * counted both as mem and swap....double count.
894 * Fix it by uncharging from memsw. This SwapCache is stable
895 * because we're still under lock_page().
896 */
897 if (do_swap_account) {
898 swp_entry_t ent = {.val = page_private(page)};
899 struct mem_cgroup *memcg;
900 memcg = swap_cgroup_record(ent, NULL);
901 if (memcg) {
902 /* If memcg is obsolete, memcg can be != ptr */
903 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
904 mem_cgroup_put(memcg);
905 }
906
907 }
08e552c6
KH
908 /* add this page(page_cgroup) to the LRU we want. */
909 mem_cgroup_lru_fixup(page);
7a81b88c
KH
910}
911
912void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
913{
f8d66542 914 if (mem_cgroup_disabled())
7a81b88c
KH
915 return;
916 if (!mem)
917 return;
918 res_counter_uncharge(&mem->res, PAGE_SIZE);
8c7c6e34
KH
919 if (do_swap_account)
920 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
7a81b88c
KH
921 css_put(&mem->css);
922}
923
924
8a9f3ccd 925/*
69029cd5 926 * uncharge if !page_mapped(page)
8a9f3ccd 927 */
8c7c6e34 928static struct mem_cgroup *
69029cd5 929__mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
8a9f3ccd 930{
8289546e 931 struct page_cgroup *pc;
8c7c6e34 932 struct mem_cgroup *mem = NULL;
072c56c1 933 struct mem_cgroup_per_zone *mz;
8a9f3ccd 934
f8d66542 935 if (mem_cgroup_disabled())
8c7c6e34 936 return NULL;
4077960e 937
d13d1443 938 if (PageSwapCache(page))
8c7c6e34 939 return NULL;
d13d1443 940
8697d331 941 /*
3c541e14 942 * Check if our page_cgroup is valid
8697d331 943 */
52d4b9ac
KH
944 pc = lookup_page_cgroup(page);
945 if (unlikely(!pc || !PageCgroupUsed(pc)))
8c7c6e34 946 return NULL;
b9c565d5 947
52d4b9ac 948 lock_page_cgroup(pc);
d13d1443 949
8c7c6e34
KH
950 mem = pc->mem_cgroup;
951
d13d1443
KH
952 if (!PageCgroupUsed(pc))
953 goto unlock_out;
954
955 switch (ctype) {
956 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
957 if (page_mapped(page))
958 goto unlock_out;
959 break;
960 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
961 if (!PageAnon(page)) { /* Shared memory */
962 if (page->mapping && !page_is_file_cache(page))
963 goto unlock_out;
964 } else if (page_mapped(page)) /* Anon */
965 goto unlock_out;
966 break;
967 default:
968 break;
52d4b9ac 969 }
d13d1443 970
8c7c6e34
KH
971 res_counter_uncharge(&mem->res, PAGE_SIZE);
972 if (do_swap_account && (ctype != MEM_CGROUP_CHARGE_TYPE_SWAPOUT))
973 res_counter_uncharge(&mem->memsw, PAGE_SIZE);
974
08e552c6 975 mem_cgroup_charge_statistics(mem, pc, false);
52d4b9ac 976 ClearPageCgroupUsed(pc);
b9c565d5 977
69029cd5 978 mz = page_cgroup_zoneinfo(pc);
52d4b9ac 979 unlock_page_cgroup(pc);
fb59e9f1 980
69029cd5 981 css_put(&mem->css);
6d12e2d8 982
8c7c6e34 983 return mem;
d13d1443
KH
984
985unlock_out:
986 unlock_page_cgroup(pc);
8c7c6e34 987 return NULL;
3c541e14
BS
988}
989
69029cd5
KH
990void mem_cgroup_uncharge_page(struct page *page)
991{
52d4b9ac
KH
992 /* early check. */
993 if (page_mapped(page))
994 return;
995 if (page->mapping && !PageAnon(page))
996 return;
69029cd5
KH
997 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
998}
999
1000void mem_cgroup_uncharge_cache_page(struct page *page)
1001{
1002 VM_BUG_ON(page_mapped(page));
b7abea96 1003 VM_BUG_ON(page->mapping);
69029cd5
KH
1004 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
1005}
1006
8c7c6e34
KH
1007/*
1008 * called from __delete_from_swap_cache() and drop "page" account.
1009 * memcg information is recorded to swap_cgroup of "ent"
1010 */
1011void mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent)
1012{
1013 struct mem_cgroup *memcg;
1014
1015 memcg = __mem_cgroup_uncharge_common(page,
1016 MEM_CGROUP_CHARGE_TYPE_SWAPOUT);
1017 /* record memcg information */
1018 if (do_swap_account && memcg) {
1019 swap_cgroup_record(ent, memcg);
1020 mem_cgroup_get(memcg);
1021 }
1022}
1023
1024#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1025/*
1026 * called from swap_entry_free(). remove record in swap_cgroup and
1027 * uncharge "memsw" account.
1028 */
1029void mem_cgroup_uncharge_swap(swp_entry_t ent)
d13d1443 1030{
8c7c6e34
KH
1031 struct mem_cgroup *memcg;
1032
1033 if (!do_swap_account)
1034 return;
1035
1036 memcg = swap_cgroup_record(ent, NULL);
1037 if (memcg) {
1038 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
1039 mem_cgroup_put(memcg);
1040 }
d13d1443 1041}
8c7c6e34 1042#endif
d13d1443 1043
ae41be37 1044/*
01b1ae63
KH
1045 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1046 * page belongs to.
ae41be37 1047 */
01b1ae63 1048int mem_cgroup_prepare_migration(struct page *page, struct mem_cgroup **ptr)
ae41be37
KH
1049{
1050 struct page_cgroup *pc;
e8589cc1 1051 struct mem_cgroup *mem = NULL;
e8589cc1 1052 int ret = 0;
8869b8f6 1053
f8d66542 1054 if (mem_cgroup_disabled())
4077960e
BS
1055 return 0;
1056
52d4b9ac
KH
1057 pc = lookup_page_cgroup(page);
1058 lock_page_cgroup(pc);
1059 if (PageCgroupUsed(pc)) {
e8589cc1
KH
1060 mem = pc->mem_cgroup;
1061 css_get(&mem->css);
e8589cc1 1062 }
52d4b9ac 1063 unlock_page_cgroup(pc);
01b1ae63 1064
e8589cc1 1065 if (mem) {
01b1ae63 1066 ret = mem_cgroup_try_charge(NULL, GFP_HIGHUSER_MOVABLE, &mem);
e8589cc1
KH
1067 css_put(&mem->css);
1068 }
01b1ae63 1069 *ptr = mem;
e8589cc1 1070 return ret;
ae41be37 1071}
8869b8f6 1072
69029cd5 1073/* remove redundant charge if migration failed*/
01b1ae63
KH
1074void mem_cgroup_end_migration(struct mem_cgroup *mem,
1075 struct page *oldpage, struct page *newpage)
ae41be37 1076{
01b1ae63
KH
1077 struct page *target, *unused;
1078 struct page_cgroup *pc;
1079 enum charge_type ctype;
1080
1081 if (!mem)
1082 return;
1083
1084 /* at migration success, oldpage->mapping is NULL. */
1085 if (oldpage->mapping) {
1086 target = oldpage;
1087 unused = NULL;
1088 } else {
1089 target = newpage;
1090 unused = oldpage;
1091 }
1092
1093 if (PageAnon(target))
1094 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
1095 else if (page_is_file_cache(target))
1096 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
1097 else
1098 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
1099
1100 /* unused page is not on radix-tree now. */
d13d1443 1101 if (unused)
01b1ae63
KH
1102 __mem_cgroup_uncharge_common(unused, ctype);
1103
1104 pc = lookup_page_cgroup(target);
69029cd5 1105 /*
01b1ae63
KH
1106 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1107 * So, double-counting is effectively avoided.
1108 */
1109 __mem_cgroup_commit_charge(mem, pc, ctype);
1110
1111 /*
1112 * Both of oldpage and newpage are still under lock_page().
1113 * Then, we don't have to care about race in radix-tree.
1114 * But we have to be careful that this page is unmapped or not.
1115 *
1116 * There is a case for !page_mapped(). At the start of
1117 * migration, oldpage was mapped. But now, it's zapped.
1118 * But we know *target* page is not freed/reused under us.
1119 * mem_cgroup_uncharge_page() does all necessary checks.
69029cd5 1120 */
01b1ae63
KH
1121 if (ctype == MEM_CGROUP_CHARGE_TYPE_MAPPED)
1122 mem_cgroup_uncharge_page(target);
ae41be37 1123}
78fb7466 1124
c9b0ed51
KH
1125/*
1126 * A call to try to shrink memory usage under specified resource controller.
1127 * This is typically used for page reclaiming for shmem for reducing side
1128 * effect of page allocation from shmem, which is used by some mem_cgroup.
1129 */
1130int mem_cgroup_shrink_usage(struct mm_struct *mm, gfp_t gfp_mask)
1131{
1132 struct mem_cgroup *mem;
1133 int progress = 0;
1134 int retry = MEM_CGROUP_RECLAIM_RETRIES;
1135
f8d66542 1136 if (mem_cgroup_disabled())
cede86ac 1137 return 0;
9623e078
HD
1138 if (!mm)
1139 return 0;
cede86ac 1140
c9b0ed51
KH
1141 rcu_read_lock();
1142 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
31a78f23
BS
1143 if (unlikely(!mem)) {
1144 rcu_read_unlock();
1145 return 0;
1146 }
c9b0ed51
KH
1147 css_get(&mem->css);
1148 rcu_read_unlock();
1149
1150 do {
8c7c6e34 1151 progress = try_to_free_mem_cgroup_pages(mem, gfp_mask, true);
a10cebf5 1152 progress += res_counter_check_under_limit(&mem->res);
c9b0ed51
KH
1153 } while (!progress && --retry);
1154
1155 css_put(&mem->css);
1156 if (!retry)
1157 return -ENOMEM;
1158 return 0;
1159}
1160
8c7c6e34
KH
1161static DEFINE_MUTEX(set_limit_mutex);
1162
d38d2a75 1163static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
8c7c6e34 1164 unsigned long long val)
628f4235
KH
1165{
1166
1167 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1168 int progress;
8c7c6e34 1169 u64 memswlimit;
628f4235
KH
1170 int ret = 0;
1171
8c7c6e34 1172 while (retry_count) {
628f4235
KH
1173 if (signal_pending(current)) {
1174 ret = -EINTR;
1175 break;
1176 }
8c7c6e34
KH
1177 /*
1178 * Rather than hide all in some function, I do this in
1179 * open coded manner. You see what this really does.
1180 * We have to guarantee mem->res.limit < mem->memsw.limit.
1181 */
1182 mutex_lock(&set_limit_mutex);
1183 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1184 if (memswlimit < val) {
1185 ret = -EINVAL;
1186 mutex_unlock(&set_limit_mutex);
628f4235
KH
1187 break;
1188 }
8c7c6e34
KH
1189 ret = res_counter_set_limit(&memcg->res, val);
1190 mutex_unlock(&set_limit_mutex);
1191
1192 if (!ret)
1193 break;
1194
bced0520 1195 progress = try_to_free_mem_cgroup_pages(memcg,
8c7c6e34
KH
1196 GFP_HIGHUSER_MOVABLE, false);
1197 if (!progress) retry_count--;
1198 }
1199 return ret;
1200}
1201
1202int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
1203 unsigned long long val)
1204{
1205 int retry_count = MEM_CGROUP_RECLAIM_RETRIES;
1206 u64 memlimit, oldusage, curusage;
1207 int ret;
1208
1209 if (!do_swap_account)
1210 return -EINVAL;
1211
1212 while (retry_count) {
1213 if (signal_pending(current)) {
1214 ret = -EINTR;
1215 break;
1216 }
1217 /*
1218 * Rather than hide all in some function, I do this in
1219 * open coded manner. You see what this really does.
1220 * We have to guarantee mem->res.limit < mem->memsw.limit.
1221 */
1222 mutex_lock(&set_limit_mutex);
1223 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
1224 if (memlimit > val) {
1225 ret = -EINVAL;
1226 mutex_unlock(&set_limit_mutex);
1227 break;
1228 }
1229 ret = res_counter_set_limit(&memcg->memsw, val);
1230 mutex_unlock(&set_limit_mutex);
1231
1232 if (!ret)
1233 break;
1234
1235 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1236 try_to_free_mem_cgroup_pages(memcg, GFP_HIGHUSER_MOVABLE, true);
1237 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
1238 if (curusage >= oldusage)
628f4235
KH
1239 retry_count--;
1240 }
1241 return ret;
1242}
1243
cc847582
KH
1244/*
1245 * This routine traverse page_cgroup in given list and drop them all.
cc847582
KH
1246 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1247 */
f817ed48 1248static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
08e552c6 1249 int node, int zid, enum lru_list lru)
cc847582 1250{
08e552c6
KH
1251 struct zone *zone;
1252 struct mem_cgroup_per_zone *mz;
f817ed48 1253 struct page_cgroup *pc, *busy;
08e552c6 1254 unsigned long flags, loop;
072c56c1 1255 struct list_head *list;
f817ed48 1256 int ret = 0;
072c56c1 1257
08e552c6
KH
1258 zone = &NODE_DATA(node)->node_zones[zid];
1259 mz = mem_cgroup_zoneinfo(mem, node, zid);
b69408e8 1260 list = &mz->lists[lru];
cc847582 1261
f817ed48
KH
1262 loop = MEM_CGROUP_ZSTAT(mz, lru);
1263 /* give some margin against EBUSY etc...*/
1264 loop += 256;
1265 busy = NULL;
1266 while (loop--) {
1267 ret = 0;
08e552c6 1268 spin_lock_irqsave(&zone->lru_lock, flags);
f817ed48 1269 if (list_empty(list)) {
08e552c6 1270 spin_unlock_irqrestore(&zone->lru_lock, flags);
52d4b9ac 1271 break;
f817ed48
KH
1272 }
1273 pc = list_entry(list->prev, struct page_cgroup, lru);
1274 if (busy == pc) {
1275 list_move(&pc->lru, list);
1276 busy = 0;
08e552c6 1277 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1278 continue;
1279 }
08e552c6 1280 spin_unlock_irqrestore(&zone->lru_lock, flags);
f817ed48
KH
1281
1282 ret = mem_cgroup_move_parent(pc, mem, GFP_HIGHUSER_MOVABLE);
1283 if (ret == -ENOMEM)
52d4b9ac 1284 break;
f817ed48
KH
1285
1286 if (ret == -EBUSY || ret == -EINVAL) {
1287 /* found lock contention or "pc" is obsolete. */
1288 busy = pc;
1289 cond_resched();
1290 } else
1291 busy = NULL;
cc847582 1292 }
08e552c6 1293
f817ed48
KH
1294 if (!ret && !list_empty(list))
1295 return -EBUSY;
1296 return ret;
cc847582
KH
1297}
1298
1299/*
1300 * make mem_cgroup's charge to be 0 if there is no task.
1301 * This enables deleting this mem_cgroup.
1302 */
c1e862c1 1303static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
cc847582 1304{
f817ed48
KH
1305 int ret;
1306 int node, zid, shrink;
1307 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c1e862c1 1308 struct cgroup *cgrp = mem->css.cgroup;
8869b8f6 1309
cc847582 1310 css_get(&mem->css);
f817ed48
KH
1311
1312 shrink = 0;
c1e862c1
KH
1313 /* should free all ? */
1314 if (free_all)
1315 goto try_to_free;
f817ed48 1316move_account:
1ecaab2b 1317 while (mem->res.usage > 0) {
f817ed48 1318 ret = -EBUSY;
c1e862c1
KH
1319 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
1320 goto out;
1321 ret = -EINTR;
1322 if (signal_pending(current))
cc847582 1323 goto out;
52d4b9ac
KH
1324 /* This is for making all *used* pages to be on LRU. */
1325 lru_add_drain_all();
f817ed48
KH
1326 ret = 0;
1327 for_each_node_state(node, N_POSSIBLE) {
1328 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
b69408e8 1329 enum lru_list l;
f817ed48
KH
1330 for_each_lru(l) {
1331 ret = mem_cgroup_force_empty_list(mem,
08e552c6 1332 node, zid, l);
f817ed48
KH
1333 if (ret)
1334 break;
1335 }
1ecaab2b 1336 }
f817ed48
KH
1337 if (ret)
1338 break;
1339 }
1340 /* it seems parent cgroup doesn't have enough mem */
1341 if (ret == -ENOMEM)
1342 goto try_to_free;
52d4b9ac 1343 cond_resched();
cc847582
KH
1344 }
1345 ret = 0;
1346out:
1347 css_put(&mem->css);
1348 return ret;
f817ed48
KH
1349
1350try_to_free:
c1e862c1
KH
1351 /* returns EBUSY if there is a task or if we come here twice. */
1352 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
f817ed48
KH
1353 ret = -EBUSY;
1354 goto out;
1355 }
c1e862c1
KH
1356 /* we call try-to-free pages for make this cgroup empty */
1357 lru_add_drain_all();
f817ed48
KH
1358 /* try to free all pages in this cgroup */
1359 shrink = 1;
1360 while (nr_retries && mem->res.usage > 0) {
1361 int progress;
c1e862c1
KH
1362
1363 if (signal_pending(current)) {
1364 ret = -EINTR;
1365 goto out;
1366 }
f817ed48 1367 progress = try_to_free_mem_cgroup_pages(mem,
8c7c6e34 1368 GFP_HIGHUSER_MOVABLE, false);
c1e862c1 1369 if (!progress) {
f817ed48 1370 nr_retries--;
c1e862c1
KH
1371 /* maybe some writeback is necessary */
1372 congestion_wait(WRITE, HZ/10);
1373 }
f817ed48
KH
1374
1375 }
08e552c6 1376 lru_add_drain();
f817ed48
KH
1377 /* try move_account...there may be some *locked* pages. */
1378 if (mem->res.usage)
1379 goto move_account;
1380 ret = 0;
1381 goto out;
cc847582
KH
1382}
1383
c1e862c1
KH
1384int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
1385{
1386 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
1387}
1388
1389
2c3daa72 1390static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
8cdea7c0 1391{
8c7c6e34
KH
1392 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
1393 u64 val = 0;
1394 int type, name;
1395
1396 type = MEMFILE_TYPE(cft->private);
1397 name = MEMFILE_ATTR(cft->private);
1398 switch (type) {
1399 case _MEM:
1400 val = res_counter_read_u64(&mem->res, name);
1401 break;
1402 case _MEMSWAP:
1403 if (do_swap_account)
1404 val = res_counter_read_u64(&mem->memsw, name);
1405 break;
1406 default:
1407 BUG();
1408 break;
1409 }
1410 return val;
8cdea7c0 1411}
628f4235
KH
1412/*
1413 * The user of this function is...
1414 * RES_LIMIT.
1415 */
856c13aa
PM
1416static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
1417 const char *buffer)
8cdea7c0 1418{
628f4235 1419 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
8c7c6e34 1420 int type, name;
628f4235
KH
1421 unsigned long long val;
1422 int ret;
1423
8c7c6e34
KH
1424 type = MEMFILE_TYPE(cft->private);
1425 name = MEMFILE_ATTR(cft->private);
1426 switch (name) {
628f4235
KH
1427 case RES_LIMIT:
1428 /* This function does all necessary parse...reuse it */
1429 ret = res_counter_memparse_write_strategy(buffer, &val);
8c7c6e34
KH
1430 if (ret)
1431 break;
1432 if (type == _MEM)
628f4235 1433 ret = mem_cgroup_resize_limit(memcg, val);
8c7c6e34
KH
1434 else
1435 ret = mem_cgroup_resize_memsw_limit(memcg, val);
628f4235
KH
1436 break;
1437 default:
1438 ret = -EINVAL; /* should be BUG() ? */
1439 break;
1440 }
1441 return ret;
8cdea7c0
BS
1442}
1443
29f2a4da 1444static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
c84872e1
PE
1445{
1446 struct mem_cgroup *mem;
8c7c6e34 1447 int type, name;
c84872e1
PE
1448
1449 mem = mem_cgroup_from_cont(cont);
8c7c6e34
KH
1450 type = MEMFILE_TYPE(event);
1451 name = MEMFILE_ATTR(event);
1452 switch (name) {
29f2a4da 1453 case RES_MAX_USAGE:
8c7c6e34
KH
1454 if (type == _MEM)
1455 res_counter_reset_max(&mem->res);
1456 else
1457 res_counter_reset_max(&mem->memsw);
29f2a4da
PE
1458 break;
1459 case RES_FAILCNT:
8c7c6e34
KH
1460 if (type == _MEM)
1461 res_counter_reset_failcnt(&mem->res);
1462 else
1463 res_counter_reset_failcnt(&mem->memsw);
29f2a4da
PE
1464 break;
1465 }
85cc59db 1466 return 0;
c84872e1
PE
1467}
1468
d2ceb9b7
KH
1469static const struct mem_cgroup_stat_desc {
1470 const char *msg;
1471 u64 unit;
1472} mem_cgroup_stat_desc[] = {
1473 [MEM_CGROUP_STAT_CACHE] = { "cache", PAGE_SIZE, },
1474 [MEM_CGROUP_STAT_RSS] = { "rss", PAGE_SIZE, },
55e462b0
BR
1475 [MEM_CGROUP_STAT_PGPGIN_COUNT] = {"pgpgin", 1, },
1476 [MEM_CGROUP_STAT_PGPGOUT_COUNT] = {"pgpgout", 1, },
d2ceb9b7
KH
1477};
1478
c64745cf
PM
1479static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
1480 struct cgroup_map_cb *cb)
d2ceb9b7 1481{
d2ceb9b7
KH
1482 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
1483 struct mem_cgroup_stat *stat = &mem_cont->stat;
1484 int i;
1485
1486 for (i = 0; i < ARRAY_SIZE(stat->cpustat[0].count); i++) {
1487 s64 val;
1488
1489 val = mem_cgroup_read_stat(stat, i);
1490 val *= mem_cgroup_stat_desc[i].unit;
c64745cf 1491 cb->fill(cb, mem_cgroup_stat_desc[i].msg, val);
d2ceb9b7 1492 }
6d12e2d8
KH
1493 /* showing # of active pages */
1494 {
4f98a2fe
RR
1495 unsigned long active_anon, inactive_anon;
1496 unsigned long active_file, inactive_file;
7b854121 1497 unsigned long unevictable;
4f98a2fe
RR
1498
1499 inactive_anon = mem_cgroup_get_all_zonestat(mem_cont,
1500 LRU_INACTIVE_ANON);
1501 active_anon = mem_cgroup_get_all_zonestat(mem_cont,
1502 LRU_ACTIVE_ANON);
1503 inactive_file = mem_cgroup_get_all_zonestat(mem_cont,
1504 LRU_INACTIVE_FILE);
1505 active_file = mem_cgroup_get_all_zonestat(mem_cont,
1506 LRU_ACTIVE_FILE);
7b854121
LS
1507 unevictable = mem_cgroup_get_all_zonestat(mem_cont,
1508 LRU_UNEVICTABLE);
1509
4f98a2fe
RR
1510 cb->fill(cb, "active_anon", (active_anon) * PAGE_SIZE);
1511 cb->fill(cb, "inactive_anon", (inactive_anon) * PAGE_SIZE);
1512 cb->fill(cb, "active_file", (active_file) * PAGE_SIZE);
1513 cb->fill(cb, "inactive_file", (inactive_file) * PAGE_SIZE);
7b854121
LS
1514 cb->fill(cb, "unevictable", unevictable * PAGE_SIZE);
1515
6d12e2d8 1516 }
d2ceb9b7
KH
1517 return 0;
1518}
1519
c1e862c1 1520
8cdea7c0
BS
1521static struct cftype mem_cgroup_files[] = {
1522 {
0eea1030 1523 .name = "usage_in_bytes",
8c7c6e34 1524 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
2c3daa72 1525 .read_u64 = mem_cgroup_read,
8cdea7c0 1526 },
c84872e1
PE
1527 {
1528 .name = "max_usage_in_bytes",
8c7c6e34 1529 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
29f2a4da 1530 .trigger = mem_cgroup_reset,
c84872e1
PE
1531 .read_u64 = mem_cgroup_read,
1532 },
8cdea7c0 1533 {
0eea1030 1534 .name = "limit_in_bytes",
8c7c6e34 1535 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
856c13aa 1536 .write_string = mem_cgroup_write,
2c3daa72 1537 .read_u64 = mem_cgroup_read,
8cdea7c0
BS
1538 },
1539 {
1540 .name = "failcnt",
8c7c6e34 1541 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
29f2a4da 1542 .trigger = mem_cgroup_reset,
2c3daa72 1543 .read_u64 = mem_cgroup_read,
8cdea7c0 1544 },
d2ceb9b7
KH
1545 {
1546 .name = "stat",
c64745cf 1547 .read_map = mem_control_stat_show,
d2ceb9b7 1548 },
c1e862c1
KH
1549 {
1550 .name = "force_empty",
1551 .trigger = mem_cgroup_force_empty_write,
1552 },
8cdea7c0
BS
1553};
1554
8c7c6e34
KH
1555#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1556static struct cftype memsw_cgroup_files[] = {
1557 {
1558 .name = "memsw.usage_in_bytes",
1559 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
1560 .read_u64 = mem_cgroup_read,
1561 },
1562 {
1563 .name = "memsw.max_usage_in_bytes",
1564 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
1565 .trigger = mem_cgroup_reset,
1566 .read_u64 = mem_cgroup_read,
1567 },
1568 {
1569 .name = "memsw.limit_in_bytes",
1570 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
1571 .write_string = mem_cgroup_write,
1572 .read_u64 = mem_cgroup_read,
1573 },
1574 {
1575 .name = "memsw.failcnt",
1576 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
1577 .trigger = mem_cgroup_reset,
1578 .read_u64 = mem_cgroup_read,
1579 },
1580};
1581
1582static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1583{
1584 if (!do_swap_account)
1585 return 0;
1586 return cgroup_add_files(cont, ss, memsw_cgroup_files,
1587 ARRAY_SIZE(memsw_cgroup_files));
1588};
1589#else
1590static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
1591{
1592 return 0;
1593}
1594#endif
1595
6d12e2d8
KH
1596static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1597{
1598 struct mem_cgroup_per_node *pn;
1ecaab2b 1599 struct mem_cgroup_per_zone *mz;
b69408e8 1600 enum lru_list l;
41e3355d 1601 int zone, tmp = node;
1ecaab2b
KH
1602 /*
1603 * This routine is called against possible nodes.
1604 * But it's BUG to call kmalloc() against offline node.
1605 *
1606 * TODO: this routine can waste much memory for nodes which will
1607 * never be onlined. It's better to use memory hotplug callback
1608 * function.
1609 */
41e3355d
KH
1610 if (!node_state(node, N_NORMAL_MEMORY))
1611 tmp = -1;
1612 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
1613 if (!pn)
1614 return 1;
1ecaab2b 1615
6d12e2d8
KH
1616 mem->info.nodeinfo[node] = pn;
1617 memset(pn, 0, sizeof(*pn));
1ecaab2b
KH
1618
1619 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
1620 mz = &pn->zoneinfo[zone];
b69408e8
CL
1621 for_each_lru(l)
1622 INIT_LIST_HEAD(&mz->lists[l]);
1ecaab2b 1623 }
6d12e2d8
KH
1624 return 0;
1625}
1626
1ecaab2b
KH
1627static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
1628{
1629 kfree(mem->info.nodeinfo[node]);
1630}
1631
c8dad2bb
JB
1632static int mem_cgroup_size(void)
1633{
1634 int cpustat_size = nr_cpu_ids * sizeof(struct mem_cgroup_stat_cpu);
1635 return sizeof(struct mem_cgroup) + cpustat_size;
1636}
1637
33327948
KH
1638static struct mem_cgroup *mem_cgroup_alloc(void)
1639{
1640 struct mem_cgroup *mem;
c8dad2bb 1641 int size = mem_cgroup_size();
33327948 1642
c8dad2bb
JB
1643 if (size < PAGE_SIZE)
1644 mem = kmalloc(size, GFP_KERNEL);
33327948 1645 else
c8dad2bb 1646 mem = vmalloc(size);
33327948
KH
1647
1648 if (mem)
c8dad2bb 1649 memset(mem, 0, size);
33327948
KH
1650 return mem;
1651}
1652
8c7c6e34
KH
1653/*
1654 * At destroying mem_cgroup, references from swap_cgroup can remain.
1655 * (scanning all at force_empty is too costly...)
1656 *
1657 * Instead of clearing all references at force_empty, we remember
1658 * the number of reference from swap_cgroup and free mem_cgroup when
1659 * it goes down to 0.
1660 *
1661 * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and
1662 * entry which points to this memcg will be ignore at swapin.
1663 *
1664 * Removal of cgroup itself succeeds regardless of refs from swap.
1665 */
1666
33327948
KH
1667static void mem_cgroup_free(struct mem_cgroup *mem)
1668{
08e552c6
KH
1669 int node;
1670
8c7c6e34
KH
1671 if (atomic_read(&mem->refcnt) > 0)
1672 return;
08e552c6
KH
1673
1674
1675 for_each_node_state(node, N_POSSIBLE)
1676 free_mem_cgroup_per_zone_info(mem, node);
1677
c8dad2bb 1678 if (mem_cgroup_size() < PAGE_SIZE)
33327948
KH
1679 kfree(mem);
1680 else
1681 vfree(mem);
1682}
1683
8c7c6e34
KH
1684static void mem_cgroup_get(struct mem_cgroup *mem)
1685{
1686 atomic_inc(&mem->refcnt);
1687}
1688
1689static void mem_cgroup_put(struct mem_cgroup *mem)
1690{
1691 if (atomic_dec_and_test(&mem->refcnt)) {
1692 if (!mem->obsolete)
1693 return;
1694 mem_cgroup_free(mem);
1695 }
1696}
1697
33327948 1698
c077719b
KH
1699#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1700static void __init enable_swap_cgroup(void)
1701{
f8d66542 1702 if (!mem_cgroup_disabled() && really_do_swap_account)
c077719b
KH
1703 do_swap_account = 1;
1704}
1705#else
1706static void __init enable_swap_cgroup(void)
1707{
1708}
1709#endif
1710
8cdea7c0
BS
1711static struct cgroup_subsys_state *
1712mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
1713{
28dbc4b6 1714 struct mem_cgroup *mem, *parent;
6d12e2d8 1715 int node;
8cdea7c0 1716
c8dad2bb
JB
1717 mem = mem_cgroup_alloc();
1718 if (!mem)
1719 return ERR_PTR(-ENOMEM);
78fb7466 1720
6d12e2d8
KH
1721 for_each_node_state(node, N_POSSIBLE)
1722 if (alloc_mem_cgroup_per_zone_info(mem, node))
1723 goto free_out;
c077719b 1724 /* root ? */
28dbc4b6 1725 if (cont->parent == NULL) {
c077719b 1726 enable_swap_cgroup();
28dbc4b6
BS
1727 parent = NULL;
1728 } else
1729 parent = mem_cgroup_from_cont(cont->parent);
1730
1731 res_counter_init(&mem->res, parent ? &parent->res : NULL);
1732 res_counter_init(&mem->memsw, parent ? &parent->memsw : NULL);
1733
6d12e2d8 1734
8cdea7c0 1735 return &mem->css;
6d12e2d8
KH
1736free_out:
1737 for_each_node_state(node, N_POSSIBLE)
1ecaab2b 1738 free_mem_cgroup_per_zone_info(mem, node);
c8dad2bb 1739 mem_cgroup_free(mem);
2dda81ca 1740 return ERR_PTR(-ENOMEM);
8cdea7c0
BS
1741}
1742
df878fb0
KH
1743static void mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
1744 struct cgroup *cont)
1745{
1746 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
8c7c6e34 1747 mem->obsolete = 1;
c1e862c1 1748 mem_cgroup_force_empty(mem, false);
df878fb0
KH
1749}
1750
8cdea7c0
BS
1751static void mem_cgroup_destroy(struct cgroup_subsys *ss,
1752 struct cgroup *cont)
1753{
33327948 1754 mem_cgroup_free(mem_cgroup_from_cont(cont));
8cdea7c0
BS
1755}
1756
1757static int mem_cgroup_populate(struct cgroup_subsys *ss,
1758 struct cgroup *cont)
1759{
8c7c6e34
KH
1760 int ret;
1761
1762 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
1763 ARRAY_SIZE(mem_cgroup_files));
1764
1765 if (!ret)
1766 ret = register_memsw_files(cont, ss);
1767 return ret;
8cdea7c0
BS
1768}
1769
67e465a7
BS
1770static void mem_cgroup_move_task(struct cgroup_subsys *ss,
1771 struct cgroup *cont,
1772 struct cgroup *old_cont,
1773 struct task_struct *p)
1774{
1775 struct mm_struct *mm;
1776 struct mem_cgroup *mem, *old_mem;
1777
1778 mm = get_task_mm(p);
1779 if (mm == NULL)
1780 return;
1781
1782 mem = mem_cgroup_from_cont(cont);
1783 old_mem = mem_cgroup_from_cont(old_cont);
1784
67e465a7
BS
1785 /*
1786 * Only thread group leaders are allowed to migrate, the mm_struct is
1787 * in effect owned by the leader
1788 */
52ea27eb 1789 if (!thread_group_leader(p))
67e465a7
BS
1790 goto out;
1791
67e465a7
BS
1792out:
1793 mmput(mm);
67e465a7
BS
1794}
1795
8cdea7c0
BS
1796struct cgroup_subsys mem_cgroup_subsys = {
1797 .name = "memory",
1798 .subsys_id = mem_cgroup_subsys_id,
1799 .create = mem_cgroup_create,
df878fb0 1800 .pre_destroy = mem_cgroup_pre_destroy,
8cdea7c0
BS
1801 .destroy = mem_cgroup_destroy,
1802 .populate = mem_cgroup_populate,
67e465a7 1803 .attach = mem_cgroup_move_task,
6d12e2d8 1804 .early_init = 0,
8cdea7c0 1805};
c077719b
KH
1806
1807#ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1808
1809static int __init disable_swap_account(char *s)
1810{
1811 really_do_swap_account = 0;
1812 return 1;
1813}
1814__setup("noswapaccount", disable_swap_account);
1815#endif