[PATCH] fat: support ->direct_IO()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12#include <linux/config.h>
13#include <linux/module.h>
14#include <linux/slab.h>
15#include <linux/compiler.h>
16#include <linux/fs.h>
17#include <linux/aio.h>
18#include <linux/kernel_stat.h>
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/file.h>
24#include <linux/uio.h>
25#include <linux/hash.h>
26#include <linux/writeback.h>
27#include <linux/pagevec.h>
28#include <linux/blkdev.h>
29#include <linux/security.h>
30#include <linux/syscalls.h>
ceffc078 31#include "filemap.h"
1da177e4 32/*
1da177e4
LT
33 * FIXME: remove all knowledge of the buffer layer from the core VM
34 */
35#include <linux/buffer_head.h> /* for generic_osync_inode */
36
37#include <asm/uaccess.h>
38#include <asm/mman.h>
39
5ce7852c
AB
40static ssize_t
41generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
42 loff_t offset, unsigned long nr_segs);
43
1da177e4
LT
44/*
45 * Shared mappings implemented 30.11.1994. It's not fully working yet,
46 * though.
47 *
48 * Shared mappings now work. 15.8.1995 Bruno.
49 *
50 * finished 'unifying' the page and buffer cache and SMP-threaded the
51 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
52 *
53 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
54 */
55
56/*
57 * Lock ordering:
58 *
59 * ->i_mmap_lock (vmtruncate)
60 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
61 * ->swap_lock (exclusive_swap_page, others)
62 * ->mapping->tree_lock
1da177e4
LT
63 *
64 * ->i_sem
65 * ->i_mmap_lock (truncate->unmap_mapping_range)
66 *
67 * ->mmap_sem
68 * ->i_mmap_lock
b8072f09 69 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
70 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
71 *
72 * ->mmap_sem
73 * ->lock_page (access_process_vm)
74 *
75 * ->mmap_sem
76 * ->i_sem (msync)
77 *
78 * ->i_sem
79 * ->i_alloc_sem (various)
80 *
81 * ->inode_lock
82 * ->sb_lock (fs/fs-writeback.c)
83 * ->mapping->tree_lock (__sync_single_inode)
84 *
85 * ->i_mmap_lock
86 * ->anon_vma.lock (vma_adjust)
87 *
88 * ->anon_vma.lock
b8072f09 89 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 90 *
b8072f09 91 * ->page_table_lock or pte_lock
5d337b91 92 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
93 * ->private_lock (try_to_unmap_one)
94 * ->tree_lock (try_to_unmap_one)
95 * ->zone.lru_lock (follow_page->mark_page_accessed)
96 * ->private_lock (page_remove_rmap->set_page_dirty)
97 * ->tree_lock (page_remove_rmap->set_page_dirty)
98 * ->inode_lock (page_remove_rmap->set_page_dirty)
99 * ->inode_lock (zap_pte_range->set_page_dirty)
100 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
101 *
102 * ->task->proc_lock
103 * ->dcache_lock (proc_pid_lookup)
104 */
105
106/*
107 * Remove a page from the page cache and free it. Caller has to make
108 * sure the page is locked and that nobody else uses it - or that usage
109 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
110 */
111void __remove_from_page_cache(struct page *page)
112{
113 struct address_space *mapping = page->mapping;
114
115 radix_tree_delete(&mapping->page_tree, page->index);
116 page->mapping = NULL;
117 mapping->nrpages--;
118 pagecache_acct(-1);
119}
120
121void remove_from_page_cache(struct page *page)
122{
123 struct address_space *mapping = page->mapping;
124
cd7619d6 125 BUG_ON(!PageLocked(page));
1da177e4
LT
126
127 write_lock_irq(&mapping->tree_lock);
128 __remove_from_page_cache(page);
129 write_unlock_irq(&mapping->tree_lock);
130}
131
132static int sync_page(void *word)
133{
134 struct address_space *mapping;
135 struct page *page;
136
07808b74 137 page = container_of((unsigned long *)word, struct page, flags);
1da177e4
LT
138
139 /*
dd1d5afc
WLII
140 * page_mapping() is being called without PG_locked held.
141 * Some knowledge of the state and use of the page is used to
142 * reduce the requirements down to a memory barrier.
143 * The danger here is of a stale page_mapping() return value
144 * indicating a struct address_space different from the one it's
145 * associated with when it is associated with one.
146 * After smp_mb(), it's either the correct page_mapping() for
147 * the page, or an old page_mapping() and the page's own
148 * page_mapping() has gone NULL.
149 * The ->sync_page() address_space operation must tolerate
150 * page_mapping() going NULL. By an amazing coincidence,
151 * this comes about because none of the users of the page
152 * in the ->sync_page() methods make essential use of the
153 * page_mapping(), merely passing the page down to the backing
154 * device's unplug functions when it's non-NULL, which in turn
4c21e2f2 155 * ignore it for all cases but swap, where only page_private(page) is
dd1d5afc
WLII
156 * of interest. When page_mapping() does go NULL, the entire
157 * call stack gracefully ignores the page and returns.
158 * -- wli
1da177e4
LT
159 */
160 smp_mb();
161 mapping = page_mapping(page);
162 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
163 mapping->a_ops->sync_page(page);
164 io_schedule();
165 return 0;
166}
167
168/**
169 * filemap_fdatawrite_range - start writeback against all of a mapping's
170 * dirty pages that lie within the byte offsets <start, end>
67be2dd1
MW
171 * @mapping: address space structure to write
172 * @start: offset in bytes where the range starts
173 * @end: offset in bytes where the range ends
174 * @sync_mode: enable synchronous operation
1da177e4
LT
175 *
176 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
177 * opposed to a regular memory * cleansing writeback. The difference between
178 * these two operations is that if a dirty page/buffer is encountered, it must
179 * be waited upon, and not just skipped over.
180 */
181static int __filemap_fdatawrite_range(struct address_space *mapping,
182 loff_t start, loff_t end, int sync_mode)
183{
184 int ret;
185 struct writeback_control wbc = {
186 .sync_mode = sync_mode,
187 .nr_to_write = mapping->nrpages * 2,
188 .start = start,
189 .end = end,
190 };
191
192 if (!mapping_cap_writeback_dirty(mapping))
193 return 0;
194
195 ret = do_writepages(mapping, &wbc);
196 return ret;
197}
198
199static inline int __filemap_fdatawrite(struct address_space *mapping,
200 int sync_mode)
201{
202 return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
203}
204
205int filemap_fdatawrite(struct address_space *mapping)
206{
207 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
208}
209EXPORT_SYMBOL(filemap_fdatawrite);
210
211static int filemap_fdatawrite_range(struct address_space *mapping,
212 loff_t start, loff_t end)
213{
214 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
215}
216
217/*
218 * This is a mostly non-blocking flush. Not suitable for data-integrity
219 * purposes - I/O may not be started against all dirty pages.
220 */
221int filemap_flush(struct address_space *mapping)
222{
223 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
224}
225EXPORT_SYMBOL(filemap_flush);
226
227/*
228 * Wait for writeback to complete against pages indexed by start->end
229 * inclusive
230 */
231static int wait_on_page_writeback_range(struct address_space *mapping,
232 pgoff_t start, pgoff_t end)
233{
234 struct pagevec pvec;
235 int nr_pages;
236 int ret = 0;
237 pgoff_t index;
238
239 if (end < start)
240 return 0;
241
242 pagevec_init(&pvec, 0);
243 index = start;
244 while ((index <= end) &&
245 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
246 PAGECACHE_TAG_WRITEBACK,
247 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
248 unsigned i;
249
250 for (i = 0; i < nr_pages; i++) {
251 struct page *page = pvec.pages[i];
252
253 /* until radix tree lookup accepts end_index */
254 if (page->index > end)
255 continue;
256
257 wait_on_page_writeback(page);
258 if (PageError(page))
259 ret = -EIO;
260 }
261 pagevec_release(&pvec);
262 cond_resched();
263 }
264
265 /* Check for outstanding write errors */
266 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
267 ret = -ENOSPC;
268 if (test_and_clear_bit(AS_EIO, &mapping->flags))
269 ret = -EIO;
270
271 return ret;
272}
273
274/*
275 * Write and wait upon all the pages in the passed range. This is a "data
276 * integrity" operation. It waits upon in-flight writeout before starting and
277 * waiting upon new writeout. If there was an IO error, return it.
278 *
279 * We need to re-take i_sem during the generic_osync_inode list walk because
280 * it is otherwise livelockable.
281 */
282int sync_page_range(struct inode *inode, struct address_space *mapping,
283 loff_t pos, size_t count)
284{
285 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
286 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
287 int ret;
288
289 if (!mapping_cap_writeback_dirty(mapping) || !count)
290 return 0;
291 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
292 if (ret == 0) {
293 down(&inode->i_sem);
294 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
295 up(&inode->i_sem);
296 }
297 if (ret == 0)
298 ret = wait_on_page_writeback_range(mapping, start, end);
299 return ret;
300}
301EXPORT_SYMBOL(sync_page_range);
302
303/*
304 * Note: Holding i_sem across sync_page_range_nolock is not a good idea
305 * as it forces O_SYNC writers to different parts of the same file
306 * to be serialised right until io completion.
307 */
5ce7852c
AB
308static int sync_page_range_nolock(struct inode *inode,
309 struct address_space *mapping,
310 loff_t pos, size_t count)
1da177e4
LT
311{
312 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
313 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
314 int ret;
315
316 if (!mapping_cap_writeback_dirty(mapping) || !count)
317 return 0;
318 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
319 if (ret == 0)
320 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
321 if (ret == 0)
322 ret = wait_on_page_writeback_range(mapping, start, end);
323 return ret;
324}
1da177e4
LT
325
326/**
327 * filemap_fdatawait - walk the list of under-writeback pages of the given
328 * address space and wait for all of them.
329 *
330 * @mapping: address space structure to wait for
331 */
332int filemap_fdatawait(struct address_space *mapping)
333{
334 loff_t i_size = i_size_read(mapping->host);
335
336 if (i_size == 0)
337 return 0;
338
339 return wait_on_page_writeback_range(mapping, 0,
340 (i_size - 1) >> PAGE_CACHE_SHIFT);
341}
342EXPORT_SYMBOL(filemap_fdatawait);
343
344int filemap_write_and_wait(struct address_space *mapping)
345{
346 int retval = 0;
347
348 if (mapping->nrpages) {
349 retval = filemap_fdatawrite(mapping);
350 if (retval == 0)
351 retval = filemap_fdatawait(mapping);
352 }
353 return retval;
354}
355
356int filemap_write_and_wait_range(struct address_space *mapping,
357 loff_t lstart, loff_t lend)
358{
359 int retval = 0;
360
361 if (mapping->nrpages) {
362 retval = __filemap_fdatawrite_range(mapping, lstart, lend,
363 WB_SYNC_ALL);
364 if (retval == 0)
365 retval = wait_on_page_writeback_range(mapping,
366 lstart >> PAGE_CACHE_SHIFT,
367 lend >> PAGE_CACHE_SHIFT);
368 }
369 return retval;
370}
371
372/*
373 * This function is used to add newly allocated pagecache pages:
374 * the page is new, so we can just run SetPageLocked() against it.
375 * The other page state flags were set by rmqueue().
376 *
377 * This function does not add the page to the LRU. The caller must do that.
378 */
379int add_to_page_cache(struct page *page, struct address_space *mapping,
6daa0e28 380 pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
381{
382 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
383
384 if (error == 0) {
385 write_lock_irq(&mapping->tree_lock);
386 error = radix_tree_insert(&mapping->page_tree, offset, page);
387 if (!error) {
388 page_cache_get(page);
389 SetPageLocked(page);
390 page->mapping = mapping;
391 page->index = offset;
392 mapping->nrpages++;
393 pagecache_acct(1);
394 }
395 write_unlock_irq(&mapping->tree_lock);
396 radix_tree_preload_end();
397 }
398 return error;
399}
400
401EXPORT_SYMBOL(add_to_page_cache);
402
403int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 404 pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
405{
406 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
407 if (ret == 0)
408 lru_cache_add(page);
409 return ret;
410}
411
412/*
413 * In order to wait for pages to become available there must be
414 * waitqueues associated with pages. By using a hash table of
415 * waitqueues where the bucket discipline is to maintain all
416 * waiters on the same queue and wake all when any of the pages
417 * become available, and for the woken contexts to check to be
418 * sure the appropriate page became available, this saves space
419 * at a cost of "thundering herd" phenomena during rare hash
420 * collisions.
421 */
422static wait_queue_head_t *page_waitqueue(struct page *page)
423{
424 const struct zone *zone = page_zone(page);
425
426 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
427}
428
429static inline void wake_up_page(struct page *page, int bit)
430{
431 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
432}
433
434void fastcall wait_on_page_bit(struct page *page, int bit_nr)
435{
436 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
437
438 if (test_bit(bit_nr, &page->flags))
439 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
440 TASK_UNINTERRUPTIBLE);
441}
442EXPORT_SYMBOL(wait_on_page_bit);
443
444/**
445 * unlock_page() - unlock a locked page
446 *
447 * @page: the page
448 *
449 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
450 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
451 * mechananism between PageLocked pages and PageWriteback pages is shared.
452 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
453 *
454 * The first mb is necessary to safely close the critical section opened by the
455 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
456 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
457 * parallel wait_on_page_locked()).
458 */
459void fastcall unlock_page(struct page *page)
460{
461 smp_mb__before_clear_bit();
462 if (!TestClearPageLocked(page))
463 BUG();
464 smp_mb__after_clear_bit();
465 wake_up_page(page, PG_locked);
466}
467EXPORT_SYMBOL(unlock_page);
468
469/*
470 * End writeback against a page.
471 */
472void end_page_writeback(struct page *page)
473{
474 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
475 if (!test_clear_page_writeback(page))
476 BUG();
477 }
478 smp_mb__after_clear_bit();
479 wake_up_page(page, PG_writeback);
480}
481EXPORT_SYMBOL(end_page_writeback);
482
483/*
484 * Get a lock on the page, assuming we need to sleep to get it.
485 *
486 * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
487 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
488 * chances are that on the second loop, the block layer's plug list is empty,
489 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
490 */
491void fastcall __lock_page(struct page *page)
492{
493 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
494
495 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
496 TASK_UNINTERRUPTIBLE);
497}
498EXPORT_SYMBOL(__lock_page);
499
500/*
501 * a rather lightweight function, finding and getting a reference to a
502 * hashed page atomically.
503 */
504struct page * find_get_page(struct address_space *mapping, unsigned long offset)
505{
506 struct page *page;
507
508 read_lock_irq(&mapping->tree_lock);
509 page = radix_tree_lookup(&mapping->page_tree, offset);
510 if (page)
511 page_cache_get(page);
512 read_unlock_irq(&mapping->tree_lock);
513 return page;
514}
515
516EXPORT_SYMBOL(find_get_page);
517
518/*
519 * Same as above, but trylock it instead of incrementing the count.
520 */
521struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
522{
523 struct page *page;
524
525 read_lock_irq(&mapping->tree_lock);
526 page = radix_tree_lookup(&mapping->page_tree, offset);
527 if (page && TestSetPageLocked(page))
528 page = NULL;
529 read_unlock_irq(&mapping->tree_lock);
530 return page;
531}
532
533EXPORT_SYMBOL(find_trylock_page);
534
535/**
536 * find_lock_page - locate, pin and lock a pagecache page
537 *
67be2dd1
MW
538 * @mapping: the address_space to search
539 * @offset: the page index
1da177e4
LT
540 *
541 * Locates the desired pagecache page, locks it, increments its reference
542 * count and returns its address.
543 *
544 * Returns zero if the page was not present. find_lock_page() may sleep.
545 */
546struct page *find_lock_page(struct address_space *mapping,
547 unsigned long offset)
548{
549 struct page *page;
550
551 read_lock_irq(&mapping->tree_lock);
552repeat:
553 page = radix_tree_lookup(&mapping->page_tree, offset);
554 if (page) {
555 page_cache_get(page);
556 if (TestSetPageLocked(page)) {
557 read_unlock_irq(&mapping->tree_lock);
bbfbb7ce 558 __lock_page(page);
1da177e4
LT
559 read_lock_irq(&mapping->tree_lock);
560
561 /* Has the page been truncated while we slept? */
bbfbb7ce
ND
562 if (unlikely(page->mapping != mapping ||
563 page->index != offset)) {
1da177e4
LT
564 unlock_page(page);
565 page_cache_release(page);
566 goto repeat;
567 }
568 }
569 }
570 read_unlock_irq(&mapping->tree_lock);
571 return page;
572}
573
574EXPORT_SYMBOL(find_lock_page);
575
576/**
577 * find_or_create_page - locate or add a pagecache page
578 *
67be2dd1
MW
579 * @mapping: the page's address_space
580 * @index: the page's index into the mapping
581 * @gfp_mask: page allocation mode
1da177e4
LT
582 *
583 * Locates a page in the pagecache. If the page is not present, a new page
584 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
585 * LRU list. The returned page is locked and has its reference count
586 * incremented.
587 *
588 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
589 * allocation!
590 *
591 * find_or_create_page() returns the desired page's address, or zero on
592 * memory exhaustion.
593 */
594struct page *find_or_create_page(struct address_space *mapping,
6daa0e28 595 unsigned long index, gfp_t gfp_mask)
1da177e4
LT
596{
597 struct page *page, *cached_page = NULL;
598 int err;
599repeat:
600 page = find_lock_page(mapping, index);
601 if (!page) {
602 if (!cached_page) {
603 cached_page = alloc_page(gfp_mask);
604 if (!cached_page)
605 return NULL;
606 }
607 err = add_to_page_cache_lru(cached_page, mapping,
608 index, gfp_mask);
609 if (!err) {
610 page = cached_page;
611 cached_page = NULL;
612 } else if (err == -EEXIST)
613 goto repeat;
614 }
615 if (cached_page)
616 page_cache_release(cached_page);
617 return page;
618}
619
620EXPORT_SYMBOL(find_or_create_page);
621
622/**
623 * find_get_pages - gang pagecache lookup
624 * @mapping: The address_space to search
625 * @start: The starting page index
626 * @nr_pages: The maximum number of pages
627 * @pages: Where the resulting pages are placed
628 *
629 * find_get_pages() will search for and return a group of up to
630 * @nr_pages pages in the mapping. The pages are placed at @pages.
631 * find_get_pages() takes a reference against the returned pages.
632 *
633 * The search returns a group of mapping-contiguous pages with ascending
634 * indexes. There may be holes in the indices due to not-present pages.
635 *
636 * find_get_pages() returns the number of pages which were found.
637 */
638unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
639 unsigned int nr_pages, struct page **pages)
640{
641 unsigned int i;
642 unsigned int ret;
643
644 read_lock_irq(&mapping->tree_lock);
645 ret = radix_tree_gang_lookup(&mapping->page_tree,
646 (void **)pages, start, nr_pages);
647 for (i = 0; i < ret; i++)
648 page_cache_get(pages[i]);
649 read_unlock_irq(&mapping->tree_lock);
650 return ret;
651}
652
653/*
654 * Like find_get_pages, except we only return pages which are tagged with
655 * `tag'. We update *index to index the next page for the traversal.
656 */
657unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
658 int tag, unsigned int nr_pages, struct page **pages)
659{
660 unsigned int i;
661 unsigned int ret;
662
663 read_lock_irq(&mapping->tree_lock);
664 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
665 (void **)pages, *index, nr_pages, tag);
666 for (i = 0; i < ret; i++)
667 page_cache_get(pages[i]);
668 if (ret)
669 *index = pages[ret - 1]->index + 1;
670 read_unlock_irq(&mapping->tree_lock);
671 return ret;
672}
673
674/*
675 * Same as grab_cache_page, but do not wait if the page is unavailable.
676 * This is intended for speculative data generators, where the data can
677 * be regenerated if the page couldn't be grabbed. This routine should
678 * be safe to call while holding the lock for another page.
679 *
680 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
681 * and deadlock against the caller's locked page.
682 */
683struct page *
684grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
685{
686 struct page *page = find_get_page(mapping, index);
6daa0e28 687 gfp_t gfp_mask;
1da177e4
LT
688
689 if (page) {
690 if (!TestSetPageLocked(page))
691 return page;
692 page_cache_release(page);
693 return NULL;
694 }
695 gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
696 page = alloc_pages(gfp_mask, 0);
697 if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
698 page_cache_release(page);
699 page = NULL;
700 }
701 return page;
702}
703
704EXPORT_SYMBOL(grab_cache_page_nowait);
705
706/*
707 * This is a generic file read routine, and uses the
708 * mapping->a_ops->readpage() function for the actual low-level
709 * stuff.
710 *
711 * This is really ugly. But the goto's actually try to clarify some
712 * of the logic when it comes to error handling etc.
713 *
714 * Note the struct file* is only passed for the use of readpage. It may be
715 * NULL.
716 */
717void do_generic_mapping_read(struct address_space *mapping,
718 struct file_ra_state *_ra,
719 struct file *filp,
720 loff_t *ppos,
721 read_descriptor_t *desc,
722 read_actor_t actor)
723{
724 struct inode *inode = mapping->host;
725 unsigned long index;
726 unsigned long end_index;
727 unsigned long offset;
728 unsigned long last_index;
729 unsigned long next_index;
730 unsigned long prev_index;
731 loff_t isize;
732 struct page *cached_page;
733 int error;
734 struct file_ra_state ra = *_ra;
735
736 cached_page = NULL;
737 index = *ppos >> PAGE_CACHE_SHIFT;
738 next_index = index;
739 prev_index = ra.prev_page;
740 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
741 offset = *ppos & ~PAGE_CACHE_MASK;
742
743 isize = i_size_read(inode);
744 if (!isize)
745 goto out;
746
747 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
748 for (;;) {
749 struct page *page;
750 unsigned long nr, ret;
751
752 /* nr is the maximum number of bytes to copy from this page */
753 nr = PAGE_CACHE_SIZE;
754 if (index >= end_index) {
755 if (index > end_index)
756 goto out;
757 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
758 if (nr <= offset) {
759 goto out;
760 }
761 }
762 nr = nr - offset;
763
764 cond_resched();
765 if (index == next_index)
766 next_index = page_cache_readahead(mapping, &ra, filp,
767 index, last_index - index);
768
769find_page:
770 page = find_get_page(mapping, index);
771 if (unlikely(page == NULL)) {
772 handle_ra_miss(mapping, &ra, index);
773 goto no_cached_page;
774 }
775 if (!PageUptodate(page))
776 goto page_not_up_to_date;
777page_ok:
778
779 /* If users can be writing to this page using arbitrary
780 * virtual addresses, take care about potential aliasing
781 * before reading the page on the kernel side.
782 */
783 if (mapping_writably_mapped(mapping))
784 flush_dcache_page(page);
785
786 /*
787 * When (part of) the same page is read multiple times
788 * in succession, only mark it as accessed the first time.
789 */
790 if (prev_index != index)
791 mark_page_accessed(page);
792 prev_index = index;
793
794 /*
795 * Ok, we have the page, and it's up-to-date, so
796 * now we can copy it to user space...
797 *
798 * The actor routine returns how many bytes were actually used..
799 * NOTE! This may not be the same as how much of a user buffer
800 * we filled up (we may be padding etc), so we can only update
801 * "pos" here (the actor routine has to update the user buffer
802 * pointers and the remaining count).
803 */
804 ret = actor(desc, page, offset, nr);
805 offset += ret;
806 index += offset >> PAGE_CACHE_SHIFT;
807 offset &= ~PAGE_CACHE_MASK;
808
809 page_cache_release(page);
810 if (ret == nr && desc->count)
811 continue;
812 goto out;
813
814page_not_up_to_date:
815 /* Get exclusive access to the page ... */
816 lock_page(page);
817
818 /* Did it get unhashed before we got the lock? */
819 if (!page->mapping) {
820 unlock_page(page);
821 page_cache_release(page);
822 continue;
823 }
824
825 /* Did somebody else fill it already? */
826 if (PageUptodate(page)) {
827 unlock_page(page);
828 goto page_ok;
829 }
830
831readpage:
832 /* Start the actual read. The read will unlock the page. */
833 error = mapping->a_ops->readpage(filp, page);
834
994fc28c
ZB
835 if (unlikely(error)) {
836 if (error == AOP_TRUNCATED_PAGE) {
837 page_cache_release(page);
838 goto find_page;
839 }
1da177e4 840 goto readpage_error;
994fc28c 841 }
1da177e4
LT
842
843 if (!PageUptodate(page)) {
844 lock_page(page);
845 if (!PageUptodate(page)) {
846 if (page->mapping == NULL) {
847 /*
848 * invalidate_inode_pages got it
849 */
850 unlock_page(page);
851 page_cache_release(page);
852 goto find_page;
853 }
854 unlock_page(page);
855 error = -EIO;
856 goto readpage_error;
857 }
858 unlock_page(page);
859 }
860
861 /*
862 * i_size must be checked after we have done ->readpage.
863 *
864 * Checking i_size after the readpage allows us to calculate
865 * the correct value for "nr", which means the zero-filled
866 * part of the page is not copied back to userspace (unless
867 * another truncate extends the file - this is desired though).
868 */
869 isize = i_size_read(inode);
870 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
871 if (unlikely(!isize || index > end_index)) {
872 page_cache_release(page);
873 goto out;
874 }
875
876 /* nr is the maximum number of bytes to copy from this page */
877 nr = PAGE_CACHE_SIZE;
878 if (index == end_index) {
879 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
880 if (nr <= offset) {
881 page_cache_release(page);
882 goto out;
883 }
884 }
885 nr = nr - offset;
886 goto page_ok;
887
888readpage_error:
889 /* UHHUH! A synchronous read error occurred. Report it */
890 desc->error = error;
891 page_cache_release(page);
892 goto out;
893
894no_cached_page:
895 /*
896 * Ok, it wasn't cached, so we need to create a new
897 * page..
898 */
899 if (!cached_page) {
900 cached_page = page_cache_alloc_cold(mapping);
901 if (!cached_page) {
902 desc->error = -ENOMEM;
903 goto out;
904 }
905 }
906 error = add_to_page_cache_lru(cached_page, mapping,
907 index, GFP_KERNEL);
908 if (error) {
909 if (error == -EEXIST)
910 goto find_page;
911 desc->error = error;
912 goto out;
913 }
914 page = cached_page;
915 cached_page = NULL;
916 goto readpage;
917 }
918
919out:
920 *_ra = ra;
921
922 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
923 if (cached_page)
924 page_cache_release(cached_page);
925 if (filp)
926 file_accessed(filp);
927}
928
929EXPORT_SYMBOL(do_generic_mapping_read);
930
931int file_read_actor(read_descriptor_t *desc, struct page *page,
932 unsigned long offset, unsigned long size)
933{
934 char *kaddr;
935 unsigned long left, count = desc->count;
936
937 if (size > count)
938 size = count;
939
940 /*
941 * Faults on the destination of a read are common, so do it before
942 * taking the kmap.
943 */
944 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
945 kaddr = kmap_atomic(page, KM_USER0);
946 left = __copy_to_user_inatomic(desc->arg.buf,
947 kaddr + offset, size);
948 kunmap_atomic(kaddr, KM_USER0);
949 if (left == 0)
950 goto success;
951 }
952
953 /* Do it the slow way */
954 kaddr = kmap(page);
955 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
956 kunmap(page);
957
958 if (left) {
959 size -= left;
960 desc->error = -EFAULT;
961 }
962success:
963 desc->count = count - size;
964 desc->written += size;
965 desc->arg.buf += size;
966 return size;
967}
968
969/*
970 * This is the "read()" routine for all filesystems
971 * that can use the page cache directly.
972 */
973ssize_t
974__generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
975 unsigned long nr_segs, loff_t *ppos)
976{
977 struct file *filp = iocb->ki_filp;
978 ssize_t retval;
979 unsigned long seg;
980 size_t count;
981
982 count = 0;
983 for (seg = 0; seg < nr_segs; seg++) {
984 const struct iovec *iv = &iov[seg];
985
986 /*
987 * If any segment has a negative length, or the cumulative
988 * length ever wraps negative then return -EINVAL.
989 */
990 count += iv->iov_len;
991 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
992 return -EINVAL;
993 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
994 continue;
995 if (seg == 0)
996 return -EFAULT;
997 nr_segs = seg;
998 count -= iv->iov_len; /* This segment is no good */
999 break;
1000 }
1001
1002 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1003 if (filp->f_flags & O_DIRECT) {
1004 loff_t pos = *ppos, size;
1005 struct address_space *mapping;
1006 struct inode *inode;
1007
1008 mapping = filp->f_mapping;
1009 inode = mapping->host;
1010 retval = 0;
1011 if (!count)
1012 goto out; /* skip atime */
1013 size = i_size_read(inode);
1014 if (pos < size) {
1015 retval = generic_file_direct_IO(READ, iocb,
1016 iov, pos, nr_segs);
b5c44c21 1017 if (retval > 0 && !is_sync_kiocb(iocb))
1da177e4
LT
1018 retval = -EIOCBQUEUED;
1019 if (retval > 0)
1020 *ppos = pos + retval;
1021 }
1022 file_accessed(filp);
1023 goto out;
1024 }
1025
1026 retval = 0;
1027 if (count) {
1028 for (seg = 0; seg < nr_segs; seg++) {
1029 read_descriptor_t desc;
1030
1031 desc.written = 0;
1032 desc.arg.buf = iov[seg].iov_base;
1033 desc.count = iov[seg].iov_len;
1034 if (desc.count == 0)
1035 continue;
1036 desc.error = 0;
1037 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1038 retval += desc.written;
39e88ca2
TH
1039 if (desc.error) {
1040 retval = retval ?: desc.error;
1da177e4
LT
1041 break;
1042 }
1043 }
1044 }
1045out:
1046 return retval;
1047}
1048
1049EXPORT_SYMBOL(__generic_file_aio_read);
1050
1051ssize_t
1052generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1053{
1054 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1055
1056 BUG_ON(iocb->ki_pos != pos);
1057 return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1058}
1059
1060EXPORT_SYMBOL(generic_file_aio_read);
1061
1062ssize_t
1063generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1064{
1065 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1066 struct kiocb kiocb;
1067 ssize_t ret;
1068
1069 init_sync_kiocb(&kiocb, filp);
1070 ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1071 if (-EIOCBQUEUED == ret)
1072 ret = wait_on_sync_kiocb(&kiocb);
1073 return ret;
1074}
1075
1076EXPORT_SYMBOL(generic_file_read);
1077
1078int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1079{
1080 ssize_t written;
1081 unsigned long count = desc->count;
1082 struct file *file = desc->arg.data;
1083
1084 if (size > count)
1085 size = count;
1086
1087 written = file->f_op->sendpage(file, page, offset,
1088 size, &file->f_pos, size<count);
1089 if (written < 0) {
1090 desc->error = written;
1091 written = 0;
1092 }
1093 desc->count = count - written;
1094 desc->written += written;
1095 return written;
1096}
1097
1098ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1099 size_t count, read_actor_t actor, void *target)
1100{
1101 read_descriptor_t desc;
1102
1103 if (!count)
1104 return 0;
1105
1106 desc.written = 0;
1107 desc.count = count;
1108 desc.arg.data = target;
1109 desc.error = 0;
1110
1111 do_generic_file_read(in_file, ppos, &desc, actor);
1112 if (desc.written)
1113 return desc.written;
1114 return desc.error;
1115}
1116
1117EXPORT_SYMBOL(generic_file_sendfile);
1118
1119static ssize_t
1120do_readahead(struct address_space *mapping, struct file *filp,
1121 unsigned long index, unsigned long nr)
1122{
1123 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1124 return -EINVAL;
1125
1126 force_page_cache_readahead(mapping, filp, index,
1127 max_sane_readahead(nr));
1128 return 0;
1129}
1130
1131asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1132{
1133 ssize_t ret;
1134 struct file *file;
1135
1136 ret = -EBADF;
1137 file = fget(fd);
1138 if (file) {
1139 if (file->f_mode & FMODE_READ) {
1140 struct address_space *mapping = file->f_mapping;
1141 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1142 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1143 unsigned long len = end - start + 1;
1144 ret = do_readahead(mapping, file, start, len);
1145 }
1146 fput(file);
1147 }
1148 return ret;
1149}
1150
1151#ifdef CONFIG_MMU
1152/*
1153 * This adds the requested page to the page cache if it isn't already there,
1154 * and schedules an I/O to read in its contents from disk.
1155 */
1156static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1157static int fastcall page_cache_read(struct file * file, unsigned long offset)
1158{
1159 struct address_space *mapping = file->f_mapping;
1160 struct page *page;
994fc28c 1161 int ret;
1da177e4 1162
994fc28c
ZB
1163 do {
1164 page = page_cache_alloc_cold(mapping);
1165 if (!page)
1166 return -ENOMEM;
1167
1168 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1169 if (ret == 0)
1170 ret = mapping->a_ops->readpage(file, page);
1171 else if (ret == -EEXIST)
1172 ret = 0; /* losing race to add is OK */
1da177e4 1173
1da177e4 1174 page_cache_release(page);
1da177e4 1175
994fc28c
ZB
1176 } while (ret == AOP_TRUNCATED_PAGE);
1177
1178 return ret;
1da177e4
LT
1179}
1180
1181#define MMAP_LOTSAMISS (100)
1182
1183/*
1184 * filemap_nopage() is invoked via the vma operations vector for a
1185 * mapped memory region to read in file data during a page fault.
1186 *
1187 * The goto's are kind of ugly, but this streamlines the normal case of having
1188 * it in the page cache, and handles the special cases reasonably without
1189 * having a lot of duplicated code.
1190 */
1191struct page *filemap_nopage(struct vm_area_struct *area,
1192 unsigned long address, int *type)
1193{
1194 int error;
1195 struct file *file = area->vm_file;
1196 struct address_space *mapping = file->f_mapping;
1197 struct file_ra_state *ra = &file->f_ra;
1198 struct inode *inode = mapping->host;
1199 struct page *page;
1200 unsigned long size, pgoff;
1201 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1202
1203 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1204
1205retry_all:
1206 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1207 if (pgoff >= size)
1208 goto outside_data_content;
1209
1210 /* If we don't want any read-ahead, don't bother */
1211 if (VM_RandomReadHint(area))
1212 goto no_cached_page;
1213
1214 /*
1215 * The readahead code wants to be told about each and every page
1216 * so it can build and shrink its windows appropriately
1217 *
1218 * For sequential accesses, we use the generic readahead logic.
1219 */
1220 if (VM_SequentialReadHint(area))
1221 page_cache_readahead(mapping, ra, file, pgoff, 1);
1222
1223 /*
1224 * Do we have something in the page cache already?
1225 */
1226retry_find:
1227 page = find_get_page(mapping, pgoff);
1228 if (!page) {
1229 unsigned long ra_pages;
1230
1231 if (VM_SequentialReadHint(area)) {
1232 handle_ra_miss(mapping, ra, pgoff);
1233 goto no_cached_page;
1234 }
1235 ra->mmap_miss++;
1236
1237 /*
1238 * Do we miss much more than hit in this file? If so,
1239 * stop bothering with read-ahead. It will only hurt.
1240 */
1241 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1242 goto no_cached_page;
1243
1244 /*
1245 * To keep the pgmajfault counter straight, we need to
1246 * check did_readaround, as this is an inner loop.
1247 */
1248 if (!did_readaround) {
1249 majmin = VM_FAULT_MAJOR;
1250 inc_page_state(pgmajfault);
1251 }
1252 did_readaround = 1;
1253 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1254 if (ra_pages) {
1255 pgoff_t start = 0;
1256
1257 if (pgoff > ra_pages / 2)
1258 start = pgoff - ra_pages / 2;
1259 do_page_cache_readahead(mapping, file, start, ra_pages);
1260 }
1261 page = find_get_page(mapping, pgoff);
1262 if (!page)
1263 goto no_cached_page;
1264 }
1265
1266 if (!did_readaround)
1267 ra->mmap_hit++;
1268
1269 /*
1270 * Ok, found a page in the page cache, now we need to check
1271 * that it's up-to-date.
1272 */
1273 if (!PageUptodate(page))
1274 goto page_not_uptodate;
1275
1276success:
1277 /*
1278 * Found the page and have a reference on it.
1279 */
1280 mark_page_accessed(page);
1281 if (type)
1282 *type = majmin;
1283 return page;
1284
1285outside_data_content:
1286 /*
1287 * An external ptracer can access pages that normally aren't
1288 * accessible..
1289 */
1290 if (area->vm_mm == current->mm)
1291 return NULL;
1292 /* Fall through to the non-read-ahead case */
1293no_cached_page:
1294 /*
1295 * We're only likely to ever get here if MADV_RANDOM is in
1296 * effect.
1297 */
1298 error = page_cache_read(file, pgoff);
1299 grab_swap_token();
1300
1301 /*
1302 * The page we want has now been added to the page cache.
1303 * In the unlikely event that someone removed it in the
1304 * meantime, we'll just come back here and read it again.
1305 */
1306 if (error >= 0)
1307 goto retry_find;
1308
1309 /*
1310 * An error return from page_cache_read can result if the
1311 * system is low on memory, or a problem occurs while trying
1312 * to schedule I/O.
1313 */
1314 if (error == -ENOMEM)
1315 return NOPAGE_OOM;
1316 return NULL;
1317
1318page_not_uptodate:
1319 if (!did_readaround) {
1320 majmin = VM_FAULT_MAJOR;
1321 inc_page_state(pgmajfault);
1322 }
1323 lock_page(page);
1324
1325 /* Did it get unhashed while we waited for it? */
1326 if (!page->mapping) {
1327 unlock_page(page);
1328 page_cache_release(page);
1329 goto retry_all;
1330 }
1331
1332 /* Did somebody else get it up-to-date? */
1333 if (PageUptodate(page)) {
1334 unlock_page(page);
1335 goto success;
1336 }
1337
994fc28c
ZB
1338 error = mapping->a_ops->readpage(file, page);
1339 if (!error) {
1da177e4
LT
1340 wait_on_page_locked(page);
1341 if (PageUptodate(page))
1342 goto success;
994fc28c
ZB
1343 } else if (error == AOP_TRUNCATED_PAGE) {
1344 page_cache_release(page);
1345 goto retry_find;
1da177e4
LT
1346 }
1347
1348 /*
1349 * Umm, take care of errors if the page isn't up-to-date.
1350 * Try to re-read it _once_. We do this synchronously,
1351 * because there really aren't any performance issues here
1352 * and we need to check for errors.
1353 */
1354 lock_page(page);
1355
1356 /* Somebody truncated the page on us? */
1357 if (!page->mapping) {
1358 unlock_page(page);
1359 page_cache_release(page);
1360 goto retry_all;
1361 }
1362
1363 /* Somebody else successfully read it in? */
1364 if (PageUptodate(page)) {
1365 unlock_page(page);
1366 goto success;
1367 }
1368 ClearPageError(page);
994fc28c
ZB
1369 error = mapping->a_ops->readpage(file, page);
1370 if (!error) {
1da177e4
LT
1371 wait_on_page_locked(page);
1372 if (PageUptodate(page))
1373 goto success;
994fc28c
ZB
1374 } else if (error == AOP_TRUNCATED_PAGE) {
1375 page_cache_release(page);
1376 goto retry_find;
1da177e4
LT
1377 }
1378
1379 /*
1380 * Things didn't work out. Return zero to tell the
1381 * mm layer so, possibly freeing the page cache page first.
1382 */
1383 page_cache_release(page);
1384 return NULL;
1385}
1386
1387EXPORT_SYMBOL(filemap_nopage);
1388
1389static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1390 int nonblock)
1391{
1392 struct address_space *mapping = file->f_mapping;
1393 struct page *page;
1394 int error;
1395
1396 /*
1397 * Do we have something in the page cache already?
1398 */
1399retry_find:
1400 page = find_get_page(mapping, pgoff);
1401 if (!page) {
1402 if (nonblock)
1403 return NULL;
1404 goto no_cached_page;
1405 }
1406
1407 /*
1408 * Ok, found a page in the page cache, now we need to check
1409 * that it's up-to-date.
1410 */
d3457342
JM
1411 if (!PageUptodate(page)) {
1412 if (nonblock) {
1413 page_cache_release(page);
1414 return NULL;
1415 }
1da177e4 1416 goto page_not_uptodate;
d3457342 1417 }
1da177e4
LT
1418
1419success:
1420 /*
1421 * Found the page and have a reference on it.
1422 */
1423 mark_page_accessed(page);
1424 return page;
1425
1426no_cached_page:
1427 error = page_cache_read(file, pgoff);
1428
1429 /*
1430 * The page we want has now been added to the page cache.
1431 * In the unlikely event that someone removed it in the
1432 * meantime, we'll just come back here and read it again.
1433 */
1434 if (error >= 0)
1435 goto retry_find;
1436
1437 /*
1438 * An error return from page_cache_read can result if the
1439 * system is low on memory, or a problem occurs while trying
1440 * to schedule I/O.
1441 */
1442 return NULL;
1443
1444page_not_uptodate:
1445 lock_page(page);
1446
1447 /* Did it get unhashed while we waited for it? */
1448 if (!page->mapping) {
1449 unlock_page(page);
1450 goto err;
1451 }
1452
1453 /* Did somebody else get it up-to-date? */
1454 if (PageUptodate(page)) {
1455 unlock_page(page);
1456 goto success;
1457 }
1458
994fc28c
ZB
1459 error = mapping->a_ops->readpage(file, page);
1460 if (!error) {
1da177e4
LT
1461 wait_on_page_locked(page);
1462 if (PageUptodate(page))
1463 goto success;
994fc28c
ZB
1464 } else if (error == AOP_TRUNCATED_PAGE) {
1465 page_cache_release(page);
1466 goto retry_find;
1da177e4
LT
1467 }
1468
1469 /*
1470 * Umm, take care of errors if the page isn't up-to-date.
1471 * Try to re-read it _once_. We do this synchronously,
1472 * because there really aren't any performance issues here
1473 * and we need to check for errors.
1474 */
1475 lock_page(page);
1476
1477 /* Somebody truncated the page on us? */
1478 if (!page->mapping) {
1479 unlock_page(page);
1480 goto err;
1481 }
1482 /* Somebody else successfully read it in? */
1483 if (PageUptodate(page)) {
1484 unlock_page(page);
1485 goto success;
1486 }
1487
1488 ClearPageError(page);
994fc28c
ZB
1489 error = mapping->a_ops->readpage(file, page);
1490 if (!error) {
1da177e4
LT
1491 wait_on_page_locked(page);
1492 if (PageUptodate(page))
1493 goto success;
994fc28c
ZB
1494 } else if (error == AOP_TRUNCATED_PAGE) {
1495 page_cache_release(page);
1496 goto retry_find;
1da177e4
LT
1497 }
1498
1499 /*
1500 * Things didn't work out. Return zero to tell the
1501 * mm layer so, possibly freeing the page cache page first.
1502 */
1503err:
1504 page_cache_release(page);
1505
1506 return NULL;
1507}
1508
1509int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1510 unsigned long len, pgprot_t prot, unsigned long pgoff,
1511 int nonblock)
1512{
1513 struct file *file = vma->vm_file;
1514 struct address_space *mapping = file->f_mapping;
1515 struct inode *inode = mapping->host;
1516 unsigned long size;
1517 struct mm_struct *mm = vma->vm_mm;
1518 struct page *page;
1519 int err;
1520
1521 if (!nonblock)
1522 force_page_cache_readahead(mapping, vma->vm_file,
1523 pgoff, len >> PAGE_CACHE_SHIFT);
1524
1525repeat:
1526 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1527 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1528 return -EINVAL;
1529
1530 page = filemap_getpage(file, pgoff, nonblock);
d44ed4f8
PBG
1531
1532 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1533 * done in shmem_populate calling shmem_getpage */
1da177e4
LT
1534 if (!page && !nonblock)
1535 return -ENOMEM;
d44ed4f8 1536
1da177e4
LT
1537 if (page) {
1538 err = install_page(mm, vma, addr, page, prot);
1539 if (err) {
1540 page_cache_release(page);
1541 return err;
1542 }
65500d23 1543 } else if (vma->vm_flags & VM_NONLINEAR) {
d44ed4f8
PBG
1544 /* No page was found just because we can't read it in now (being
1545 * here implies nonblock != 0), but the page may exist, so set
1546 * the PTE to fault it in later. */
1da177e4
LT
1547 err = install_file_pte(mm, vma, addr, pgoff, prot);
1548 if (err)
1549 return err;
1550 }
1551
1552 len -= PAGE_SIZE;
1553 addr += PAGE_SIZE;
1554 pgoff++;
1555 if (len)
1556 goto repeat;
1557
1558 return 0;
1559}
b1459461 1560EXPORT_SYMBOL(filemap_populate);
1da177e4
LT
1561
1562struct vm_operations_struct generic_file_vm_ops = {
1563 .nopage = filemap_nopage,
1564 .populate = filemap_populate,
1565};
1566
1567/* This is used for a general mmap of a disk file */
1568
1569int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1570{
1571 struct address_space *mapping = file->f_mapping;
1572
1573 if (!mapping->a_ops->readpage)
1574 return -ENOEXEC;
1575 file_accessed(file);
1576 vma->vm_ops = &generic_file_vm_ops;
1577 return 0;
1578}
1da177e4
LT
1579
1580/*
1581 * This is for filesystems which do not implement ->writepage.
1582 */
1583int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1584{
1585 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1586 return -EINVAL;
1587 return generic_file_mmap(file, vma);
1588}
1589#else
1590int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1591{
1592 return -ENOSYS;
1593}
1594int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1595{
1596 return -ENOSYS;
1597}
1598#endif /* CONFIG_MMU */
1599
1600EXPORT_SYMBOL(generic_file_mmap);
1601EXPORT_SYMBOL(generic_file_readonly_mmap);
1602
1603static inline struct page *__read_cache_page(struct address_space *mapping,
1604 unsigned long index,
1605 int (*filler)(void *,struct page*),
1606 void *data)
1607{
1608 struct page *page, *cached_page = NULL;
1609 int err;
1610repeat:
1611 page = find_get_page(mapping, index);
1612 if (!page) {
1613 if (!cached_page) {
1614 cached_page = page_cache_alloc_cold(mapping);
1615 if (!cached_page)
1616 return ERR_PTR(-ENOMEM);
1617 }
1618 err = add_to_page_cache_lru(cached_page, mapping,
1619 index, GFP_KERNEL);
1620 if (err == -EEXIST)
1621 goto repeat;
1622 if (err < 0) {
1623 /* Presumably ENOMEM for radix tree node */
1624 page_cache_release(cached_page);
1625 return ERR_PTR(err);
1626 }
1627 page = cached_page;
1628 cached_page = NULL;
1629 err = filler(data, page);
1630 if (err < 0) {
1631 page_cache_release(page);
1632 page = ERR_PTR(err);
1633 }
1634 }
1635 if (cached_page)
1636 page_cache_release(cached_page);
1637 return page;
1638}
1639
1640/*
1641 * Read into the page cache. If a page already exists,
1642 * and PageUptodate() is not set, try to fill the page.
1643 */
1644struct page *read_cache_page(struct address_space *mapping,
1645 unsigned long index,
1646 int (*filler)(void *,struct page*),
1647 void *data)
1648{
1649 struct page *page;
1650 int err;
1651
1652retry:
1653 page = __read_cache_page(mapping, index, filler, data);
1654 if (IS_ERR(page))
1655 goto out;
1656 mark_page_accessed(page);
1657 if (PageUptodate(page))
1658 goto out;
1659
1660 lock_page(page);
1661 if (!page->mapping) {
1662 unlock_page(page);
1663 page_cache_release(page);
1664 goto retry;
1665 }
1666 if (PageUptodate(page)) {
1667 unlock_page(page);
1668 goto out;
1669 }
1670 err = filler(data, page);
1671 if (err < 0) {
1672 page_cache_release(page);
1673 page = ERR_PTR(err);
1674 }
1675 out:
1676 return page;
1677}
1678
1679EXPORT_SYMBOL(read_cache_page);
1680
1681/*
1682 * If the page was newly created, increment its refcount and add it to the
1683 * caller's lru-buffering pagevec. This function is specifically for
1684 * generic_file_write().
1685 */
1686static inline struct page *
1687__grab_cache_page(struct address_space *mapping, unsigned long index,
1688 struct page **cached_page, struct pagevec *lru_pvec)
1689{
1690 int err;
1691 struct page *page;
1692repeat:
1693 page = find_lock_page(mapping, index);
1694 if (!page) {
1695 if (!*cached_page) {
1696 *cached_page = page_cache_alloc(mapping);
1697 if (!*cached_page)
1698 return NULL;
1699 }
1700 err = add_to_page_cache(*cached_page, mapping,
1701 index, GFP_KERNEL);
1702 if (err == -EEXIST)
1703 goto repeat;
1704 if (err == 0) {
1705 page = *cached_page;
1706 page_cache_get(page);
1707 if (!pagevec_add(lru_pvec, page))
1708 __pagevec_lru_add(lru_pvec);
1709 *cached_page = NULL;
1710 }
1711 }
1712 return page;
1713}
1714
1715/*
1716 * The logic we want is
1717 *
1718 * if suid or (sgid and xgrp)
1719 * remove privs
1720 */
1721int remove_suid(struct dentry *dentry)
1722{
1723 mode_t mode = dentry->d_inode->i_mode;
1724 int kill = 0;
1725 int result = 0;
1726
1727 /* suid always must be killed */
1728 if (unlikely(mode & S_ISUID))
1729 kill = ATTR_KILL_SUID;
1730
1731 /*
1732 * sgid without any exec bits is just a mandatory locking mark; leave
1733 * it alone. If some exec bits are set, it's a real sgid; kill it.
1734 */
1735 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1736 kill |= ATTR_KILL_SGID;
1737
1738 if (unlikely(kill && !capable(CAP_FSETID))) {
1739 struct iattr newattrs;
1740
1741 newattrs.ia_valid = ATTR_FORCE | kill;
1742 result = notify_change(dentry, &newattrs);
1743 }
1744 return result;
1745}
1746EXPORT_SYMBOL(remove_suid);
1747
ceffc078 1748size_t
1da177e4
LT
1749__filemap_copy_from_user_iovec(char *vaddr,
1750 const struct iovec *iov, size_t base, size_t bytes)
1751{
1752 size_t copied = 0, left = 0;
1753
1754 while (bytes) {
1755 char __user *buf = iov->iov_base + base;
1756 int copy = min(bytes, iov->iov_len - base);
1757
1758 base = 0;
1759 left = __copy_from_user_inatomic(vaddr, buf, copy);
1760 copied += copy;
1761 bytes -= copy;
1762 vaddr += copy;
1763 iov++;
1764
1765 if (unlikely(left)) {
1766 /* zero the rest of the target like __copy_from_user */
1767 if (bytes)
1768 memset(vaddr, 0, bytes);
1769 break;
1770 }
1771 }
1772 return copied - left;
1773}
1774
1da177e4
LT
1775/*
1776 * Performs necessary checks before doing a write
1777 *
1778 * Can adjust writing position aor amount of bytes to write.
1779 * Returns appropriate error code that caller should return or
1780 * zero in case that write should be allowed.
1781 */
1782inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1783{
1784 struct inode *inode = file->f_mapping->host;
1785 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1786
1787 if (unlikely(*pos < 0))
1788 return -EINVAL;
1789
1da177e4
LT
1790 if (!isblk) {
1791 /* FIXME: this is for backwards compatibility with 2.4 */
1792 if (file->f_flags & O_APPEND)
1793 *pos = i_size_read(inode);
1794
1795 if (limit != RLIM_INFINITY) {
1796 if (*pos >= limit) {
1797 send_sig(SIGXFSZ, current, 0);
1798 return -EFBIG;
1799 }
1800 if (*count > limit - (typeof(limit))*pos) {
1801 *count = limit - (typeof(limit))*pos;
1802 }
1803 }
1804 }
1805
1806 /*
1807 * LFS rule
1808 */
1809 if (unlikely(*pos + *count > MAX_NON_LFS &&
1810 !(file->f_flags & O_LARGEFILE))) {
1811 if (*pos >= MAX_NON_LFS) {
1812 send_sig(SIGXFSZ, current, 0);
1813 return -EFBIG;
1814 }
1815 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1816 *count = MAX_NON_LFS - (unsigned long)*pos;
1817 }
1818 }
1819
1820 /*
1821 * Are we about to exceed the fs block limit ?
1822 *
1823 * If we have written data it becomes a short write. If we have
1824 * exceeded without writing data we send a signal and return EFBIG.
1825 * Linus frestrict idea will clean these up nicely..
1826 */
1827 if (likely(!isblk)) {
1828 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1829 if (*count || *pos > inode->i_sb->s_maxbytes) {
1830 send_sig(SIGXFSZ, current, 0);
1831 return -EFBIG;
1832 }
1833 /* zero-length writes at ->s_maxbytes are OK */
1834 }
1835
1836 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1837 *count = inode->i_sb->s_maxbytes - *pos;
1838 } else {
1839 loff_t isize;
1840 if (bdev_read_only(I_BDEV(inode)))
1841 return -EPERM;
1842 isize = i_size_read(inode);
1843 if (*pos >= isize) {
1844 if (*count || *pos > isize)
1845 return -ENOSPC;
1846 }
1847
1848 if (*pos + *count > isize)
1849 *count = isize - *pos;
1850 }
1851 return 0;
1852}
1853EXPORT_SYMBOL(generic_write_checks);
1854
1855ssize_t
1856generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1857 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1858 size_t count, size_t ocount)
1859{
1860 struct file *file = iocb->ki_filp;
1861 struct address_space *mapping = file->f_mapping;
1862 struct inode *inode = mapping->host;
1863 ssize_t written;
1864
1865 if (count != ocount)
1866 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1867
1868 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1869 if (written > 0) {
1870 loff_t end = pos + written;
1871 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1872 i_size_write(inode, end);
1873 mark_inode_dirty(inode);
1874 }
1875 *ppos = end;
1876 }
1877
1878 /*
1879 * Sync the fs metadata but not the minor inode changes and
1880 * of course not the data as we did direct DMA for the IO.
1881 * i_sem is held, which protects generic_osync_inode() from
1882 * livelocking.
1883 */
1e8a81c5
HH
1884 if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1885 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1886 if (err < 0)
1887 written = err;
1888 }
1da177e4
LT
1889 if (written == count && !is_sync_kiocb(iocb))
1890 written = -EIOCBQUEUED;
1891 return written;
1892}
1893EXPORT_SYMBOL(generic_file_direct_write);
1894
1895ssize_t
1896generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1897 unsigned long nr_segs, loff_t pos, loff_t *ppos,
1898 size_t count, ssize_t written)
1899{
1900 struct file *file = iocb->ki_filp;
1901 struct address_space * mapping = file->f_mapping;
1902 struct address_space_operations *a_ops = mapping->a_ops;
1903 struct inode *inode = mapping->host;
1904 long status = 0;
1905 struct page *page;
1906 struct page *cached_page = NULL;
1907 size_t bytes;
1908 struct pagevec lru_pvec;
1909 const struct iovec *cur_iov = iov; /* current iovec */
1910 size_t iov_base = 0; /* offset in the current iovec */
1911 char __user *buf;
1912
1913 pagevec_init(&lru_pvec, 0);
1914
1915 /*
1916 * handle partial DIO write. Adjust cur_iov if needed.
1917 */
1918 if (likely(nr_segs == 1))
1919 buf = iov->iov_base + written;
1920 else {
1921 filemap_set_next_iovec(&cur_iov, &iov_base, written);
f021e921 1922 buf = cur_iov->iov_base + iov_base;
1da177e4
LT
1923 }
1924
1925 do {
1926 unsigned long index;
1927 unsigned long offset;
a5117181 1928 unsigned long maxlen;
1da177e4
LT
1929 size_t copied;
1930
1931 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1932 index = pos >> PAGE_CACHE_SHIFT;
1933 bytes = PAGE_CACHE_SIZE - offset;
1934 if (bytes > count)
1935 bytes = count;
1936
1937 /*
1938 * Bring in the user page that we will copy from _first_.
1939 * Otherwise there's a nasty deadlock on copying from the
1940 * same page as we're writing to, without it being marked
1941 * up-to-date.
1942 */
a5117181
MS
1943 maxlen = cur_iov->iov_len - iov_base;
1944 if (maxlen > bytes)
1945 maxlen = bytes;
1946 fault_in_pages_readable(buf, maxlen);
1da177e4
LT
1947
1948 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1949 if (!page) {
1950 status = -ENOMEM;
1951 break;
1952 }
1953
1954 status = a_ops->prepare_write(file, page, offset, offset+bytes);
1955 if (unlikely(status)) {
1956 loff_t isize = i_size_read(inode);
994fc28c
ZB
1957
1958 if (status != AOP_TRUNCATED_PAGE)
1959 unlock_page(page);
1960 page_cache_release(page);
1961 if (status == AOP_TRUNCATED_PAGE)
1962 continue;
1da177e4
LT
1963 /*
1964 * prepare_write() may have instantiated a few blocks
1965 * outside i_size. Trim these off again.
1966 */
1da177e4
LT
1967 if (pos + bytes > isize)
1968 vmtruncate(inode, isize);
1969 break;
1970 }
1971 if (likely(nr_segs == 1))
1972 copied = filemap_copy_from_user(page, offset,
1973 buf, bytes);
1974 else
1975 copied = filemap_copy_from_user_iovec(page, offset,
1976 cur_iov, iov_base, bytes);
1977 flush_dcache_page(page);
1978 status = a_ops->commit_write(file, page, offset, offset+bytes);
994fc28c
ZB
1979 if (status == AOP_TRUNCATED_PAGE) {
1980 page_cache_release(page);
1981 continue;
1982 }
1da177e4
LT
1983 if (likely(copied > 0)) {
1984 if (!status)
1985 status = copied;
1986
1987 if (status >= 0) {
1988 written += status;
1989 count -= status;
1990 pos += status;
1991 buf += status;
f021e921 1992 if (unlikely(nr_segs > 1)) {
1da177e4
LT
1993 filemap_set_next_iovec(&cur_iov,
1994 &iov_base, status);
b0cfbd99
BP
1995 if (count)
1996 buf = cur_iov->iov_base +
1997 iov_base;
a5117181
MS
1998 } else {
1999 iov_base += status;
f021e921 2000 }
1da177e4
LT
2001 }
2002 }
2003 if (unlikely(copied != bytes))
2004 if (status >= 0)
2005 status = -EFAULT;
2006 unlock_page(page);
2007 mark_page_accessed(page);
2008 page_cache_release(page);
2009 if (status < 0)
2010 break;
2011 balance_dirty_pages_ratelimited(mapping);
2012 cond_resched();
2013 } while (count);
2014 *ppos = pos;
2015
2016 if (cached_page)
2017 page_cache_release(cached_page);
2018
2019 /*
2020 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2021 */
2022 if (likely(status >= 0)) {
2023 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2024 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2025 status = generic_osync_inode(inode, mapping,
2026 OSYNC_METADATA|OSYNC_DATA);
2027 }
2028 }
2029
2030 /*
2031 * If we get here for O_DIRECT writes then we must have fallen through
2032 * to buffered writes (block instantiation inside i_size). So we sync
2033 * the file data here, to try to honour O_DIRECT expectations.
2034 */
2035 if (unlikely(file->f_flags & O_DIRECT) && written)
2036 status = filemap_write_and_wait(mapping);
2037
2038 pagevec_lru_add(&lru_pvec);
2039 return written ? written : status;
2040}
2041EXPORT_SYMBOL(generic_file_buffered_write);
2042
5ce7852c 2043static ssize_t
1da177e4
LT
2044__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2045 unsigned long nr_segs, loff_t *ppos)
2046{
2047 struct file *file = iocb->ki_filp;
2048 struct address_space * mapping = file->f_mapping;
2049 size_t ocount; /* original count */
2050 size_t count; /* after file limit checks */
2051 struct inode *inode = mapping->host;
2052 unsigned long seg;
2053 loff_t pos;
2054 ssize_t written;
2055 ssize_t err;
2056
2057 ocount = 0;
2058 for (seg = 0; seg < nr_segs; seg++) {
2059 const struct iovec *iv = &iov[seg];
2060
2061 /*
2062 * If any segment has a negative length, or the cumulative
2063 * length ever wraps negative then return -EINVAL.
2064 */
2065 ocount += iv->iov_len;
2066 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2067 return -EINVAL;
2068 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2069 continue;
2070 if (seg == 0)
2071 return -EFAULT;
2072 nr_segs = seg;
2073 ocount -= iv->iov_len; /* This segment is no good */
2074 break;
2075 }
2076
2077 count = ocount;
2078 pos = *ppos;
2079
2080 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2081
2082 /* We can write back this queue in page reclaim */
2083 current->backing_dev_info = mapping->backing_dev_info;
2084 written = 0;
2085
2086 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2087 if (err)
2088 goto out;
2089
2090 if (count == 0)
2091 goto out;
2092
2093 err = remove_suid(file->f_dentry);
2094 if (err)
2095 goto out;
2096
2097 inode_update_time(inode, 1);
2098
2099 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2100 if (unlikely(file->f_flags & O_DIRECT)) {
2101 written = generic_file_direct_write(iocb, iov,
2102 &nr_segs, pos, ppos, count, ocount);
2103 if (written < 0 || written == count)
2104 goto out;
2105 /*
2106 * direct-io write to a hole: fall through to buffered I/O
2107 * for completing the rest of the request.
2108 */
2109 pos += written;
2110 count -= written;
2111 }
2112
2113 written = generic_file_buffered_write(iocb, iov, nr_segs,
2114 pos, ppos, count, written);
2115out:
2116 current->backing_dev_info = NULL;
2117 return written ? written : err;
2118}
2119EXPORT_SYMBOL(generic_file_aio_write_nolock);
2120
2121ssize_t
2122generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2123 unsigned long nr_segs, loff_t *ppos)
2124{
2125 struct file *file = iocb->ki_filp;
2126 struct address_space *mapping = file->f_mapping;
2127 struct inode *inode = mapping->host;
2128 ssize_t ret;
2129 loff_t pos = *ppos;
2130
2131 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2132
2133 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2134 int err;
2135
2136 err = sync_page_range_nolock(inode, mapping, pos, ret);
2137 if (err < 0)
2138 ret = err;
2139 }
2140 return ret;
2141}
2142
5ce7852c 2143static ssize_t
1da177e4
LT
2144__generic_file_write_nolock(struct file *file, const struct iovec *iov,
2145 unsigned long nr_segs, loff_t *ppos)
2146{
2147 struct kiocb kiocb;
2148 ssize_t ret;
2149
2150 init_sync_kiocb(&kiocb, file);
2151 ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2152 if (ret == -EIOCBQUEUED)
2153 ret = wait_on_sync_kiocb(&kiocb);
2154 return ret;
2155}
2156
2157ssize_t
2158generic_file_write_nolock(struct file *file, const struct iovec *iov,
2159 unsigned long nr_segs, loff_t *ppos)
2160{
2161 struct kiocb kiocb;
2162 ssize_t ret;
2163
2164 init_sync_kiocb(&kiocb, file);
2165 ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2166 if (-EIOCBQUEUED == ret)
2167 ret = wait_on_sync_kiocb(&kiocb);
2168 return ret;
2169}
2170EXPORT_SYMBOL(generic_file_write_nolock);
2171
2172ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2173 size_t count, loff_t pos)
2174{
2175 struct file *file = iocb->ki_filp;
2176 struct address_space *mapping = file->f_mapping;
2177 struct inode *inode = mapping->host;
2178 ssize_t ret;
2179 struct iovec local_iov = { .iov_base = (void __user *)buf,
2180 .iov_len = count };
2181
2182 BUG_ON(iocb->ki_pos != pos);
2183
2184 down(&inode->i_sem);
2185 ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2186 &iocb->ki_pos);
2187 up(&inode->i_sem);
2188
2189 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2190 ssize_t err;
2191
2192 err = sync_page_range(inode, mapping, pos, ret);
2193 if (err < 0)
2194 ret = err;
2195 }
2196 return ret;
2197}
2198EXPORT_SYMBOL(generic_file_aio_write);
2199
2200ssize_t generic_file_write(struct file *file, const char __user *buf,
2201 size_t count, loff_t *ppos)
2202{
2203 struct address_space *mapping = file->f_mapping;
2204 struct inode *inode = mapping->host;
2205 ssize_t ret;
2206 struct iovec local_iov = { .iov_base = (void __user *)buf,
2207 .iov_len = count };
2208
2209 down(&inode->i_sem);
2210 ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2211 up(&inode->i_sem);
2212
2213 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2214 ssize_t err;
2215
2216 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2217 if (err < 0)
2218 ret = err;
2219 }
2220 return ret;
2221}
2222EXPORT_SYMBOL(generic_file_write);
2223
2224ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2225 unsigned long nr_segs, loff_t *ppos)
2226{
2227 struct kiocb kiocb;
2228 ssize_t ret;
2229
2230 init_sync_kiocb(&kiocb, filp);
2231 ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2232 if (-EIOCBQUEUED == ret)
2233 ret = wait_on_sync_kiocb(&kiocb);
2234 return ret;
2235}
2236EXPORT_SYMBOL(generic_file_readv);
2237
2238ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2239 unsigned long nr_segs, loff_t *ppos)
2240{
2241 struct address_space *mapping = file->f_mapping;
2242 struct inode *inode = mapping->host;
2243 ssize_t ret;
2244
2245 down(&inode->i_sem);
2246 ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2247 up(&inode->i_sem);
2248
2249 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2250 int err;
2251
2252 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2253 if (err < 0)
2254 ret = err;
2255 }
2256 return ret;
2257}
2258EXPORT_SYMBOL(generic_file_writev);
2259
2260/*
2261 * Called under i_sem for writes to S_ISREG files. Returns -EIO if something
2262 * went wrong during pagecache shootdown.
2263 */
5ce7852c 2264static ssize_t
1da177e4
LT
2265generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2266 loff_t offset, unsigned long nr_segs)
2267{
2268 struct file *file = iocb->ki_filp;
2269 struct address_space *mapping = file->f_mapping;
2270 ssize_t retval;
2271 size_t write_len = 0;
2272
2273 /*
2274 * If it's a write, unmap all mmappings of the file up-front. This
2275 * will cause any pte dirty bits to be propagated into the pageframes
2276 * for the subsequent filemap_write_and_wait().
2277 */
2278 if (rw == WRITE) {
2279 write_len = iov_length(iov, nr_segs);
2280 if (mapping_mapped(mapping))
2281 unmap_mapping_range(mapping, offset, write_len, 0);
2282 }
2283
2284 retval = filemap_write_and_wait(mapping);
2285 if (retval == 0) {
2286 retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2287 offset, nr_segs);
2288 if (rw == WRITE && mapping->nrpages) {
2289 pgoff_t end = (offset + write_len - 1)
2290 >> PAGE_CACHE_SHIFT;
2291 int err = invalidate_inode_pages2_range(mapping,
2292 offset >> PAGE_CACHE_SHIFT, end);
2293 if (err)
2294 retval = err;
2295 }
2296 }
2297 return retval;
2298}