perf_counter: record time running and time enabled for each counter
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
8524070b 4 * Kernel internal timers, basic process system calls
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
23#include <linux/module.h>
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
1da177e4
LT
40
41#include <asm/uaccess.h>
42#include <asm/unistd.h>
43#include <asm/div64.h>
44#include <asm/timex.h>
45#include <asm/io.h>
46
ecea8d19
TG
47u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
48
49EXPORT_SYMBOL(jiffies_64);
50
1da177e4
LT
51/*
52 * per-CPU timer vector definitions:
53 */
1da177e4
LT
54#define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
55#define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
56#define TVN_SIZE (1 << TVN_BITS)
57#define TVR_SIZE (1 << TVR_BITS)
58#define TVN_MASK (TVN_SIZE - 1)
59#define TVR_MASK (TVR_SIZE - 1)
60
a6fa8e5a 61struct tvec {
1da177e4 62 struct list_head vec[TVN_SIZE];
a6fa8e5a 63};
1da177e4 64
a6fa8e5a 65struct tvec_root {
1da177e4 66 struct list_head vec[TVR_SIZE];
a6fa8e5a 67};
1da177e4 68
a6fa8e5a 69struct tvec_base {
3691c519
ON
70 spinlock_t lock;
71 struct timer_list *running_timer;
1da177e4 72 unsigned long timer_jiffies;
a6fa8e5a
PM
73 struct tvec_root tv1;
74 struct tvec tv2;
75 struct tvec tv3;
76 struct tvec tv4;
77 struct tvec tv5;
6e453a67 78} ____cacheline_aligned;
1da177e4 79
a6fa8e5a 80struct tvec_base boot_tvec_bases;
3691c519 81EXPORT_SYMBOL(boot_tvec_bases);
a6fa8e5a 82static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
1da177e4 83
6e453a67 84/*
a6fa8e5a 85 * Note that all tvec_bases are 2 byte aligned and lower bit of
6e453a67
VP
86 * base in timer_list is guaranteed to be zero. Use the LSB for
87 * the new flag to indicate whether the timer is deferrable
88 */
89#define TBASE_DEFERRABLE_FLAG (0x1)
90
91/* Functions below help us manage 'deferrable' flag */
a6fa8e5a 92static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
6e453a67 93{
e9910846 94 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
6e453a67
VP
95}
96
a6fa8e5a 97static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
6e453a67 98{
a6fa8e5a 99 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
6e453a67
VP
100}
101
102static inline void timer_set_deferrable(struct timer_list *timer)
103{
a6fa8e5a 104 timer->base = ((struct tvec_base *)((unsigned long)(timer->base) |
6819457d 105 TBASE_DEFERRABLE_FLAG));
6e453a67
VP
106}
107
108static inline void
a6fa8e5a 109timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
6e453a67 110{
a6fa8e5a 111 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
6819457d 112 tbase_get_deferrable(timer->base));
6e453a67
VP
113}
114
9c133c46
AS
115static unsigned long round_jiffies_common(unsigned long j, int cpu,
116 bool force_up)
4c36a5de
AV
117{
118 int rem;
119 unsigned long original = j;
120
121 /*
122 * We don't want all cpus firing their timers at once hitting the
123 * same lock or cachelines, so we skew each extra cpu with an extra
124 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
125 * already did this.
126 * The skew is done by adding 3*cpunr, then round, then subtract this
127 * extra offset again.
128 */
129 j += cpu * 3;
130
131 rem = j % HZ;
132
133 /*
134 * If the target jiffie is just after a whole second (which can happen
135 * due to delays of the timer irq, long irq off times etc etc) then
136 * we should round down to the whole second, not up. Use 1/4th second
137 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 138 * But never round down if @force_up is set.
4c36a5de 139 */
9c133c46 140 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
141 j = j - rem;
142 else /* round up */
143 j = j - rem + HZ;
144
145 /* now that we have rounded, subtract the extra skew again */
146 j -= cpu * 3;
147
148 if (j <= jiffies) /* rounding ate our timeout entirely; */
149 return original;
150 return j;
151}
9c133c46
AS
152
153/**
154 * __round_jiffies - function to round jiffies to a full second
155 * @j: the time in (absolute) jiffies that should be rounded
156 * @cpu: the processor number on which the timeout will happen
157 *
158 * __round_jiffies() rounds an absolute time in the future (in jiffies)
159 * up or down to (approximately) full seconds. This is useful for timers
160 * for which the exact time they fire does not matter too much, as long as
161 * they fire approximately every X seconds.
162 *
163 * By rounding these timers to whole seconds, all such timers will fire
164 * at the same time, rather than at various times spread out. The goal
165 * of this is to have the CPU wake up less, which saves power.
166 *
167 * The exact rounding is skewed for each processor to avoid all
168 * processors firing at the exact same time, which could lead
169 * to lock contention or spurious cache line bouncing.
170 *
171 * The return value is the rounded version of the @j parameter.
172 */
173unsigned long __round_jiffies(unsigned long j, int cpu)
174{
175 return round_jiffies_common(j, cpu, false);
176}
4c36a5de
AV
177EXPORT_SYMBOL_GPL(__round_jiffies);
178
179/**
180 * __round_jiffies_relative - function to round jiffies to a full second
181 * @j: the time in (relative) jiffies that should be rounded
182 * @cpu: the processor number on which the timeout will happen
183 *
72fd4a35 184 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
185 * up or down to (approximately) full seconds. This is useful for timers
186 * for which the exact time they fire does not matter too much, as long as
187 * they fire approximately every X seconds.
188 *
189 * By rounding these timers to whole seconds, all such timers will fire
190 * at the same time, rather than at various times spread out. The goal
191 * of this is to have the CPU wake up less, which saves power.
192 *
193 * The exact rounding is skewed for each processor to avoid all
194 * processors firing at the exact same time, which could lead
195 * to lock contention or spurious cache line bouncing.
196 *
72fd4a35 197 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
198 */
199unsigned long __round_jiffies_relative(unsigned long j, int cpu)
200{
9c133c46
AS
201 unsigned long j0 = jiffies;
202
203 /* Use j0 because jiffies might change while we run */
204 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
205}
206EXPORT_SYMBOL_GPL(__round_jiffies_relative);
207
208/**
209 * round_jiffies - function to round jiffies to a full second
210 * @j: the time in (absolute) jiffies that should be rounded
211 *
72fd4a35 212 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
213 * up or down to (approximately) full seconds. This is useful for timers
214 * for which the exact time they fire does not matter too much, as long as
215 * they fire approximately every X seconds.
216 *
217 * By rounding these timers to whole seconds, all such timers will fire
218 * at the same time, rather than at various times spread out. The goal
219 * of this is to have the CPU wake up less, which saves power.
220 *
72fd4a35 221 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
222 */
223unsigned long round_jiffies(unsigned long j)
224{
9c133c46 225 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
226}
227EXPORT_SYMBOL_GPL(round_jiffies);
228
229/**
230 * round_jiffies_relative - function to round jiffies to a full second
231 * @j: the time in (relative) jiffies that should be rounded
232 *
72fd4a35 233 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
234 * up or down to (approximately) full seconds. This is useful for timers
235 * for which the exact time they fire does not matter too much, as long as
236 * they fire approximately every X seconds.
237 *
238 * By rounding these timers to whole seconds, all such timers will fire
239 * at the same time, rather than at various times spread out. The goal
240 * of this is to have the CPU wake up less, which saves power.
241 *
72fd4a35 242 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
243 */
244unsigned long round_jiffies_relative(unsigned long j)
245{
246 return __round_jiffies_relative(j, raw_smp_processor_id());
247}
248EXPORT_SYMBOL_GPL(round_jiffies_relative);
249
9c133c46
AS
250/**
251 * __round_jiffies_up - function to round jiffies up to a full second
252 * @j: the time in (absolute) jiffies that should be rounded
253 * @cpu: the processor number on which the timeout will happen
254 *
255 * This is the same as __round_jiffies() except that it will never
256 * round down. This is useful for timeouts for which the exact time
257 * of firing does not matter too much, as long as they don't fire too
258 * early.
259 */
260unsigned long __round_jiffies_up(unsigned long j, int cpu)
261{
262 return round_jiffies_common(j, cpu, true);
263}
264EXPORT_SYMBOL_GPL(__round_jiffies_up);
265
266/**
267 * __round_jiffies_up_relative - function to round jiffies up to a full second
268 * @j: the time in (relative) jiffies that should be rounded
269 * @cpu: the processor number on which the timeout will happen
270 *
271 * This is the same as __round_jiffies_relative() except that it will never
272 * round down. This is useful for timeouts for which the exact time
273 * of firing does not matter too much, as long as they don't fire too
274 * early.
275 */
276unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
277{
278 unsigned long j0 = jiffies;
279
280 /* Use j0 because jiffies might change while we run */
281 return round_jiffies_common(j + j0, cpu, true) - j0;
282}
283EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
284
285/**
286 * round_jiffies_up - function to round jiffies up to a full second
287 * @j: the time in (absolute) jiffies that should be rounded
288 *
289 * This is the same as round_jiffies() except that it will never
290 * round down. This is useful for timeouts for which the exact time
291 * of firing does not matter too much, as long as they don't fire too
292 * early.
293 */
294unsigned long round_jiffies_up(unsigned long j)
295{
296 return round_jiffies_common(j, raw_smp_processor_id(), true);
297}
298EXPORT_SYMBOL_GPL(round_jiffies_up);
299
300/**
301 * round_jiffies_up_relative - function to round jiffies up to a full second
302 * @j: the time in (relative) jiffies that should be rounded
303 *
304 * This is the same as round_jiffies_relative() except that it will never
305 * round down. This is useful for timeouts for which the exact time
306 * of firing does not matter too much, as long as they don't fire too
307 * early.
308 */
309unsigned long round_jiffies_up_relative(unsigned long j)
310{
311 return __round_jiffies_up_relative(j, raw_smp_processor_id());
312}
313EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
314
4c36a5de 315
a6fa8e5a 316static inline void set_running_timer(struct tvec_base *base,
1da177e4
LT
317 struct timer_list *timer)
318{
319#ifdef CONFIG_SMP
3691c519 320 base->running_timer = timer;
1da177e4
LT
321#endif
322}
323
a6fa8e5a 324static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
1da177e4
LT
325{
326 unsigned long expires = timer->expires;
327 unsigned long idx = expires - base->timer_jiffies;
328 struct list_head *vec;
329
330 if (idx < TVR_SIZE) {
331 int i = expires & TVR_MASK;
332 vec = base->tv1.vec + i;
333 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
334 int i = (expires >> TVR_BITS) & TVN_MASK;
335 vec = base->tv2.vec + i;
336 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
337 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
338 vec = base->tv3.vec + i;
339 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
340 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
341 vec = base->tv4.vec + i;
342 } else if ((signed long) idx < 0) {
343 /*
344 * Can happen if you add a timer with expires == jiffies,
345 * or you set a timer to go off in the past
346 */
347 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
348 } else {
349 int i;
350 /* If the timeout is larger than 0xffffffff on 64-bit
351 * architectures then we use the maximum timeout:
352 */
353 if (idx > 0xffffffffUL) {
354 idx = 0xffffffffUL;
355 expires = idx + base->timer_jiffies;
356 }
357 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
358 vec = base->tv5.vec + i;
359 }
360 /*
361 * Timers are FIFO:
362 */
363 list_add_tail(&timer->entry, vec);
364}
365
82f67cd9
IM
366#ifdef CONFIG_TIMER_STATS
367void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
368{
369 if (timer->start_site)
370 return;
371
372 timer->start_site = addr;
373 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
374 timer->start_pid = current->pid;
375}
c5c061b8
VP
376
377static void timer_stats_account_timer(struct timer_list *timer)
378{
379 unsigned int flag = 0;
380
381 if (unlikely(tbase_get_deferrable(timer->base)))
382 flag |= TIMER_STATS_FLAG_DEFERRABLE;
383
384 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
385 timer->function, timer->start_comm, flag);
386}
387
388#else
389static void timer_stats_account_timer(struct timer_list *timer) {}
82f67cd9
IM
390#endif
391
c6f3a97f
TG
392#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
393
394static struct debug_obj_descr timer_debug_descr;
395
396/*
397 * fixup_init is called when:
398 * - an active object is initialized
55c888d6 399 */
c6f3a97f
TG
400static int timer_fixup_init(void *addr, enum debug_obj_state state)
401{
402 struct timer_list *timer = addr;
403
404 switch (state) {
405 case ODEBUG_STATE_ACTIVE:
406 del_timer_sync(timer);
407 debug_object_init(timer, &timer_debug_descr);
408 return 1;
409 default:
410 return 0;
411 }
412}
413
414/*
415 * fixup_activate is called when:
416 * - an active object is activated
417 * - an unknown object is activated (might be a statically initialized object)
418 */
419static int timer_fixup_activate(void *addr, enum debug_obj_state state)
420{
421 struct timer_list *timer = addr;
422
423 switch (state) {
424
425 case ODEBUG_STATE_NOTAVAILABLE:
426 /*
427 * This is not really a fixup. The timer was
428 * statically initialized. We just make sure that it
429 * is tracked in the object tracker.
430 */
431 if (timer->entry.next == NULL &&
432 timer->entry.prev == TIMER_ENTRY_STATIC) {
433 debug_object_init(timer, &timer_debug_descr);
434 debug_object_activate(timer, &timer_debug_descr);
435 return 0;
436 } else {
437 WARN_ON_ONCE(1);
438 }
439 return 0;
440
441 case ODEBUG_STATE_ACTIVE:
442 WARN_ON(1);
443
444 default:
445 return 0;
446 }
447}
448
449/*
450 * fixup_free is called when:
451 * - an active object is freed
452 */
453static int timer_fixup_free(void *addr, enum debug_obj_state state)
454{
455 struct timer_list *timer = addr;
456
457 switch (state) {
458 case ODEBUG_STATE_ACTIVE:
459 del_timer_sync(timer);
460 debug_object_free(timer, &timer_debug_descr);
461 return 1;
462 default:
463 return 0;
464 }
465}
466
467static struct debug_obj_descr timer_debug_descr = {
468 .name = "timer_list",
469 .fixup_init = timer_fixup_init,
470 .fixup_activate = timer_fixup_activate,
471 .fixup_free = timer_fixup_free,
472};
473
474static inline void debug_timer_init(struct timer_list *timer)
475{
476 debug_object_init(timer, &timer_debug_descr);
477}
478
479static inline void debug_timer_activate(struct timer_list *timer)
480{
481 debug_object_activate(timer, &timer_debug_descr);
482}
483
484static inline void debug_timer_deactivate(struct timer_list *timer)
485{
486 debug_object_deactivate(timer, &timer_debug_descr);
487}
488
489static inline void debug_timer_free(struct timer_list *timer)
490{
491 debug_object_free(timer, &timer_debug_descr);
492}
493
6f2b9b9a
JB
494static void __init_timer(struct timer_list *timer,
495 const char *name,
496 struct lock_class_key *key);
c6f3a97f 497
6f2b9b9a
JB
498void init_timer_on_stack_key(struct timer_list *timer,
499 const char *name,
500 struct lock_class_key *key)
c6f3a97f
TG
501{
502 debug_object_init_on_stack(timer, &timer_debug_descr);
6f2b9b9a 503 __init_timer(timer, name, key);
c6f3a97f 504}
6f2b9b9a 505EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
506
507void destroy_timer_on_stack(struct timer_list *timer)
508{
509 debug_object_free(timer, &timer_debug_descr);
510}
511EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
512
513#else
514static inline void debug_timer_init(struct timer_list *timer) { }
515static inline void debug_timer_activate(struct timer_list *timer) { }
516static inline void debug_timer_deactivate(struct timer_list *timer) { }
517#endif
518
6f2b9b9a
JB
519static void __init_timer(struct timer_list *timer,
520 const char *name,
521 struct lock_class_key *key)
55c888d6
ON
522{
523 timer->entry.next = NULL;
bfe5d834 524 timer->base = __raw_get_cpu_var(tvec_bases);
82f67cd9
IM
525#ifdef CONFIG_TIMER_STATS
526 timer->start_site = NULL;
527 timer->start_pid = -1;
528 memset(timer->start_comm, 0, TASK_COMM_LEN);
529#endif
6f2b9b9a 530 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 531}
c6f3a97f
TG
532
533/**
534 * init_timer - initialize a timer.
535 * @timer: the timer to be initialized
536 *
537 * init_timer() must be done to a timer prior calling *any* of the
538 * other timer functions.
539 */
6f2b9b9a
JB
540void init_timer_key(struct timer_list *timer,
541 const char *name,
542 struct lock_class_key *key)
c6f3a97f
TG
543{
544 debug_timer_init(timer);
6f2b9b9a 545 __init_timer(timer, name, key);
c6f3a97f 546}
6f2b9b9a 547EXPORT_SYMBOL(init_timer_key);
55c888d6 548
6f2b9b9a
JB
549void init_timer_deferrable_key(struct timer_list *timer,
550 const char *name,
551 struct lock_class_key *key)
6e453a67 552{
6f2b9b9a 553 init_timer_key(timer, name, key);
6e453a67
VP
554 timer_set_deferrable(timer);
555}
6f2b9b9a 556EXPORT_SYMBOL(init_timer_deferrable_key);
6e453a67 557
55c888d6 558static inline void detach_timer(struct timer_list *timer,
82f67cd9 559 int clear_pending)
55c888d6
ON
560{
561 struct list_head *entry = &timer->entry;
562
c6f3a97f
TG
563 debug_timer_deactivate(timer);
564
55c888d6
ON
565 __list_del(entry->prev, entry->next);
566 if (clear_pending)
567 entry->next = NULL;
568 entry->prev = LIST_POISON2;
569}
570
571/*
3691c519 572 * We are using hashed locking: holding per_cpu(tvec_bases).lock
55c888d6
ON
573 * means that all timers which are tied to this base via timer->base are
574 * locked, and the base itself is locked too.
575 *
576 * So __run_timers/migrate_timers can safely modify all timers which could
577 * be found on ->tvX lists.
578 *
579 * When the timer's base is locked, and the timer removed from list, it is
580 * possible to set timer->base = NULL and drop the lock: the timer remains
581 * locked.
582 */
a6fa8e5a 583static struct tvec_base *lock_timer_base(struct timer_list *timer,
55c888d6 584 unsigned long *flags)
89e7e374 585 __acquires(timer->base->lock)
55c888d6 586{
a6fa8e5a 587 struct tvec_base *base;
55c888d6
ON
588
589 for (;;) {
a6fa8e5a 590 struct tvec_base *prelock_base = timer->base;
6e453a67 591 base = tbase_get_base(prelock_base);
55c888d6
ON
592 if (likely(base != NULL)) {
593 spin_lock_irqsave(&base->lock, *flags);
6e453a67 594 if (likely(prelock_base == timer->base))
55c888d6
ON
595 return base;
596 /* The timer has migrated to another CPU */
597 spin_unlock_irqrestore(&base->lock, *flags);
598 }
599 cpu_relax();
600 }
601}
602
74019224
IM
603static inline int
604__mod_timer(struct timer_list *timer, unsigned long expires, bool pending_only)
1da177e4 605{
a6fa8e5a 606 struct tvec_base *base, *new_base;
1da177e4 607 unsigned long flags;
74019224
IM
608 int ret;
609
610 ret = 0;
1da177e4 611
82f67cd9 612 timer_stats_timer_set_start_info(timer);
1da177e4 613 BUG_ON(!timer->function);
1da177e4 614
55c888d6
ON
615 base = lock_timer_base(timer, &flags);
616
617 if (timer_pending(timer)) {
618 detach_timer(timer, 0);
619 ret = 1;
74019224
IM
620 } else {
621 if (pending_only)
622 goto out_unlock;
55c888d6
ON
623 }
624
c6f3a97f
TG
625 debug_timer_activate(timer);
626
a4a6198b 627 new_base = __get_cpu_var(tvec_bases);
1da177e4 628
3691c519 629 if (base != new_base) {
1da177e4 630 /*
55c888d6
ON
631 * We are trying to schedule the timer on the local CPU.
632 * However we can't change timer's base while it is running,
633 * otherwise del_timer_sync() can't detect that the timer's
634 * handler yet has not finished. This also guarantees that
635 * the timer is serialized wrt itself.
1da177e4 636 */
a2c348fe 637 if (likely(base->running_timer != timer)) {
55c888d6 638 /* See the comment in lock_timer_base() */
6e453a67 639 timer_set_base(timer, NULL);
55c888d6 640 spin_unlock(&base->lock);
a2c348fe
ON
641 base = new_base;
642 spin_lock(&base->lock);
6e453a67 643 timer_set_base(timer, base);
1da177e4
LT
644 }
645 }
646
1da177e4 647 timer->expires = expires;
a2c348fe 648 internal_add_timer(base, timer);
74019224
IM
649
650out_unlock:
a2c348fe 651 spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
652
653 return ret;
654}
655
2aae4a10 656/**
74019224
IM
657 * mod_timer_pending - modify a pending timer's timeout
658 * @timer: the pending timer to be modified
659 * @expires: new timeout in jiffies
1da177e4 660 *
74019224
IM
661 * mod_timer_pending() is the same for pending timers as mod_timer(),
662 * but will not re-activate and modify already deleted timers.
663 *
664 * It is useful for unserialized use of timers.
1da177e4 665 */
74019224 666int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 667{
74019224 668 return __mod_timer(timer, expires, true);
1da177e4 669}
74019224 670EXPORT_SYMBOL(mod_timer_pending);
1da177e4 671
2aae4a10 672/**
1da177e4
LT
673 * mod_timer - modify a timer's timeout
674 * @timer: the timer to be modified
2aae4a10 675 * @expires: new timeout in jiffies
1da177e4 676 *
72fd4a35 677 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
678 * active timer (if the timer is inactive it will be activated)
679 *
680 * mod_timer(timer, expires) is equivalent to:
681 *
682 * del_timer(timer); timer->expires = expires; add_timer(timer);
683 *
684 * Note that if there are multiple unserialized concurrent users of the
685 * same timer, then mod_timer() is the only safe way to modify the timeout,
686 * since add_timer() cannot modify an already running timer.
687 *
688 * The function returns whether it has modified a pending timer or not.
689 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
690 * active timer returns 1.)
691 */
692int mod_timer(struct timer_list *timer, unsigned long expires)
693{
1da177e4
LT
694 /*
695 * This is a common optimization triggered by the
696 * networking code - if the timer is re-modified
697 * to be the same thing then just return:
698 */
699 if (timer->expires == expires && timer_pending(timer))
700 return 1;
701
74019224 702 return __mod_timer(timer, expires, false);
1da177e4 703}
1da177e4
LT
704EXPORT_SYMBOL(mod_timer);
705
74019224
IM
706/**
707 * add_timer - start a timer
708 * @timer: the timer to be added
709 *
710 * The kernel will do a ->function(->data) callback from the
711 * timer interrupt at the ->expires point in the future. The
712 * current time is 'jiffies'.
713 *
714 * The timer's ->expires, ->function (and if the handler uses it, ->data)
715 * fields must be set prior calling this function.
716 *
717 * Timers with an ->expires field in the past will be executed in the next
718 * timer tick.
719 */
720void add_timer(struct timer_list *timer)
721{
722 BUG_ON(timer_pending(timer));
723 mod_timer(timer, timer->expires);
724}
725EXPORT_SYMBOL(add_timer);
726
727/**
728 * add_timer_on - start a timer on a particular CPU
729 * @timer: the timer to be added
730 * @cpu: the CPU to start it on
731 *
732 * This is not very scalable on SMP. Double adds are not possible.
733 */
734void add_timer_on(struct timer_list *timer, int cpu)
735{
736 struct tvec_base *base = per_cpu(tvec_bases, cpu);
737 unsigned long flags;
738
739 timer_stats_timer_set_start_info(timer);
740 BUG_ON(timer_pending(timer) || !timer->function);
741 spin_lock_irqsave(&base->lock, flags);
742 timer_set_base(timer, base);
743 debug_timer_activate(timer);
744 internal_add_timer(base, timer);
745 /*
746 * Check whether the other CPU is idle and needs to be
747 * triggered to reevaluate the timer wheel when nohz is
748 * active. We are protected against the other CPU fiddling
749 * with the timer by holding the timer base lock. This also
750 * makes sure that a CPU on the way to idle can not evaluate
751 * the timer wheel.
752 */
753 wake_up_idle_cpu(cpu);
754 spin_unlock_irqrestore(&base->lock, flags);
755}
756
2aae4a10 757/**
1da177e4
LT
758 * del_timer - deactive a timer.
759 * @timer: the timer to be deactivated
760 *
761 * del_timer() deactivates a timer - this works on both active and inactive
762 * timers.
763 *
764 * The function returns whether it has deactivated a pending timer or not.
765 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
766 * active timer returns 1.)
767 */
768int del_timer(struct timer_list *timer)
769{
a6fa8e5a 770 struct tvec_base *base;
1da177e4 771 unsigned long flags;
55c888d6 772 int ret = 0;
1da177e4 773
82f67cd9 774 timer_stats_timer_clear_start_info(timer);
55c888d6
ON
775 if (timer_pending(timer)) {
776 base = lock_timer_base(timer, &flags);
777 if (timer_pending(timer)) {
778 detach_timer(timer, 1);
779 ret = 1;
780 }
1da177e4 781 spin_unlock_irqrestore(&base->lock, flags);
1da177e4 782 }
1da177e4 783
55c888d6 784 return ret;
1da177e4 785}
1da177e4
LT
786EXPORT_SYMBOL(del_timer);
787
788#ifdef CONFIG_SMP
2aae4a10
REB
789/**
790 * try_to_del_timer_sync - Try to deactivate a timer
791 * @timer: timer do del
792 *
fd450b73
ON
793 * This function tries to deactivate a timer. Upon successful (ret >= 0)
794 * exit the timer is not queued and the handler is not running on any CPU.
795 *
796 * It must not be called from interrupt contexts.
797 */
798int try_to_del_timer_sync(struct timer_list *timer)
799{
a6fa8e5a 800 struct tvec_base *base;
fd450b73
ON
801 unsigned long flags;
802 int ret = -1;
803
804 base = lock_timer_base(timer, &flags);
805
806 if (base->running_timer == timer)
807 goto out;
808
809 ret = 0;
810 if (timer_pending(timer)) {
811 detach_timer(timer, 1);
812 ret = 1;
813 }
814out:
815 spin_unlock_irqrestore(&base->lock, flags);
816
817 return ret;
818}
e19dff1f
DH
819EXPORT_SYMBOL(try_to_del_timer_sync);
820
2aae4a10 821/**
1da177e4
LT
822 * del_timer_sync - deactivate a timer and wait for the handler to finish.
823 * @timer: the timer to be deactivated
824 *
825 * This function only differs from del_timer() on SMP: besides deactivating
826 * the timer it also makes sure the handler has finished executing on other
827 * CPUs.
828 *
72fd4a35 829 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4
LT
830 * otherwise this function is meaningless. It must not be called from
831 * interrupt contexts. The caller must not hold locks which would prevent
55c888d6
ON
832 * completion of the timer's handler. The timer's handler must not call
833 * add_timer_on(). Upon exit the timer is not queued and the handler is
834 * not running on any CPU.
1da177e4
LT
835 *
836 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
837 */
838int del_timer_sync(struct timer_list *timer)
839{
6f2b9b9a
JB
840#ifdef CONFIG_LOCKDEP
841 unsigned long flags;
842
843 local_irq_save(flags);
844 lock_map_acquire(&timer->lockdep_map);
845 lock_map_release(&timer->lockdep_map);
846 local_irq_restore(flags);
847#endif
848
fd450b73
ON
849 for (;;) {
850 int ret = try_to_del_timer_sync(timer);
851 if (ret >= 0)
852 return ret;
a0009652 853 cpu_relax();
fd450b73 854 }
1da177e4 855}
55c888d6 856EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
857#endif
858
a6fa8e5a 859static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1da177e4
LT
860{
861 /* cascade all the timers from tv up one level */
3439dd86
P
862 struct timer_list *timer, *tmp;
863 struct list_head tv_list;
864
865 list_replace_init(tv->vec + index, &tv_list);
1da177e4 866
1da177e4 867 /*
3439dd86
P
868 * We are removing _all_ timers from the list, so we
869 * don't have to detach them individually.
1da177e4 870 */
3439dd86 871 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
6e453a67 872 BUG_ON(tbase_get_base(timer->base) != base);
3439dd86 873 internal_add_timer(base, timer);
1da177e4 874 }
1da177e4
LT
875
876 return index;
877}
878
2aae4a10
REB
879#define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
880
881/**
1da177e4
LT
882 * __run_timers - run all expired timers (if any) on this CPU.
883 * @base: the timer vector to be processed.
884 *
885 * This function cascades all vectors and executes all expired timer
886 * vectors.
887 */
a6fa8e5a 888static inline void __run_timers(struct tvec_base *base)
1da177e4
LT
889{
890 struct timer_list *timer;
891
3691c519 892 spin_lock_irq(&base->lock);
1da177e4 893 while (time_after_eq(jiffies, base->timer_jiffies)) {
626ab0e6 894 struct list_head work_list;
1da177e4 895 struct list_head *head = &work_list;
6819457d 896 int index = base->timer_jiffies & TVR_MASK;
626ab0e6 897
1da177e4
LT
898 /*
899 * Cascade timers:
900 */
901 if (!index &&
902 (!cascade(base, &base->tv2, INDEX(0))) &&
903 (!cascade(base, &base->tv3, INDEX(1))) &&
904 !cascade(base, &base->tv4, INDEX(2)))
905 cascade(base, &base->tv5, INDEX(3));
626ab0e6
ON
906 ++base->timer_jiffies;
907 list_replace_init(base->tv1.vec + index, &work_list);
55c888d6 908 while (!list_empty(head)) {
1da177e4
LT
909 void (*fn)(unsigned long);
910 unsigned long data;
911
b5e61818 912 timer = list_first_entry(head, struct timer_list,entry);
6819457d
TG
913 fn = timer->function;
914 data = timer->data;
1da177e4 915
82f67cd9
IM
916 timer_stats_account_timer(timer);
917
1da177e4 918 set_running_timer(base, timer);
55c888d6 919 detach_timer(timer, 1);
6f2b9b9a 920
3691c519 921 spin_unlock_irq(&base->lock);
1da177e4 922 {
be5b4fbd 923 int preempt_count = preempt_count();
6f2b9b9a
JB
924
925#ifdef CONFIG_LOCKDEP
926 /*
927 * It is permissible to free the timer from
928 * inside the function that is called from
929 * it, this we need to take into account for
930 * lockdep too. To avoid bogus "held lock
931 * freed" warnings as well as problems when
932 * looking into timer->lockdep_map, make a
933 * copy and use that here.
934 */
935 struct lockdep_map lockdep_map =
936 timer->lockdep_map;
937#endif
938 /*
939 * Couple the lock chain with the lock chain at
940 * del_timer_sync() by acquiring the lock_map
941 * around the fn() call here and in
942 * del_timer_sync().
943 */
944 lock_map_acquire(&lockdep_map);
945
1da177e4 946 fn(data);
6f2b9b9a
JB
947
948 lock_map_release(&lockdep_map);
949
1da177e4 950 if (preempt_count != preempt_count()) {
4c9dc641 951 printk(KERN_ERR "huh, entered %p "
be5b4fbd
JJ
952 "with preempt_count %08x, exited"
953 " with %08x?\n",
954 fn, preempt_count,
955 preempt_count());
1da177e4
LT
956 BUG();
957 }
958 }
3691c519 959 spin_lock_irq(&base->lock);
1da177e4
LT
960 }
961 }
962 set_running_timer(base, NULL);
3691c519 963 spin_unlock_irq(&base->lock);
1da177e4
LT
964}
965
ee9c5785 966#ifdef CONFIG_NO_HZ
1da177e4
LT
967/*
968 * Find out when the next timer event is due to happen. This
969 * is used on S/390 to stop all activity when a cpus is idle.
970 * This functions needs to be called disabled.
971 */
a6fa8e5a 972static unsigned long __next_timer_interrupt(struct tvec_base *base)
1da177e4 973{
1cfd6849 974 unsigned long timer_jiffies = base->timer_jiffies;
eaad084b 975 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1cfd6849 976 int index, slot, array, found = 0;
1da177e4 977 struct timer_list *nte;
a6fa8e5a 978 struct tvec *varray[4];
1da177e4
LT
979
980 /* Look for timer events in tv1. */
1cfd6849 981 index = slot = timer_jiffies & TVR_MASK;
1da177e4 982 do {
1cfd6849 983 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
6819457d
TG
984 if (tbase_get_deferrable(nte->base))
985 continue;
6e453a67 986
1cfd6849 987 found = 1;
1da177e4 988 expires = nte->expires;
1cfd6849
TG
989 /* Look at the cascade bucket(s)? */
990 if (!index || slot < index)
991 goto cascade;
992 return expires;
1da177e4 993 }
1cfd6849
TG
994 slot = (slot + 1) & TVR_MASK;
995 } while (slot != index);
996
997cascade:
998 /* Calculate the next cascade event */
999 if (index)
1000 timer_jiffies += TVR_SIZE - index;
1001 timer_jiffies >>= TVR_BITS;
1da177e4
LT
1002
1003 /* Check tv2-tv5. */
1004 varray[0] = &base->tv2;
1005 varray[1] = &base->tv3;
1006 varray[2] = &base->tv4;
1007 varray[3] = &base->tv5;
1cfd6849
TG
1008
1009 for (array = 0; array < 4; array++) {
a6fa8e5a 1010 struct tvec *varp = varray[array];
1cfd6849
TG
1011
1012 index = slot = timer_jiffies & TVN_MASK;
1da177e4 1013 do {
1cfd6849
TG
1014 list_for_each_entry(nte, varp->vec + slot, entry) {
1015 found = 1;
1da177e4
LT
1016 if (time_before(nte->expires, expires))
1017 expires = nte->expires;
1cfd6849
TG
1018 }
1019 /*
1020 * Do we still search for the first timer or are
1021 * we looking up the cascade buckets ?
1022 */
1023 if (found) {
1024 /* Look at the cascade bucket(s)? */
1025 if (!index || slot < index)
1026 break;
1027 return expires;
1028 }
1029 slot = (slot + 1) & TVN_MASK;
1030 } while (slot != index);
1031
1032 if (index)
1033 timer_jiffies += TVN_SIZE - index;
1034 timer_jiffies >>= TVN_BITS;
1da177e4 1035 }
1cfd6849
TG
1036 return expires;
1037}
69239749 1038
1cfd6849
TG
1039/*
1040 * Check, if the next hrtimer event is before the next timer wheel
1041 * event:
1042 */
1043static unsigned long cmp_next_hrtimer_event(unsigned long now,
1044 unsigned long expires)
1045{
1046 ktime_t hr_delta = hrtimer_get_next_event();
1047 struct timespec tsdelta;
9501b6cf 1048 unsigned long delta;
1cfd6849
TG
1049
1050 if (hr_delta.tv64 == KTIME_MAX)
1051 return expires;
0662b713 1052
9501b6cf
TG
1053 /*
1054 * Expired timer available, let it expire in the next tick
1055 */
1056 if (hr_delta.tv64 <= 0)
1057 return now + 1;
69239749 1058
1cfd6849 1059 tsdelta = ktime_to_timespec(hr_delta);
9501b6cf 1060 delta = timespec_to_jiffies(&tsdelta);
eaad084b
TG
1061
1062 /*
1063 * Limit the delta to the max value, which is checked in
1064 * tick_nohz_stop_sched_tick():
1065 */
1066 if (delta > NEXT_TIMER_MAX_DELTA)
1067 delta = NEXT_TIMER_MAX_DELTA;
1068
9501b6cf
TG
1069 /*
1070 * Take rounding errors in to account and make sure, that it
1071 * expires in the next tick. Otherwise we go into an endless
1072 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1073 * the timer softirq
1074 */
1075 if (delta < 1)
1076 delta = 1;
1077 now += delta;
1cfd6849
TG
1078 if (time_before(now, expires))
1079 return now;
1da177e4
LT
1080 return expires;
1081}
1cfd6849
TG
1082
1083/**
8dce39c2 1084 * get_next_timer_interrupt - return the jiffy of the next pending timer
05fb6bf0 1085 * @now: current time (in jiffies)
1cfd6849 1086 */
fd064b9b 1087unsigned long get_next_timer_interrupt(unsigned long now)
1cfd6849 1088{
a6fa8e5a 1089 struct tvec_base *base = __get_cpu_var(tvec_bases);
fd064b9b 1090 unsigned long expires;
1cfd6849
TG
1091
1092 spin_lock(&base->lock);
1093 expires = __next_timer_interrupt(base);
1094 spin_unlock(&base->lock);
1095
1096 if (time_before_eq(expires, now))
1097 return now;
1098
1099 return cmp_next_hrtimer_event(now, expires);
1100}
1da177e4
LT
1101#endif
1102
1da177e4 1103/*
5b4db0c2 1104 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1105 * process. user_tick is 1 if the tick is user time, 0 for system.
1106 */
1107void update_process_times(int user_tick)
1108{
1109 struct task_struct *p = current;
1110 int cpu = smp_processor_id();
1111
1112 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1113 account_process_tick(p, user_tick);
1da177e4
LT
1114 run_local_timers();
1115 if (rcu_pending(cpu))
1116 rcu_check_callbacks(cpu, user_tick);
b845b517 1117 printk_tick();
1da177e4 1118 scheduler_tick();
6819457d 1119 run_posix_cpu_timers(p);
1da177e4
LT
1120}
1121
1122/*
1123 * Nr of active tasks - counted in fixed-point numbers
1124 */
1125static unsigned long count_active_tasks(void)
1126{
db1b1fef 1127 return nr_active() * FIXED_1;
1da177e4
LT
1128}
1129
1130/*
1131 * Hmm.. Changed this, as the GNU make sources (load.c) seems to
1132 * imply that avenrun[] is the standard name for this kind of thing.
1133 * Nothing else seems to be standardized: the fractional size etc
1134 * all seem to differ on different machines.
1135 *
1136 * Requires xtime_lock to access.
1137 */
1138unsigned long avenrun[3];
1139
1140EXPORT_SYMBOL(avenrun);
1141
1142/*
1143 * calc_load - given tick count, update the avenrun load estimates.
1144 * This is called while holding a write_lock on xtime_lock.
1145 */
1146static inline void calc_load(unsigned long ticks)
1147{
1148 unsigned long active_tasks; /* fixed-point */
1149 static int count = LOAD_FREQ;
1150
cd7175ed
ED
1151 count -= ticks;
1152 if (unlikely(count < 0)) {
1153 active_tasks = count_active_tasks();
1154 do {
1155 CALC_LOAD(avenrun[0], EXP_1, active_tasks);
1156 CALC_LOAD(avenrun[1], EXP_5, active_tasks);
1157 CALC_LOAD(avenrun[2], EXP_15, active_tasks);
1158 count += LOAD_FREQ;
1159 } while (count < 0);
1da177e4
LT
1160 }
1161}
1162
1da177e4
LT
1163/*
1164 * This function runs timers and the timer-tq in bottom half context.
1165 */
1166static void run_timer_softirq(struct softirq_action *h)
1167{
a6fa8e5a 1168 struct tvec_base *base = __get_cpu_var(tvec_bases);
1da177e4 1169
d3d74453 1170 hrtimer_run_pending();
82f67cd9 1171
1da177e4
LT
1172 if (time_after_eq(jiffies, base->timer_jiffies))
1173 __run_timers(base);
1174}
1175
1176/*
1177 * Called by the local, per-CPU timer interrupt on SMP.
1178 */
1179void run_local_timers(void)
1180{
d3d74453 1181 hrtimer_run_queues();
1da177e4 1182 raise_softirq(TIMER_SOFTIRQ);
6687a97d 1183 softlockup_tick();
1da177e4
LT
1184}
1185
1186/*
1187 * Called by the timer interrupt. xtime_lock must already be taken
1188 * by the timer IRQ!
1189 */
3171a030 1190static inline void update_times(unsigned long ticks)
1da177e4 1191{
ad596171 1192 update_wall_time();
1da177e4
LT
1193 calc_load(ticks);
1194}
6819457d 1195
1da177e4
LT
1196/*
1197 * The 64-bit jiffies value is not atomic - you MUST NOT read it
1198 * without sampling the sequence number in xtime_lock.
1199 * jiffies is defined in the linker script...
1200 */
1201
3171a030 1202void do_timer(unsigned long ticks)
1da177e4 1203{
3171a030
AN
1204 jiffies_64 += ticks;
1205 update_times(ticks);
1da177e4
LT
1206}
1207
1208#ifdef __ARCH_WANT_SYS_ALARM
1209
1210/*
1211 * For backwards compatibility? This can be done in libc so Alpha
1212 * and all newer ports shouldn't need it.
1213 */
58fd3aa2 1214SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1da177e4 1215{
c08b8a49 1216 return alarm_setitimer(seconds);
1da177e4
LT
1217}
1218
1219#endif
1220
1221#ifndef __alpha__
1222
1223/*
1224 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1225 * should be moved into arch/i386 instead?
1226 */
1227
1228/**
1229 * sys_getpid - return the thread group id of the current process
1230 *
1231 * Note, despite the name, this returns the tgid not the pid. The tgid and
1232 * the pid are identical unless CLONE_THREAD was specified on clone() in
1233 * which case the tgid is the same in all threads of the same group.
1234 *
1235 * This is SMP safe as current->tgid does not change.
1236 */
58fd3aa2 1237SYSCALL_DEFINE0(getpid)
1da177e4 1238{
b488893a 1239 return task_tgid_vnr(current);
1da177e4
LT
1240}
1241
1242/*
6997a6fa
KK
1243 * Accessing ->real_parent is not SMP-safe, it could
1244 * change from under us. However, we can use a stale
1245 * value of ->real_parent under rcu_read_lock(), see
1246 * release_task()->call_rcu(delayed_put_task_struct).
1da177e4 1247 */
dbf040d9 1248SYSCALL_DEFINE0(getppid)
1da177e4
LT
1249{
1250 int pid;
1da177e4 1251
6997a6fa 1252 rcu_read_lock();
6c5f3e7b 1253 pid = task_tgid_vnr(current->real_parent);
6997a6fa 1254 rcu_read_unlock();
1da177e4 1255
1da177e4
LT
1256 return pid;
1257}
1258
dbf040d9 1259SYSCALL_DEFINE0(getuid)
1da177e4
LT
1260{
1261 /* Only we change this so SMP safe */
76aac0e9 1262 return current_uid();
1da177e4
LT
1263}
1264
dbf040d9 1265SYSCALL_DEFINE0(geteuid)
1da177e4
LT
1266{
1267 /* Only we change this so SMP safe */
76aac0e9 1268 return current_euid();
1da177e4
LT
1269}
1270
dbf040d9 1271SYSCALL_DEFINE0(getgid)
1da177e4
LT
1272{
1273 /* Only we change this so SMP safe */
76aac0e9 1274 return current_gid();
1da177e4
LT
1275}
1276
dbf040d9 1277SYSCALL_DEFINE0(getegid)
1da177e4
LT
1278{
1279 /* Only we change this so SMP safe */
76aac0e9 1280 return current_egid();
1da177e4
LT
1281}
1282
1283#endif
1284
1285static void process_timeout(unsigned long __data)
1286{
36c8b586 1287 wake_up_process((struct task_struct *)__data);
1da177e4
LT
1288}
1289
1290/**
1291 * schedule_timeout - sleep until timeout
1292 * @timeout: timeout value in jiffies
1293 *
1294 * Make the current task sleep until @timeout jiffies have
1295 * elapsed. The routine will return immediately unless
1296 * the current task state has been set (see set_current_state()).
1297 *
1298 * You can set the task state as follows -
1299 *
1300 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1301 * pass before the routine returns. The routine will return 0
1302 *
1303 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1304 * delivered to the current task. In this case the remaining time
1305 * in jiffies will be returned, or 0 if the timer expired in time
1306 *
1307 * The current task state is guaranteed to be TASK_RUNNING when this
1308 * routine returns.
1309 *
1310 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1311 * the CPU away without a bound on the timeout. In this case the return
1312 * value will be %MAX_SCHEDULE_TIMEOUT.
1313 *
1314 * In all cases the return value is guaranteed to be non-negative.
1315 */
7ad5b3a5 1316signed long __sched schedule_timeout(signed long timeout)
1da177e4
LT
1317{
1318 struct timer_list timer;
1319 unsigned long expire;
1320
1321 switch (timeout)
1322 {
1323 case MAX_SCHEDULE_TIMEOUT:
1324 /*
1325 * These two special cases are useful to be comfortable
1326 * in the caller. Nothing more. We could take
1327 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1328 * but I' d like to return a valid offset (>=0) to allow
1329 * the caller to do everything it want with the retval.
1330 */
1331 schedule();
1332 goto out;
1333 default:
1334 /*
1335 * Another bit of PARANOID. Note that the retval will be
1336 * 0 since no piece of kernel is supposed to do a check
1337 * for a negative retval of schedule_timeout() (since it
1338 * should never happens anyway). You just have the printk()
1339 * that will tell you if something is gone wrong and where.
1340 */
5b149bcc 1341 if (timeout < 0) {
1da177e4 1342 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1343 "value %lx\n", timeout);
1344 dump_stack();
1da177e4
LT
1345 current->state = TASK_RUNNING;
1346 goto out;
1347 }
1348 }
1349
1350 expire = timeout + jiffies;
1351
c6f3a97f 1352 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
74019224 1353 __mod_timer(&timer, expire, false);
1da177e4
LT
1354 schedule();
1355 del_singleshot_timer_sync(&timer);
1356
c6f3a97f
TG
1357 /* Remove the timer from the object tracker */
1358 destroy_timer_on_stack(&timer);
1359
1da177e4
LT
1360 timeout = expire - jiffies;
1361
1362 out:
1363 return timeout < 0 ? 0 : timeout;
1364}
1da177e4
LT
1365EXPORT_SYMBOL(schedule_timeout);
1366
8a1c1757
AM
1367/*
1368 * We can use __set_current_state() here because schedule_timeout() calls
1369 * schedule() unconditionally.
1370 */
64ed93a2
NA
1371signed long __sched schedule_timeout_interruptible(signed long timeout)
1372{
a5a0d52c
AM
1373 __set_current_state(TASK_INTERRUPTIBLE);
1374 return schedule_timeout(timeout);
64ed93a2
NA
1375}
1376EXPORT_SYMBOL(schedule_timeout_interruptible);
1377
294d5cc2
MW
1378signed long __sched schedule_timeout_killable(signed long timeout)
1379{
1380 __set_current_state(TASK_KILLABLE);
1381 return schedule_timeout(timeout);
1382}
1383EXPORT_SYMBOL(schedule_timeout_killable);
1384
64ed93a2
NA
1385signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1386{
a5a0d52c
AM
1387 __set_current_state(TASK_UNINTERRUPTIBLE);
1388 return schedule_timeout(timeout);
64ed93a2
NA
1389}
1390EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1391
1da177e4 1392/* Thread ID - the internal kernel "pid" */
58fd3aa2 1393SYSCALL_DEFINE0(gettid)
1da177e4 1394{
b488893a 1395 return task_pid_vnr(current);
1da177e4
LT
1396}
1397
2aae4a10 1398/**
d4d23add 1399 * do_sysinfo - fill in sysinfo struct
2aae4a10 1400 * @info: pointer to buffer to fill
6819457d 1401 */
d4d23add 1402int do_sysinfo(struct sysinfo *info)
1da177e4 1403{
1da177e4
LT
1404 unsigned long mem_total, sav_total;
1405 unsigned int mem_unit, bitcount;
1406 unsigned long seq;
1407
d4d23add 1408 memset(info, 0, sizeof(struct sysinfo));
1da177e4
LT
1409
1410 do {
1411 struct timespec tp;
1412 seq = read_seqbegin(&xtime_lock);
1413
1414 /*
1415 * This is annoying. The below is the same thing
1416 * posix_get_clock_monotonic() does, but it wants to
1417 * take the lock which we want to cover the loads stuff
1418 * too.
1419 */
1420
1421 getnstimeofday(&tp);
1422 tp.tv_sec += wall_to_monotonic.tv_sec;
1423 tp.tv_nsec += wall_to_monotonic.tv_nsec;
d6214141 1424 monotonic_to_bootbased(&tp);
1da177e4
LT
1425 if (tp.tv_nsec - NSEC_PER_SEC >= 0) {
1426 tp.tv_nsec = tp.tv_nsec - NSEC_PER_SEC;
1427 tp.tv_sec++;
1428 }
d4d23add 1429 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1da177e4 1430
d4d23add
KM
1431 info->loads[0] = avenrun[0] << (SI_LOAD_SHIFT - FSHIFT);
1432 info->loads[1] = avenrun[1] << (SI_LOAD_SHIFT - FSHIFT);
1433 info->loads[2] = avenrun[2] << (SI_LOAD_SHIFT - FSHIFT);
1da177e4 1434
d4d23add 1435 info->procs = nr_threads;
1da177e4
LT
1436 } while (read_seqretry(&xtime_lock, seq));
1437
d4d23add
KM
1438 si_meminfo(info);
1439 si_swapinfo(info);
1da177e4
LT
1440
1441 /*
1442 * If the sum of all the available memory (i.e. ram + swap)
1443 * is less than can be stored in a 32 bit unsigned long then
1444 * we can be binary compatible with 2.2.x kernels. If not,
1445 * well, in that case 2.2.x was broken anyways...
1446 *
1447 * -Erik Andersen <andersee@debian.org>
1448 */
1449
d4d23add
KM
1450 mem_total = info->totalram + info->totalswap;
1451 if (mem_total < info->totalram || mem_total < info->totalswap)
1da177e4
LT
1452 goto out;
1453 bitcount = 0;
d4d23add 1454 mem_unit = info->mem_unit;
1da177e4
LT
1455 while (mem_unit > 1) {
1456 bitcount++;
1457 mem_unit >>= 1;
1458 sav_total = mem_total;
1459 mem_total <<= 1;
1460 if (mem_total < sav_total)
1461 goto out;
1462 }
1463
1464 /*
1465 * If mem_total did not overflow, multiply all memory values by
d4d23add 1466 * info->mem_unit and set it to 1. This leaves things compatible
1da177e4
LT
1467 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1468 * kernels...
1469 */
1470
d4d23add
KM
1471 info->mem_unit = 1;
1472 info->totalram <<= bitcount;
1473 info->freeram <<= bitcount;
1474 info->sharedram <<= bitcount;
1475 info->bufferram <<= bitcount;
1476 info->totalswap <<= bitcount;
1477 info->freeswap <<= bitcount;
1478 info->totalhigh <<= bitcount;
1479 info->freehigh <<= bitcount;
1480
1481out:
1482 return 0;
1483}
1484
1e7bfb21 1485SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
d4d23add
KM
1486{
1487 struct sysinfo val;
1488
1489 do_sysinfo(&val);
1da177e4 1490
1da177e4
LT
1491 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1492 return -EFAULT;
1493
1494 return 0;
1495}
1496
b4be6258 1497static int __cpuinit init_timers_cpu(int cpu)
1da177e4
LT
1498{
1499 int j;
a6fa8e5a 1500 struct tvec_base *base;
b4be6258 1501 static char __cpuinitdata tvec_base_done[NR_CPUS];
55c888d6 1502
ba6edfcd 1503 if (!tvec_base_done[cpu]) {
a4a6198b
JB
1504 static char boot_done;
1505
a4a6198b 1506 if (boot_done) {
ba6edfcd
AM
1507 /*
1508 * The APs use this path later in boot
1509 */
94f6030c
CL
1510 base = kmalloc_node(sizeof(*base),
1511 GFP_KERNEL | __GFP_ZERO,
a4a6198b
JB
1512 cpu_to_node(cpu));
1513 if (!base)
1514 return -ENOMEM;
6e453a67
VP
1515
1516 /* Make sure that tvec_base is 2 byte aligned */
1517 if (tbase_get_deferrable(base)) {
1518 WARN_ON(1);
1519 kfree(base);
1520 return -ENOMEM;
1521 }
ba6edfcd 1522 per_cpu(tvec_bases, cpu) = base;
a4a6198b 1523 } else {
ba6edfcd
AM
1524 /*
1525 * This is for the boot CPU - we use compile-time
1526 * static initialisation because per-cpu memory isn't
1527 * ready yet and because the memory allocators are not
1528 * initialised either.
1529 */
a4a6198b 1530 boot_done = 1;
ba6edfcd 1531 base = &boot_tvec_bases;
a4a6198b 1532 }
ba6edfcd
AM
1533 tvec_base_done[cpu] = 1;
1534 } else {
1535 base = per_cpu(tvec_bases, cpu);
a4a6198b 1536 }
ba6edfcd 1537
3691c519 1538 spin_lock_init(&base->lock);
d730e882 1539
1da177e4
LT
1540 for (j = 0; j < TVN_SIZE; j++) {
1541 INIT_LIST_HEAD(base->tv5.vec + j);
1542 INIT_LIST_HEAD(base->tv4.vec + j);
1543 INIT_LIST_HEAD(base->tv3.vec + j);
1544 INIT_LIST_HEAD(base->tv2.vec + j);
1545 }
1546 for (j = 0; j < TVR_SIZE; j++)
1547 INIT_LIST_HEAD(base->tv1.vec + j);
1548
1549 base->timer_jiffies = jiffies;
a4a6198b 1550 return 0;
1da177e4
LT
1551}
1552
1553#ifdef CONFIG_HOTPLUG_CPU
a6fa8e5a 1554static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1da177e4
LT
1555{
1556 struct timer_list *timer;
1557
1558 while (!list_empty(head)) {
b5e61818 1559 timer = list_first_entry(head, struct timer_list, entry);
55c888d6 1560 detach_timer(timer, 0);
6e453a67 1561 timer_set_base(timer, new_base);
1da177e4 1562 internal_add_timer(new_base, timer);
1da177e4 1563 }
1da177e4
LT
1564}
1565
48ccf3da 1566static void __cpuinit migrate_timers(int cpu)
1da177e4 1567{
a6fa8e5a
PM
1568 struct tvec_base *old_base;
1569 struct tvec_base *new_base;
1da177e4
LT
1570 int i;
1571
1572 BUG_ON(cpu_online(cpu));
a4a6198b
JB
1573 old_base = per_cpu(tvec_bases, cpu);
1574 new_base = get_cpu_var(tvec_bases);
d82f0b0f
ON
1575 /*
1576 * The caller is globally serialized and nobody else
1577 * takes two locks at once, deadlock is not possible.
1578 */
1579 spin_lock_irq(&new_base->lock);
0d180406 1580 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
3691c519
ON
1581
1582 BUG_ON(old_base->running_timer);
1da177e4 1583
1da177e4 1584 for (i = 0; i < TVR_SIZE; i++)
55c888d6
ON
1585 migrate_timer_list(new_base, old_base->tv1.vec + i);
1586 for (i = 0; i < TVN_SIZE; i++) {
1587 migrate_timer_list(new_base, old_base->tv2.vec + i);
1588 migrate_timer_list(new_base, old_base->tv3.vec + i);
1589 migrate_timer_list(new_base, old_base->tv4.vec + i);
1590 migrate_timer_list(new_base, old_base->tv5.vec + i);
1591 }
1592
0d180406 1593 spin_unlock(&old_base->lock);
d82f0b0f 1594 spin_unlock_irq(&new_base->lock);
1da177e4 1595 put_cpu_var(tvec_bases);
1da177e4
LT
1596}
1597#endif /* CONFIG_HOTPLUG_CPU */
1598
8c78f307 1599static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1da177e4
LT
1600 unsigned long action, void *hcpu)
1601{
1602 long cpu = (long)hcpu;
1603 switch(action) {
1604 case CPU_UP_PREPARE:
8bb78442 1605 case CPU_UP_PREPARE_FROZEN:
a4a6198b
JB
1606 if (init_timers_cpu(cpu) < 0)
1607 return NOTIFY_BAD;
1da177e4
LT
1608 break;
1609#ifdef CONFIG_HOTPLUG_CPU
1610 case CPU_DEAD:
8bb78442 1611 case CPU_DEAD_FROZEN:
1da177e4
LT
1612 migrate_timers(cpu);
1613 break;
1614#endif
1615 default:
1616 break;
1617 }
1618 return NOTIFY_OK;
1619}
1620
8c78f307 1621static struct notifier_block __cpuinitdata timers_nb = {
1da177e4
LT
1622 .notifier_call = timer_cpu_notify,
1623};
1624
1625
1626void __init init_timers(void)
1627{
07dccf33 1628 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1da177e4 1629 (void *)(long)smp_processor_id());
07dccf33 1630
82f67cd9
IM
1631 init_timer_stats();
1632
07dccf33 1633 BUG_ON(err == NOTIFY_BAD);
1da177e4 1634 register_cpu_notifier(&timers_nb);
962cf36c 1635 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1636}
1637
1da177e4
LT
1638/**
1639 * msleep - sleep safely even with waitqueue interruptions
1640 * @msecs: Time in milliseconds to sleep for
1641 */
1642void msleep(unsigned int msecs)
1643{
1644 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1645
75bcc8c5
NA
1646 while (timeout)
1647 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1648}
1649
1650EXPORT_SYMBOL(msleep);
1651
1652/**
96ec3efd 1653 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1654 * @msecs: Time in milliseconds to sleep for
1655 */
1656unsigned long msleep_interruptible(unsigned int msecs)
1657{
1658 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1659
75bcc8c5
NA
1660 while (timeout && !signal_pending(current))
1661 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1662 return jiffies_to_msecs(timeout);
1663}
1664
1665EXPORT_SYMBOL(msleep_interruptible);