drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / cputime.c
CommitLineData
73fbec60
FW
1#include <linux/export.h>
2#include <linux/sched.h>
3#include <linux/tsacct_kern.h>
4#include <linux/kernel_stat.h>
5#include <linux/static_key.h>
abf917cd 6#include <linux/context_tracking.h>
73fbec60
FW
7#include "sched.h"
8
9
10#ifdef CONFIG_IRQ_TIME_ACCOUNTING
11
12/*
13 * There are no locks covering percpu hardirq/softirq time.
bf9fae9f 14 * They are only modified in vtime_account, on corresponding CPU
73fbec60
FW
15 * with interrupts disabled. So, writes are safe.
16 * They are read and saved off onto struct rq in update_rq_clock().
17 * This may result in other CPU reading this CPU's irq time and can
bf9fae9f 18 * race with irq/vtime_account on this CPU. We would either get old
73fbec60
FW
19 * or new value with a side effect of accounting a slice of irq time to wrong
20 * task when irq is in progress while we read rq->clock. That is a worthy
21 * compromise in place of having locks on each irq in account_system_time.
22 */
23DEFINE_PER_CPU(u64, cpu_hardirq_time);
24DEFINE_PER_CPU(u64, cpu_softirq_time);
25
26static DEFINE_PER_CPU(u64, irq_start_time);
27static int sched_clock_irqtime;
28
29void enable_sched_clock_irqtime(void)
30{
31 sched_clock_irqtime = 1;
32}
33
34void disable_sched_clock_irqtime(void)
35{
36 sched_clock_irqtime = 0;
37}
38
39#ifndef CONFIG_64BIT
40DEFINE_PER_CPU(seqcount_t, irq_time_seq);
41#endif /* CONFIG_64BIT */
42
43/*
44 * Called before incrementing preempt_count on {soft,}irq_enter
45 * and before decrementing preempt_count on {soft,}irq_exit.
46 */
3e1df4f5 47void irqtime_account_irq(struct task_struct *curr)
73fbec60
FW
48{
49 unsigned long flags;
50 s64 delta;
51 int cpu;
52
53 if (!sched_clock_irqtime)
54 return;
55
56 local_irq_save(flags);
57
58 cpu = smp_processor_id();
59 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
60 __this_cpu_add(irq_start_time, delta);
61
62 irq_time_write_begin();
63 /*
64 * We do not account for softirq time from ksoftirqd here.
65 * We want to continue accounting softirq time to ksoftirqd thread
66 * in that case, so as not to confuse scheduler with a special task
67 * that do not consume any time, but still wants to run.
68 */
69 if (hardirq_count())
70 __this_cpu_add(cpu_hardirq_time, delta);
71 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
72 __this_cpu_add(cpu_softirq_time, delta);
73
74 irq_time_write_end();
75 local_irq_restore(flags);
76}
3e1df4f5 77EXPORT_SYMBOL_GPL(irqtime_account_irq);
73fbec60
FW
78
79static int irqtime_account_hi_update(void)
80{
81 u64 *cpustat = kcpustat_this_cpu->cpustat;
82 unsigned long flags;
83 u64 latest_ns;
84 int ret = 0;
85
86 local_irq_save(flags);
87 latest_ns = this_cpu_read(cpu_hardirq_time);
88 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
89 ret = 1;
90 local_irq_restore(flags);
91 return ret;
92}
93
94static int irqtime_account_si_update(void)
95{
96 u64 *cpustat = kcpustat_this_cpu->cpustat;
97 unsigned long flags;
98 u64 latest_ns;
99 int ret = 0;
100
101 local_irq_save(flags);
102 latest_ns = this_cpu_read(cpu_softirq_time);
103 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
104 ret = 1;
105 local_irq_restore(flags);
106 return ret;
107}
108
109#else /* CONFIG_IRQ_TIME_ACCOUNTING */
110
111#define sched_clock_irqtime (0)
112
113#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
114
115static inline void task_group_account_field(struct task_struct *p, int index,
116 u64 tmp)
117{
73fbec60
FW
118 /*
119 * Since all updates are sure to touch the root cgroup, we
120 * get ourselves ahead and touch it first. If the root cgroup
121 * is the only cgroup, then nothing else should be necessary.
122 *
123 */
124 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
125
1966aaf7 126 cpuacct_account_field(p, index, tmp);
73fbec60
FW
127}
128
129/*
130 * Account user cpu time to a process.
131 * @p: the process that the cpu time gets accounted to
132 * @cputime: the cpu time spent in user space since the last update
133 * @cputime_scaled: cputime scaled by cpu frequency
134 */
135void account_user_time(struct task_struct *p, cputime_t cputime,
136 cputime_t cputime_scaled)
137{
138 int index;
139
140 /* Add user time to process. */
141 p->utime += cputime;
142 p->utimescaled += cputime_scaled;
143 account_group_user_time(p, cputime);
144
145 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
146
147 /* Add user time to cpustat. */
148 task_group_account_field(p, index, (__force u64) cputime);
149
150 /* Account for user time used */
6fac4829 151 acct_account_cputime(p);
73fbec60
FW
152}
153
154/*
155 * Account guest cpu time to a process.
156 * @p: the process that the cpu time gets accounted to
157 * @cputime: the cpu time spent in virtual machine since the last update
158 * @cputime_scaled: cputime scaled by cpu frequency
159 */
160static void account_guest_time(struct task_struct *p, cputime_t cputime,
161 cputime_t cputime_scaled)
162{
163 u64 *cpustat = kcpustat_this_cpu->cpustat;
164
165 /* Add guest time to process. */
166 p->utime += cputime;
167 p->utimescaled += cputime_scaled;
168 account_group_user_time(p, cputime);
169 p->gtime += cputime;
170
171 /* Add guest time to cpustat. */
172 if (TASK_NICE(p) > 0) {
173 cpustat[CPUTIME_NICE] += (__force u64) cputime;
174 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
175 } else {
176 cpustat[CPUTIME_USER] += (__force u64) cputime;
177 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
178 }
179}
180
181/*
182 * Account system cpu time to a process and desired cpustat field
183 * @p: the process that the cpu time gets accounted to
184 * @cputime: the cpu time spent in kernel space since the last update
185 * @cputime_scaled: cputime scaled by cpu frequency
186 * @target_cputime64: pointer to cpustat field that has to be updated
187 */
188static inline
189void __account_system_time(struct task_struct *p, cputime_t cputime,
190 cputime_t cputime_scaled, int index)
191{
192 /* Add system time to process. */
193 p->stime += cputime;
194 p->stimescaled += cputime_scaled;
195 account_group_system_time(p, cputime);
196
197 /* Add system time to cpustat. */
198 task_group_account_field(p, index, (__force u64) cputime);
199
200 /* Account for system time used */
6fac4829 201 acct_account_cputime(p);
73fbec60
FW
202}
203
204/*
205 * Account system cpu time to a process.
206 * @p: the process that the cpu time gets accounted to
207 * @hardirq_offset: the offset to subtract from hardirq_count()
208 * @cputime: the cpu time spent in kernel space since the last update
209 * @cputime_scaled: cputime scaled by cpu frequency
210 */
211void account_system_time(struct task_struct *p, int hardirq_offset,
212 cputime_t cputime, cputime_t cputime_scaled)
213{
214 int index;
215
216 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
217 account_guest_time(p, cputime, cputime_scaled);
218 return;
219 }
220
221 if (hardirq_count() - hardirq_offset)
222 index = CPUTIME_IRQ;
223 else if (in_serving_softirq())
224 index = CPUTIME_SOFTIRQ;
225 else
226 index = CPUTIME_SYSTEM;
227
228 __account_system_time(p, cputime, cputime_scaled, index);
229}
230
231/*
232 * Account for involuntary wait time.
233 * @cputime: the cpu time spent in involuntary wait
234 */
235void account_steal_time(cputime_t cputime)
236{
237 u64 *cpustat = kcpustat_this_cpu->cpustat;
238
239 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
240}
241
242/*
243 * Account for idle time.
244 * @cputime: the cpu time spent in idle wait
245 */
246void account_idle_time(cputime_t cputime)
247{
248 u64 *cpustat = kcpustat_this_cpu->cpustat;
249 struct rq *rq = this_rq();
250
251 if (atomic_read(&rq->nr_iowait) > 0)
252 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
253 else
254 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
255}
256
257static __always_inline bool steal_account_process_tick(void)
258{
259#ifdef CONFIG_PARAVIRT
260 if (static_key_false(&paravirt_steal_enabled)) {
261 u64 steal, st = 0;
262
263 steal = paravirt_steal_clock(smp_processor_id());
264 steal -= this_rq()->prev_steal_time;
265
266 st = steal_ticks(steal);
267 this_rq()->prev_steal_time += st * TICK_NSEC;
268
269 account_steal_time(st);
270 return st;
271 }
272#endif
273 return false;
274}
275
a634f933
FW
276/*
277 * Accumulate raw cputime values of dead tasks (sig->[us]time) and live
278 * tasks (sum on group iteration) belonging to @tsk's group.
279 */
280void thread_group_cputime(struct task_struct *tsk, struct task_cputime *times)
281{
282 struct signal_struct *sig = tsk->signal;
6fac4829 283 cputime_t utime, stime;
a634f933
FW
284 struct task_struct *t;
285
286 times->utime = sig->utime;
287 times->stime = sig->stime;
288 times->sum_exec_runtime = sig->sum_sched_runtime;
289
290 rcu_read_lock();
291 /* make sure we can trust tsk->thread_group list */
292 if (!likely(pid_alive(tsk)))
293 goto out;
294
295 t = tsk;
296 do {
e614b333 297 task_cputime(t, &utime, &stime);
6fac4829
FW
298 times->utime += utime;
299 times->stime += stime;
a634f933
FW
300 times->sum_exec_runtime += task_sched_runtime(t);
301 } while_each_thread(tsk, t);
302out:
303 rcu_read_unlock();
304}
305
73fbec60
FW
306#ifdef CONFIG_IRQ_TIME_ACCOUNTING
307/*
308 * Account a tick to a process and cpustat
309 * @p: the process that the cpu time gets accounted to
310 * @user_tick: is the tick from userspace
311 * @rq: the pointer to rq
312 *
313 * Tick demultiplexing follows the order
314 * - pending hardirq update
315 * - pending softirq update
316 * - user_time
317 * - idle_time
318 * - system time
319 * - check for guest_time
320 * - else account as system_time
321 *
322 * Check for hardirq is done both for system and user time as there is
323 * no timer going off while we are on hardirq and hence we may never get an
324 * opportunity to update it solely in system time.
325 * p->stime and friends are only updated on system time and not on irq
326 * softirq as those do not count in task exec_runtime any more.
327 */
328static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
ecaf19a7 329 struct rq *rq, int ticks)
73fbec60 330{
ecaf19a7
TG
331 cputime_t scaled = cputime_to_scaled(cputime_one_jiffy);
332 u64 cputime = (__force u64) cputime_one_jiffy;
73fbec60
FW
333 u64 *cpustat = kcpustat_this_cpu->cpustat;
334
335 if (steal_account_process_tick())
336 return;
337
ecaf19a7
TG
338 cputime *= ticks;
339 scaled *= ticks;
340
73fbec60 341 if (irqtime_account_hi_update()) {
ecaf19a7 342 cpustat[CPUTIME_IRQ] += cputime;
73fbec60 343 } else if (irqtime_account_si_update()) {
ecaf19a7 344 cpustat[CPUTIME_SOFTIRQ] += cputime;
73fbec60
FW
345 } else if (this_cpu_ksoftirqd() == p) {
346 /*
347 * ksoftirqd time do not get accounted in cpu_softirq_time.
348 * So, we have to handle it separately here.
349 * Also, p->stime needs to be updated for ksoftirqd.
350 */
ecaf19a7 351 __account_system_time(p, cputime, scaled, CPUTIME_SOFTIRQ);
73fbec60 352 } else if (user_tick) {
ecaf19a7 353 account_user_time(p, cputime, scaled);
73fbec60 354 } else if (p == rq->idle) {
ecaf19a7 355 account_idle_time(cputime);
73fbec60 356 } else if (p->flags & PF_VCPU) { /* System time or guest time */
ecaf19a7 357 account_guest_time(p, cputime, scaled);
73fbec60 358 } else {
ecaf19a7 359 __account_system_time(p, cputime, scaled, CPUTIME_SYSTEM);
73fbec60
FW
360 }
361}
362
363static void irqtime_account_idle_ticks(int ticks)
364{
73fbec60
FW
365 struct rq *rq = this_rq();
366
ecaf19a7 367 irqtime_account_process_tick(current, 0, rq, ticks);
73fbec60
FW
368}
369#else /* CONFIG_IRQ_TIME_ACCOUNTING */
3f4724ea
FW
370static inline void irqtime_account_idle_ticks(int ticks) {}
371static inline void irqtime_account_process_tick(struct task_struct *p, int user_tick,
ecaf19a7 372 struct rq *rq, int nr_ticks) {}
73fbec60
FW
373#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
374
73fbec60
FW
375/*
376 * Use precise platform statistics if available:
377 */
378#ifdef CONFIG_VIRT_CPU_ACCOUNTING
a7e1a9e3 379
e3942ba0
FW
380#ifndef __ARCH_HAS_VTIME_TASK_SWITCH
381void vtime_task_switch(struct task_struct *prev)
382{
3f4724ea
FW
383 if (!vtime_accounting_enabled())
384 return;
385
e3942ba0
FW
386 if (is_idle_task(prev))
387 vtime_account_idle(prev);
388 else
389 vtime_account_system(prev);
390
abf917cd 391#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
e3942ba0 392 vtime_account_user(prev);
abf917cd 393#endif
e3942ba0
FW
394 arch_vtime_task_switch(prev);
395}
396#endif
11113334 397
a7e1a9e3
FW
398/*
399 * Archs that account the whole time spent in the idle task
400 * (outside irq) as idle time can rely on this and just implement
fd25b4c2 401 * vtime_account_system() and vtime_account_idle(). Archs that
a7e1a9e3
FW
402 * have other meaning of the idle time (s390 only includes the
403 * time spent by the CPU when it's in low power mode) must override
404 * vtime_account().
405 */
406#ifndef __ARCH_HAS_VTIME_ACCOUNT
6a61671b 407void vtime_account_irq_enter(struct task_struct *tsk)
a7e1a9e3 408{
3f4724ea
FW
409 if (!vtime_accounting_enabled())
410 return;
411
abf917cd
FW
412 if (!in_interrupt()) {
413 /*
414 * If we interrupted user, context_tracking_in_user()
415 * is 1 because the context tracking don't hook
416 * on irq entry/exit. This way we know if
417 * we need to flush user time on kernel entry.
418 */
419 if (context_tracking_in_user()) {
420 vtime_account_user(tsk);
421 return;
422 }
423
424 if (is_idle_task(tsk)) {
425 vtime_account_idle(tsk);
426 return;
427 }
428 }
429 vtime_account_system(tsk);
a7e1a9e3 430}
6a61671b 431EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
a7e1a9e3 432#endif /* __ARCH_HAS_VTIME_ACCOUNT */
9fbc42ea
FW
433#endif /* CONFIG_VIRT_CPU_ACCOUNTING */
434
435
436#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
437void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
438{
439 *ut = p->utime;
440 *st = p->stime;
441}
a7e1a9e3 442
9fbc42ea
FW
443void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
444{
445 struct task_cputime cputime;
73fbec60 446
9fbc42ea
FW
447 thread_group_cputime(p, &cputime);
448
449 *ut = cputime.utime;
450 *st = cputime.stime;
451}
452#else /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
453/*
454 * Account a single tick of cpu time.
455 * @p: the process that the cpu time gets accounted to
456 * @user_tick: indicates if the tick is a user or a system tick
457 */
458void account_process_tick(struct task_struct *p, int user_tick)
73fbec60 459{
9fbc42ea
FW
460 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
461 struct rq *rq = this_rq();
73fbec60 462
9fbc42ea
FW
463 if (vtime_accounting_enabled())
464 return;
465
466 if (sched_clock_irqtime) {
ecaf19a7 467 irqtime_account_process_tick(p, user_tick, rq, 1);
9fbc42ea
FW
468 return;
469 }
470
471 if (steal_account_process_tick())
472 return;
73fbec60 473
9fbc42ea
FW
474 if (user_tick)
475 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
476 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
477 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
478 one_jiffy_scaled);
73fbec60 479 else
9fbc42ea
FW
480 account_idle_time(cputime_one_jiffy);
481}
73fbec60 482
9fbc42ea
FW
483/*
484 * Account multiple ticks of steal time.
485 * @p: the process from which the cpu time has been stolen
486 * @ticks: number of stolen ticks
487 */
488void account_steal_ticks(unsigned long ticks)
489{
490 account_steal_time(jiffies_to_cputime(ticks));
491}
492
493/*
494 * Account multiple ticks of idle time.
495 * @ticks: number of stolen ticks
496 */
497void account_idle_ticks(unsigned long ticks)
498{
499
500 if (sched_clock_irqtime) {
501 irqtime_account_idle_ticks(ticks);
502 return;
503 }
504
505 account_idle_time(jiffies_to_cputime(ticks));
506}
73fbec60 507
d9a3c982 508/*
55eaa7c1
SG
509 * Perform (stime * rtime) / total, but avoid multiplication overflow by
510 * loosing precision when the numbers are big.
d9a3c982
FW
511 */
512static cputime_t scale_stime(u64 stime, u64 rtime, u64 total)
73fbec60 513{
55eaa7c1 514 u64 scaled;
73fbec60 515
55eaa7c1
SG
516 for (;;) {
517 /* Make sure "rtime" is the bigger of stime/rtime */
518 if (stime > rtime) {
519 u64 tmp = rtime; rtime = stime; stime = tmp;
520 }
521
522 /* Make sure 'total' fits in 32 bits */
523 if (total >> 32)
524 goto drop_precision;
525
526 /* Does rtime (and thus stime) fit in 32 bits? */
527 if (!(rtime >> 32))
528 break;
529
530 /* Can we just balance rtime/stime rather than dropping bits? */
531 if (stime >> 31)
532 goto drop_precision;
533
534 /* We can grow stime and shrink rtime and try to make them both fit */
535 stime <<= 1;
536 rtime >>= 1;
537 continue;
538
539drop_precision:
540 /* We drop from rtime, it has more bits than stime */
541 rtime >>= 1;
542 total >>= 1;
d9a3c982 543 }
73fbec60 544
55eaa7c1
SG
545 /*
546 * Make sure gcc understands that this is a 32x32->64 multiply,
547 * followed by a 64/32->64 divide.
548 */
549 scaled = div_u64((u64) (u32) stime * (u64) (u32) rtime, (u32)total);
d9a3c982 550 return (__force cputime_t) scaled;
73fbec60
FW
551}
552
fa092057
FW
553/*
554 * Adjust tick based cputime random precision against scheduler
555 * runtime accounting.
556 */
d37f761d
FW
557static void cputime_adjust(struct task_cputime *curr,
558 struct cputime *prev,
559 cputime_t *ut, cputime_t *st)
73fbec60 560{
013b14c3 561 cputime_t rtime, stime, utime;
73fbec60 562
9fbc42ea
FW
563 if (vtime_accounting_enabled()) {
564 *ut = curr->utime;
565 *st = curr->stime;
566 return;
567 }
568
73fbec60 569 /*
fa092057
FW
570 * Tick based cputime accounting depend on random scheduling
571 * timeslices of a task to be interrupted or not by the timer.
572 * Depending on these circumstances, the number of these interrupts
573 * may be over or under-optimistic, matching the real user and system
574 * cputime with a variable precision.
575 *
576 * Fix this by scaling these tick based values against the total
577 * runtime accounted by the CFS scheduler.
73fbec60 578 */
d37f761d 579 rtime = nsecs_to_cputime(curr->sum_exec_runtime);
73fbec60 580
772c808a
SG
581 /*
582 * Update userspace visible utime/stime values only if actual execution
583 * time is bigger than already exported. Note that can happen, that we
584 * provided bigger values due to scaling inaccuracy on big numbers.
585 */
586 if (prev->stime + prev->utime >= rtime)
587 goto out;
588
013b14c3
SG
589 stime = curr->stime;
590 utime = curr->utime;
591
592 if (utime == 0) {
593 stime = rtime;
594 } else if (stime == 0) {
595 utime = rtime;
596 } else {
597 cputime_t total = stime + utime;
598
d9a3c982
FW
599 stime = scale_stime((__force u64)stime,
600 (__force u64)rtime, (__force u64)total);
68aa8efc 601 utime = rtime - stime;
d9a3c982 602 }
73fbec60
FW
603
604 /*
fa092057
FW
605 * If the tick based count grows faster than the scheduler one,
606 * the result of the scaling may go backward.
607 * Let's enforce monotonicity.
73fbec60 608 */
62188451 609 prev->stime = max(prev->stime, stime);
68aa8efc 610 prev->utime = max(prev->utime, utime);
d37f761d 611
772c808a 612out:
d37f761d
FW
613 *ut = prev->utime;
614 *st = prev->stime;
615}
73fbec60 616
d37f761d
FW
617void task_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
618{
619 struct task_cputime cputime = {
d37f761d
FW
620 .sum_exec_runtime = p->se.sum_exec_runtime,
621 };
622
6fac4829 623 task_cputime(p, &cputime.utime, &cputime.stime);
d37f761d 624 cputime_adjust(&cputime, &p->prev_cputime, ut, st);
73fbec60
FW
625}
626
627/*
628 * Must be called with siglock held.
629 */
e80d0a1a 630void thread_group_cputime_adjusted(struct task_struct *p, cputime_t *ut, cputime_t *st)
73fbec60 631{
73fbec60 632 struct task_cputime cputime;
73fbec60
FW
633
634 thread_group_cputime(p, &cputime);
d37f761d 635 cputime_adjust(&cputime, &p->signal->prev_cputime, ut, st);
73fbec60 636}
9fbc42ea 637#endif /* !CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
abf917cd
FW
638
639#ifdef CONFIG_VIRT_CPU_ACCOUNTING_GEN
6a61671b
FW
640static unsigned long long vtime_delta(struct task_struct *tsk)
641{
642 unsigned long long clock;
643
7f6575f1 644 clock = local_clock();
6a61671b
FW
645 if (clock < tsk->vtime_snap)
646 return 0;
abf917cd 647
6a61671b
FW
648 return clock - tsk->vtime_snap;
649}
650
651static cputime_t get_vtime_delta(struct task_struct *tsk)
abf917cd 652{
6a61671b 653 unsigned long long delta = vtime_delta(tsk);
abf917cd 654
6a61671b
FW
655 WARN_ON_ONCE(tsk->vtime_snap_whence == VTIME_SLEEPING);
656 tsk->vtime_snap += delta;
abf917cd
FW
657
658 /* CHECKME: always safe to convert nsecs to cputime? */
659 return nsecs_to_cputime(delta);
660}
661
6a61671b
FW
662static void __vtime_account_system(struct task_struct *tsk)
663{
664 cputime_t delta_cpu = get_vtime_delta(tsk);
665
666 account_system_time(tsk, irq_count(), delta_cpu, cputime_to_scaled(delta_cpu));
667}
668
abf917cd
FW
669void vtime_account_system(struct task_struct *tsk)
670{
6a61671b
FW
671 if (!vtime_accounting_enabled())
672 return;
673
674 write_seqlock(&tsk->vtime_seqlock);
675 __vtime_account_system(tsk);
676 write_sequnlock(&tsk->vtime_seqlock);
677}
3f4724ea 678
6a61671b
FW
679void vtime_account_irq_exit(struct task_struct *tsk)
680{
3f4724ea
FW
681 if (!vtime_accounting_enabled())
682 return;
abf917cd 683
6a61671b
FW
684 write_seqlock(&tsk->vtime_seqlock);
685 if (context_tracking_in_user())
686 tsk->vtime_snap_whence = VTIME_USER;
687 __vtime_account_system(tsk);
688 write_sequnlock(&tsk->vtime_seqlock);
abf917cd
FW
689}
690
691void vtime_account_user(struct task_struct *tsk)
692{
3f4724ea
FW
693 cputime_t delta_cpu;
694
695 if (!vtime_accounting_enabled())
696 return;
697
6a61671b 698 delta_cpu = get_vtime_delta(tsk);
abf917cd 699
6a61671b
FW
700 write_seqlock(&tsk->vtime_seqlock);
701 tsk->vtime_snap_whence = VTIME_SYS;
abf917cd 702 account_user_time(tsk, delta_cpu, cputime_to_scaled(delta_cpu));
6a61671b
FW
703 write_sequnlock(&tsk->vtime_seqlock);
704}
705
706void vtime_user_enter(struct task_struct *tsk)
707{
708 if (!vtime_accounting_enabled())
709 return;
710
711 write_seqlock(&tsk->vtime_seqlock);
712 tsk->vtime_snap_whence = VTIME_USER;
713 __vtime_account_system(tsk);
714 write_sequnlock(&tsk->vtime_seqlock);
715}
716
717void vtime_guest_enter(struct task_struct *tsk)
718{
719 write_seqlock(&tsk->vtime_seqlock);
720 __vtime_account_system(tsk);
721 current->flags |= PF_VCPU;
722 write_sequnlock(&tsk->vtime_seqlock);
723}
724
725void vtime_guest_exit(struct task_struct *tsk)
726{
727 write_seqlock(&tsk->vtime_seqlock);
728 __vtime_account_system(tsk);
729 current->flags &= ~PF_VCPU;
730 write_sequnlock(&tsk->vtime_seqlock);
abf917cd
FW
731}
732
733void vtime_account_idle(struct task_struct *tsk)
734{
6a61671b 735 cputime_t delta_cpu = get_vtime_delta(tsk);
abf917cd
FW
736
737 account_idle_time(delta_cpu);
738}
3f4724ea
FW
739
740bool vtime_accounting_enabled(void)
741{
742 return context_tracking_active();
743}
6a61671b
FW
744
745void arch_vtime_task_switch(struct task_struct *prev)
746{
747 write_seqlock(&prev->vtime_seqlock);
748 prev->vtime_snap_whence = VTIME_SLEEPING;
749 write_sequnlock(&prev->vtime_seqlock);
750
751 write_seqlock(&current->vtime_seqlock);
752 current->vtime_snap_whence = VTIME_SYS;
45eacc69 753 current->vtime_snap = sched_clock_cpu(smp_processor_id());
6a61671b
FW
754 write_sequnlock(&current->vtime_seqlock);
755}
756
45eacc69 757void vtime_init_idle(struct task_struct *t, int cpu)
6a61671b
FW
758{
759 unsigned long flags;
760
761 write_seqlock_irqsave(&t->vtime_seqlock, flags);
762 t->vtime_snap_whence = VTIME_SYS;
45eacc69 763 t->vtime_snap = sched_clock_cpu(cpu);
6a61671b
FW
764 write_sequnlock_irqrestore(&t->vtime_seqlock, flags);
765}
766
767cputime_t task_gtime(struct task_struct *t)
768{
6a61671b
FW
769 unsigned int seq;
770 cputime_t gtime;
771
772 do {
cdc4e86b 773 seq = read_seqbegin(&t->vtime_seqlock);
6a61671b
FW
774
775 gtime = t->gtime;
776 if (t->flags & PF_VCPU)
777 gtime += vtime_delta(t);
778
cdc4e86b 779 } while (read_seqretry(&t->vtime_seqlock, seq));
6a61671b
FW
780
781 return gtime;
782}
783
784/*
785 * Fetch cputime raw values from fields of task_struct and
786 * add up the pending nohz execution time since the last
787 * cputime snapshot.
788 */
789static void
790fetch_task_cputime(struct task_struct *t,
791 cputime_t *u_dst, cputime_t *s_dst,
792 cputime_t *u_src, cputime_t *s_src,
793 cputime_t *udelta, cputime_t *sdelta)
794{
6a61671b
FW
795 unsigned int seq;
796 unsigned long long delta;
797
798 do {
799 *udelta = 0;
800 *sdelta = 0;
801
cdc4e86b 802 seq = read_seqbegin(&t->vtime_seqlock);
6a61671b
FW
803
804 if (u_dst)
805 *u_dst = *u_src;
806 if (s_dst)
807 *s_dst = *s_src;
808
809 /* Task is sleeping, nothing to add */
810 if (t->vtime_snap_whence == VTIME_SLEEPING ||
811 is_idle_task(t))
812 continue;
813
814 delta = vtime_delta(t);
815
816 /*
817 * Task runs either in user or kernel space, add pending nohz time to
818 * the right place.
819 */
820 if (t->vtime_snap_whence == VTIME_USER || t->flags & PF_VCPU) {
821 *udelta = delta;
822 } else {
823 if (t->vtime_snap_whence == VTIME_SYS)
824 *sdelta = delta;
825 }
cdc4e86b 826 } while (read_seqretry(&t->vtime_seqlock, seq));
6a61671b
FW
827}
828
829
830void task_cputime(struct task_struct *t, cputime_t *utime, cputime_t *stime)
831{
832 cputime_t udelta, sdelta;
833
834 fetch_task_cputime(t, utime, stime, &t->utime,
835 &t->stime, &udelta, &sdelta);
836 if (utime)
837 *utime += udelta;
838 if (stime)
839 *stime += sdelta;
840}
841
842void task_cputime_scaled(struct task_struct *t,
843 cputime_t *utimescaled, cputime_t *stimescaled)
844{
845 cputime_t udelta, sdelta;
846
847 fetch_task_cputime(t, utimescaled, stimescaled,
848 &t->utimescaled, &t->stimescaled, &udelta, &sdelta);
849 if (utimescaled)
850 *utimescaled += cputime_to_scaled(udelta);
851 if (stimescaled)
852 *stimescaled += cputime_to_scaled(sdelta);
853}
abf917cd 854#endif /* CONFIG_VIRT_CPU_ACCOUNTING_GEN */