vtime: Gather vtime declarations to their own header file
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / sched / cputime.c
CommitLineData
73fbec60
FW
1#include <linux/export.h>
2#include <linux/sched.h>
3#include <linux/tsacct_kern.h>
4#include <linux/kernel_stat.h>
5#include <linux/static_key.h>
6#include "sched.h"
7
8
9#ifdef CONFIG_IRQ_TIME_ACCOUNTING
10
11/*
12 * There are no locks covering percpu hardirq/softirq time.
bf9fae9f 13 * They are only modified in vtime_account, on corresponding CPU
73fbec60
FW
14 * with interrupts disabled. So, writes are safe.
15 * They are read and saved off onto struct rq in update_rq_clock().
16 * This may result in other CPU reading this CPU's irq time and can
bf9fae9f 17 * race with irq/vtime_account on this CPU. We would either get old
73fbec60
FW
18 * or new value with a side effect of accounting a slice of irq time to wrong
19 * task when irq is in progress while we read rq->clock. That is a worthy
20 * compromise in place of having locks on each irq in account_system_time.
21 */
22DEFINE_PER_CPU(u64, cpu_hardirq_time);
23DEFINE_PER_CPU(u64, cpu_softirq_time);
24
25static DEFINE_PER_CPU(u64, irq_start_time);
26static int sched_clock_irqtime;
27
28void enable_sched_clock_irqtime(void)
29{
30 sched_clock_irqtime = 1;
31}
32
33void disable_sched_clock_irqtime(void)
34{
35 sched_clock_irqtime = 0;
36}
37
38#ifndef CONFIG_64BIT
39DEFINE_PER_CPU(seqcount_t, irq_time_seq);
40#endif /* CONFIG_64BIT */
41
42/*
43 * Called before incrementing preempt_count on {soft,}irq_enter
44 * and before decrementing preempt_count on {soft,}irq_exit.
45 */
bf9fae9f 46void vtime_account(struct task_struct *curr)
73fbec60
FW
47{
48 unsigned long flags;
49 s64 delta;
50 int cpu;
51
52 if (!sched_clock_irqtime)
53 return;
54
55 local_irq_save(flags);
56
57 cpu = smp_processor_id();
58 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
59 __this_cpu_add(irq_start_time, delta);
60
61 irq_time_write_begin();
62 /*
63 * We do not account for softirq time from ksoftirqd here.
64 * We want to continue accounting softirq time to ksoftirqd thread
65 * in that case, so as not to confuse scheduler with a special task
66 * that do not consume any time, but still wants to run.
67 */
68 if (hardirq_count())
69 __this_cpu_add(cpu_hardirq_time, delta);
70 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
71 __this_cpu_add(cpu_softirq_time, delta);
72
73 irq_time_write_end();
74 local_irq_restore(flags);
75}
bf9fae9f 76EXPORT_SYMBOL_GPL(vtime_account);
73fbec60
FW
77
78static int irqtime_account_hi_update(void)
79{
80 u64 *cpustat = kcpustat_this_cpu->cpustat;
81 unsigned long flags;
82 u64 latest_ns;
83 int ret = 0;
84
85 local_irq_save(flags);
86 latest_ns = this_cpu_read(cpu_hardirq_time);
87 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
88 ret = 1;
89 local_irq_restore(flags);
90 return ret;
91}
92
93static int irqtime_account_si_update(void)
94{
95 u64 *cpustat = kcpustat_this_cpu->cpustat;
96 unsigned long flags;
97 u64 latest_ns;
98 int ret = 0;
99
100 local_irq_save(flags);
101 latest_ns = this_cpu_read(cpu_softirq_time);
102 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
103 ret = 1;
104 local_irq_restore(flags);
105 return ret;
106}
107
108#else /* CONFIG_IRQ_TIME_ACCOUNTING */
109
110#define sched_clock_irqtime (0)
111
112#endif /* !CONFIG_IRQ_TIME_ACCOUNTING */
113
114static inline void task_group_account_field(struct task_struct *p, int index,
115 u64 tmp)
116{
117#ifdef CONFIG_CGROUP_CPUACCT
118 struct kernel_cpustat *kcpustat;
119 struct cpuacct *ca;
120#endif
121 /*
122 * Since all updates are sure to touch the root cgroup, we
123 * get ourselves ahead and touch it first. If the root cgroup
124 * is the only cgroup, then nothing else should be necessary.
125 *
126 */
127 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
128
129#ifdef CONFIG_CGROUP_CPUACCT
130 if (unlikely(!cpuacct_subsys.active))
131 return;
132
133 rcu_read_lock();
134 ca = task_ca(p);
135 while (ca && (ca != &root_cpuacct)) {
136 kcpustat = this_cpu_ptr(ca->cpustat);
137 kcpustat->cpustat[index] += tmp;
138 ca = parent_ca(ca);
139 }
140 rcu_read_unlock();
141#endif
142}
143
144/*
145 * Account user cpu time to a process.
146 * @p: the process that the cpu time gets accounted to
147 * @cputime: the cpu time spent in user space since the last update
148 * @cputime_scaled: cputime scaled by cpu frequency
149 */
150void account_user_time(struct task_struct *p, cputime_t cputime,
151 cputime_t cputime_scaled)
152{
153 int index;
154
155 /* Add user time to process. */
156 p->utime += cputime;
157 p->utimescaled += cputime_scaled;
158 account_group_user_time(p, cputime);
159
160 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
161
162 /* Add user time to cpustat. */
163 task_group_account_field(p, index, (__force u64) cputime);
164
165 /* Account for user time used */
166 acct_update_integrals(p);
167}
168
169/*
170 * Account guest cpu time to a process.
171 * @p: the process that the cpu time gets accounted to
172 * @cputime: the cpu time spent in virtual machine since the last update
173 * @cputime_scaled: cputime scaled by cpu frequency
174 */
175static void account_guest_time(struct task_struct *p, cputime_t cputime,
176 cputime_t cputime_scaled)
177{
178 u64 *cpustat = kcpustat_this_cpu->cpustat;
179
180 /* Add guest time to process. */
181 p->utime += cputime;
182 p->utimescaled += cputime_scaled;
183 account_group_user_time(p, cputime);
184 p->gtime += cputime;
185
186 /* Add guest time to cpustat. */
187 if (TASK_NICE(p) > 0) {
188 cpustat[CPUTIME_NICE] += (__force u64) cputime;
189 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
190 } else {
191 cpustat[CPUTIME_USER] += (__force u64) cputime;
192 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
193 }
194}
195
196/*
197 * Account system cpu time to a process and desired cpustat field
198 * @p: the process that the cpu time gets accounted to
199 * @cputime: the cpu time spent in kernel space since the last update
200 * @cputime_scaled: cputime scaled by cpu frequency
201 * @target_cputime64: pointer to cpustat field that has to be updated
202 */
203static inline
204void __account_system_time(struct task_struct *p, cputime_t cputime,
205 cputime_t cputime_scaled, int index)
206{
207 /* Add system time to process. */
208 p->stime += cputime;
209 p->stimescaled += cputime_scaled;
210 account_group_system_time(p, cputime);
211
212 /* Add system time to cpustat. */
213 task_group_account_field(p, index, (__force u64) cputime);
214
215 /* Account for system time used */
216 acct_update_integrals(p);
217}
218
219/*
220 * Account system cpu time to a process.
221 * @p: the process that the cpu time gets accounted to
222 * @hardirq_offset: the offset to subtract from hardirq_count()
223 * @cputime: the cpu time spent in kernel space since the last update
224 * @cputime_scaled: cputime scaled by cpu frequency
225 */
226void account_system_time(struct task_struct *p, int hardirq_offset,
227 cputime_t cputime, cputime_t cputime_scaled)
228{
229 int index;
230
231 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
232 account_guest_time(p, cputime, cputime_scaled);
233 return;
234 }
235
236 if (hardirq_count() - hardirq_offset)
237 index = CPUTIME_IRQ;
238 else if (in_serving_softirq())
239 index = CPUTIME_SOFTIRQ;
240 else
241 index = CPUTIME_SYSTEM;
242
243 __account_system_time(p, cputime, cputime_scaled, index);
244}
245
246/*
247 * Account for involuntary wait time.
248 * @cputime: the cpu time spent in involuntary wait
249 */
250void account_steal_time(cputime_t cputime)
251{
252 u64 *cpustat = kcpustat_this_cpu->cpustat;
253
254 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
255}
256
257/*
258 * Account for idle time.
259 * @cputime: the cpu time spent in idle wait
260 */
261void account_idle_time(cputime_t cputime)
262{
263 u64 *cpustat = kcpustat_this_cpu->cpustat;
264 struct rq *rq = this_rq();
265
266 if (atomic_read(&rq->nr_iowait) > 0)
267 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
268 else
269 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
270}
271
272static __always_inline bool steal_account_process_tick(void)
273{
274#ifdef CONFIG_PARAVIRT
275 if (static_key_false(&paravirt_steal_enabled)) {
276 u64 steal, st = 0;
277
278 steal = paravirt_steal_clock(smp_processor_id());
279 steal -= this_rq()->prev_steal_time;
280
281 st = steal_ticks(steal);
282 this_rq()->prev_steal_time += st * TICK_NSEC;
283
284 account_steal_time(st);
285 return st;
286 }
287#endif
288 return false;
289}
290
291#ifndef CONFIG_VIRT_CPU_ACCOUNTING
292
293#ifdef CONFIG_IRQ_TIME_ACCOUNTING
294/*
295 * Account a tick to a process and cpustat
296 * @p: the process that the cpu time gets accounted to
297 * @user_tick: is the tick from userspace
298 * @rq: the pointer to rq
299 *
300 * Tick demultiplexing follows the order
301 * - pending hardirq update
302 * - pending softirq update
303 * - user_time
304 * - idle_time
305 * - system time
306 * - check for guest_time
307 * - else account as system_time
308 *
309 * Check for hardirq is done both for system and user time as there is
310 * no timer going off while we are on hardirq and hence we may never get an
311 * opportunity to update it solely in system time.
312 * p->stime and friends are only updated on system time and not on irq
313 * softirq as those do not count in task exec_runtime any more.
314 */
315static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
316 struct rq *rq)
317{
318 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
319 u64 *cpustat = kcpustat_this_cpu->cpustat;
320
321 if (steal_account_process_tick())
322 return;
323
324 if (irqtime_account_hi_update()) {
325 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
326 } else if (irqtime_account_si_update()) {
327 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
328 } else if (this_cpu_ksoftirqd() == p) {
329 /*
330 * ksoftirqd time do not get accounted in cpu_softirq_time.
331 * So, we have to handle it separately here.
332 * Also, p->stime needs to be updated for ksoftirqd.
333 */
334 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
335 CPUTIME_SOFTIRQ);
336 } else if (user_tick) {
337 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
338 } else if (p == rq->idle) {
339 account_idle_time(cputime_one_jiffy);
340 } else if (p->flags & PF_VCPU) { /* System time or guest time */
341 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
342 } else {
343 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
344 CPUTIME_SYSTEM);
345 }
346}
347
348static void irqtime_account_idle_ticks(int ticks)
349{
350 int i;
351 struct rq *rq = this_rq();
352
353 for (i = 0; i < ticks; i++)
354 irqtime_account_process_tick(current, 0, rq);
355}
356#else /* CONFIG_IRQ_TIME_ACCOUNTING */
357static void irqtime_account_idle_ticks(int ticks) {}
358static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
359 struct rq *rq) {}
360#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
361
362/*
363 * Account a single tick of cpu time.
364 * @p: the process that the cpu time gets accounted to
365 * @user_tick: indicates if the tick is a user or a system tick
366 */
367void account_process_tick(struct task_struct *p, int user_tick)
368{
369 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
370 struct rq *rq = this_rq();
371
372 if (sched_clock_irqtime) {
373 irqtime_account_process_tick(p, user_tick, rq);
374 return;
375 }
376
377 if (steal_account_process_tick())
378 return;
379
380 if (user_tick)
381 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
382 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
383 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
384 one_jiffy_scaled);
385 else
386 account_idle_time(cputime_one_jiffy);
387}
388
389/*
390 * Account multiple ticks of steal time.
391 * @p: the process from which the cpu time has been stolen
392 * @ticks: number of stolen ticks
393 */
394void account_steal_ticks(unsigned long ticks)
395{
396 account_steal_time(jiffies_to_cputime(ticks));
397}
398
399/*
400 * Account multiple ticks of idle time.
401 * @ticks: number of stolen ticks
402 */
403void account_idle_ticks(unsigned long ticks)
404{
405
406 if (sched_clock_irqtime) {
407 irqtime_account_idle_ticks(ticks);
408 return;
409 }
410
411 account_idle_time(jiffies_to_cputime(ticks));
412}
413
414#endif
415
416/*
417 * Use precise platform statistics if available:
418 */
419#ifdef CONFIG_VIRT_CPU_ACCOUNTING
420void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
421{
422 *ut = p->utime;
423 *st = p->stime;
424}
425
426void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
427{
428 struct task_cputime cputime;
429
430 thread_group_cputime(p, &cputime);
431
432 *ut = cputime.utime;
433 *st = cputime.stime;
434}
a7e1a9e3
FW
435
436/*
437 * Archs that account the whole time spent in the idle task
438 * (outside irq) as idle time can rely on this and just implement
439 * vtime_account_system() and vtime_account_idle(). Archs that
440 * have other meaning of the idle time (s390 only includes the
441 * time spent by the CPU when it's in low power mode) must override
442 * vtime_account().
443 */
444#ifndef __ARCH_HAS_VTIME_ACCOUNT
445void vtime_account(struct task_struct *tsk)
446{
447 unsigned long flags;
448
449 local_irq_save(flags);
450
451 if (in_interrupt() || !is_idle_task(tsk))
452 vtime_account_system(tsk);
453 else
454 vtime_account_idle(tsk);
455
456 local_irq_restore(flags);
457}
458EXPORT_SYMBOL_GPL(vtime_account);
459#endif /* __ARCH_HAS_VTIME_ACCOUNT */
460
73fbec60
FW
461#else
462
463#ifndef nsecs_to_cputime
464# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
465#endif
466
467static cputime_t scale_utime(cputime_t utime, cputime_t rtime, cputime_t total)
468{
469 u64 temp = (__force u64) rtime;
470
471 temp *= (__force u64) utime;
472
473 if (sizeof(cputime_t) == 4)
474 temp = div_u64(temp, (__force u32) total);
475 else
476 temp = div64_u64(temp, (__force u64) total);
477
478 return (__force cputime_t) temp;
479}
480
481void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
482{
483 cputime_t rtime, utime = p->utime, total = utime + p->stime;
484
485 /*
486 * Use CFS's precise accounting:
487 */
488 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
489
490 if (total)
491 utime = scale_utime(utime, rtime, total);
492 else
493 utime = rtime;
494
495 /*
496 * Compare with previous values, to keep monotonicity:
497 */
498 p->prev_utime = max(p->prev_utime, utime);
499 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
500
501 *ut = p->prev_utime;
502 *st = p->prev_stime;
503}
504
505/*
506 * Must be called with siglock held.
507 */
508void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
509{
510 struct signal_struct *sig = p->signal;
511 struct task_cputime cputime;
512 cputime_t rtime, utime, total;
513
514 thread_group_cputime(p, &cputime);
515
516 total = cputime.utime + cputime.stime;
517 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
518
519 if (total)
520 utime = scale_utime(cputime.utime, rtime, total);
521 else
522 utime = rtime;
523
524 sig->prev_utime = max(sig->prev_utime, utime);
525 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
526
527 *ut = sig->prev_utime;
528 *st = sig->prev_stime;
529}
530#endif