nohz: New APIs to re-evaluate the tick on full dynticks CPUs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / posix-cpu-timers.c
CommitLineData
1da177e4
LT
1/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5#include <linux/sched.h>
6#include <linux/posix-timers.h>
1da177e4 7#include <linux/errno.h>
f8bd2258
RZ
8#include <linux/math64.h>
9#include <asm/uaccess.h>
bb34d92f 10#include <linux/kernel_stat.h>
3f0a525e 11#include <trace/events/timer.h>
61337054 12#include <linux/random.h>
1da177e4 13
f06febc9 14/*
f55db609
SG
15 * Called after updating RLIMIT_CPU to run cpu timer and update
16 * tsk->signal->cputime_expires expiration cache if necessary. Needs
17 * siglock protection since other code may update expiration cache as
18 * well.
f06febc9 19 */
5ab46b34 20void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
f06febc9 21{
42c4ab41 22 cputime_t cputime = secs_to_cputime(rlim_new);
f06febc9 23
5ab46b34
JS
24 spin_lock_irq(&task->sighand->siglock);
25 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
26 spin_unlock_irq(&task->sighand->siglock);
f06febc9
FM
27}
28
a924b04d 29static int check_clock(const clockid_t which_clock)
1da177e4
LT
30{
31 int error = 0;
32 struct task_struct *p;
33 const pid_t pid = CPUCLOCK_PID(which_clock);
34
35 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
36 return -EINVAL;
37
38 if (pid == 0)
39 return 0;
40
c0deae8c 41 rcu_read_lock();
8dc86af0 42 p = find_task_by_vpid(pid);
bac0abd6 43 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
c0deae8c 44 same_thread_group(p, current) : has_group_leader_pid(p))) {
1da177e4
LT
45 error = -EINVAL;
46 }
c0deae8c 47 rcu_read_unlock();
1da177e4
LT
48
49 return error;
50}
51
52static inline union cpu_time_count
a924b04d 53timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
54{
55 union cpu_time_count ret;
56 ret.sched = 0; /* high half always zero when .cpu used */
57 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
ee500f27 58 ret.sched = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
1da177e4
LT
59 } else {
60 ret.cpu = timespec_to_cputime(tp);
61 }
62 return ret;
63}
64
a924b04d 65static void sample_to_timespec(const clockid_t which_clock,
1da177e4
LT
66 union cpu_time_count cpu,
67 struct timespec *tp)
68{
f8bd2258
RZ
69 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
70 *tp = ns_to_timespec(cpu.sched);
71 else
1da177e4 72 cputime_to_timespec(cpu.cpu, tp);
1da177e4
LT
73}
74
a924b04d 75static inline int cpu_time_before(const clockid_t which_clock,
1da177e4
LT
76 union cpu_time_count now,
77 union cpu_time_count then)
78{
79 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
80 return now.sched < then.sched;
81 } else {
64861634 82 return now.cpu < then.cpu;
1da177e4
LT
83 }
84}
a924b04d 85static inline void cpu_time_add(const clockid_t which_clock,
1da177e4
LT
86 union cpu_time_count *acc,
87 union cpu_time_count val)
88{
89 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
90 acc->sched += val.sched;
91 } else {
64861634 92 acc->cpu += val.cpu;
1da177e4
LT
93 }
94}
a924b04d 95static inline union cpu_time_count cpu_time_sub(const clockid_t which_clock,
1da177e4
LT
96 union cpu_time_count a,
97 union cpu_time_count b)
98{
99 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
100 a.sched -= b.sched;
101 } else {
64861634 102 a.cpu -= b.cpu;
1da177e4
LT
103 }
104 return a;
105}
106
107/*
108 * Update expiry time from increment, and increase overrun count,
109 * given the current clock sample.
110 */
7a4ed937 111static void bump_cpu_timer(struct k_itimer *timer,
1da177e4
LT
112 union cpu_time_count now)
113{
114 int i;
115
116 if (timer->it.cpu.incr.sched == 0)
117 return;
118
119 if (CPUCLOCK_WHICH(timer->it_clock) == CPUCLOCK_SCHED) {
120 unsigned long long delta, incr;
121
122 if (now.sched < timer->it.cpu.expires.sched)
123 return;
124 incr = timer->it.cpu.incr.sched;
125 delta = now.sched + incr - timer->it.cpu.expires.sched;
126 /* Don't use (incr*2 < delta), incr*2 might overflow. */
127 for (i = 0; incr < delta - incr; i++)
128 incr = incr << 1;
129 for (; i >= 0; incr >>= 1, i--) {
7a4ed937 130 if (delta < incr)
1da177e4
LT
131 continue;
132 timer->it.cpu.expires.sched += incr;
133 timer->it_overrun += 1 << i;
134 delta -= incr;
135 }
136 } else {
137 cputime_t delta, incr;
138
64861634 139 if (now.cpu < timer->it.cpu.expires.cpu)
1da177e4
LT
140 return;
141 incr = timer->it.cpu.incr.cpu;
64861634 142 delta = now.cpu + incr - timer->it.cpu.expires.cpu;
1da177e4 143 /* Don't use (incr*2 < delta), incr*2 might overflow. */
64861634
MS
144 for (i = 0; incr < delta - incr; i++)
145 incr += incr;
146 for (; i >= 0; incr = incr >> 1, i--) {
147 if (delta < incr)
1da177e4 148 continue;
64861634 149 timer->it.cpu.expires.cpu += incr;
1da177e4 150 timer->it_overrun += 1 << i;
64861634 151 delta -= incr;
1da177e4
LT
152 }
153 }
154}
155
156static inline cputime_t prof_ticks(struct task_struct *p)
157{
6fac4829
FW
158 cputime_t utime, stime;
159
160 task_cputime(p, &utime, &stime);
161
162 return utime + stime;
1da177e4
LT
163}
164static inline cputime_t virt_ticks(struct task_struct *p)
165{
6fac4829
FW
166 cputime_t utime;
167
168 task_cputime(p, &utime, NULL);
169
170 return utime;
1da177e4 171}
1da177e4 172
bc2c8ea4
TG
173static int
174posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
175{
176 int error = check_clock(which_clock);
177 if (!error) {
178 tp->tv_sec = 0;
179 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
180 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
181 /*
182 * If sched_clock is using a cycle counter, we
183 * don't have any idea of its true resolution
184 * exported, but it is much more than 1s/HZ.
185 */
186 tp->tv_nsec = 1;
187 }
188 }
189 return error;
190}
191
bc2c8ea4
TG
192static int
193posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
1da177e4
LT
194{
195 /*
196 * You can never reset a CPU clock, but we check for other errors
197 * in the call before failing with EPERM.
198 */
199 int error = check_clock(which_clock);
200 if (error == 0) {
201 error = -EPERM;
202 }
203 return error;
204}
205
206
207/*
208 * Sample a per-thread clock for the given task.
209 */
a924b04d 210static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
1da177e4
LT
211 union cpu_time_count *cpu)
212{
213 switch (CPUCLOCK_WHICH(which_clock)) {
214 default:
215 return -EINVAL;
216 case CPUCLOCK_PROF:
217 cpu->cpu = prof_ticks(p);
218 break;
219 case CPUCLOCK_VIRT:
220 cpu->cpu = virt_ticks(p);
221 break;
222 case CPUCLOCK_SCHED:
c5f8d995 223 cpu->sched = task_sched_runtime(p);
1da177e4
LT
224 break;
225 }
226 return 0;
227}
228
4da94d49
PZ
229static void update_gt_cputime(struct task_cputime *a, struct task_cputime *b)
230{
64861634 231 if (b->utime > a->utime)
4da94d49
PZ
232 a->utime = b->utime;
233
64861634 234 if (b->stime > a->stime)
4da94d49
PZ
235 a->stime = b->stime;
236
237 if (b->sum_exec_runtime > a->sum_exec_runtime)
238 a->sum_exec_runtime = b->sum_exec_runtime;
239}
240
241void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
242{
243 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
244 struct task_cputime sum;
245 unsigned long flags;
246
4da94d49 247 if (!cputimer->running) {
4da94d49
PZ
248 /*
249 * The POSIX timer interface allows for absolute time expiry
250 * values through the TIMER_ABSTIME flag, therefore we have
251 * to synchronize the timer to the clock every time we start
252 * it.
253 */
254 thread_group_cputime(tsk, &sum);
3cfef952 255 raw_spin_lock_irqsave(&cputimer->lock, flags);
bcd5cff7 256 cputimer->running = 1;
4da94d49 257 update_gt_cputime(&cputimer->cputime, &sum);
bcd5cff7 258 } else
3cfef952 259 raw_spin_lock_irqsave(&cputimer->lock, flags);
4da94d49 260 *times = cputimer->cputime;
ee30a7b2 261 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
4da94d49
PZ
262}
263
1da177e4
LT
264/*
265 * Sample a process (thread group) clock for the given group_leader task.
266 * Must be called with tasklist_lock held for reading.
1da177e4 267 */
bb34d92f
FM
268static int cpu_clock_sample_group(const clockid_t which_clock,
269 struct task_struct *p,
270 union cpu_time_count *cpu)
1da177e4 271{
f06febc9
FM
272 struct task_cputime cputime;
273
eccdaeaf 274 switch (CPUCLOCK_WHICH(which_clock)) {
1da177e4
LT
275 default:
276 return -EINVAL;
277 case CPUCLOCK_PROF:
c5f8d995 278 thread_group_cputime(p, &cputime);
64861634 279 cpu->cpu = cputime.utime + cputime.stime;
1da177e4
LT
280 break;
281 case CPUCLOCK_VIRT:
c5f8d995 282 thread_group_cputime(p, &cputime);
f06febc9 283 cpu->cpu = cputime.utime;
1da177e4
LT
284 break;
285 case CPUCLOCK_SCHED:
d670ec13
PZ
286 thread_group_cputime(p, &cputime);
287 cpu->sched = cputime.sum_exec_runtime;
1da177e4
LT
288 break;
289 }
290 return 0;
291}
292
1da177e4 293
bc2c8ea4 294static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
1da177e4
LT
295{
296 const pid_t pid = CPUCLOCK_PID(which_clock);
297 int error = -EINVAL;
298 union cpu_time_count rtn;
299
300 if (pid == 0) {
301 /*
302 * Special case constant value for our own clocks.
303 * We don't have to do any lookup to find ourselves.
304 */
305 if (CPUCLOCK_PERTHREAD(which_clock)) {
306 /*
307 * Sampling just ourselves we can do with no locking.
308 */
309 error = cpu_clock_sample(which_clock,
310 current, &rtn);
311 } else {
312 read_lock(&tasklist_lock);
313 error = cpu_clock_sample_group(which_clock,
314 current, &rtn);
315 read_unlock(&tasklist_lock);
316 }
317 } else {
318 /*
319 * Find the given PID, and validate that the caller
320 * should be able to see it.
321 */
322 struct task_struct *p;
1f2ea083 323 rcu_read_lock();
8dc86af0 324 p = find_task_by_vpid(pid);
1da177e4
LT
325 if (p) {
326 if (CPUCLOCK_PERTHREAD(which_clock)) {
bac0abd6 327 if (same_thread_group(p, current)) {
1da177e4
LT
328 error = cpu_clock_sample(which_clock,
329 p, &rtn);
330 }
1f2ea083
PM
331 } else {
332 read_lock(&tasklist_lock);
d30fda35 333 if (thread_group_leader(p) && p->sighand) {
1f2ea083
PM
334 error =
335 cpu_clock_sample_group(which_clock,
336 p, &rtn);
337 }
338 read_unlock(&tasklist_lock);
1da177e4
LT
339 }
340 }
1f2ea083 341 rcu_read_unlock();
1da177e4
LT
342 }
343
344 if (error)
345 return error;
346 sample_to_timespec(which_clock, rtn, tp);
347 return 0;
348}
349
350
351/*
352 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
ba5ea951
SG
353 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
354 * new timer already all-zeros initialized.
1da177e4 355 */
bc2c8ea4 356static int posix_cpu_timer_create(struct k_itimer *new_timer)
1da177e4
LT
357{
358 int ret = 0;
359 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
360 struct task_struct *p;
361
362 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
363 return -EINVAL;
364
365 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
1da177e4 366
c0deae8c 367 rcu_read_lock();
1da177e4
LT
368 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
369 if (pid == 0) {
370 p = current;
371 } else {
8dc86af0 372 p = find_task_by_vpid(pid);
bac0abd6 373 if (p && !same_thread_group(p, current))
1da177e4
LT
374 p = NULL;
375 }
376 } else {
377 if (pid == 0) {
378 p = current->group_leader;
379 } else {
8dc86af0 380 p = find_task_by_vpid(pid);
c0deae8c 381 if (p && !has_group_leader_pid(p))
1da177e4
LT
382 p = NULL;
383 }
384 }
385 new_timer->it.cpu.task = p;
386 if (p) {
387 get_task_struct(p);
388 } else {
389 ret = -EINVAL;
390 }
c0deae8c 391 rcu_read_unlock();
1da177e4
LT
392
393 return ret;
394}
395
396/*
397 * Clean up a CPU-clock timer that is about to be destroyed.
398 * This is called from timer deletion with the timer already locked.
399 * If we return TIMER_RETRY, it's necessary to release the timer's lock
400 * and try again. (This happens when the timer is in the middle of firing.)
401 */
bc2c8ea4 402static int posix_cpu_timer_del(struct k_itimer *timer)
1da177e4
LT
403{
404 struct task_struct *p = timer->it.cpu.task;
108150ea 405 int ret = 0;
1da177e4 406
108150ea 407 if (likely(p != NULL)) {
9465bee8 408 read_lock(&tasklist_lock);
d30fda35 409 if (unlikely(p->sighand == NULL)) {
9465bee8
LT
410 /*
411 * We raced with the reaping of the task.
412 * The deletion should have cleared us off the list.
413 */
414 BUG_ON(!list_empty(&timer->it.cpu.entry));
415 } else {
9465bee8 416 spin_lock(&p->sighand->siglock);
108150ea
ON
417 if (timer->it.cpu.firing)
418 ret = TIMER_RETRY;
419 else
420 list_del(&timer->it.cpu.entry);
9465bee8
LT
421 spin_unlock(&p->sighand->siglock);
422 }
423 read_unlock(&tasklist_lock);
108150ea
ON
424
425 if (!ret)
426 put_task_struct(p);
1da177e4 427 }
1da177e4 428
108150ea 429 return ret;
1da177e4
LT
430}
431
432/*
433 * Clean out CPU timers still ticking when a thread exited. The task
434 * pointer is cleared, and the expiry time is replaced with the residual
435 * time for later timer_gettime calls to return.
436 * This must be called with the siglock held.
437 */
438static void cleanup_timers(struct list_head *head,
439 cputime_t utime, cputime_t stime,
41b86e9c 440 unsigned long long sum_exec_runtime)
1da177e4
LT
441{
442 struct cpu_timer_list *timer, *next;
64861634 443 cputime_t ptime = utime + stime;
1da177e4
LT
444
445 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4 446 list_del_init(&timer->entry);
64861634
MS
447 if (timer->expires.cpu < ptime) {
448 timer->expires.cpu = 0;
1da177e4 449 } else {
64861634 450 timer->expires.cpu -= ptime;
1da177e4
LT
451 }
452 }
453
454 ++head;
455 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4 456 list_del_init(&timer->entry);
64861634
MS
457 if (timer->expires.cpu < utime) {
458 timer->expires.cpu = 0;
1da177e4 459 } else {
64861634 460 timer->expires.cpu -= utime;
1da177e4
LT
461 }
462 }
463
464 ++head;
465 list_for_each_entry_safe(timer, next, head, entry) {
1da177e4 466 list_del_init(&timer->entry);
41b86e9c 467 if (timer->expires.sched < sum_exec_runtime) {
1da177e4
LT
468 timer->expires.sched = 0;
469 } else {
41b86e9c 470 timer->expires.sched -= sum_exec_runtime;
1da177e4
LT
471 }
472 }
473}
474
475/*
476 * These are both called with the siglock held, when the current thread
477 * is being reaped. When the final (leader) thread in the group is reaped,
478 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
479 */
480void posix_cpu_timers_exit(struct task_struct *tsk)
481{
6fac4829
FW
482 cputime_t utime, stime;
483
61337054
NK
484 add_device_randomness((const void*) &tsk->se.sum_exec_runtime,
485 sizeof(unsigned long long));
6fac4829 486 task_cputime(tsk, &utime, &stime);
1da177e4 487 cleanup_timers(tsk->cpu_timers,
6fac4829 488 utime, stime, tsk->se.sum_exec_runtime);
1da177e4
LT
489
490}
491void posix_cpu_timers_exit_group(struct task_struct *tsk)
492{
17d42c1c 493 struct signal_struct *const sig = tsk->signal;
6fac4829 494 cputime_t utime, stime;
ca531a0a 495
6fac4829 496 task_cputime(tsk, &utime, &stime);
f06febc9 497 cleanup_timers(tsk->signal->cpu_timers,
6fac4829 498 utime + sig->utime, stime + sig->stime,
17d42c1c 499 tsk->se.sum_exec_runtime + sig->sum_sched_runtime);
1da177e4
LT
500}
501
502static void clear_dead_task(struct k_itimer *timer, union cpu_time_count now)
503{
504 /*
505 * That's all for this thread or process.
506 * We leave our residual in expires to be reported.
507 */
508 put_task_struct(timer->it.cpu.task);
509 timer->it.cpu.task = NULL;
510 timer->it.cpu.expires = cpu_time_sub(timer->it_clock,
511 timer->it.cpu.expires,
512 now);
513}
514
d1e3b6d1
SG
515static inline int expires_gt(cputime_t expires, cputime_t new_exp)
516{
64861634 517 return expires == 0 || expires > new_exp;
d1e3b6d1
SG
518}
519
1da177e4
LT
520/*
521 * Insert the timer on the appropriate list before any timers that
522 * expire later. This must be called with the tasklist_lock held
c2873937 523 * for reading, interrupts disabled and p->sighand->siglock taken.
1da177e4 524 */
5eb9aa64 525static void arm_timer(struct k_itimer *timer)
1da177e4
LT
526{
527 struct task_struct *p = timer->it.cpu.task;
528 struct list_head *head, *listpos;
5eb9aa64 529 struct task_cputime *cputime_expires;
1da177e4
LT
530 struct cpu_timer_list *const nt = &timer->it.cpu;
531 struct cpu_timer_list *next;
1da177e4 532
5eb9aa64
SG
533 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
534 head = p->cpu_timers;
535 cputime_expires = &p->cputime_expires;
536 } else {
537 head = p->signal->cpu_timers;
538 cputime_expires = &p->signal->cputime_expires;
539 }
1da177e4
LT
540 head += CPUCLOCK_WHICH(timer->it_clock);
541
1da177e4 542 listpos = head;
5eb9aa64
SG
543 list_for_each_entry(next, head, entry) {
544 if (cpu_time_before(timer->it_clock, nt->expires, next->expires))
545 break;
546 listpos = &next->entry;
1da177e4
LT
547 }
548 list_add(&nt->entry, listpos);
549
550 if (listpos == head) {
5eb9aa64
SG
551 union cpu_time_count *exp = &nt->expires;
552
1da177e4 553 /*
5eb9aa64
SG
554 * We are the new earliest-expiring POSIX 1.b timer, hence
555 * need to update expiration cache. Take into account that
556 * for process timers we share expiration cache with itimers
557 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
1da177e4
LT
558 */
559
5eb9aa64
SG
560 switch (CPUCLOCK_WHICH(timer->it_clock)) {
561 case CPUCLOCK_PROF:
562 if (expires_gt(cputime_expires->prof_exp, exp->cpu))
563 cputime_expires->prof_exp = exp->cpu;
564 break;
565 case CPUCLOCK_VIRT:
566 if (expires_gt(cputime_expires->virt_exp, exp->cpu))
567 cputime_expires->virt_exp = exp->cpu;
568 break;
569 case CPUCLOCK_SCHED:
570 if (cputime_expires->sched_exp == 0 ||
571 cputime_expires->sched_exp > exp->sched)
572 cputime_expires->sched_exp = exp->sched;
573 break;
1da177e4
LT
574 }
575 }
1da177e4
LT
576}
577
578/*
579 * The timer is locked, fire it and arrange for its reload.
580 */
581static void cpu_timer_fire(struct k_itimer *timer)
582{
1f169f84
SG
583 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
584 /*
585 * User don't want any signal.
586 */
587 timer->it.cpu.expires.sched = 0;
588 } else if (unlikely(timer->sigq == NULL)) {
1da177e4
LT
589 /*
590 * This a special case for clock_nanosleep,
591 * not a normal timer from sys_timer_create.
592 */
593 wake_up_process(timer->it_process);
594 timer->it.cpu.expires.sched = 0;
595 } else if (timer->it.cpu.incr.sched == 0) {
596 /*
597 * One-shot timer. Clear it as soon as it's fired.
598 */
599 posix_timer_event(timer, 0);
600 timer->it.cpu.expires.sched = 0;
601 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
602 /*
603 * The signal did not get queued because the signal
604 * was ignored, so we won't get any callback to
605 * reload the timer. But we need to keep it
606 * ticking in case the signal is deliverable next time.
607 */
608 posix_cpu_timer_schedule(timer);
609 }
610}
611
3997ad31
PZ
612/*
613 * Sample a process (thread group) timer for the given group_leader task.
614 * Must be called with tasklist_lock held for reading.
615 */
616static int cpu_timer_sample_group(const clockid_t which_clock,
617 struct task_struct *p,
618 union cpu_time_count *cpu)
619{
620 struct task_cputime cputime;
621
622 thread_group_cputimer(p, &cputime);
623 switch (CPUCLOCK_WHICH(which_clock)) {
624 default:
625 return -EINVAL;
626 case CPUCLOCK_PROF:
64861634 627 cpu->cpu = cputime.utime + cputime.stime;
3997ad31
PZ
628 break;
629 case CPUCLOCK_VIRT:
630 cpu->cpu = cputime.utime;
631 break;
632 case CPUCLOCK_SCHED:
633 cpu->sched = cputime.sum_exec_runtime + task_delta_exec(p);
634 break;
635 }
636 return 0;
637}
638
1da177e4
LT
639/*
640 * Guts of sys_timer_settime for CPU timers.
641 * This is called with the timer locked and interrupts disabled.
642 * If we return TIMER_RETRY, it's necessary to release the timer's lock
643 * and try again. (This happens when the timer is in the middle of firing.)
644 */
bc2c8ea4
TG
645static int posix_cpu_timer_set(struct k_itimer *timer, int flags,
646 struct itimerspec *new, struct itimerspec *old)
1da177e4
LT
647{
648 struct task_struct *p = timer->it.cpu.task;
ae1a78ee 649 union cpu_time_count old_expires, new_expires, old_incr, val;
1da177e4
LT
650 int ret;
651
652 if (unlikely(p == NULL)) {
653 /*
654 * Timer refers to a dead task's clock.
655 */
656 return -ESRCH;
657 }
658
659 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
660
661 read_lock(&tasklist_lock);
662 /*
663 * We need the tasklist_lock to protect against reaping that
d30fda35 664 * clears p->sighand. If p has just been reaped, we can no
1da177e4
LT
665 * longer get any information about it at all.
666 */
d30fda35 667 if (unlikely(p->sighand == NULL)) {
1da177e4
LT
668 read_unlock(&tasklist_lock);
669 put_task_struct(p);
670 timer->it.cpu.task = NULL;
671 return -ESRCH;
672 }
673
674 /*
675 * Disarm any old timer after extracting its expiry time.
676 */
677 BUG_ON(!irqs_disabled());
a69ac4a7
ON
678
679 ret = 0;
ae1a78ee 680 old_incr = timer->it.cpu.incr;
1da177e4
LT
681 spin_lock(&p->sighand->siglock);
682 old_expires = timer->it.cpu.expires;
a69ac4a7
ON
683 if (unlikely(timer->it.cpu.firing)) {
684 timer->it.cpu.firing = -1;
685 ret = TIMER_RETRY;
686 } else
687 list_del_init(&timer->it.cpu.entry);
1da177e4
LT
688
689 /*
690 * We need to sample the current value to convert the new
691 * value from to relative and absolute, and to convert the
692 * old value from absolute to relative. To set a process
693 * timer, we need a sample to balance the thread expiry
694 * times (in arm_timer). With an absolute time, we must
695 * check if it's already passed. In short, we need a sample.
696 */
697 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
698 cpu_clock_sample(timer->it_clock, p, &val);
699 } else {
3997ad31 700 cpu_timer_sample_group(timer->it_clock, p, &val);
1da177e4
LT
701 }
702
703 if (old) {
704 if (old_expires.sched == 0) {
705 old->it_value.tv_sec = 0;
706 old->it_value.tv_nsec = 0;
707 } else {
708 /*
709 * Update the timer in case it has
710 * overrun already. If it has,
711 * we'll report it as having overrun
712 * and with the next reloaded timer
713 * already ticking, though we are
714 * swallowing that pending
715 * notification here to install the
716 * new setting.
717 */
718 bump_cpu_timer(timer, val);
719 if (cpu_time_before(timer->it_clock, val,
720 timer->it.cpu.expires)) {
721 old_expires = cpu_time_sub(
722 timer->it_clock,
723 timer->it.cpu.expires, val);
724 sample_to_timespec(timer->it_clock,
725 old_expires,
726 &old->it_value);
727 } else {
728 old->it_value.tv_nsec = 1;
729 old->it_value.tv_sec = 0;
730 }
731 }
732 }
733
a69ac4a7 734 if (unlikely(ret)) {
1da177e4
LT
735 /*
736 * We are colliding with the timer actually firing.
737 * Punt after filling in the timer's old value, and
738 * disable this firing since we are already reporting
739 * it as an overrun (thanks to bump_cpu_timer above).
740 */
c2873937 741 spin_unlock(&p->sighand->siglock);
1da177e4 742 read_unlock(&tasklist_lock);
1da177e4
LT
743 goto out;
744 }
745
746 if (new_expires.sched != 0 && !(flags & TIMER_ABSTIME)) {
747 cpu_time_add(timer->it_clock, &new_expires, val);
748 }
749
750 /*
751 * Install the new expiry time (or zero).
752 * For a timer with no notification action, we don't actually
753 * arm the timer (we'll just fake it for timer_gettime).
754 */
755 timer->it.cpu.expires = new_expires;
756 if (new_expires.sched != 0 &&
1da177e4 757 cpu_time_before(timer->it_clock, val, new_expires)) {
5eb9aa64 758 arm_timer(timer);
1da177e4
LT
759 }
760
c2873937 761 spin_unlock(&p->sighand->siglock);
1da177e4
LT
762 read_unlock(&tasklist_lock);
763
764 /*
765 * Install the new reload setting, and
766 * set up the signal and overrun bookkeeping.
767 */
768 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
769 &new->it_interval);
770
771 /*
772 * This acts as a modification timestamp for the timer,
773 * so any automatic reload attempt will punt on seeing
774 * that we have reset the timer manually.
775 */
776 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
777 ~REQUEUE_PENDING;
778 timer->it_overrun_last = 0;
779 timer->it_overrun = -1;
780
781 if (new_expires.sched != 0 &&
1da177e4
LT
782 !cpu_time_before(timer->it_clock, val, new_expires)) {
783 /*
784 * The designated time already passed, so we notify
785 * immediately, even if the thread never runs to
786 * accumulate more time on this clock.
787 */
788 cpu_timer_fire(timer);
789 }
790
791 ret = 0;
792 out:
793 if (old) {
794 sample_to_timespec(timer->it_clock,
ae1a78ee 795 old_incr, &old->it_interval);
1da177e4
LT
796 }
797 return ret;
798}
799
bc2c8ea4 800static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
1da177e4
LT
801{
802 union cpu_time_count now;
803 struct task_struct *p = timer->it.cpu.task;
804 int clear_dead;
805
806 /*
807 * Easy part: convert the reload time.
808 */
809 sample_to_timespec(timer->it_clock,
810 timer->it.cpu.incr, &itp->it_interval);
811
812 if (timer->it.cpu.expires.sched == 0) { /* Timer not armed at all. */
813 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
814 return;
815 }
816
817 if (unlikely(p == NULL)) {
818 /*
819 * This task already died and the timer will never fire.
820 * In this case, expires is actually the dead value.
821 */
822 dead:
823 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
824 &itp->it_value);
825 return;
826 }
827
828 /*
829 * Sample the clock to take the difference with the expiry time.
830 */
831 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
832 cpu_clock_sample(timer->it_clock, p, &now);
833 clear_dead = p->exit_state;
834 } else {
835 read_lock(&tasklist_lock);
d30fda35 836 if (unlikely(p->sighand == NULL)) {
1da177e4
LT
837 /*
838 * The process has been reaped.
839 * We can't even collect a sample any more.
840 * Call the timer disarmed, nothing else to do.
841 */
842 put_task_struct(p);
843 timer->it.cpu.task = NULL;
844 timer->it.cpu.expires.sched = 0;
845 read_unlock(&tasklist_lock);
846 goto dead;
847 } else {
3997ad31 848 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4
LT
849 clear_dead = (unlikely(p->exit_state) &&
850 thread_group_empty(p));
851 }
852 read_unlock(&tasklist_lock);
853 }
854
1da177e4
LT
855 if (unlikely(clear_dead)) {
856 /*
857 * We've noticed that the thread is dead, but
858 * not yet reaped. Take this opportunity to
859 * drop our task ref.
860 */
861 clear_dead_task(timer, now);
862 goto dead;
863 }
864
865 if (cpu_time_before(timer->it_clock, now, timer->it.cpu.expires)) {
866 sample_to_timespec(timer->it_clock,
867 cpu_time_sub(timer->it_clock,
868 timer->it.cpu.expires, now),
869 &itp->it_value);
870 } else {
871 /*
872 * The timer should have expired already, but the firing
873 * hasn't taken place yet. Say it's just about to expire.
874 */
875 itp->it_value.tv_nsec = 1;
876 itp->it_value.tv_sec = 0;
877 }
878}
879
880/*
881 * Check for any per-thread CPU timers that have fired and move them off
882 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
883 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
884 */
885static void check_thread_timers(struct task_struct *tsk,
886 struct list_head *firing)
887{
e80eda94 888 int maxfire;
1da177e4 889 struct list_head *timers = tsk->cpu_timers;
78f2c7db 890 struct signal_struct *const sig = tsk->signal;
d4bb5274 891 unsigned long soft;
1da177e4 892
e80eda94 893 maxfire = 20;
64861634 894 tsk->cputime_expires.prof_exp = 0;
1da177e4 895 while (!list_empty(timers)) {
b5e61818 896 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
897 struct cpu_timer_list,
898 entry);
64861634 899 if (!--maxfire || prof_ticks(tsk) < t->expires.cpu) {
f06febc9 900 tsk->cputime_expires.prof_exp = t->expires.cpu;
1da177e4
LT
901 break;
902 }
903 t->firing = 1;
904 list_move_tail(&t->entry, firing);
905 }
906
907 ++timers;
e80eda94 908 maxfire = 20;
64861634 909 tsk->cputime_expires.virt_exp = 0;
1da177e4 910 while (!list_empty(timers)) {
b5e61818 911 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
912 struct cpu_timer_list,
913 entry);
64861634 914 if (!--maxfire || virt_ticks(tsk) < t->expires.cpu) {
f06febc9 915 tsk->cputime_expires.virt_exp = t->expires.cpu;
1da177e4
LT
916 break;
917 }
918 t->firing = 1;
919 list_move_tail(&t->entry, firing);
920 }
921
922 ++timers;
e80eda94 923 maxfire = 20;
f06febc9 924 tsk->cputime_expires.sched_exp = 0;
1da177e4 925 while (!list_empty(timers)) {
b5e61818 926 struct cpu_timer_list *t = list_first_entry(timers,
1da177e4
LT
927 struct cpu_timer_list,
928 entry);
41b86e9c 929 if (!--maxfire || tsk->se.sum_exec_runtime < t->expires.sched) {
f06febc9 930 tsk->cputime_expires.sched_exp = t->expires.sched;
1da177e4
LT
931 break;
932 }
933 t->firing = 1;
934 list_move_tail(&t->entry, firing);
935 }
78f2c7db
PZ
936
937 /*
938 * Check for the special case thread timers.
939 */
78d7d407 940 soft = ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
d4bb5274 941 if (soft != RLIM_INFINITY) {
78d7d407
JS
942 unsigned long hard =
943 ACCESS_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
78f2c7db 944
5a52dd50
PZ
945 if (hard != RLIM_INFINITY &&
946 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
947 /*
948 * At the hard limit, we just die.
949 * No need to calculate anything else now.
950 */
951 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
952 return;
953 }
d4bb5274 954 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
78f2c7db
PZ
955 /*
956 * At the soft limit, send a SIGXCPU every second.
957 */
d4bb5274
JS
958 if (soft < hard) {
959 soft += USEC_PER_SEC;
960 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
78f2c7db 961 }
81d50bb2
HS
962 printk(KERN_INFO
963 "RT Watchdog Timeout: %s[%d]\n",
964 tsk->comm, task_pid_nr(tsk));
78f2c7db
PZ
965 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
966 }
967 }
1da177e4
LT
968}
969
15365c10 970static void stop_process_timers(struct signal_struct *sig)
3fccfd67 971{
15365c10 972 struct thread_group_cputimer *cputimer = &sig->cputimer;
3fccfd67
PZ
973 unsigned long flags;
974
ee30a7b2 975 raw_spin_lock_irqsave(&cputimer->lock, flags);
3fccfd67 976 cputimer->running = 0;
ee30a7b2 977 raw_spin_unlock_irqrestore(&cputimer->lock, flags);
3fccfd67
PZ
978}
979
8356b5f9
SG
980static u32 onecputick;
981
42c4ab41
SG
982static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
983 cputime_t *expires, cputime_t cur_time, int signo)
984{
64861634 985 if (!it->expires)
42c4ab41
SG
986 return;
987
64861634
MS
988 if (cur_time >= it->expires) {
989 if (it->incr) {
990 it->expires += it->incr;
8356b5f9
SG
991 it->error += it->incr_error;
992 if (it->error >= onecputick) {
64861634 993 it->expires -= cputime_one_jiffy;
8356b5f9
SG
994 it->error -= onecputick;
995 }
3f0a525e 996 } else {
64861634 997 it->expires = 0;
3f0a525e 998 }
42c4ab41 999
3f0a525e
XG
1000 trace_itimer_expire(signo == SIGPROF ?
1001 ITIMER_PROF : ITIMER_VIRTUAL,
1002 tsk->signal->leader_pid, cur_time);
42c4ab41
SG
1003 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
1004 }
1005
64861634 1006 if (it->expires && (!*expires || it->expires < *expires)) {
42c4ab41
SG
1007 *expires = it->expires;
1008 }
1009}
1010
29f87b79
SG
1011/**
1012 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1013 *
1014 * @cputime: The struct to compare.
1015 *
1016 * Checks @cputime to see if all fields are zero. Returns true if all fields
1017 * are zero, false if any field is nonzero.
1018 */
1019static inline int task_cputime_zero(const struct task_cputime *cputime)
1020{
64861634 1021 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
29f87b79
SG
1022 return 1;
1023 return 0;
1024}
1025
1da177e4
LT
1026/*
1027 * Check for any per-thread CPU timers that have fired and move them
1028 * off the tsk->*_timers list onto the firing list. Per-thread timers
1029 * have already been taken off.
1030 */
1031static void check_process_timers(struct task_struct *tsk,
1032 struct list_head *firing)
1033{
e80eda94 1034 int maxfire;
1da177e4 1035 struct signal_struct *const sig = tsk->signal;
f06febc9 1036 cputime_t utime, ptime, virt_expires, prof_expires;
41b86e9c 1037 unsigned long long sum_sched_runtime, sched_expires;
1da177e4 1038 struct list_head *timers = sig->cpu_timers;
f06febc9 1039 struct task_cputime cputime;
d4bb5274 1040 unsigned long soft;
1da177e4 1041
1da177e4
LT
1042 /*
1043 * Collect the current process totals.
1044 */
4cd4c1b4 1045 thread_group_cputimer(tsk, &cputime);
f06febc9 1046 utime = cputime.utime;
64861634 1047 ptime = utime + cputime.stime;
f06febc9 1048 sum_sched_runtime = cputime.sum_exec_runtime;
e80eda94 1049 maxfire = 20;
64861634 1050 prof_expires = 0;
1da177e4 1051 while (!list_empty(timers)) {
ee7dd205 1052 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1053 struct cpu_timer_list,
1054 entry);
64861634 1055 if (!--maxfire || ptime < tl->expires.cpu) {
ee7dd205 1056 prof_expires = tl->expires.cpu;
1da177e4
LT
1057 break;
1058 }
ee7dd205
WC
1059 tl->firing = 1;
1060 list_move_tail(&tl->entry, firing);
1da177e4
LT
1061 }
1062
1063 ++timers;
e80eda94 1064 maxfire = 20;
64861634 1065 virt_expires = 0;
1da177e4 1066 while (!list_empty(timers)) {
ee7dd205 1067 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1068 struct cpu_timer_list,
1069 entry);
64861634 1070 if (!--maxfire || utime < tl->expires.cpu) {
ee7dd205 1071 virt_expires = tl->expires.cpu;
1da177e4
LT
1072 break;
1073 }
ee7dd205
WC
1074 tl->firing = 1;
1075 list_move_tail(&tl->entry, firing);
1da177e4
LT
1076 }
1077
1078 ++timers;
e80eda94 1079 maxfire = 20;
1da177e4
LT
1080 sched_expires = 0;
1081 while (!list_empty(timers)) {
ee7dd205 1082 struct cpu_timer_list *tl = list_first_entry(timers,
1da177e4
LT
1083 struct cpu_timer_list,
1084 entry);
ee7dd205
WC
1085 if (!--maxfire || sum_sched_runtime < tl->expires.sched) {
1086 sched_expires = tl->expires.sched;
1da177e4
LT
1087 break;
1088 }
ee7dd205
WC
1089 tl->firing = 1;
1090 list_move_tail(&tl->entry, firing);
1da177e4
LT
1091 }
1092
1093 /*
1094 * Check for the special case process timers.
1095 */
42c4ab41
SG
1096 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
1097 SIGPROF);
1098 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
1099 SIGVTALRM);
78d7d407 1100 soft = ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
d4bb5274 1101 if (soft != RLIM_INFINITY) {
1da177e4 1102 unsigned long psecs = cputime_to_secs(ptime);
78d7d407
JS
1103 unsigned long hard =
1104 ACCESS_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
1da177e4 1105 cputime_t x;
d4bb5274 1106 if (psecs >= hard) {
1da177e4
LT
1107 /*
1108 * At the hard limit, we just die.
1109 * No need to calculate anything else now.
1110 */
1111 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
1112 return;
1113 }
d4bb5274 1114 if (psecs >= soft) {
1da177e4
LT
1115 /*
1116 * At the soft limit, send a SIGXCPU every second.
1117 */
1118 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
d4bb5274
JS
1119 if (soft < hard) {
1120 soft++;
1121 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
1da177e4
LT
1122 }
1123 }
d4bb5274 1124 x = secs_to_cputime(soft);
64861634 1125 if (!prof_expires || x < prof_expires) {
1da177e4
LT
1126 prof_expires = x;
1127 }
1128 }
1129
29f87b79
SG
1130 sig->cputime_expires.prof_exp = prof_expires;
1131 sig->cputime_expires.virt_exp = virt_expires;
1132 sig->cputime_expires.sched_exp = sched_expires;
1133 if (task_cputime_zero(&sig->cputime_expires))
1134 stop_process_timers(sig);
1da177e4
LT
1135}
1136
1137/*
1138 * This is called from the signal code (via do_schedule_next_timer)
1139 * when the last timer signal was delivered and we have to reload the timer.
1140 */
1141void posix_cpu_timer_schedule(struct k_itimer *timer)
1142{
1143 struct task_struct *p = timer->it.cpu.task;
1144 union cpu_time_count now;
1145
1146 if (unlikely(p == NULL))
1147 /*
1148 * The task was cleaned up already, no future firings.
1149 */
708f430d 1150 goto out;
1da177e4
LT
1151
1152 /*
1153 * Fetch the current sample and update the timer's expiry time.
1154 */
1155 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1156 cpu_clock_sample(timer->it_clock, p, &now);
1157 bump_cpu_timer(timer, now);
1158 if (unlikely(p->exit_state)) {
1159 clear_dead_task(timer, now);
708f430d 1160 goto out;
1da177e4
LT
1161 }
1162 read_lock(&tasklist_lock); /* arm_timer needs it. */
c2873937 1163 spin_lock(&p->sighand->siglock);
1da177e4
LT
1164 } else {
1165 read_lock(&tasklist_lock);
d30fda35 1166 if (unlikely(p->sighand == NULL)) {
1da177e4
LT
1167 /*
1168 * The process has been reaped.
1169 * We can't even collect a sample any more.
1170 */
1171 put_task_struct(p);
1172 timer->it.cpu.task = p = NULL;
1173 timer->it.cpu.expires.sched = 0;
708f430d 1174 goto out_unlock;
1da177e4
LT
1175 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1176 /*
1177 * We've noticed that the thread is dead, but
1178 * not yet reaped. Take this opportunity to
1179 * drop our task ref.
1180 */
1181 clear_dead_task(timer, now);
708f430d 1182 goto out_unlock;
1da177e4 1183 }
c2873937 1184 spin_lock(&p->sighand->siglock);
3997ad31 1185 cpu_timer_sample_group(timer->it_clock, p, &now);
1da177e4
LT
1186 bump_cpu_timer(timer, now);
1187 /* Leave the tasklist_lock locked for the call below. */
1188 }
1189
1190 /*
1191 * Now re-arm for the new expiry time.
1192 */
c2873937 1193 BUG_ON(!irqs_disabled());
5eb9aa64 1194 arm_timer(timer);
c2873937 1195 spin_unlock(&p->sighand->siglock);
1da177e4 1196
708f430d 1197out_unlock:
1da177e4 1198 read_unlock(&tasklist_lock);
708f430d
RM
1199
1200out:
1201 timer->it_overrun_last = timer->it_overrun;
1202 timer->it_overrun = -1;
1203 ++timer->it_requeue_pending;
1da177e4
LT
1204}
1205
f06febc9
FM
1206/**
1207 * task_cputime_expired - Compare two task_cputime entities.
1208 *
1209 * @sample: The task_cputime structure to be checked for expiration.
1210 * @expires: Expiration times, against which @sample will be checked.
1211 *
1212 * Checks @sample against @expires to see if any field of @sample has expired.
1213 * Returns true if any field of the former is greater than the corresponding
1214 * field of the latter if the latter field is set. Otherwise returns false.
1215 */
1216static inline int task_cputime_expired(const struct task_cputime *sample,
1217 const struct task_cputime *expires)
1218{
64861634 1219 if (expires->utime && sample->utime >= expires->utime)
f06febc9 1220 return 1;
64861634 1221 if (expires->stime && sample->utime + sample->stime >= expires->stime)
f06febc9
FM
1222 return 1;
1223 if (expires->sum_exec_runtime != 0 &&
1224 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1225 return 1;
1226 return 0;
1227}
1228
1229/**
1230 * fastpath_timer_check - POSIX CPU timers fast path.
1231 *
1232 * @tsk: The task (thread) being checked.
f06febc9 1233 *
bb34d92f
FM
1234 * Check the task and thread group timers. If both are zero (there are no
1235 * timers set) return false. Otherwise snapshot the task and thread group
1236 * timers and compare them with the corresponding expiration times. Return
1237 * true if a timer has expired, else return false.
f06febc9 1238 */
bb34d92f 1239static inline int fastpath_timer_check(struct task_struct *tsk)
f06febc9 1240{
ad133ba3 1241 struct signal_struct *sig;
6fac4829
FW
1242 cputime_t utime, stime;
1243
1244 task_cputime(tsk, &utime, &stime);
bb34d92f 1245
bb34d92f
FM
1246 if (!task_cputime_zero(&tsk->cputime_expires)) {
1247 struct task_cputime task_sample = {
6fac4829
FW
1248 .utime = utime,
1249 .stime = stime,
bb34d92f
FM
1250 .sum_exec_runtime = tsk->se.sum_exec_runtime
1251 };
1252
1253 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1254 return 1;
1255 }
ad133ba3
ON
1256
1257 sig = tsk->signal;
29f87b79 1258 if (sig->cputimer.running) {
bb34d92f
FM
1259 struct task_cputime group_sample;
1260
ee30a7b2 1261 raw_spin_lock(&sig->cputimer.lock);
8d1f431c 1262 group_sample = sig->cputimer.cputime;
ee30a7b2 1263 raw_spin_unlock(&sig->cputimer.lock);
8d1f431c 1264
bb34d92f
FM
1265 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1266 return 1;
1267 }
37bebc70 1268
f55db609 1269 return 0;
f06febc9
FM
1270}
1271
1da177e4
LT
1272/*
1273 * This is called from the timer interrupt handler. The irq handler has
1274 * already updated our counts. We need to check if any timers fire now.
1275 * Interrupts are disabled.
1276 */
1277void run_posix_cpu_timers(struct task_struct *tsk)
1278{
1279 LIST_HEAD(firing);
1280 struct k_itimer *timer, *next;
0bdd2ed4 1281 unsigned long flags;
1da177e4
LT
1282
1283 BUG_ON(!irqs_disabled());
1284
1da177e4 1285 /*
f06febc9 1286 * The fast path checks that there are no expired thread or thread
bb34d92f 1287 * group timers. If that's so, just return.
1da177e4 1288 */
bb34d92f 1289 if (!fastpath_timer_check(tsk))
f06febc9 1290 return;
5ce73a4a 1291
0bdd2ed4
ON
1292 if (!lock_task_sighand(tsk, &flags))
1293 return;
bb34d92f
FM
1294 /*
1295 * Here we take off tsk->signal->cpu_timers[N] and
1296 * tsk->cpu_timers[N] all the timers that are firing, and
1297 * put them on the firing list.
1298 */
1299 check_thread_timers(tsk, &firing);
29f87b79
SG
1300 /*
1301 * If there are any active process wide timers (POSIX 1.b, itimers,
1302 * RLIMIT_CPU) cputimer must be running.
1303 */
1304 if (tsk->signal->cputimer.running)
1305 check_process_timers(tsk, &firing);
1da177e4 1306
bb34d92f
FM
1307 /*
1308 * We must release these locks before taking any timer's lock.
1309 * There is a potential race with timer deletion here, as the
1310 * siglock now protects our private firing list. We have set
1311 * the firing flag in each timer, so that a deletion attempt
1312 * that gets the timer lock before we do will give it up and
1313 * spin until we've taken care of that timer below.
1314 */
0bdd2ed4 1315 unlock_task_sighand(tsk, &flags);
1da177e4
LT
1316
1317 /*
1318 * Now that all the timers on our list have the firing flag,
25985edc 1319 * no one will touch their list entries but us. We'll take
1da177e4
LT
1320 * each timer's lock before clearing its firing flag, so no
1321 * timer call will interfere.
1322 */
1323 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
6e85c5ba
HS
1324 int cpu_firing;
1325
1da177e4
LT
1326 spin_lock(&timer->it_lock);
1327 list_del_init(&timer->it.cpu.entry);
6e85c5ba 1328 cpu_firing = timer->it.cpu.firing;
1da177e4
LT
1329 timer->it.cpu.firing = 0;
1330 /*
1331 * The firing flag is -1 if we collided with a reset
1332 * of the timer, which already reported this
1333 * almost-firing as an overrun. So don't generate an event.
1334 */
6e85c5ba 1335 if (likely(cpu_firing >= 0))
1da177e4 1336 cpu_timer_fire(timer);
1da177e4
LT
1337 spin_unlock(&timer->it_lock);
1338 }
1339}
1340
1341/*
f55db609 1342 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
f06febc9 1343 * The tsk->sighand->siglock must be held by the caller.
1da177e4
LT
1344 */
1345void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1346 cputime_t *newval, cputime_t *oldval)
1347{
1348 union cpu_time_count now;
1da177e4
LT
1349
1350 BUG_ON(clock_idx == CPUCLOCK_SCHED);
4cd4c1b4 1351 cpu_timer_sample_group(clock_idx, tsk, &now);
1da177e4
LT
1352
1353 if (oldval) {
f55db609
SG
1354 /*
1355 * We are setting itimer. The *oldval is absolute and we update
1356 * it to be relative, *newval argument is relative and we update
1357 * it to be absolute.
1358 */
64861634
MS
1359 if (*oldval) {
1360 if (*oldval <= now.cpu) {
1da177e4 1361 /* Just about to fire. */
a42548a1 1362 *oldval = cputime_one_jiffy;
1da177e4 1363 } else {
64861634 1364 *oldval -= now.cpu;
1da177e4
LT
1365 }
1366 }
1367
64861634 1368 if (!*newval)
1da177e4 1369 return;
64861634 1370 *newval += now.cpu;
1da177e4
LT
1371 }
1372
1373 /*
f55db609
SG
1374 * Update expiration cache if we are the earliest timer, or eventually
1375 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1da177e4 1376 */
f55db609
SG
1377 switch (clock_idx) {
1378 case CPUCLOCK_PROF:
1379 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
f06febc9 1380 tsk->signal->cputime_expires.prof_exp = *newval;
f55db609
SG
1381 break;
1382 case CPUCLOCK_VIRT:
1383 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
f06febc9 1384 tsk->signal->cputime_expires.virt_exp = *newval;
f55db609 1385 break;
1da177e4
LT
1386 }
1387}
1388
e4b76555
TA
1389static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1390 struct timespec *rqtp, struct itimerspec *it)
1da177e4 1391{
1da177e4
LT
1392 struct k_itimer timer;
1393 int error;
1394
1da177e4
LT
1395 /*
1396 * Set up a temporary timer and then wait for it to go off.
1397 */
1398 memset(&timer, 0, sizeof timer);
1399 spin_lock_init(&timer.it_lock);
1400 timer.it_clock = which_clock;
1401 timer.it_overrun = -1;
1402 error = posix_cpu_timer_create(&timer);
1403 timer.it_process = current;
1404 if (!error) {
1da177e4 1405 static struct itimerspec zero_it;
e4b76555
TA
1406
1407 memset(it, 0, sizeof *it);
1408 it->it_value = *rqtp;
1da177e4
LT
1409
1410 spin_lock_irq(&timer.it_lock);
e4b76555 1411 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1da177e4
LT
1412 if (error) {
1413 spin_unlock_irq(&timer.it_lock);
1414 return error;
1415 }
1416
1417 while (!signal_pending(current)) {
1418 if (timer.it.cpu.expires.sched == 0) {
1419 /*
e6c42c29
SG
1420 * Our timer fired and was reset, below
1421 * deletion can not fail.
1da177e4 1422 */
e6c42c29 1423 posix_cpu_timer_del(&timer);
1da177e4
LT
1424 spin_unlock_irq(&timer.it_lock);
1425 return 0;
1426 }
1427
1428 /*
1429 * Block until cpu_timer_fire (or a signal) wakes us.
1430 */
1431 __set_current_state(TASK_INTERRUPTIBLE);
1432 spin_unlock_irq(&timer.it_lock);
1433 schedule();
1434 spin_lock_irq(&timer.it_lock);
1435 }
1436
1437 /*
1438 * We were interrupted by a signal.
1439 */
1440 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
e6c42c29
SG
1441 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1442 if (!error) {
1443 /*
1444 * Timer is now unarmed, deletion can not fail.
1445 */
1446 posix_cpu_timer_del(&timer);
1447 }
1da177e4
LT
1448 spin_unlock_irq(&timer.it_lock);
1449
e6c42c29
SG
1450 while (error == TIMER_RETRY) {
1451 /*
1452 * We need to handle case when timer was or is in the
1453 * middle of firing. In other cases we already freed
1454 * resources.
1455 */
1456 spin_lock_irq(&timer.it_lock);
1457 error = posix_cpu_timer_del(&timer);
1458 spin_unlock_irq(&timer.it_lock);
1459 }
1460
e4b76555 1461 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1da177e4
LT
1462 /*
1463 * It actually did fire already.
1464 */
1465 return 0;
1466 }
1467
e4b76555
TA
1468 error = -ERESTART_RESTARTBLOCK;
1469 }
1470
1471 return error;
1472}
1473
bc2c8ea4
TG
1474static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1475
1476static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1477 struct timespec *rqtp, struct timespec __user *rmtp)
e4b76555
TA
1478{
1479 struct restart_block *restart_block =
3751f9f2 1480 &current_thread_info()->restart_block;
e4b76555
TA
1481 struct itimerspec it;
1482 int error;
1483
1484 /*
1485 * Diagnose required errors first.
1486 */
1487 if (CPUCLOCK_PERTHREAD(which_clock) &&
1488 (CPUCLOCK_PID(which_clock) == 0 ||
1489 CPUCLOCK_PID(which_clock) == current->pid))
1490 return -EINVAL;
1491
1492 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1493
1494 if (error == -ERESTART_RESTARTBLOCK) {
1495
3751f9f2 1496 if (flags & TIMER_ABSTIME)
e4b76555 1497 return -ERESTARTNOHAND;
1da177e4 1498 /*
3751f9f2
TG
1499 * Report back to the user the time still remaining.
1500 */
1501 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1da177e4
LT
1502 return -EFAULT;
1503
1711ef38 1504 restart_block->fn = posix_cpu_nsleep_restart;
ab8177bc 1505 restart_block->nanosleep.clockid = which_clock;
3751f9f2
TG
1506 restart_block->nanosleep.rmtp = rmtp;
1507 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1da177e4 1508 }
1da177e4
LT
1509 return error;
1510}
1511
bc2c8ea4 1512static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1da177e4 1513{
ab8177bc 1514 clockid_t which_clock = restart_block->nanosleep.clockid;
97735f25 1515 struct timespec t;
e4b76555
TA
1516 struct itimerspec it;
1517 int error;
97735f25 1518
3751f9f2 1519 t = ns_to_timespec(restart_block->nanosleep.expires);
97735f25 1520
e4b76555
TA
1521 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1522
1523 if (error == -ERESTART_RESTARTBLOCK) {
3751f9f2 1524 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
e4b76555 1525 /*
3751f9f2
TG
1526 * Report back to the user the time still remaining.
1527 */
1528 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
e4b76555
TA
1529 return -EFAULT;
1530
3751f9f2 1531 restart_block->nanosleep.expires = timespec_to_ns(&t);
e4b76555
TA
1532 }
1533 return error;
1534
1da177e4
LT
1535}
1536
1da177e4
LT
1537#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1538#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1539
a924b04d
TG
1540static int process_cpu_clock_getres(const clockid_t which_clock,
1541 struct timespec *tp)
1da177e4
LT
1542{
1543 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1544}
a924b04d
TG
1545static int process_cpu_clock_get(const clockid_t which_clock,
1546 struct timespec *tp)
1da177e4
LT
1547{
1548 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1549}
1550static int process_cpu_timer_create(struct k_itimer *timer)
1551{
1552 timer->it_clock = PROCESS_CLOCK;
1553 return posix_cpu_timer_create(timer);
1554}
a924b04d 1555static int process_cpu_nsleep(const clockid_t which_clock, int flags,
97735f25
TG
1556 struct timespec *rqtp,
1557 struct timespec __user *rmtp)
1da177e4 1558{
97735f25 1559 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1da177e4 1560}
1711ef38
TA
1561static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1562{
1563 return -EINVAL;
1564}
a924b04d
TG
1565static int thread_cpu_clock_getres(const clockid_t which_clock,
1566 struct timespec *tp)
1da177e4
LT
1567{
1568 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1569}
a924b04d
TG
1570static int thread_cpu_clock_get(const clockid_t which_clock,
1571 struct timespec *tp)
1da177e4
LT
1572{
1573 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1574}
1575static int thread_cpu_timer_create(struct k_itimer *timer)
1576{
1577 timer->it_clock = THREAD_CLOCK;
1578 return posix_cpu_timer_create(timer);
1579}
1da177e4 1580
1976945e
TG
1581struct k_clock clock_posix_cpu = {
1582 .clock_getres = posix_cpu_clock_getres,
1583 .clock_set = posix_cpu_clock_set,
1584 .clock_get = posix_cpu_clock_get,
1585 .timer_create = posix_cpu_timer_create,
1586 .nsleep = posix_cpu_nsleep,
1587 .nsleep_restart = posix_cpu_nsleep_restart,
1588 .timer_set = posix_cpu_timer_set,
1589 .timer_del = posix_cpu_timer_del,
1590 .timer_get = posix_cpu_timer_get,
1591};
1592
1da177e4
LT
1593static __init int init_posix_cpu_timers(void)
1594{
1595 struct k_clock process = {
2fd1f040
TG
1596 .clock_getres = process_cpu_clock_getres,
1597 .clock_get = process_cpu_clock_get,
2fd1f040
TG
1598 .timer_create = process_cpu_timer_create,
1599 .nsleep = process_cpu_nsleep,
1600 .nsleep_restart = process_cpu_nsleep_restart,
1da177e4
LT
1601 };
1602 struct k_clock thread = {
2fd1f040
TG
1603 .clock_getres = thread_cpu_clock_getres,
1604 .clock_get = thread_cpu_clock_get,
2fd1f040 1605 .timer_create = thread_cpu_timer_create,
1da177e4 1606 };
8356b5f9 1607 struct timespec ts;
1da177e4 1608
52708737
TG
1609 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1610 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1da177e4 1611
a42548a1 1612 cputime_to_timespec(cputime_one_jiffy, &ts);
8356b5f9
SG
1613 onecputick = ts.tv_nsec;
1614 WARN_ON(ts.tv_sec != 0);
1615
1da177e4
LT
1616 return 0;
1617}
1618__initcall(init_posix_cpu_timers);