ppc: Clean up scanlog
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
cf417141
MK
17 * 2008 Rework of the scheduler domains and CPU hotplug handling
18 * by Max Krasnyansky
1da177e4
LT
19 *
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
23 */
24
1da177e4
LT
25#include <linux/cpu.h>
26#include <linux/cpumask.h>
27#include <linux/cpuset.h>
28#include <linux/err.h>
29#include <linux/errno.h>
30#include <linux/file.h>
31#include <linux/fs.h>
32#include <linux/init.h>
33#include <linux/interrupt.h>
34#include <linux/kernel.h>
35#include <linux/kmod.h>
36#include <linux/list.h>
68860ec1 37#include <linux/mempolicy.h>
1da177e4 38#include <linux/mm.h>
f481891f 39#include <linux/memory.h>
9984de1a 40#include <linux/export.h>
1da177e4
LT
41#include <linux/mount.h>
42#include <linux/namei.h>
43#include <linux/pagemap.h>
44#include <linux/proc_fs.h>
6b9c2603 45#include <linux/rcupdate.h>
1da177e4
LT
46#include <linux/sched.h>
47#include <linux/seq_file.h>
22fb52dd 48#include <linux/security.h>
1da177e4 49#include <linux/slab.h>
1da177e4
LT
50#include <linux/spinlock.h>
51#include <linux/stat.h>
52#include <linux/string.h>
53#include <linux/time.h>
54#include <linux/backing-dev.h>
55#include <linux/sort.h>
56
57#include <asm/uaccess.h>
60063497 58#include <linux/atomic.h>
3d3f26a7 59#include <linux/mutex.h>
956db3ca
CW
60#include <linux/workqueue.h>
61#include <linux/cgroup.h>
1da177e4 62
202f72d5
PJ
63/*
64 * Tracks how many cpusets are currently defined in system.
65 * When there is only one cpuset (the root cpuset) we can
66 * short circuit some hooks.
67 */
7edc5962 68int number_of_cpusets __read_mostly;
202f72d5 69
2df167a3 70/* Forward declare cgroup structures */
8793d854
PM
71struct cgroup_subsys cpuset_subsys;
72struct cpuset;
73
3e0d98b9
PJ
74/* See "Frequency meter" comments, below. */
75
76struct fmeter {
77 int cnt; /* unprocessed events count */
78 int val; /* most recent output value */
79 time_t time; /* clock (secs) when val computed */
80 spinlock_t lock; /* guards read or write of above */
81};
82
1da177e4 83struct cpuset {
8793d854
PM
84 struct cgroup_subsys_state css;
85
1da177e4 86 unsigned long flags; /* "unsigned long" so bitops work */
300ed6cb 87 cpumask_var_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
1da177e4
LT
88 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
89
3e0d98b9 90 struct fmeter fmeter; /* memory_pressure filter */
029190c5 91
452477fa
TH
92 /*
93 * Tasks are being attached to this cpuset. Used to prevent
94 * zeroing cpus/mems_allowed between ->can_attach() and ->attach().
95 */
96 int attach_in_progress;
97
029190c5
PJ
98 /* partition number for rebuild_sched_domains() */
99 int pn;
956db3ca 100
1d3504fc
HS
101 /* for custom sched domain */
102 int relax_domain_level;
103
8d033948 104 struct work_struct hotplug_work;
1da177e4
LT
105};
106
8793d854
PM
107/* Retrieve the cpuset for a cgroup */
108static inline struct cpuset *cgroup_cs(struct cgroup *cont)
109{
110 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
111 struct cpuset, css);
112}
113
114/* Retrieve the cpuset for a task */
115static inline struct cpuset *task_cs(struct task_struct *task)
116{
117 return container_of(task_subsys_state(task, cpuset_subsys_id),
118 struct cpuset, css);
119}
8793d854 120
c431069f
TH
121static inline struct cpuset *parent_cs(const struct cpuset *cs)
122{
123 struct cgroup *pcgrp = cs->css.cgroup->parent;
124
125 if (pcgrp)
126 return cgroup_cs(pcgrp);
127 return NULL;
128}
129
b246272e
DR
130#ifdef CONFIG_NUMA
131static inline bool task_has_mempolicy(struct task_struct *task)
132{
133 return task->mempolicy;
134}
135#else
136static inline bool task_has_mempolicy(struct task_struct *task)
137{
138 return false;
139}
140#endif
141
142
1da177e4
LT
143/* bits in struct cpuset flags field */
144typedef enum {
efeb77b2 145 CS_ONLINE,
1da177e4
LT
146 CS_CPU_EXCLUSIVE,
147 CS_MEM_EXCLUSIVE,
78608366 148 CS_MEM_HARDWALL,
45b07ef3 149 CS_MEMORY_MIGRATE,
029190c5 150 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
151 CS_SPREAD_PAGE,
152 CS_SPREAD_SLAB,
1da177e4
LT
153} cpuset_flagbits_t;
154
155/* convenient tests for these bits */
efeb77b2
TH
156static inline bool is_cpuset_online(const struct cpuset *cs)
157{
158 return test_bit(CS_ONLINE, &cs->flags);
159}
160
1da177e4
LT
161static inline int is_cpu_exclusive(const struct cpuset *cs)
162{
7b5b9ef0 163 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
164}
165
166static inline int is_mem_exclusive(const struct cpuset *cs)
167{
7b5b9ef0 168 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
169}
170
78608366
PM
171static inline int is_mem_hardwall(const struct cpuset *cs)
172{
173 return test_bit(CS_MEM_HARDWALL, &cs->flags);
174}
175
029190c5
PJ
176static inline int is_sched_load_balance(const struct cpuset *cs)
177{
178 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
179}
180
45b07ef3
PJ
181static inline int is_memory_migrate(const struct cpuset *cs)
182{
7b5b9ef0 183 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
184}
185
825a46af
PJ
186static inline int is_spread_page(const struct cpuset *cs)
187{
188 return test_bit(CS_SPREAD_PAGE, &cs->flags);
189}
190
191static inline int is_spread_slab(const struct cpuset *cs)
192{
193 return test_bit(CS_SPREAD_SLAB, &cs->flags);
194}
195
1da177e4 196static struct cpuset top_cpuset = {
efeb77b2
TH
197 .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) |
198 (1 << CS_MEM_EXCLUSIVE)),
1da177e4
LT
199};
200
ae8086ce
TH
201/**
202 * cpuset_for_each_child - traverse online children of a cpuset
203 * @child_cs: loop cursor pointing to the current child
204 * @pos_cgrp: used for iteration
205 * @parent_cs: target cpuset to walk children of
206 *
207 * Walk @child_cs through the online children of @parent_cs. Must be used
208 * with RCU read locked.
209 */
210#define cpuset_for_each_child(child_cs, pos_cgrp, parent_cs) \
211 cgroup_for_each_child((pos_cgrp), (parent_cs)->css.cgroup) \
212 if (is_cpuset_online(((child_cs) = cgroup_cs((pos_cgrp)))))
213
fc560a26
TH
214/**
215 * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants
216 * @des_cs: loop cursor pointing to the current descendant
217 * @pos_cgrp: used for iteration
218 * @root_cs: target cpuset to walk ancestor of
219 *
220 * Walk @des_cs through the online descendants of @root_cs. Must be used
221 * with RCU read locked. The caller may modify @pos_cgrp by calling
222 * cgroup_rightmost_descendant() to skip subtree.
223 */
224#define cpuset_for_each_descendant_pre(des_cs, pos_cgrp, root_cs) \
225 cgroup_for_each_descendant_pre((pos_cgrp), (root_cs)->css.cgroup) \
226 if (is_cpuset_online(((des_cs) = cgroup_cs((pos_cgrp)))))
227
1da177e4 228/*
5d21cc2d
TH
229 * There are two global mutexes guarding cpuset structures - cpuset_mutex
230 * and callback_mutex. The latter may nest inside the former. We also
231 * require taking task_lock() when dereferencing a task's cpuset pointer.
232 * See "The task_lock() exception", at the end of this comment.
233 *
234 * A task must hold both mutexes to modify cpusets. If a task holds
235 * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it
236 * is the only task able to also acquire callback_mutex and be able to
237 * modify cpusets. It can perform various checks on the cpuset structure
238 * first, knowing nothing will change. It can also allocate memory while
239 * just holding cpuset_mutex. While it is performing these checks, various
240 * callback routines can briefly acquire callback_mutex to query cpusets.
241 * Once it is ready to make the changes, it takes callback_mutex, blocking
242 * everyone else.
053199ed
PJ
243 *
244 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 245 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
246 * from one of the callbacks into the cpuset code from within
247 * __alloc_pages().
248 *
3d3f26a7 249 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
250 * access to cpusets.
251 *
58568d2a
MX
252 * Now, the task_struct fields mems_allowed and mempolicy may be changed
253 * by other task, we use alloc_lock in the task_struct fields to protect
254 * them.
053199ed 255 *
3d3f26a7 256 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
257 * small pieces of code, such as when reading out possibly multi-word
258 * cpumasks and nodemasks.
259 *
2df167a3
PM
260 * Accessing a task's cpuset should be done in accordance with the
261 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
262 */
263
5d21cc2d 264static DEFINE_MUTEX(cpuset_mutex);
3d3f26a7 265static DEFINE_MUTEX(callback_mutex);
4247bdc6 266
75aa1994
DR
267/*
268 * cpuset_buffer_lock protects both the cpuset_name and cpuset_nodelist
269 * buffers. They are statically allocated to prevent using excess stack
270 * when calling cpuset_print_task_mems_allowed().
271 */
272#define CPUSET_NAME_LEN (128)
273#define CPUSET_NODELIST_LEN (256)
274static char cpuset_name[CPUSET_NAME_LEN];
275static char cpuset_nodelist[CPUSET_NODELIST_LEN];
276static DEFINE_SPINLOCK(cpuset_buffer_lock);
277
3a5a6d0c
TH
278/*
279 * CPU / memory hotplug is handled asynchronously.
280 */
8d033948
TH
281static struct workqueue_struct *cpuset_propagate_hotplug_wq;
282
3a5a6d0c 283static void cpuset_hotplug_workfn(struct work_struct *work);
8d033948 284static void cpuset_propagate_hotplug_workfn(struct work_struct *work);
02bb5863 285static void schedule_cpuset_propagate_hotplug(struct cpuset *cs);
3a5a6d0c
TH
286
287static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn);
288
cf417141
MK
289/*
290 * This is ugly, but preserves the userspace API for existing cpuset
8793d854 291 * users. If someone tries to mount the "cpuset" filesystem, we
cf417141
MK
292 * silently switch it to mount "cgroup" instead
293 */
f7e83571
AV
294static struct dentry *cpuset_mount(struct file_system_type *fs_type,
295 int flags, const char *unused_dev_name, void *data)
1da177e4 296{
8793d854 297 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
f7e83571 298 struct dentry *ret = ERR_PTR(-ENODEV);
8793d854
PM
299 if (cgroup_fs) {
300 char mountopts[] =
301 "cpuset,noprefix,"
302 "release_agent=/sbin/cpuset_release_agent";
f7e83571
AV
303 ret = cgroup_fs->mount(cgroup_fs, flags,
304 unused_dev_name, mountopts);
8793d854
PM
305 put_filesystem(cgroup_fs);
306 }
307 return ret;
1da177e4
LT
308}
309
310static struct file_system_type cpuset_fs_type = {
311 .name = "cpuset",
f7e83571 312 .mount = cpuset_mount,
1da177e4
LT
313};
314
1da177e4 315/*
300ed6cb 316 * Return in pmask the portion of a cpusets's cpus_allowed that
1da177e4
LT
317 * are online. If none are online, walk up the cpuset hierarchy
318 * until we find one that does have some online cpus. If we get
319 * all the way to the top and still haven't found any online cpus,
5f054e31
RR
320 * return cpu_online_mask. Or if passed a NULL cs from an exit'ing
321 * task, return cpu_online_mask.
1da177e4
LT
322 *
323 * One way or another, we guarantee to return some non-empty subset
5f054e31 324 * of cpu_online_mask.
1da177e4 325 *
3d3f26a7 326 * Call with callback_mutex held.
1da177e4
LT
327 */
328
6af866af
LZ
329static void guarantee_online_cpus(const struct cpuset *cs,
330 struct cpumask *pmask)
1da177e4 331{
300ed6cb 332 while (cs && !cpumask_intersects(cs->cpus_allowed, cpu_online_mask))
c431069f 333 cs = parent_cs(cs);
1da177e4 334 if (cs)
300ed6cb 335 cpumask_and(pmask, cs->cpus_allowed, cpu_online_mask);
1da177e4 336 else
300ed6cb
LZ
337 cpumask_copy(pmask, cpu_online_mask);
338 BUG_ON(!cpumask_intersects(pmask, cpu_online_mask));
1da177e4
LT
339}
340
341/*
342 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
343 * are online, with memory. If none are online with memory, walk
344 * up the cpuset hierarchy until we find one that does have some
345 * online mems. If we get all the way to the top and still haven't
38d7bee9 346 * found any online mems, return node_states[N_MEMORY].
1da177e4
LT
347 *
348 * One way or another, we guarantee to return some non-empty subset
38d7bee9 349 * of node_states[N_MEMORY].
1da177e4 350 *
3d3f26a7 351 * Call with callback_mutex held.
1da177e4
LT
352 */
353
354static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
355{
0e1e7c7a 356 while (cs && !nodes_intersects(cs->mems_allowed,
38d7bee9 357 node_states[N_MEMORY]))
c431069f 358 cs = parent_cs(cs);
1da177e4 359 if (cs)
0e1e7c7a 360 nodes_and(*pmask, cs->mems_allowed,
38d7bee9 361 node_states[N_MEMORY]);
1da177e4 362 else
38d7bee9
LJ
363 *pmask = node_states[N_MEMORY];
364 BUG_ON(!nodes_intersects(*pmask, node_states[N_MEMORY]));
1da177e4
LT
365}
366
f3b39d47
MX
367/*
368 * update task's spread flag if cpuset's page/slab spread flag is set
369 *
5d21cc2d 370 * Called with callback_mutex/cpuset_mutex held
f3b39d47
MX
371 */
372static void cpuset_update_task_spread_flag(struct cpuset *cs,
373 struct task_struct *tsk)
374{
375 if (is_spread_page(cs))
376 tsk->flags |= PF_SPREAD_PAGE;
377 else
378 tsk->flags &= ~PF_SPREAD_PAGE;
379 if (is_spread_slab(cs))
380 tsk->flags |= PF_SPREAD_SLAB;
381 else
382 tsk->flags &= ~PF_SPREAD_SLAB;
383}
384
1da177e4
LT
385/*
386 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
387 *
388 * One cpuset is a subset of another if all its allowed CPUs and
389 * Memory Nodes are a subset of the other, and its exclusive flags
5d21cc2d 390 * are only set if the other's are set. Call holding cpuset_mutex.
1da177e4
LT
391 */
392
393static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
394{
300ed6cb 395 return cpumask_subset(p->cpus_allowed, q->cpus_allowed) &&
1da177e4
LT
396 nodes_subset(p->mems_allowed, q->mems_allowed) &&
397 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
398 is_mem_exclusive(p) <= is_mem_exclusive(q);
399}
400
645fcc9d
LZ
401/**
402 * alloc_trial_cpuset - allocate a trial cpuset
403 * @cs: the cpuset that the trial cpuset duplicates
404 */
405static struct cpuset *alloc_trial_cpuset(const struct cpuset *cs)
406{
300ed6cb
LZ
407 struct cpuset *trial;
408
409 trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL);
410 if (!trial)
411 return NULL;
412
413 if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) {
414 kfree(trial);
415 return NULL;
416 }
417 cpumask_copy(trial->cpus_allowed, cs->cpus_allowed);
418
419 return trial;
645fcc9d
LZ
420}
421
422/**
423 * free_trial_cpuset - free the trial cpuset
424 * @trial: the trial cpuset to be freed
425 */
426static void free_trial_cpuset(struct cpuset *trial)
427{
300ed6cb 428 free_cpumask_var(trial->cpus_allowed);
645fcc9d
LZ
429 kfree(trial);
430}
431
1da177e4
LT
432/*
433 * validate_change() - Used to validate that any proposed cpuset change
434 * follows the structural rules for cpusets.
435 *
436 * If we replaced the flag and mask values of the current cpuset
437 * (cur) with those values in the trial cpuset (trial), would
438 * our various subset and exclusive rules still be valid? Presumes
5d21cc2d 439 * cpuset_mutex held.
1da177e4
LT
440 *
441 * 'cur' is the address of an actual, in-use cpuset. Operations
442 * such as list traversal that depend on the actual address of the
443 * cpuset in the list must use cur below, not trial.
444 *
445 * 'trial' is the address of bulk structure copy of cur, with
446 * perhaps one or more of the fields cpus_allowed, mems_allowed,
447 * or flags changed to new, trial values.
448 *
449 * Return 0 if valid, -errno if not.
450 */
451
452static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
453{
8793d854 454 struct cgroup *cont;
1da177e4 455 struct cpuset *c, *par;
ae8086ce
TH
456 int ret;
457
458 rcu_read_lock();
1da177e4
LT
459
460 /* Each of our child cpusets must be a subset of us */
ae8086ce
TH
461 ret = -EBUSY;
462 cpuset_for_each_child(c, cont, cur)
463 if (!is_cpuset_subset(c, trial))
464 goto out;
1da177e4
LT
465
466 /* Remaining checks don't apply to root cpuset */
ae8086ce 467 ret = 0;
69604067 468 if (cur == &top_cpuset)
ae8086ce 469 goto out;
1da177e4 470
c431069f 471 par = parent_cs(cur);
69604067 472
1da177e4 473 /* We must be a subset of our parent cpuset */
ae8086ce 474 ret = -EACCES;
1da177e4 475 if (!is_cpuset_subset(trial, par))
ae8086ce 476 goto out;
1da177e4 477
2df167a3
PM
478 /*
479 * If either I or some sibling (!= me) is exclusive, we can't
480 * overlap
481 */
ae8086ce
TH
482 ret = -EINVAL;
483 cpuset_for_each_child(c, cont, par) {
1da177e4
LT
484 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
485 c != cur &&
300ed6cb 486 cpumask_intersects(trial->cpus_allowed, c->cpus_allowed))
ae8086ce 487 goto out;
1da177e4
LT
488 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
489 c != cur &&
490 nodes_intersects(trial->mems_allowed, c->mems_allowed))
ae8086ce 491 goto out;
1da177e4
LT
492 }
493
452477fa
TH
494 /*
495 * Cpusets with tasks - existing or newly being attached - can't
496 * have empty cpus_allowed or mems_allowed.
497 */
ae8086ce 498 ret = -ENOSPC;
452477fa 499 if ((cgroup_task_count(cur->css.cgroup) || cur->attach_in_progress) &&
ae8086ce
TH
500 (cpumask_empty(trial->cpus_allowed) ||
501 nodes_empty(trial->mems_allowed)))
502 goto out;
020958b6 503
ae8086ce
TH
504 ret = 0;
505out:
506 rcu_read_unlock();
507 return ret;
1da177e4
LT
508}
509
db7f47cf 510#ifdef CONFIG_SMP
029190c5 511/*
cf417141 512 * Helper routine for generate_sched_domains().
029190c5
PJ
513 * Do cpusets a, b have overlapping cpus_allowed masks?
514 */
029190c5
PJ
515static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
516{
300ed6cb 517 return cpumask_intersects(a->cpus_allowed, b->cpus_allowed);
029190c5
PJ
518}
519
1d3504fc
HS
520static void
521update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
522{
1d3504fc
HS
523 if (dattr->relax_domain_level < c->relax_domain_level)
524 dattr->relax_domain_level = c->relax_domain_level;
525 return;
526}
527
fc560a26
TH
528static void update_domain_attr_tree(struct sched_domain_attr *dattr,
529 struct cpuset *root_cs)
f5393693 530{
fc560a26
TH
531 struct cpuset *cp;
532 struct cgroup *pos_cgrp;
f5393693 533
fc560a26
TH
534 rcu_read_lock();
535 cpuset_for_each_descendant_pre(cp, pos_cgrp, root_cs) {
536 /* skip the whole subtree if @cp doesn't have any CPU */
537 if (cpumask_empty(cp->cpus_allowed)) {
538 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
f5393693 539 continue;
fc560a26 540 }
f5393693
LJ
541
542 if (is_sched_load_balance(cp))
543 update_domain_attr(dattr, cp);
f5393693 544 }
fc560a26 545 rcu_read_unlock();
f5393693
LJ
546}
547
029190c5 548/*
cf417141
MK
549 * generate_sched_domains()
550 *
551 * This function builds a partial partition of the systems CPUs
552 * A 'partial partition' is a set of non-overlapping subsets whose
553 * union is a subset of that set.
554 * The output of this function needs to be passed to kernel/sched.c
555 * partition_sched_domains() routine, which will rebuild the scheduler's
556 * load balancing domains (sched domains) as specified by that partial
557 * partition.
029190c5 558 *
45ce80fb 559 * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt
029190c5
PJ
560 * for a background explanation of this.
561 *
562 * Does not return errors, on the theory that the callers of this
563 * routine would rather not worry about failures to rebuild sched
564 * domains when operating in the severe memory shortage situations
565 * that could cause allocation failures below.
566 *
5d21cc2d 567 * Must be called with cpuset_mutex held.
029190c5
PJ
568 *
569 * The three key local variables below are:
aeed6824 570 * q - a linked-list queue of cpuset pointers, used to implement a
029190c5
PJ
571 * top-down scan of all cpusets. This scan loads a pointer
572 * to each cpuset marked is_sched_load_balance into the
573 * array 'csa'. For our purposes, rebuilding the schedulers
574 * sched domains, we can ignore !is_sched_load_balance cpusets.
575 * csa - (for CpuSet Array) Array of pointers to all the cpusets
576 * that need to be load balanced, for convenient iterative
577 * access by the subsequent code that finds the best partition,
578 * i.e the set of domains (subsets) of CPUs such that the
579 * cpus_allowed of every cpuset marked is_sched_load_balance
580 * is a subset of one of these domains, while there are as
581 * many such domains as possible, each as small as possible.
582 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
583 * the kernel/sched.c routine partition_sched_domains() in a
584 * convenient format, that can be easily compared to the prior
585 * value to determine what partition elements (sched domains)
586 * were changed (added or removed.)
587 *
588 * Finding the best partition (set of domains):
589 * The triple nested loops below over i, j, k scan over the
590 * load balanced cpusets (using the array of cpuset pointers in
591 * csa[]) looking for pairs of cpusets that have overlapping
592 * cpus_allowed, but which don't have the same 'pn' partition
593 * number and gives them in the same partition number. It keeps
594 * looping on the 'restart' label until it can no longer find
595 * any such pairs.
596 *
597 * The union of the cpus_allowed masks from the set of
598 * all cpusets having the same 'pn' value then form the one
599 * element of the partition (one sched domain) to be passed to
600 * partition_sched_domains().
601 */
acc3f5d7 602static int generate_sched_domains(cpumask_var_t **domains,
cf417141 603 struct sched_domain_attr **attributes)
029190c5 604{
029190c5
PJ
605 struct cpuset *cp; /* scans q */
606 struct cpuset **csa; /* array of all cpuset ptrs */
607 int csn; /* how many cpuset ptrs in csa so far */
608 int i, j, k; /* indices for partition finding loops */
acc3f5d7 609 cpumask_var_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 610 struct sched_domain_attr *dattr; /* attributes for custom domains */
1583715d 611 int ndoms = 0; /* number of sched domains in result */
6af866af 612 int nslot; /* next empty doms[] struct cpumask slot */
fc560a26 613 struct cgroup *pos_cgrp;
029190c5 614
029190c5 615 doms = NULL;
1d3504fc 616 dattr = NULL;
cf417141 617 csa = NULL;
029190c5
PJ
618
619 /* Special case for the 99% of systems with one, full, sched domain */
620 if (is_sched_load_balance(&top_cpuset)) {
acc3f5d7
RR
621 ndoms = 1;
622 doms = alloc_sched_domains(ndoms);
029190c5 623 if (!doms)
cf417141
MK
624 goto done;
625
1d3504fc
HS
626 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
627 if (dattr) {
628 *dattr = SD_ATTR_INIT;
93a65575 629 update_domain_attr_tree(dattr, &top_cpuset);
1d3504fc 630 }
acc3f5d7 631 cpumask_copy(doms[0], top_cpuset.cpus_allowed);
cf417141 632
cf417141 633 goto done;
029190c5
PJ
634 }
635
029190c5
PJ
636 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
637 if (!csa)
638 goto done;
639 csn = 0;
640
fc560a26
TH
641 rcu_read_lock();
642 cpuset_for_each_descendant_pre(cp, pos_cgrp, &top_cpuset) {
f5393693 643 /*
fc560a26
TH
644 * Continue traversing beyond @cp iff @cp has some CPUs and
645 * isn't load balancing. The former is obvious. The
646 * latter: All child cpusets contain a subset of the
647 * parent's cpus, so just skip them, and then we call
648 * update_domain_attr_tree() to calc relax_domain_level of
649 * the corresponding sched domain.
f5393693 650 */
fc560a26
TH
651 if (!cpumask_empty(cp->cpus_allowed) &&
652 !is_sched_load_balance(cp))
f5393693 653 continue;
489a5393 654
fc560a26
TH
655 if (is_sched_load_balance(cp))
656 csa[csn++] = cp;
657
658 /* skip @cp's subtree */
659 pos_cgrp = cgroup_rightmost_descendant(pos_cgrp);
660 }
661 rcu_read_unlock();
029190c5
PJ
662
663 for (i = 0; i < csn; i++)
664 csa[i]->pn = i;
665 ndoms = csn;
666
667restart:
668 /* Find the best partition (set of sched domains) */
669 for (i = 0; i < csn; i++) {
670 struct cpuset *a = csa[i];
671 int apn = a->pn;
672
673 for (j = 0; j < csn; j++) {
674 struct cpuset *b = csa[j];
675 int bpn = b->pn;
676
677 if (apn != bpn && cpusets_overlap(a, b)) {
678 for (k = 0; k < csn; k++) {
679 struct cpuset *c = csa[k];
680
681 if (c->pn == bpn)
682 c->pn = apn;
683 }
684 ndoms--; /* one less element */
685 goto restart;
686 }
687 }
688 }
689
cf417141
MK
690 /*
691 * Now we know how many domains to create.
692 * Convert <csn, csa> to <ndoms, doms> and populate cpu masks.
693 */
acc3f5d7 694 doms = alloc_sched_domains(ndoms);
700018e0 695 if (!doms)
cf417141 696 goto done;
cf417141
MK
697
698 /*
699 * The rest of the code, including the scheduler, can deal with
700 * dattr==NULL case. No need to abort if alloc fails.
701 */
1d3504fc 702 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
703
704 for (nslot = 0, i = 0; i < csn; i++) {
705 struct cpuset *a = csa[i];
6af866af 706 struct cpumask *dp;
029190c5
PJ
707 int apn = a->pn;
708
cf417141
MK
709 if (apn < 0) {
710 /* Skip completed partitions */
711 continue;
712 }
713
acc3f5d7 714 dp = doms[nslot];
cf417141
MK
715
716 if (nslot == ndoms) {
717 static int warnings = 10;
718 if (warnings) {
719 printk(KERN_WARNING
720 "rebuild_sched_domains confused:"
721 " nslot %d, ndoms %d, csn %d, i %d,"
722 " apn %d\n",
723 nslot, ndoms, csn, i, apn);
724 warnings--;
029190c5 725 }
cf417141
MK
726 continue;
727 }
029190c5 728
6af866af 729 cpumask_clear(dp);
cf417141
MK
730 if (dattr)
731 *(dattr + nslot) = SD_ATTR_INIT;
732 for (j = i; j < csn; j++) {
733 struct cpuset *b = csa[j];
734
735 if (apn == b->pn) {
300ed6cb 736 cpumask_or(dp, dp, b->cpus_allowed);
cf417141
MK
737 if (dattr)
738 update_domain_attr_tree(dattr + nslot, b);
739
740 /* Done with this partition */
741 b->pn = -1;
029190c5 742 }
029190c5 743 }
cf417141 744 nslot++;
029190c5
PJ
745 }
746 BUG_ON(nslot != ndoms);
747
cf417141
MK
748done:
749 kfree(csa);
750
700018e0
LZ
751 /*
752 * Fallback to the default domain if kmalloc() failed.
753 * See comments in partition_sched_domains().
754 */
755 if (doms == NULL)
756 ndoms = 1;
757
cf417141
MK
758 *domains = doms;
759 *attributes = dattr;
760 return ndoms;
761}
762
763/*
764 * Rebuild scheduler domains.
765 *
699140ba
TH
766 * If the flag 'sched_load_balance' of any cpuset with non-empty
767 * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset
768 * which has that flag enabled, or if any cpuset with a non-empty
769 * 'cpus' is removed, then call this routine to rebuild the
770 * scheduler's dynamic sched domains.
cf417141 771 *
5d21cc2d 772 * Call with cpuset_mutex held. Takes get_online_cpus().
cf417141 773 */
699140ba 774static void rebuild_sched_domains_locked(void)
cf417141
MK
775{
776 struct sched_domain_attr *attr;
acc3f5d7 777 cpumask_var_t *doms;
cf417141
MK
778 int ndoms;
779
5d21cc2d 780 lockdep_assert_held(&cpuset_mutex);
86ef5c9a 781 get_online_cpus();
cf417141
MK
782
783 /* Generate domain masks and attrs */
cf417141 784 ndoms = generate_sched_domains(&doms, &attr);
cf417141
MK
785
786 /* Have scheduler rebuild the domains */
787 partition_sched_domains(ndoms, doms, attr);
788
86ef5c9a 789 put_online_cpus();
cf417141 790}
db7f47cf 791#else /* !CONFIG_SMP */
699140ba 792static void rebuild_sched_domains_locked(void)
db7f47cf
PM
793{
794}
795
e1b8090b 796static int generate_sched_domains(cpumask_var_t **domains,
db7f47cf
PM
797 struct sched_domain_attr **attributes)
798{
799 *domains = NULL;
800 return 1;
801}
802#endif /* CONFIG_SMP */
029190c5 803
cf417141
MK
804void rebuild_sched_domains(void)
805{
5d21cc2d 806 mutex_lock(&cpuset_mutex);
699140ba 807 rebuild_sched_domains_locked();
5d21cc2d 808 mutex_unlock(&cpuset_mutex);
029190c5
PJ
809}
810
58f4790b
CW
811/**
812 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
813 * @tsk: task to test
814 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
815 *
5d21cc2d 816 * Call with cpuset_mutex held. May take callback_mutex during call.
58f4790b
CW
817 * Called for each task in a cgroup by cgroup_scan_tasks().
818 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
819 * words, if its mask is not equal to its cpuset's mask).
053199ed 820 */
9e0c914c
AB
821static int cpuset_test_cpumask(struct task_struct *tsk,
822 struct cgroup_scanner *scan)
58f4790b 823{
300ed6cb 824 return !cpumask_equal(&tsk->cpus_allowed,
58f4790b
CW
825 (cgroup_cs(scan->cg))->cpus_allowed);
826}
053199ed 827
58f4790b
CW
828/**
829 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
830 * @tsk: task to test
831 * @scan: struct cgroup_scanner containing the cgroup of the task
832 *
833 * Called by cgroup_scan_tasks() for each task in a cgroup whose
834 * cpus_allowed mask needs to be changed.
835 *
836 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 837 * holding cpuset_mutex at this point.
58f4790b 838 */
9e0c914c
AB
839static void cpuset_change_cpumask(struct task_struct *tsk,
840 struct cgroup_scanner *scan)
58f4790b 841{
300ed6cb 842 set_cpus_allowed_ptr(tsk, ((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
843}
844
0b2f630a
MX
845/**
846 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
847 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
4e74339a 848 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 849 *
5d21cc2d 850 * Called with cpuset_mutex held
0b2f630a
MX
851 *
852 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
853 * calling callback functions for each.
854 *
4e74339a
LZ
855 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
856 * if @heap != NULL.
0b2f630a 857 */
4e74339a 858static void update_tasks_cpumask(struct cpuset *cs, struct ptr_heap *heap)
0b2f630a
MX
859{
860 struct cgroup_scanner scan;
0b2f630a
MX
861
862 scan.cg = cs->css.cgroup;
863 scan.test_task = cpuset_test_cpumask;
864 scan.process_task = cpuset_change_cpumask;
4e74339a
LZ
865 scan.heap = heap;
866 cgroup_scan_tasks(&scan);
0b2f630a
MX
867}
868
58f4790b
CW
869/**
870 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
871 * @cs: the cpuset to consider
872 * @buf: buffer of cpu numbers written to this cpuset
873 */
645fcc9d
LZ
874static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs,
875 const char *buf)
1da177e4 876{
4e74339a 877 struct ptr_heap heap;
58f4790b
CW
878 int retval;
879 int is_load_balanced;
1da177e4 880
5f054e31 881 /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */
4c4d50f7
PJ
882 if (cs == &top_cpuset)
883 return -EACCES;
884
6f7f02e7 885 /*
c8d9c90c 886 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
887 * Since cpulist_parse() fails on an empty mask, we special case
888 * that parsing. The validate_change() call ensures that cpusets
889 * with tasks have cpus.
6f7f02e7 890 */
020958b6 891 if (!*buf) {
300ed6cb 892 cpumask_clear(trialcs->cpus_allowed);
6f7f02e7 893 } else {
300ed6cb 894 retval = cpulist_parse(buf, trialcs->cpus_allowed);
6f7f02e7
DR
895 if (retval < 0)
896 return retval;
37340746 897
6ad4c188 898 if (!cpumask_subset(trialcs->cpus_allowed, cpu_active_mask))
37340746 899 return -EINVAL;
6f7f02e7 900 }
645fcc9d 901 retval = validate_change(cs, trialcs);
85d7b949
DG
902 if (retval < 0)
903 return retval;
029190c5 904
8707d8b8 905 /* Nothing to do if the cpus didn't change */
300ed6cb 906 if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed))
8707d8b8 907 return 0;
58f4790b 908
4e74339a
LZ
909 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
910 if (retval)
911 return retval;
912
645fcc9d 913 is_load_balanced = is_sched_load_balance(trialcs);
029190c5 914
3d3f26a7 915 mutex_lock(&callback_mutex);
300ed6cb 916 cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed);
3d3f26a7 917 mutex_unlock(&callback_mutex);
029190c5 918
8707d8b8
PM
919 /*
920 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 921 * that need an update.
8707d8b8 922 */
4e74339a
LZ
923 update_tasks_cpumask(cs, &heap);
924
925 heap_free(&heap);
58f4790b 926
8707d8b8 927 if (is_load_balanced)
699140ba 928 rebuild_sched_domains_locked();
85d7b949 929 return 0;
1da177e4
LT
930}
931
e4e364e8
PJ
932/*
933 * cpuset_migrate_mm
934 *
935 * Migrate memory region from one set of nodes to another.
936 *
937 * Temporarilly set tasks mems_allowed to target nodes of migration,
938 * so that the migration code can allocate pages on these nodes.
939 *
5d21cc2d 940 * Call holding cpuset_mutex, so current's cpuset won't change
c8d9c90c 941 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
942 * calls. Therefore we don't need to take task_lock around the
943 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 944 * our task's cpuset.
e4e364e8 945 *
e4e364e8
PJ
946 * While the mm_struct we are migrating is typically from some
947 * other task, the task_struct mems_allowed that we are hacking
948 * is for our current task, which must allocate new pages for that
949 * migrating memory region.
e4e364e8
PJ
950 */
951
952static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
953 const nodemask_t *to)
954{
955 struct task_struct *tsk = current;
956
e4e364e8 957 tsk->mems_allowed = *to;
e4e364e8
PJ
958
959 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
960
8793d854 961 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
962}
963
3b6766fe 964/*
58568d2a
MX
965 * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy
966 * @tsk: the task to change
967 * @newmems: new nodes that the task will be set
968 *
969 * In order to avoid seeing no nodes if the old and new nodes are disjoint,
970 * we structure updates as setting all new allowed nodes, then clearing newly
971 * disallowed ones.
58568d2a
MX
972 */
973static void cpuset_change_task_nodemask(struct task_struct *tsk,
974 nodemask_t *newmems)
975{
b246272e 976 bool need_loop;
89e8a244 977
c0ff7453
MX
978 /*
979 * Allow tasks that have access to memory reserves because they have
980 * been OOM killed to get memory anywhere.
981 */
982 if (unlikely(test_thread_flag(TIF_MEMDIE)))
983 return;
984 if (current->flags & PF_EXITING) /* Let dying task have memory */
985 return;
986
987 task_lock(tsk);
b246272e
DR
988 /*
989 * Determine if a loop is necessary if another thread is doing
990 * get_mems_allowed(). If at least one node remains unchanged and
991 * tsk does not have a mempolicy, then an empty nodemask will not be
992 * possible when mems_allowed is larger than a word.
993 */
994 need_loop = task_has_mempolicy(tsk) ||
995 !nodes_intersects(*newmems, tsk->mems_allowed);
c0ff7453 996
cc9a6c87
MG
997 if (need_loop)
998 write_seqcount_begin(&tsk->mems_allowed_seq);
c0ff7453 999
cc9a6c87
MG
1000 nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems);
1001 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1);
c0ff7453
MX
1002
1003 mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2);
58568d2a 1004 tsk->mems_allowed = *newmems;
cc9a6c87
MG
1005
1006 if (need_loop)
1007 write_seqcount_end(&tsk->mems_allowed_seq);
1008
c0ff7453 1009 task_unlock(tsk);
58568d2a
MX
1010}
1011
1012/*
1013 * Update task's mems_allowed and rebind its mempolicy and vmas' mempolicy
1014 * of it to cpuset's new mems_allowed, and migrate pages to new nodes if
5d21cc2d 1015 * memory_migrate flag is set. Called with cpuset_mutex held.
3b6766fe
LZ
1016 */
1017static void cpuset_change_nodemask(struct task_struct *p,
1018 struct cgroup_scanner *scan)
1019{
1020 struct mm_struct *mm;
1021 struct cpuset *cs;
1022 int migrate;
1023 const nodemask_t *oldmem = scan->data;
5d21cc2d 1024 static nodemask_t newmems; /* protected by cpuset_mutex */
58568d2a
MX
1025
1026 cs = cgroup_cs(scan->cg);
ee24d379 1027 guarantee_online_mems(cs, &newmems);
58568d2a 1028
ee24d379 1029 cpuset_change_task_nodemask(p, &newmems);
53feb297 1030
3b6766fe
LZ
1031 mm = get_task_mm(p);
1032 if (!mm)
1033 return;
1034
3b6766fe
LZ
1035 migrate = is_memory_migrate(cs);
1036
1037 mpol_rebind_mm(mm, &cs->mems_allowed);
1038 if (migrate)
1039 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
1040 mmput(mm);
1041}
1042
8793d854
PM
1043static void *cpuset_being_rebound;
1044
0b2f630a
MX
1045/**
1046 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
1047 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
1048 * @oldmem: old mems_allowed of cpuset cs
010cfac4 1049 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
0b2f630a 1050 *
5d21cc2d 1051 * Called with cpuset_mutex held
010cfac4
LZ
1052 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1053 * if @heap != NULL.
0b2f630a 1054 */
010cfac4
LZ
1055static void update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem,
1056 struct ptr_heap *heap)
1da177e4 1057{
3b6766fe 1058 struct cgroup_scanner scan;
59dac16f 1059
846a16bf 1060 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a 1061
3b6766fe
LZ
1062 scan.cg = cs->css.cgroup;
1063 scan.test_task = NULL;
1064 scan.process_task = cpuset_change_nodemask;
010cfac4 1065 scan.heap = heap;
3b6766fe 1066 scan.data = (nodemask_t *)oldmem;
4225399a
PJ
1067
1068 /*
3b6766fe
LZ
1069 * The mpol_rebind_mm() call takes mmap_sem, which we couldn't
1070 * take while holding tasklist_lock. Forks can happen - the
1071 * mpol_dup() cpuset_being_rebound check will catch such forks,
1072 * and rebind their vma mempolicies too. Because we still hold
5d21cc2d 1073 * the global cpuset_mutex, we know that no other rebind effort
3b6766fe 1074 * will be contending for the global variable cpuset_being_rebound.
4225399a 1075 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 1076 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 1077 */
010cfac4 1078 cgroup_scan_tasks(&scan);
4225399a 1079
2df167a3 1080 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
8793d854 1081 cpuset_being_rebound = NULL;
1da177e4
LT
1082}
1083
0b2f630a
MX
1084/*
1085 * Handle user request to change the 'mems' memory placement
1086 * of a cpuset. Needs to validate the request, update the
58568d2a
MX
1087 * cpusets mems_allowed, and for each task in the cpuset,
1088 * update mems_allowed and rebind task's mempolicy and any vma
1089 * mempolicies and if the cpuset is marked 'memory_migrate',
1090 * migrate the tasks pages to the new memory.
0b2f630a 1091 *
5d21cc2d 1092 * Call with cpuset_mutex held. May take callback_mutex during call.
0b2f630a
MX
1093 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
1094 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
1095 * their mempolicies to the cpusets new mems_allowed.
1096 */
645fcc9d
LZ
1097static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs,
1098 const char *buf)
0b2f630a 1099{
53feb297 1100 NODEMASK_ALLOC(nodemask_t, oldmem, GFP_KERNEL);
0b2f630a 1101 int retval;
010cfac4 1102 struct ptr_heap heap;
0b2f630a 1103
53feb297
MX
1104 if (!oldmem)
1105 return -ENOMEM;
1106
0b2f630a 1107 /*
38d7bee9 1108 * top_cpuset.mems_allowed tracks node_stats[N_MEMORY];
0b2f630a
MX
1109 * it's read-only
1110 */
53feb297
MX
1111 if (cs == &top_cpuset) {
1112 retval = -EACCES;
1113 goto done;
1114 }
0b2f630a 1115
0b2f630a
MX
1116 /*
1117 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1118 * Since nodelist_parse() fails on an empty mask, we special case
1119 * that parsing. The validate_change() call ensures that cpusets
1120 * with tasks have memory.
1121 */
1122 if (!*buf) {
645fcc9d 1123 nodes_clear(trialcs->mems_allowed);
0b2f630a 1124 } else {
645fcc9d 1125 retval = nodelist_parse(buf, trialcs->mems_allowed);
0b2f630a
MX
1126 if (retval < 0)
1127 goto done;
1128
645fcc9d 1129 if (!nodes_subset(trialcs->mems_allowed,
38d7bee9 1130 node_states[N_MEMORY])) {
53feb297
MX
1131 retval = -EINVAL;
1132 goto done;
1133 }
0b2f630a 1134 }
53feb297
MX
1135 *oldmem = cs->mems_allowed;
1136 if (nodes_equal(*oldmem, trialcs->mems_allowed)) {
0b2f630a
MX
1137 retval = 0; /* Too easy - nothing to do */
1138 goto done;
1139 }
645fcc9d 1140 retval = validate_change(cs, trialcs);
0b2f630a
MX
1141 if (retval < 0)
1142 goto done;
1143
010cfac4
LZ
1144 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1145 if (retval < 0)
1146 goto done;
1147
0b2f630a 1148 mutex_lock(&callback_mutex);
645fcc9d 1149 cs->mems_allowed = trialcs->mems_allowed;
0b2f630a
MX
1150 mutex_unlock(&callback_mutex);
1151
53feb297 1152 update_tasks_nodemask(cs, oldmem, &heap);
010cfac4
LZ
1153
1154 heap_free(&heap);
0b2f630a 1155done:
53feb297 1156 NODEMASK_FREE(oldmem);
0b2f630a
MX
1157 return retval;
1158}
1159
8793d854
PM
1160int current_cpuset_is_being_rebound(void)
1161{
1162 return task_cs(current) == cpuset_being_rebound;
1163}
1164
5be7a479 1165static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1166{
db7f47cf 1167#ifdef CONFIG_SMP
60495e77 1168 if (val < -1 || val >= sched_domain_level_max)
30e0e178 1169 return -EINVAL;
db7f47cf 1170#endif
1d3504fc
HS
1171
1172 if (val != cs->relax_domain_level) {
1173 cs->relax_domain_level = val;
300ed6cb
LZ
1174 if (!cpumask_empty(cs->cpus_allowed) &&
1175 is_sched_load_balance(cs))
699140ba 1176 rebuild_sched_domains_locked();
1d3504fc
HS
1177 }
1178
1179 return 0;
1180}
1181
950592f7
MX
1182/*
1183 * cpuset_change_flag - make a task's spread flags the same as its cpuset's
1184 * @tsk: task to be updated
1185 * @scan: struct cgroup_scanner containing the cgroup of the task
1186 *
1187 * Called by cgroup_scan_tasks() for each task in a cgroup.
1188 *
1189 * We don't need to re-check for the cgroup/cpuset membership, since we're
5d21cc2d 1190 * holding cpuset_mutex at this point.
950592f7
MX
1191 */
1192static void cpuset_change_flag(struct task_struct *tsk,
1193 struct cgroup_scanner *scan)
1194{
1195 cpuset_update_task_spread_flag(cgroup_cs(scan->cg), tsk);
1196}
1197
1198/*
1199 * update_tasks_flags - update the spread flags of tasks in the cpuset.
1200 * @cs: the cpuset in which each task's spread flags needs to be changed
1201 * @heap: if NULL, defer allocating heap memory to cgroup_scan_tasks()
1202 *
5d21cc2d 1203 * Called with cpuset_mutex held
950592f7
MX
1204 *
1205 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1206 * calling callback functions for each.
1207 *
1208 * No return value. It's guaranteed that cgroup_scan_tasks() always returns 0
1209 * if @heap != NULL.
1210 */
1211static void update_tasks_flags(struct cpuset *cs, struct ptr_heap *heap)
1212{
1213 struct cgroup_scanner scan;
1214
1215 scan.cg = cs->css.cgroup;
1216 scan.test_task = NULL;
1217 scan.process_task = cpuset_change_flag;
1218 scan.heap = heap;
1219 cgroup_scan_tasks(&scan);
1220}
1221
1da177e4
LT
1222/*
1223 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1224 * bit: the bit to update (see cpuset_flagbits_t)
1225 * cs: the cpuset to update
1226 * turning_on: whether the flag is being set or cleared
053199ed 1227 *
5d21cc2d 1228 * Call with cpuset_mutex held.
1da177e4
LT
1229 */
1230
700fe1ab
PM
1231static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1232 int turning_on)
1da177e4 1233{
645fcc9d 1234 struct cpuset *trialcs;
40b6a762 1235 int balance_flag_changed;
950592f7
MX
1236 int spread_flag_changed;
1237 struct ptr_heap heap;
1238 int err;
1da177e4 1239
645fcc9d
LZ
1240 trialcs = alloc_trial_cpuset(cs);
1241 if (!trialcs)
1242 return -ENOMEM;
1243
1da177e4 1244 if (turning_on)
645fcc9d 1245 set_bit(bit, &trialcs->flags);
1da177e4 1246 else
645fcc9d 1247 clear_bit(bit, &trialcs->flags);
1da177e4 1248
645fcc9d 1249 err = validate_change(cs, trialcs);
85d7b949 1250 if (err < 0)
645fcc9d 1251 goto out;
029190c5 1252
950592f7
MX
1253 err = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
1254 if (err < 0)
1255 goto out;
1256
029190c5 1257 balance_flag_changed = (is_sched_load_balance(cs) !=
645fcc9d 1258 is_sched_load_balance(trialcs));
029190c5 1259
950592f7
MX
1260 spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs))
1261 || (is_spread_page(cs) != is_spread_page(trialcs)));
1262
3d3f26a7 1263 mutex_lock(&callback_mutex);
645fcc9d 1264 cs->flags = trialcs->flags;
3d3f26a7 1265 mutex_unlock(&callback_mutex);
85d7b949 1266
300ed6cb 1267 if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed)
699140ba 1268 rebuild_sched_domains_locked();
029190c5 1269
950592f7
MX
1270 if (spread_flag_changed)
1271 update_tasks_flags(cs, &heap);
1272 heap_free(&heap);
645fcc9d
LZ
1273out:
1274 free_trial_cpuset(trialcs);
1275 return err;
1da177e4
LT
1276}
1277
3e0d98b9 1278/*
80f7228b 1279 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1280 *
1281 * These routines manage a digitally filtered, constant time based,
1282 * event frequency meter. There are four routines:
1283 * fmeter_init() - initialize a frequency meter.
1284 * fmeter_markevent() - called each time the event happens.
1285 * fmeter_getrate() - returns the recent rate of such events.
1286 * fmeter_update() - internal routine used to update fmeter.
1287 *
1288 * A common data structure is passed to each of these routines,
1289 * which is used to keep track of the state required to manage the
1290 * frequency meter and its digital filter.
1291 *
1292 * The filter works on the number of events marked per unit time.
1293 * The filter is single-pole low-pass recursive (IIR). The time unit
1294 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1295 * simulate 3 decimal digits of precision (multiplied by 1000).
1296 *
1297 * With an FM_COEF of 933, and a time base of 1 second, the filter
1298 * has a half-life of 10 seconds, meaning that if the events quit
1299 * happening, then the rate returned from the fmeter_getrate()
1300 * will be cut in half each 10 seconds, until it converges to zero.
1301 *
1302 * It is not worth doing a real infinitely recursive filter. If more
1303 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1304 * just compute FM_MAXTICKS ticks worth, by which point the level
1305 * will be stable.
1306 *
1307 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1308 * arithmetic overflow in the fmeter_update() routine.
1309 *
1310 * Given the simple 32 bit integer arithmetic used, this meter works
1311 * best for reporting rates between one per millisecond (msec) and
1312 * one per 32 (approx) seconds. At constant rates faster than one
1313 * per msec it maxes out at values just under 1,000,000. At constant
1314 * rates between one per msec, and one per second it will stabilize
1315 * to a value N*1000, where N is the rate of events per second.
1316 * At constant rates between one per second and one per 32 seconds,
1317 * it will be choppy, moving up on the seconds that have an event,
1318 * and then decaying until the next event. At rates slower than
1319 * about one in 32 seconds, it decays all the way back to zero between
1320 * each event.
1321 */
1322
1323#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1324#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1325#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1326#define FM_SCALE 1000 /* faux fixed point scale */
1327
1328/* Initialize a frequency meter */
1329static void fmeter_init(struct fmeter *fmp)
1330{
1331 fmp->cnt = 0;
1332 fmp->val = 0;
1333 fmp->time = 0;
1334 spin_lock_init(&fmp->lock);
1335}
1336
1337/* Internal meter update - process cnt events and update value */
1338static void fmeter_update(struct fmeter *fmp)
1339{
1340 time_t now = get_seconds();
1341 time_t ticks = now - fmp->time;
1342
1343 if (ticks == 0)
1344 return;
1345
1346 ticks = min(FM_MAXTICKS, ticks);
1347 while (ticks-- > 0)
1348 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1349 fmp->time = now;
1350
1351 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1352 fmp->cnt = 0;
1353}
1354
1355/* Process any previous ticks, then bump cnt by one (times scale). */
1356static void fmeter_markevent(struct fmeter *fmp)
1357{
1358 spin_lock(&fmp->lock);
1359 fmeter_update(fmp);
1360 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1361 spin_unlock(&fmp->lock);
1362}
1363
1364/* Process any previous ticks, then return current value. */
1365static int fmeter_getrate(struct fmeter *fmp)
1366{
1367 int val;
1368
1369 spin_lock(&fmp->lock);
1370 fmeter_update(fmp);
1371 val = fmp->val;
1372 spin_unlock(&fmp->lock);
1373 return val;
1374}
1375
5d21cc2d 1376/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */
761b3ef5 1377static int cpuset_can_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
f780bdb7 1378{
2f7ee569 1379 struct cpuset *cs = cgroup_cs(cgrp);
bb9d97b6
TH
1380 struct task_struct *task;
1381 int ret;
1da177e4 1382
5d21cc2d
TH
1383 mutex_lock(&cpuset_mutex);
1384
1385 ret = -ENOSPC;
300ed6cb 1386 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
5d21cc2d 1387 goto out_unlock;
9985b0ba 1388
bb9d97b6
TH
1389 cgroup_taskset_for_each(task, cgrp, tset) {
1390 /*
1391 * Kthreads bound to specific cpus cannot be moved to a new
1392 * cpuset; we cannot change their cpu affinity and
1393 * isolating such threads by their set of allowed nodes is
1394 * unnecessary. Thus, cpusets are not applicable for such
1395 * threads. This prevents checking for success of
1396 * set_cpus_allowed_ptr() on all attached tasks before
1397 * cpus_allowed may be changed.
1398 */
5d21cc2d 1399 ret = -EINVAL;
bb9d97b6 1400 if (task->flags & PF_THREAD_BOUND)
5d21cc2d
TH
1401 goto out_unlock;
1402 ret = security_task_setscheduler(task);
1403 if (ret)
1404 goto out_unlock;
bb9d97b6 1405 }
f780bdb7 1406
452477fa
TH
1407 /*
1408 * Mark attach is in progress. This makes validate_change() fail
1409 * changes which zero cpus/mems_allowed.
1410 */
1411 cs->attach_in_progress++;
5d21cc2d
TH
1412 ret = 0;
1413out_unlock:
1414 mutex_unlock(&cpuset_mutex);
1415 return ret;
8793d854 1416}
f780bdb7 1417
452477fa
TH
1418static void cpuset_cancel_attach(struct cgroup *cgrp,
1419 struct cgroup_taskset *tset)
1420{
5d21cc2d 1421 mutex_lock(&cpuset_mutex);
452477fa 1422 cgroup_cs(cgrp)->attach_in_progress--;
5d21cc2d 1423 mutex_unlock(&cpuset_mutex);
8793d854 1424}
1da177e4 1425
4e4c9a14 1426/*
5d21cc2d 1427 * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach()
4e4c9a14
TH
1428 * but we can't allocate it dynamically there. Define it global and
1429 * allocate from cpuset_init().
1430 */
1431static cpumask_var_t cpus_attach;
1432
761b3ef5 1433static void cpuset_attach(struct cgroup *cgrp, struct cgroup_taskset *tset)
8793d854 1434{
5d21cc2d 1435 /* static bufs protected by cpuset_mutex */
4e4c9a14
TH
1436 static nodemask_t cpuset_attach_nodemask_from;
1437 static nodemask_t cpuset_attach_nodemask_to;
8793d854 1438 struct mm_struct *mm;
bb9d97b6
TH
1439 struct task_struct *task;
1440 struct task_struct *leader = cgroup_taskset_first(tset);
2f7ee569
TH
1441 struct cgroup *oldcgrp = cgroup_taskset_cur_cgroup(tset);
1442 struct cpuset *cs = cgroup_cs(cgrp);
1443 struct cpuset *oldcs = cgroup_cs(oldcgrp);
22fb52dd 1444
5d21cc2d
TH
1445 mutex_lock(&cpuset_mutex);
1446
4e4c9a14
TH
1447 /* prepare for attach */
1448 if (cs == &top_cpuset)
1449 cpumask_copy(cpus_attach, cpu_possible_mask);
1450 else
1451 guarantee_online_cpus(cs, cpus_attach);
1452
1453 guarantee_online_mems(cs, &cpuset_attach_nodemask_to);
1454
bb9d97b6
TH
1455 cgroup_taskset_for_each(task, cgrp, tset) {
1456 /*
1457 * can_attach beforehand should guarantee that this doesn't
1458 * fail. TODO: have a better way to handle failure here
1459 */
1460 WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach));
1461
1462 cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to);
1463 cpuset_update_task_spread_flag(cs, task);
1464 }
22fb52dd 1465
f780bdb7
BB
1466 /*
1467 * Change mm, possibly for multiple threads in a threadgroup. This is
1468 * expensive and may sleep.
1469 */
1470 cpuset_attach_nodemask_from = oldcs->mems_allowed;
1471 cpuset_attach_nodemask_to = cs->mems_allowed;
bb9d97b6 1472 mm = get_task_mm(leader);
4225399a 1473 if (mm) {
f780bdb7 1474 mpol_rebind_mm(mm, &cpuset_attach_nodemask_to);
2741a559 1475 if (is_memory_migrate(cs))
f780bdb7
BB
1476 cpuset_migrate_mm(mm, &cpuset_attach_nodemask_from,
1477 &cpuset_attach_nodemask_to);
4225399a
PJ
1478 mmput(mm);
1479 }
452477fa
TH
1480
1481 cs->attach_in_progress--;
02bb5863
TH
1482
1483 /*
1484 * We may have raced with CPU/memory hotunplug. Trigger hotplug
1485 * propagation if @cs doesn't have any CPU or memory. It will move
1486 * the newly added tasks to the nearest parent which can execute.
1487 */
1488 if (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1489 schedule_cpuset_propagate_hotplug(cs);
5d21cc2d
TH
1490
1491 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1492}
1493
1494/* The various types of files and directories in a cpuset file system */
1495
1496typedef enum {
45b07ef3 1497 FILE_MEMORY_MIGRATE,
1da177e4
LT
1498 FILE_CPULIST,
1499 FILE_MEMLIST,
1500 FILE_CPU_EXCLUSIVE,
1501 FILE_MEM_EXCLUSIVE,
78608366 1502 FILE_MEM_HARDWALL,
029190c5 1503 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1504 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1505 FILE_MEMORY_PRESSURE_ENABLED,
1506 FILE_MEMORY_PRESSURE,
825a46af
PJ
1507 FILE_SPREAD_PAGE,
1508 FILE_SPREAD_SLAB,
1da177e4
LT
1509} cpuset_filetype_t;
1510
700fe1ab
PM
1511static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1512{
700fe1ab
PM
1513 struct cpuset *cs = cgroup_cs(cgrp);
1514 cpuset_filetype_t type = cft->private;
5d21cc2d 1515 int retval = -ENODEV;
700fe1ab 1516
5d21cc2d
TH
1517 mutex_lock(&cpuset_mutex);
1518 if (!is_cpuset_online(cs))
1519 goto out_unlock;
700fe1ab
PM
1520
1521 switch (type) {
1da177e4 1522 case FILE_CPU_EXCLUSIVE:
700fe1ab 1523 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1524 break;
1525 case FILE_MEM_EXCLUSIVE:
700fe1ab 1526 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1527 break;
78608366
PM
1528 case FILE_MEM_HARDWALL:
1529 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1530 break;
029190c5 1531 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1532 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1533 break;
45b07ef3 1534 case FILE_MEMORY_MIGRATE:
700fe1ab 1535 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1536 break;
3e0d98b9 1537 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1538 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1539 break;
1540 case FILE_MEMORY_PRESSURE:
1541 retval = -EACCES;
1542 break;
825a46af 1543 case FILE_SPREAD_PAGE:
700fe1ab 1544 retval = update_flag(CS_SPREAD_PAGE, cs, val);
825a46af
PJ
1545 break;
1546 case FILE_SPREAD_SLAB:
700fe1ab 1547 retval = update_flag(CS_SPREAD_SLAB, cs, val);
825a46af 1548 break;
1da177e4
LT
1549 default:
1550 retval = -EINVAL;
700fe1ab 1551 break;
1da177e4 1552 }
5d21cc2d
TH
1553out_unlock:
1554 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1555 return retval;
1556}
1557
5be7a479
PM
1558static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1559{
5be7a479
PM
1560 struct cpuset *cs = cgroup_cs(cgrp);
1561 cpuset_filetype_t type = cft->private;
5d21cc2d 1562 int retval = -ENODEV;
5be7a479 1563
5d21cc2d
TH
1564 mutex_lock(&cpuset_mutex);
1565 if (!is_cpuset_online(cs))
1566 goto out_unlock;
e3712395 1567
5be7a479
PM
1568 switch (type) {
1569 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1570 retval = update_relax_domain_level(cs, val);
1571 break;
1572 default:
1573 retval = -EINVAL;
1574 break;
1575 }
5d21cc2d
TH
1576out_unlock:
1577 mutex_unlock(&cpuset_mutex);
5be7a479
PM
1578 return retval;
1579}
1580
e3712395
PM
1581/*
1582 * Common handling for a write to a "cpus" or "mems" file.
1583 */
1584static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1585 const char *buf)
1586{
645fcc9d
LZ
1587 struct cpuset *cs = cgroup_cs(cgrp);
1588 struct cpuset *trialcs;
5d21cc2d 1589 int retval = -ENODEV;
e3712395 1590
3a5a6d0c
TH
1591 /*
1592 * CPU or memory hotunplug may leave @cs w/o any execution
1593 * resources, in which case the hotplug code asynchronously updates
1594 * configuration and transfers all tasks to the nearest ancestor
1595 * which can execute.
1596 *
1597 * As writes to "cpus" or "mems" may restore @cs's execution
1598 * resources, wait for the previously scheduled operations before
1599 * proceeding, so that we don't end up keep removing tasks added
1600 * after execution capability is restored.
02bb5863
TH
1601 *
1602 * Flushing cpuset_hotplug_work is enough to synchronize against
1603 * hotplug hanlding; however, cpuset_attach() may schedule
1604 * propagation work directly. Flush the workqueue too.
3a5a6d0c
TH
1605 */
1606 flush_work(&cpuset_hotplug_work);
02bb5863 1607 flush_workqueue(cpuset_propagate_hotplug_wq);
3a5a6d0c 1608
5d21cc2d
TH
1609 mutex_lock(&cpuset_mutex);
1610 if (!is_cpuset_online(cs))
1611 goto out_unlock;
e3712395 1612
645fcc9d 1613 trialcs = alloc_trial_cpuset(cs);
b75f38d6
LZ
1614 if (!trialcs) {
1615 retval = -ENOMEM;
5d21cc2d 1616 goto out_unlock;
b75f38d6 1617 }
645fcc9d 1618
e3712395
PM
1619 switch (cft->private) {
1620 case FILE_CPULIST:
645fcc9d 1621 retval = update_cpumask(cs, trialcs, buf);
e3712395
PM
1622 break;
1623 case FILE_MEMLIST:
645fcc9d 1624 retval = update_nodemask(cs, trialcs, buf);
e3712395
PM
1625 break;
1626 default:
1627 retval = -EINVAL;
1628 break;
1629 }
645fcc9d
LZ
1630
1631 free_trial_cpuset(trialcs);
5d21cc2d
TH
1632out_unlock:
1633 mutex_unlock(&cpuset_mutex);
e3712395
PM
1634 return retval;
1635}
1636
1da177e4
LT
1637/*
1638 * These ascii lists should be read in a single call, by using a user
1639 * buffer large enough to hold the entire map. If read in smaller
1640 * chunks, there is no guarantee of atomicity. Since the display format
1641 * used, list of ranges of sequential numbers, is variable length,
1642 * and since these maps can change value dynamically, one could read
1643 * gibberish by doing partial reads while a list was changing.
1644 * A single large read to a buffer that crosses a page boundary is
1645 * ok, because the result being copied to user land is not recomputed
1646 * across a page fault.
1647 */
1648
9303e0c4 1649static size_t cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1da177e4 1650{
9303e0c4 1651 size_t count;
1da177e4 1652
3d3f26a7 1653 mutex_lock(&callback_mutex);
9303e0c4 1654 count = cpulist_scnprintf(page, PAGE_SIZE, cs->cpus_allowed);
3d3f26a7 1655 mutex_unlock(&callback_mutex);
1da177e4 1656
9303e0c4 1657 return count;
1da177e4
LT
1658}
1659
9303e0c4 1660static size_t cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1da177e4 1661{
9303e0c4 1662 size_t count;
1da177e4 1663
3d3f26a7 1664 mutex_lock(&callback_mutex);
9303e0c4 1665 count = nodelist_scnprintf(page, PAGE_SIZE, cs->mems_allowed);
3d3f26a7 1666 mutex_unlock(&callback_mutex);
1da177e4 1667
9303e0c4 1668 return count;
1da177e4
LT
1669}
1670
8793d854
PM
1671static ssize_t cpuset_common_file_read(struct cgroup *cont,
1672 struct cftype *cft,
1673 struct file *file,
1674 char __user *buf,
1675 size_t nbytes, loff_t *ppos)
1da177e4 1676{
8793d854 1677 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1678 cpuset_filetype_t type = cft->private;
1679 char *page;
1680 ssize_t retval = 0;
1681 char *s;
1da177e4 1682
e12ba74d 1683 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1684 return -ENOMEM;
1685
1686 s = page;
1687
1688 switch (type) {
1689 case FILE_CPULIST:
1690 s += cpuset_sprintf_cpulist(s, cs);
1691 break;
1692 case FILE_MEMLIST:
1693 s += cpuset_sprintf_memlist(s, cs);
1694 break;
1da177e4
LT
1695 default:
1696 retval = -EINVAL;
1697 goto out;
1698 }
1699 *s++ = '\n';
1da177e4 1700
eacaa1f5 1701 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1702out:
1703 free_page((unsigned long)page);
1704 return retval;
1705}
1706
700fe1ab
PM
1707static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1708{
1709 struct cpuset *cs = cgroup_cs(cont);
1710 cpuset_filetype_t type = cft->private;
1711 switch (type) {
1712 case FILE_CPU_EXCLUSIVE:
1713 return is_cpu_exclusive(cs);
1714 case FILE_MEM_EXCLUSIVE:
1715 return is_mem_exclusive(cs);
78608366
PM
1716 case FILE_MEM_HARDWALL:
1717 return is_mem_hardwall(cs);
700fe1ab
PM
1718 case FILE_SCHED_LOAD_BALANCE:
1719 return is_sched_load_balance(cs);
1720 case FILE_MEMORY_MIGRATE:
1721 return is_memory_migrate(cs);
1722 case FILE_MEMORY_PRESSURE_ENABLED:
1723 return cpuset_memory_pressure_enabled;
1724 case FILE_MEMORY_PRESSURE:
1725 return fmeter_getrate(&cs->fmeter);
1726 case FILE_SPREAD_PAGE:
1727 return is_spread_page(cs);
1728 case FILE_SPREAD_SLAB:
1729 return is_spread_slab(cs);
1730 default:
1731 BUG();
1732 }
cf417141
MK
1733
1734 /* Unreachable but makes gcc happy */
1735 return 0;
700fe1ab 1736}
1da177e4 1737
5be7a479
PM
1738static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1739{
1740 struct cpuset *cs = cgroup_cs(cont);
1741 cpuset_filetype_t type = cft->private;
1742 switch (type) {
1743 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1744 return cs->relax_domain_level;
1745 default:
1746 BUG();
1747 }
cf417141
MK
1748
1749 /* Unrechable but makes gcc happy */
1750 return 0;
5be7a479
PM
1751}
1752
1da177e4
LT
1753
1754/*
1755 * for the common functions, 'private' gives the type of file
1756 */
1757
addf2c73
PM
1758static struct cftype files[] = {
1759 {
1760 .name = "cpus",
1761 .read = cpuset_common_file_read,
e3712395
PM
1762 .write_string = cpuset_write_resmask,
1763 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1764 .private = FILE_CPULIST,
1765 },
1766
1767 {
1768 .name = "mems",
1769 .read = cpuset_common_file_read,
e3712395
PM
1770 .write_string = cpuset_write_resmask,
1771 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1772 .private = FILE_MEMLIST,
1773 },
1774
1775 {
1776 .name = "cpu_exclusive",
1777 .read_u64 = cpuset_read_u64,
1778 .write_u64 = cpuset_write_u64,
1779 .private = FILE_CPU_EXCLUSIVE,
1780 },
1781
1782 {
1783 .name = "mem_exclusive",
1784 .read_u64 = cpuset_read_u64,
1785 .write_u64 = cpuset_write_u64,
1786 .private = FILE_MEM_EXCLUSIVE,
1787 },
1788
78608366
PM
1789 {
1790 .name = "mem_hardwall",
1791 .read_u64 = cpuset_read_u64,
1792 .write_u64 = cpuset_write_u64,
1793 .private = FILE_MEM_HARDWALL,
1794 },
1795
addf2c73
PM
1796 {
1797 .name = "sched_load_balance",
1798 .read_u64 = cpuset_read_u64,
1799 .write_u64 = cpuset_write_u64,
1800 .private = FILE_SCHED_LOAD_BALANCE,
1801 },
1802
1803 {
1804 .name = "sched_relax_domain_level",
5be7a479
PM
1805 .read_s64 = cpuset_read_s64,
1806 .write_s64 = cpuset_write_s64,
addf2c73
PM
1807 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1808 },
1809
1810 {
1811 .name = "memory_migrate",
1812 .read_u64 = cpuset_read_u64,
1813 .write_u64 = cpuset_write_u64,
1814 .private = FILE_MEMORY_MIGRATE,
1815 },
1816
1817 {
1818 .name = "memory_pressure",
1819 .read_u64 = cpuset_read_u64,
1820 .write_u64 = cpuset_write_u64,
1821 .private = FILE_MEMORY_PRESSURE,
099fca32 1822 .mode = S_IRUGO,
addf2c73
PM
1823 },
1824
1825 {
1826 .name = "memory_spread_page",
1827 .read_u64 = cpuset_read_u64,
1828 .write_u64 = cpuset_write_u64,
1829 .private = FILE_SPREAD_PAGE,
1830 },
1831
1832 {
1833 .name = "memory_spread_slab",
1834 .read_u64 = cpuset_read_u64,
1835 .write_u64 = cpuset_write_u64,
1836 .private = FILE_SPREAD_SLAB,
1837 },
3e0d98b9 1838
4baf6e33
TH
1839 {
1840 .name = "memory_pressure_enabled",
1841 .flags = CFTYPE_ONLY_ON_ROOT,
1842 .read_u64 = cpuset_read_u64,
1843 .write_u64 = cpuset_write_u64,
1844 .private = FILE_MEMORY_PRESSURE_ENABLED,
1845 },
1da177e4 1846
4baf6e33
TH
1847 { } /* terminate */
1848};
1da177e4
LT
1849
1850/*
92fb9748 1851 * cpuset_css_alloc - allocate a cpuset css
2df167a3 1852 * cont: control group that the new cpuset will be part of
1da177e4
LT
1853 */
1854
92fb9748 1855static struct cgroup_subsys_state *cpuset_css_alloc(struct cgroup *cont)
1da177e4 1856{
c8f699bb 1857 struct cpuset *cs;
1da177e4 1858
c8f699bb 1859 if (!cont->parent)
8793d854 1860 return &top_cpuset.css;
033fa1c5 1861
c8f699bb 1862 cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1da177e4 1863 if (!cs)
8793d854 1864 return ERR_PTR(-ENOMEM);
300ed6cb
LZ
1865 if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) {
1866 kfree(cs);
1867 return ERR_PTR(-ENOMEM);
1868 }
1da177e4 1869
029190c5 1870 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
300ed6cb 1871 cpumask_clear(cs->cpus_allowed);
f9a86fcb 1872 nodes_clear(cs->mems_allowed);
3e0d98b9 1873 fmeter_init(&cs->fmeter);
8d033948 1874 INIT_WORK(&cs->hotplug_work, cpuset_propagate_hotplug_workfn);
1d3504fc 1875 cs->relax_domain_level = -1;
1da177e4 1876
c8f699bb
TH
1877 return &cs->css;
1878}
1879
1880static int cpuset_css_online(struct cgroup *cgrp)
1881{
1882 struct cpuset *cs = cgroup_cs(cgrp);
c431069f 1883 struct cpuset *parent = parent_cs(cs);
ae8086ce
TH
1884 struct cpuset *tmp_cs;
1885 struct cgroup *pos_cg;
c8f699bb
TH
1886
1887 if (!parent)
1888 return 0;
1889
5d21cc2d
TH
1890 mutex_lock(&cpuset_mutex);
1891
efeb77b2 1892 set_bit(CS_ONLINE, &cs->flags);
c8f699bb
TH
1893 if (is_spread_page(parent))
1894 set_bit(CS_SPREAD_PAGE, &cs->flags);
1895 if (is_spread_slab(parent))
1896 set_bit(CS_SPREAD_SLAB, &cs->flags);
1da177e4 1897
202f72d5 1898 number_of_cpusets++;
033fa1c5 1899
c8f699bb 1900 if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags))
5d21cc2d 1901 goto out_unlock;
033fa1c5
TH
1902
1903 /*
1904 * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is
1905 * set. This flag handling is implemented in cgroup core for
1906 * histrical reasons - the flag may be specified during mount.
1907 *
1908 * Currently, if any sibling cpusets have exclusive cpus or mem, we
1909 * refuse to clone the configuration - thereby refusing the task to
1910 * be entered, and as a result refusing the sys_unshare() or
1911 * clone() which initiated it. If this becomes a problem for some
1912 * users who wish to allow that scenario, then this could be
1913 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
1914 * (and likewise for mems) to the new cgroup.
1915 */
ae8086ce
TH
1916 rcu_read_lock();
1917 cpuset_for_each_child(tmp_cs, pos_cg, parent) {
1918 if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) {
1919 rcu_read_unlock();
5d21cc2d 1920 goto out_unlock;
ae8086ce 1921 }
033fa1c5 1922 }
ae8086ce 1923 rcu_read_unlock();
033fa1c5
TH
1924
1925 mutex_lock(&callback_mutex);
1926 cs->mems_allowed = parent->mems_allowed;
1927 cpumask_copy(cs->cpus_allowed, parent->cpus_allowed);
1928 mutex_unlock(&callback_mutex);
5d21cc2d
TH
1929out_unlock:
1930 mutex_unlock(&cpuset_mutex);
c8f699bb
TH
1931 return 0;
1932}
1933
1934static void cpuset_css_offline(struct cgroup *cgrp)
1935{
1936 struct cpuset *cs = cgroup_cs(cgrp);
1937
5d21cc2d 1938 mutex_lock(&cpuset_mutex);
c8f699bb
TH
1939
1940 if (is_sched_load_balance(cs))
1941 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
1942
1943 number_of_cpusets--;
efeb77b2 1944 clear_bit(CS_ONLINE, &cs->flags);
c8f699bb 1945
5d21cc2d 1946 mutex_unlock(&cpuset_mutex);
1da177e4
LT
1947}
1948
029190c5 1949/*
029190c5
PJ
1950 * If the cpuset being removed has its flag 'sched_load_balance'
1951 * enabled, then simulate turning sched_load_balance off, which
699140ba 1952 * will call rebuild_sched_domains_locked().
029190c5
PJ
1953 */
1954
92fb9748 1955static void cpuset_css_free(struct cgroup *cont)
1da177e4 1956{
8793d854 1957 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1958
300ed6cb 1959 free_cpumask_var(cs->cpus_allowed);
8793d854 1960 kfree(cs);
1da177e4
LT
1961}
1962
8793d854
PM
1963struct cgroup_subsys cpuset_subsys = {
1964 .name = "cpuset",
92fb9748 1965 .css_alloc = cpuset_css_alloc,
c8f699bb
TH
1966 .css_online = cpuset_css_online,
1967 .css_offline = cpuset_css_offline,
92fb9748 1968 .css_free = cpuset_css_free,
8793d854 1969 .can_attach = cpuset_can_attach,
452477fa 1970 .cancel_attach = cpuset_cancel_attach,
8793d854 1971 .attach = cpuset_attach,
8793d854 1972 .subsys_id = cpuset_subsys_id,
4baf6e33 1973 .base_cftypes = files,
8793d854
PM
1974 .early_init = 1,
1975};
1976
1da177e4
LT
1977/**
1978 * cpuset_init - initialize cpusets at system boot
1979 *
1980 * Description: Initialize top_cpuset and the cpuset internal file system,
1981 **/
1982
1983int __init cpuset_init(void)
1984{
8793d854 1985 int err = 0;
1da177e4 1986
58568d2a
MX
1987 if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL))
1988 BUG();
1989
300ed6cb 1990 cpumask_setall(top_cpuset.cpus_allowed);
f9a86fcb 1991 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1992
3e0d98b9 1993 fmeter_init(&top_cpuset.fmeter);
029190c5 1994 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1995 top_cpuset.relax_domain_level = -1;
1da177e4 1996
1da177e4
LT
1997 err = register_filesystem(&cpuset_fs_type);
1998 if (err < 0)
8793d854
PM
1999 return err;
2000
2341d1b6
LZ
2001 if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL))
2002 BUG();
2003
202f72d5 2004 number_of_cpusets = 1;
8793d854 2005 return 0;
1da177e4
LT
2006}
2007
956db3ca
CW
2008/**
2009 * cpuset_do_move_task - move a given task to another cpuset
2010 * @tsk: pointer to task_struct the task to move
2011 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
2012 *
2013 * Called by cgroup_scan_tasks() for each task in a cgroup.
2014 * Return nonzero to stop the walk through the tasks.
2015 */
9e0c914c
AB
2016static void cpuset_do_move_task(struct task_struct *tsk,
2017 struct cgroup_scanner *scan)
956db3ca 2018{
7f81b1ae 2019 struct cgroup *new_cgroup = scan->data;
956db3ca 2020
5d21cc2d 2021 cgroup_lock();
7f81b1ae 2022 cgroup_attach_task(new_cgroup, tsk);
5d21cc2d 2023 cgroup_unlock();
956db3ca
CW
2024}
2025
2026/**
2027 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
2028 * @from: cpuset in which the tasks currently reside
2029 * @to: cpuset to which the tasks will be moved
2030 *
5d21cc2d 2031 * Called with cpuset_mutex held
c8d9c90c 2032 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
2033 *
2034 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
2035 * calling callback functions for each.
2036 */
2037static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
2038{
7f81b1ae 2039 struct cgroup_scanner scan;
956db3ca 2040
7f81b1ae
LZ
2041 scan.cg = from->css.cgroup;
2042 scan.test_task = NULL; /* select all tasks in cgroup */
2043 scan.process_task = cpuset_do_move_task;
2044 scan.heap = NULL;
2045 scan.data = to->css.cgroup;
956db3ca 2046
7f81b1ae 2047 if (cgroup_scan_tasks(&scan))
956db3ca
CW
2048 printk(KERN_ERR "move_member_tasks_to_cpuset: "
2049 "cgroup_scan_tasks failed\n");
2050}
2051
b1aac8bb 2052/*
cf417141 2053 * If CPU and/or memory hotplug handlers, below, unplug any CPUs
b1aac8bb
PJ
2054 * or memory nodes, we need to walk over the cpuset hierarchy,
2055 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
2056 * last CPU or node from a cpuset, then move the tasks in the empty
2057 * cpuset to its next-highest non-empty parent.
b1aac8bb 2058 */
956db3ca
CW
2059static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
2060{
2061 struct cpuset *parent;
2062
956db3ca
CW
2063 /*
2064 * Find its next-highest non-empty parent, (top cpuset
2065 * has online cpus, so can't be empty).
2066 */
c431069f 2067 parent = parent_cs(cs);
300ed6cb 2068 while (cpumask_empty(parent->cpus_allowed) ||
b4501295 2069 nodes_empty(parent->mems_allowed))
c431069f 2070 parent = parent_cs(parent);
956db3ca
CW
2071
2072 move_member_tasks_to_cpuset(cs, parent);
2073}
2074
deb7aa30 2075/**
8d033948 2076 * cpuset_propagate_hotplug_workfn - propagate CPU/memory hotplug to a cpuset
deb7aa30 2077 * @cs: cpuset in interest
956db3ca 2078 *
deb7aa30
TH
2079 * Compare @cs's cpu and mem masks against top_cpuset and if some have gone
2080 * offline, update @cs accordingly. If @cs ends up with no CPU or memory,
2081 * all its tasks are moved to the nearest ancestor with both resources.
80d1fa64 2082 */
8d033948 2083static void cpuset_propagate_hotplug_workfn(struct work_struct *work)
80d1fa64 2084{
deb7aa30
TH
2085 static cpumask_t off_cpus;
2086 static nodemask_t off_mems, tmp_mems;
8d033948 2087 struct cpuset *cs = container_of(work, struct cpuset, hotplug_work);
5d21cc2d 2088 bool is_empty;
80d1fa64 2089
5d21cc2d 2090 mutex_lock(&cpuset_mutex);
7ddf96b0 2091
deb7aa30
TH
2092 cpumask_andnot(&off_cpus, cs->cpus_allowed, top_cpuset.cpus_allowed);
2093 nodes_andnot(off_mems, cs->mems_allowed, top_cpuset.mems_allowed);
80d1fa64 2094
deb7aa30
TH
2095 /* remove offline cpus from @cs */
2096 if (!cpumask_empty(&off_cpus)) {
2097 mutex_lock(&callback_mutex);
2098 cpumask_andnot(cs->cpus_allowed, cs->cpus_allowed, &off_cpus);
2099 mutex_unlock(&callback_mutex);
2100 update_tasks_cpumask(cs, NULL);
80d1fa64
SB
2101 }
2102
deb7aa30
TH
2103 /* remove offline mems from @cs */
2104 if (!nodes_empty(off_mems)) {
2105 tmp_mems = cs->mems_allowed;
2106 mutex_lock(&callback_mutex);
2107 nodes_andnot(cs->mems_allowed, cs->mems_allowed, off_mems);
2108 mutex_unlock(&callback_mutex);
2109 update_tasks_nodemask(cs, &tmp_mems, NULL);
b1aac8bb 2110 }
deb7aa30 2111
5d21cc2d
TH
2112 is_empty = cpumask_empty(cs->cpus_allowed) ||
2113 nodes_empty(cs->mems_allowed);
8d033948 2114
5d21cc2d
TH
2115 mutex_unlock(&cpuset_mutex);
2116
2117 /*
2118 * If @cs became empty, move tasks to the nearest ancestor with
2119 * execution resources. This is full cgroup operation which will
2120 * also call back into cpuset. Should be done outside any lock.
2121 */
2122 if (is_empty)
2123 remove_tasks_in_empty_cpuset(cs);
8d033948
TH
2124
2125 /* the following may free @cs, should be the last operation */
2126 css_put(&cs->css);
80d1fa64
SB
2127}
2128
8d033948
TH
2129/**
2130 * schedule_cpuset_propagate_hotplug - schedule hotplug propagation to a cpuset
2131 * @cs: cpuset of interest
2132 *
2133 * Schedule cpuset_propagate_hotplug_workfn() which will update CPU and
2134 * memory masks according to top_cpuset.
2135 */
2136static void schedule_cpuset_propagate_hotplug(struct cpuset *cs)
2137{
2138 /*
2139 * Pin @cs. The refcnt will be released when the work item
2140 * finishes executing.
2141 */
2142 if (!css_tryget(&cs->css))
2143 return;
80d1fa64 2144
8d033948
TH
2145 /*
2146 * Queue @cs->hotplug_work. If already pending, lose the css ref.
2147 * cpuset_propagate_hotplug_wq is ordered and propagation will
2148 * happen in the order this function is called.
2149 */
2150 if (!queue_work(cpuset_propagate_hotplug_wq, &cs->hotplug_work))
2151 css_put(&cs->css);
b1aac8bb
PJ
2152}
2153
deb7aa30 2154/**
3a5a6d0c 2155 * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset
956db3ca 2156 *
deb7aa30
TH
2157 * This function is called after either CPU or memory configuration has
2158 * changed and updates cpuset accordingly. The top_cpuset is always
2159 * synchronized to cpu_active_mask and N_MEMORY, which is necessary in
2160 * order to make cpusets transparent (of no affect) on systems that are
2161 * actively using CPU hotplug but making no active use of cpusets.
956db3ca 2162 *
deb7aa30
TH
2163 * Non-root cpusets are only affected by offlining. If any CPUs or memory
2164 * nodes have been taken down, cpuset_propagate_hotplug() is invoked on all
2165 * descendants.
956db3ca 2166 *
deb7aa30
TH
2167 * Note that CPU offlining during suspend is ignored. We don't modify
2168 * cpusets across suspend/resume cycles at all.
956db3ca 2169 */
3a5a6d0c 2170static void cpuset_hotplug_workfn(struct work_struct *work)
b1aac8bb 2171{
deb7aa30
TH
2172 static cpumask_t new_cpus, tmp_cpus;
2173 static nodemask_t new_mems, tmp_mems;
2174 bool cpus_updated, mems_updated;
2175 bool cpus_offlined, mems_offlined;
b1aac8bb 2176
5d21cc2d 2177 mutex_lock(&cpuset_mutex);
956db3ca 2178
deb7aa30
TH
2179 /* fetch the available cpus/mems and find out which changed how */
2180 cpumask_copy(&new_cpus, cpu_active_mask);
2181 new_mems = node_states[N_MEMORY];
7ddf96b0 2182
deb7aa30
TH
2183 cpus_updated = !cpumask_equal(top_cpuset.cpus_allowed, &new_cpus);
2184 cpus_offlined = cpumask_andnot(&tmp_cpus, top_cpuset.cpus_allowed,
2185 &new_cpus);
7ddf96b0 2186
deb7aa30
TH
2187 mems_updated = !nodes_equal(top_cpuset.mems_allowed, new_mems);
2188 nodes_andnot(tmp_mems, top_cpuset.mems_allowed, new_mems);
2189 mems_offlined = !nodes_empty(tmp_mems);
7ddf96b0 2190
deb7aa30
TH
2191 /* synchronize cpus_allowed to cpu_active_mask */
2192 if (cpus_updated) {
2193 mutex_lock(&callback_mutex);
2194 cpumask_copy(top_cpuset.cpus_allowed, &new_cpus);
2195 mutex_unlock(&callback_mutex);
2196 /* we don't mess with cpumasks of tasks in top_cpuset */
2197 }
b4501295 2198
deb7aa30
TH
2199 /* synchronize mems_allowed to N_MEMORY */
2200 if (mems_updated) {
2201 tmp_mems = top_cpuset.mems_allowed;
2202 mutex_lock(&callback_mutex);
2203 top_cpuset.mems_allowed = new_mems;
2204 mutex_unlock(&callback_mutex);
2205 update_tasks_nodemask(&top_cpuset, &tmp_mems, NULL);
2206 }
b4501295 2207
deb7aa30
TH
2208 /* if cpus or mems went down, we need to propagate to descendants */
2209 if (cpus_offlined || mems_offlined) {
2210 struct cpuset *cs;
fc560a26 2211 struct cgroup *pos_cgrp;
f9b4fb8d 2212
fc560a26
TH
2213 rcu_read_lock();
2214 cpuset_for_each_descendant_pre(cs, pos_cgrp, &top_cpuset)
2215 schedule_cpuset_propagate_hotplug(cs);
2216 rcu_read_unlock();
deb7aa30 2217 }
7ddf96b0 2218
5d21cc2d 2219 mutex_unlock(&cpuset_mutex);
b4501295 2220
8d033948
TH
2221 /* wait for propagations to finish */
2222 flush_workqueue(cpuset_propagate_hotplug_wq);
2223
deb7aa30
TH
2224 /* rebuild sched domains if cpus_allowed has changed */
2225 if (cpus_updated) {
2226 struct sched_domain_attr *attr;
2227 cpumask_var_t *doms;
2228 int ndoms;
2229
5d21cc2d 2230 mutex_lock(&cpuset_mutex);
deb7aa30 2231 ndoms = generate_sched_domains(&doms, &attr);
5d21cc2d 2232 mutex_unlock(&cpuset_mutex);
deb7aa30
TH
2233
2234 partition_sched_domains(ndoms, doms, attr);
b1aac8bb
PJ
2235 }
2236}
2237
7ddf96b0 2238void cpuset_update_active_cpus(bool cpu_online)
4c4d50f7 2239{
3a5a6d0c
TH
2240 /*
2241 * We're inside cpu hotplug critical region which usually nests
2242 * inside cgroup synchronization. Bounce actual hotplug processing
2243 * to a work item to avoid reverse locking order.
2244 *
2245 * We still need to do partition_sched_domains() synchronously;
2246 * otherwise, the scheduler will get confused and put tasks to the
2247 * dead CPU. Fall back to the default single domain.
2248 * cpuset_hotplug_workfn() will rebuild it as necessary.
2249 */
2250 partition_sched_domains(1, NULL, NULL);
2251 schedule_work(&cpuset_hotplug_work);
4c4d50f7 2252}
4c4d50f7 2253
b1aac8bb 2254#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 2255/*
38d7bee9
LJ
2256 * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY].
2257 * Call this routine anytime after node_states[N_MEMORY] changes.
a1cd2b13 2258 * See cpuset_update_active_cpus() for CPU hotplug handling.
38837fc7 2259 */
f481891f
MX
2260static int cpuset_track_online_nodes(struct notifier_block *self,
2261 unsigned long action, void *arg)
38837fc7 2262{
3a5a6d0c 2263 schedule_work(&cpuset_hotplug_work);
f481891f 2264 return NOTIFY_OK;
38837fc7
PJ
2265}
2266#endif
2267
1da177e4
LT
2268/**
2269 * cpuset_init_smp - initialize cpus_allowed
2270 *
2271 * Description: Finish top cpuset after cpu, node maps are initialized
2272 **/
2273
2274void __init cpuset_init_smp(void)
2275{
6ad4c188 2276 cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask);
38d7bee9 2277 top_cpuset.mems_allowed = node_states[N_MEMORY];
4c4d50f7 2278
f481891f 2279 hotplug_memory_notifier(cpuset_track_online_nodes, 10);
f90d4118 2280
8d033948
TH
2281 cpuset_propagate_hotplug_wq =
2282 alloc_ordered_workqueue("cpuset_hotplug", 0);
2283 BUG_ON(!cpuset_propagate_hotplug_wq);
1da177e4
LT
2284}
2285
2286/**
1da177e4
LT
2287 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
2288 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
6af866af 2289 * @pmask: pointer to struct cpumask variable to receive cpus_allowed set.
1da177e4 2290 *
300ed6cb 2291 * Description: Returns the cpumask_var_t cpus_allowed of the cpuset
1da177e4 2292 * attached to the specified @tsk. Guaranteed to return some non-empty
5f054e31 2293 * subset of cpu_online_mask, even if this means going outside the
1da177e4
LT
2294 * tasks cpuset.
2295 **/
2296
6af866af 2297void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask)
1da177e4 2298{
3d3f26a7 2299 mutex_lock(&callback_mutex);
909d75a3 2300 task_lock(tsk);
f9a86fcb 2301 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 2302 task_unlock(tsk);
897f0b3c 2303 mutex_unlock(&callback_mutex);
1da177e4
LT
2304}
2305
2baab4e9 2306void cpuset_cpus_allowed_fallback(struct task_struct *tsk)
9084bb82
ON
2307{
2308 const struct cpuset *cs;
9084bb82
ON
2309
2310 rcu_read_lock();
2311 cs = task_cs(tsk);
2312 if (cs)
1e1b6c51 2313 do_set_cpus_allowed(tsk, cs->cpus_allowed);
9084bb82
ON
2314 rcu_read_unlock();
2315
2316 /*
2317 * We own tsk->cpus_allowed, nobody can change it under us.
2318 *
2319 * But we used cs && cs->cpus_allowed lockless and thus can
2320 * race with cgroup_attach_task() or update_cpumask() and get
2321 * the wrong tsk->cpus_allowed. However, both cases imply the
2322 * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr()
2323 * which takes task_rq_lock().
2324 *
2325 * If we are called after it dropped the lock we must see all
2326 * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary
2327 * set any mask even if it is not right from task_cs() pov,
2328 * the pending set_cpus_allowed_ptr() will fix things.
2baab4e9
PZ
2329 *
2330 * select_fallback_rq() will fix things ups and set cpu_possible_mask
2331 * if required.
9084bb82 2332 */
9084bb82
ON
2333}
2334
1da177e4
LT
2335void cpuset_init_current_mems_allowed(void)
2336{
f9a86fcb 2337 nodes_setall(current->mems_allowed);
1da177e4
LT
2338}
2339
909d75a3
PJ
2340/**
2341 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2342 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2343 *
2344 * Description: Returns the nodemask_t mems_allowed of the cpuset
2345 * attached to the specified @tsk. Guaranteed to return some non-empty
38d7bee9 2346 * subset of node_states[N_MEMORY], even if this means going outside the
909d75a3
PJ
2347 * tasks cpuset.
2348 **/
2349
2350nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2351{
2352 nodemask_t mask;
2353
3d3f26a7 2354 mutex_lock(&callback_mutex);
909d75a3 2355 task_lock(tsk);
8793d854 2356 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2357 task_unlock(tsk);
3d3f26a7 2358 mutex_unlock(&callback_mutex);
909d75a3
PJ
2359
2360 return mask;
2361}
2362
d9fd8a6d 2363/**
19770b32
MG
2364 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2365 * @nodemask: the nodemask to be checked
d9fd8a6d 2366 *
19770b32 2367 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2368 */
19770b32 2369int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2370{
19770b32 2371 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2372}
2373
9bf2229f 2374/*
78608366
PM
2375 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2376 * mem_hardwall ancestor to the specified cpuset. Call holding
2377 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2378 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2379 */
78608366 2380static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2381{
c431069f
TH
2382 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs))
2383 cs = parent_cs(cs);
9bf2229f
PJ
2384 return cs;
2385}
2386
d9fd8a6d 2387/**
a1bc5a4e
DR
2388 * cpuset_node_allowed_softwall - Can we allocate on a memory node?
2389 * @node: is this an allowed node?
02a0e53d 2390 * @gfp_mask: memory allocation flags
d9fd8a6d 2391 *
a1bc5a4e
DR
2392 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2393 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2394 * yes. If it's not a __GFP_HARDWALL request and this node is in the nearest
2395 * hardwalled cpuset ancestor to this task's cpuset, yes. If the task has been
2396 * OOM killed and has access to memory reserves as specified by the TIF_MEMDIE
2397 * flag, yes.
9bf2229f
PJ
2398 * Otherwise, no.
2399 *
a1bc5a4e
DR
2400 * If __GFP_HARDWALL is set, cpuset_node_allowed_softwall() reduces to
2401 * cpuset_node_allowed_hardwall(). Otherwise, cpuset_node_allowed_softwall()
2402 * might sleep, and might allow a node from an enclosing cpuset.
02a0e53d 2403 *
a1bc5a4e
DR
2404 * cpuset_node_allowed_hardwall() only handles the simpler case of hardwall
2405 * cpusets, and never sleeps.
02a0e53d
PJ
2406 *
2407 * The __GFP_THISNODE placement logic is really handled elsewhere,
2408 * by forcibly using a zonelist starting at a specified node, and by
2409 * (in get_page_from_freelist()) refusing to consider the zones for
2410 * any node on the zonelist except the first. By the time any such
2411 * calls get to this routine, we should just shut up and say 'yes'.
2412 *
9bf2229f 2413 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2414 * and do not allow allocations outside the current tasks cpuset
2415 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2416 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2417 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2418 *
02a0e53d
PJ
2419 * Scanning up parent cpusets requires callback_mutex. The
2420 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2421 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2422 * current tasks mems_allowed came up empty on the first pass over
2423 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2424 * cpuset are short of memory, might require taking the callback_mutex
2425 * mutex.
9bf2229f 2426 *
36be57ff 2427 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2428 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2429 * so no allocation on a node outside the cpuset is allowed (unless
2430 * in interrupt, of course).
36be57ff
PJ
2431 *
2432 * The second pass through get_page_from_freelist() doesn't even call
2433 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2434 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2435 * in alloc_flags. That logic and the checks below have the combined
2436 * affect that:
9bf2229f
PJ
2437 * in_interrupt - any node ok (current task context irrelevant)
2438 * GFP_ATOMIC - any node ok
c596d9f3 2439 * TIF_MEMDIE - any node ok
78608366 2440 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2441 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2442 *
2443 * Rule:
a1bc5a4e 2444 * Don't call cpuset_node_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2445 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2446 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2447 */
a1bc5a4e 2448int __cpuset_node_allowed_softwall(int node, gfp_t gfp_mask)
1da177e4 2449{
9bf2229f 2450 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2451 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2452
9b819d20 2453 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2454 return 1;
92d1dbd2 2455 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2456 if (node_isset(node, current->mems_allowed))
2457 return 1;
c596d9f3
DR
2458 /*
2459 * Allow tasks that have access to memory reserves because they have
2460 * been OOM killed to get memory anywhere.
2461 */
2462 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2463 return 1;
9bf2229f
PJ
2464 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2465 return 0;
2466
5563e770
BP
2467 if (current->flags & PF_EXITING) /* Let dying task have memory */
2468 return 1;
2469
9bf2229f 2470 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2471 mutex_lock(&callback_mutex);
053199ed 2472
053199ed 2473 task_lock(current);
78608366 2474 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2475 task_unlock(current);
2476
9bf2229f 2477 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2478 mutex_unlock(&callback_mutex);
9bf2229f 2479 return allowed;
1da177e4
LT
2480}
2481
02a0e53d 2482/*
a1bc5a4e
DR
2483 * cpuset_node_allowed_hardwall - Can we allocate on a memory node?
2484 * @node: is this an allowed node?
02a0e53d
PJ
2485 * @gfp_mask: memory allocation flags
2486 *
a1bc5a4e
DR
2487 * If we're in interrupt, yes, we can always allocate. If __GFP_THISNODE is
2488 * set, yes, we can always allocate. If node is in our task's mems_allowed,
2489 * yes. If the task has been OOM killed and has access to memory reserves as
2490 * specified by the TIF_MEMDIE flag, yes.
2491 * Otherwise, no.
02a0e53d
PJ
2492 *
2493 * The __GFP_THISNODE placement logic is really handled elsewhere,
2494 * by forcibly using a zonelist starting at a specified node, and by
2495 * (in get_page_from_freelist()) refusing to consider the zones for
2496 * any node on the zonelist except the first. By the time any such
2497 * calls get to this routine, we should just shut up and say 'yes'.
2498 *
a1bc5a4e
DR
2499 * Unlike the cpuset_node_allowed_softwall() variant, above,
2500 * this variant requires that the node be in the current task's
02a0e53d
PJ
2501 * mems_allowed or that we're in interrupt. It does not scan up the
2502 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2503 * It never sleeps.
2504 */
a1bc5a4e 2505int __cpuset_node_allowed_hardwall(int node, gfp_t gfp_mask)
02a0e53d 2506{
02a0e53d
PJ
2507 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2508 return 1;
02a0e53d
PJ
2509 if (node_isset(node, current->mems_allowed))
2510 return 1;
dedf8b79
DW
2511 /*
2512 * Allow tasks that have access to memory reserves because they have
2513 * been OOM killed to get memory anywhere.
2514 */
2515 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2516 return 1;
02a0e53d
PJ
2517 return 0;
2518}
2519
825a46af 2520/**
6adef3eb
JS
2521 * cpuset_mem_spread_node() - On which node to begin search for a file page
2522 * cpuset_slab_spread_node() - On which node to begin search for a slab page
825a46af
PJ
2523 *
2524 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2525 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2526 * and if the memory allocation used cpuset_mem_spread_node()
2527 * to determine on which node to start looking, as it will for
2528 * certain page cache or slab cache pages such as used for file
2529 * system buffers and inode caches, then instead of starting on the
2530 * local node to look for a free page, rather spread the starting
2531 * node around the tasks mems_allowed nodes.
2532 *
2533 * We don't have to worry about the returned node being offline
2534 * because "it can't happen", and even if it did, it would be ok.
2535 *
2536 * The routines calling guarantee_online_mems() are careful to
2537 * only set nodes in task->mems_allowed that are online. So it
2538 * should not be possible for the following code to return an
2539 * offline node. But if it did, that would be ok, as this routine
2540 * is not returning the node where the allocation must be, only
2541 * the node where the search should start. The zonelist passed to
2542 * __alloc_pages() will include all nodes. If the slab allocator
2543 * is passed an offline node, it will fall back to the local node.
2544 * See kmem_cache_alloc_node().
2545 */
2546
6adef3eb 2547static int cpuset_spread_node(int *rotor)
825a46af
PJ
2548{
2549 int node;
2550
6adef3eb 2551 node = next_node(*rotor, current->mems_allowed);
825a46af
PJ
2552 if (node == MAX_NUMNODES)
2553 node = first_node(current->mems_allowed);
6adef3eb 2554 *rotor = node;
825a46af
PJ
2555 return node;
2556}
6adef3eb
JS
2557
2558int cpuset_mem_spread_node(void)
2559{
778d3b0f
MH
2560 if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE)
2561 current->cpuset_mem_spread_rotor =
2562 node_random(&current->mems_allowed);
2563
6adef3eb
JS
2564 return cpuset_spread_node(&current->cpuset_mem_spread_rotor);
2565}
2566
2567int cpuset_slab_spread_node(void)
2568{
778d3b0f
MH
2569 if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE)
2570 current->cpuset_slab_spread_rotor =
2571 node_random(&current->mems_allowed);
2572
6adef3eb
JS
2573 return cpuset_spread_node(&current->cpuset_slab_spread_rotor);
2574}
2575
825a46af
PJ
2576EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2577
ef08e3b4 2578/**
bbe373f2
DR
2579 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2580 * @tsk1: pointer to task_struct of some task.
2581 * @tsk2: pointer to task_struct of some other task.
2582 *
2583 * Description: Return true if @tsk1's mems_allowed intersects the
2584 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2585 * one of the task's memory usage might impact the memory available
2586 * to the other.
ef08e3b4
PJ
2587 **/
2588
bbe373f2
DR
2589int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2590 const struct task_struct *tsk2)
ef08e3b4 2591{
bbe373f2 2592 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2593}
2594
75aa1994
DR
2595/**
2596 * cpuset_print_task_mems_allowed - prints task's cpuset and mems_allowed
2597 * @task: pointer to task_struct of some task.
2598 *
2599 * Description: Prints @task's name, cpuset name, and cached copy of its
2600 * mems_allowed to the kernel log. Must hold task_lock(task) to allow
2601 * dereferencing task_cs(task).
2602 */
2603void cpuset_print_task_mems_allowed(struct task_struct *tsk)
2604{
2605 struct dentry *dentry;
2606
2607 dentry = task_cs(tsk)->css.cgroup->dentry;
2608 spin_lock(&cpuset_buffer_lock);
63f43f55
LZ
2609
2610 if (!dentry) {
2611 strcpy(cpuset_name, "/");
2612 } else {
2613 spin_lock(&dentry->d_lock);
2614 strlcpy(cpuset_name, (const char *)dentry->d_name.name,
2615 CPUSET_NAME_LEN);
2616 spin_unlock(&dentry->d_lock);
2617 }
2618
75aa1994
DR
2619 nodelist_scnprintf(cpuset_nodelist, CPUSET_NODELIST_LEN,
2620 tsk->mems_allowed);
2621 printk(KERN_INFO "%s cpuset=%s mems_allowed=%s\n",
2622 tsk->comm, cpuset_name, cpuset_nodelist);
2623 spin_unlock(&cpuset_buffer_lock);
2624}
2625
3e0d98b9
PJ
2626/*
2627 * Collection of memory_pressure is suppressed unless
2628 * this flag is enabled by writing "1" to the special
2629 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2630 */
2631
c5b2aff8 2632int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2633
2634/**
2635 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2636 *
2637 * Keep a running average of the rate of synchronous (direct)
2638 * page reclaim efforts initiated by tasks in each cpuset.
2639 *
2640 * This represents the rate at which some task in the cpuset
2641 * ran low on memory on all nodes it was allowed to use, and
2642 * had to enter the kernels page reclaim code in an effort to
2643 * create more free memory by tossing clean pages or swapping
2644 * or writing dirty pages.
2645 *
2646 * Display to user space in the per-cpuset read-only file
2647 * "memory_pressure". Value displayed is an integer
2648 * representing the recent rate of entry into the synchronous
2649 * (direct) page reclaim by any task attached to the cpuset.
2650 **/
2651
2652void __cpuset_memory_pressure_bump(void)
2653{
3e0d98b9 2654 task_lock(current);
8793d854 2655 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2656 task_unlock(current);
2657}
2658
8793d854 2659#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2660/*
2661 * proc_cpuset_show()
2662 * - Print tasks cpuset path into seq_file.
2663 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2664 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2665 * doesn't really matter if tsk->cpuset changes after we read it,
5d21cc2d 2666 * and we take cpuset_mutex, keeping cpuset_attach() from changing it
2df167a3 2667 * anyway.
1da177e4 2668 */
029190c5 2669static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2670{
13b41b09 2671 struct pid *pid;
1da177e4
LT
2672 struct task_struct *tsk;
2673 char *buf;
8793d854 2674 struct cgroup_subsys_state *css;
99f89551 2675 int retval;
1da177e4 2676
99f89551 2677 retval = -ENOMEM;
1da177e4
LT
2678 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2679 if (!buf)
99f89551
EB
2680 goto out;
2681
2682 retval = -ESRCH;
13b41b09
EB
2683 pid = m->private;
2684 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2685 if (!tsk)
2686 goto out_free;
1da177e4 2687
27e89ae5 2688 rcu_read_lock();
8793d854
PM
2689 css = task_subsys_state(tsk, cpuset_subsys_id);
2690 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
27e89ae5 2691 rcu_read_unlock();
1da177e4 2692 if (retval < 0)
27e89ae5 2693 goto out_put_task;
1da177e4
LT
2694 seq_puts(m, buf);
2695 seq_putc(m, '\n');
27e89ae5 2696out_put_task:
99f89551
EB
2697 put_task_struct(tsk);
2698out_free:
1da177e4 2699 kfree(buf);
99f89551 2700out:
1da177e4
LT
2701 return retval;
2702}
2703
2704static int cpuset_open(struct inode *inode, struct file *file)
2705{
13b41b09
EB
2706 struct pid *pid = PROC_I(inode)->pid;
2707 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2708}
2709
9a32144e 2710const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2711 .open = cpuset_open,
2712 .read = seq_read,
2713 .llseek = seq_lseek,
2714 .release = single_release,
2715};
8793d854 2716#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4 2717
d01d4827 2718/* Display task mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2719void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2720{
df5f8314 2721 seq_printf(m, "Mems_allowed:\t");
30e8e136 2722 seq_nodemask(m, &task->mems_allowed);
df5f8314 2723 seq_printf(m, "\n");
39106dcf 2724 seq_printf(m, "Mems_allowed_list:\t");
30e8e136 2725 seq_nodemask_list(m, &task->mems_allowed);
39106dcf 2726 seq_printf(m, "\n");
1da177e4 2727}