cpuset: a bit cleanup for scan_for_empty_cpusets()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / kernel / cpuset.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/cpuset.c
3 *
4 * Processor and Memory placement constraints for sets of tasks.
5 *
6 * Copyright (C) 2003 BULL SA.
029190c5 7 * Copyright (C) 2004-2007 Silicon Graphics, Inc.
8793d854 8 * Copyright (C) 2006 Google, Inc
1da177e4
LT
9 *
10 * Portions derived from Patrick Mochel's sysfs code.
11 * sysfs is Copyright (c) 2001-3 Patrick Mochel
1da177e4 12 *
825a46af 13 * 2003-10-10 Written by Simon Derr.
1da177e4 14 * 2003-10-22 Updates by Stephen Hemminger.
825a46af 15 * 2004 May-July Rework by Paul Jackson.
8793d854 16 * 2006 Rework by Paul Menage to use generic cgroups
1da177e4
LT
17 *
18 * This file is subject to the terms and conditions of the GNU General Public
19 * License. See the file COPYING in the main directory of the Linux
20 * distribution for more details.
21 */
22
1da177e4
LT
23#include <linux/cpu.h>
24#include <linux/cpumask.h>
25#include <linux/cpuset.h>
26#include <linux/err.h>
27#include <linux/errno.h>
28#include <linux/file.h>
29#include <linux/fs.h>
30#include <linux/init.h>
31#include <linux/interrupt.h>
32#include <linux/kernel.h>
33#include <linux/kmod.h>
34#include <linux/list.h>
68860ec1 35#include <linux/mempolicy.h>
1da177e4
LT
36#include <linux/mm.h>
37#include <linux/module.h>
38#include <linux/mount.h>
39#include <linux/namei.h>
40#include <linux/pagemap.h>
41#include <linux/proc_fs.h>
6b9c2603 42#include <linux/rcupdate.h>
1da177e4
LT
43#include <linux/sched.h>
44#include <linux/seq_file.h>
22fb52dd 45#include <linux/security.h>
1da177e4 46#include <linux/slab.h>
1da177e4
LT
47#include <linux/spinlock.h>
48#include <linux/stat.h>
49#include <linux/string.h>
50#include <linux/time.h>
51#include <linux/backing-dev.h>
52#include <linux/sort.h>
53
54#include <asm/uaccess.h>
55#include <asm/atomic.h>
3d3f26a7 56#include <linux/mutex.h>
029190c5 57#include <linux/kfifo.h>
956db3ca
CW
58#include <linux/workqueue.h>
59#include <linux/cgroup.h>
1da177e4 60
202f72d5
PJ
61/*
62 * Tracks how many cpusets are currently defined in system.
63 * When there is only one cpuset (the root cpuset) we can
64 * short circuit some hooks.
65 */
7edc5962 66int number_of_cpusets __read_mostly;
202f72d5 67
2df167a3 68/* Forward declare cgroup structures */
8793d854
PM
69struct cgroup_subsys cpuset_subsys;
70struct cpuset;
71
3e0d98b9
PJ
72/* See "Frequency meter" comments, below. */
73
74struct fmeter {
75 int cnt; /* unprocessed events count */
76 int val; /* most recent output value */
77 time_t time; /* clock (secs) when val computed */
78 spinlock_t lock; /* guards read or write of above */
79};
80
1da177e4 81struct cpuset {
8793d854
PM
82 struct cgroup_subsys_state css;
83
1da177e4
LT
84 unsigned long flags; /* "unsigned long" so bitops work */
85 cpumask_t cpus_allowed; /* CPUs allowed to tasks in cpuset */
86 nodemask_t mems_allowed; /* Memory Nodes allowed to tasks */
87
1da177e4 88 struct cpuset *parent; /* my parent */
1da177e4
LT
89
90 /*
91 * Copy of global cpuset_mems_generation as of the most
92 * recent time this cpuset changed its mems_allowed.
93 */
3e0d98b9
PJ
94 int mems_generation;
95
96 struct fmeter fmeter; /* memory_pressure filter */
029190c5
PJ
97
98 /* partition number for rebuild_sched_domains() */
99 int pn;
956db3ca 100
1d3504fc
HS
101 /* for custom sched domain */
102 int relax_domain_level;
103
956db3ca
CW
104 /* used for walking a cpuset heirarchy */
105 struct list_head stack_list;
1da177e4
LT
106};
107
8793d854
PM
108/* Retrieve the cpuset for a cgroup */
109static inline struct cpuset *cgroup_cs(struct cgroup *cont)
110{
111 return container_of(cgroup_subsys_state(cont, cpuset_subsys_id),
112 struct cpuset, css);
113}
114
115/* Retrieve the cpuset for a task */
116static inline struct cpuset *task_cs(struct task_struct *task)
117{
118 return container_of(task_subsys_state(task, cpuset_subsys_id),
119 struct cpuset, css);
120}
956db3ca
CW
121struct cpuset_hotplug_scanner {
122 struct cgroup_scanner scan;
123 struct cgroup *to;
124};
8793d854 125
1da177e4
LT
126/* bits in struct cpuset flags field */
127typedef enum {
128 CS_CPU_EXCLUSIVE,
129 CS_MEM_EXCLUSIVE,
78608366 130 CS_MEM_HARDWALL,
45b07ef3 131 CS_MEMORY_MIGRATE,
029190c5 132 CS_SCHED_LOAD_BALANCE,
825a46af
PJ
133 CS_SPREAD_PAGE,
134 CS_SPREAD_SLAB,
1da177e4
LT
135} cpuset_flagbits_t;
136
137/* convenient tests for these bits */
138static inline int is_cpu_exclusive(const struct cpuset *cs)
139{
7b5b9ef0 140 return test_bit(CS_CPU_EXCLUSIVE, &cs->flags);
1da177e4
LT
141}
142
143static inline int is_mem_exclusive(const struct cpuset *cs)
144{
7b5b9ef0 145 return test_bit(CS_MEM_EXCLUSIVE, &cs->flags);
1da177e4
LT
146}
147
78608366
PM
148static inline int is_mem_hardwall(const struct cpuset *cs)
149{
150 return test_bit(CS_MEM_HARDWALL, &cs->flags);
151}
152
029190c5
PJ
153static inline int is_sched_load_balance(const struct cpuset *cs)
154{
155 return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
156}
157
45b07ef3
PJ
158static inline int is_memory_migrate(const struct cpuset *cs)
159{
7b5b9ef0 160 return test_bit(CS_MEMORY_MIGRATE, &cs->flags);
45b07ef3
PJ
161}
162
825a46af
PJ
163static inline int is_spread_page(const struct cpuset *cs)
164{
165 return test_bit(CS_SPREAD_PAGE, &cs->flags);
166}
167
168static inline int is_spread_slab(const struct cpuset *cs)
169{
170 return test_bit(CS_SPREAD_SLAB, &cs->flags);
171}
172
1da177e4 173/*
151a4420 174 * Increment this integer everytime any cpuset changes its
1da177e4
LT
175 * mems_allowed value. Users of cpusets can track this generation
176 * number, and avoid having to lock and reload mems_allowed unless
177 * the cpuset they're using changes generation.
178 *
2df167a3 179 * A single, global generation is needed because cpuset_attach_task() could
1da177e4
LT
180 * reattach a task to a different cpuset, which must not have its
181 * generation numbers aliased with those of that tasks previous cpuset.
182 *
183 * Generations are needed for mems_allowed because one task cannot
2df167a3 184 * modify another's memory placement. So we must enable every task,
1da177e4
LT
185 * on every visit to __alloc_pages(), to efficiently check whether
186 * its current->cpuset->mems_allowed has changed, requiring an update
187 * of its current->mems_allowed.
151a4420 188 *
2df167a3 189 * Since writes to cpuset_mems_generation are guarded by the cgroup lock
151a4420 190 * there is no need to mark it atomic.
1da177e4 191 */
151a4420 192static int cpuset_mems_generation;
1da177e4
LT
193
194static struct cpuset top_cpuset = {
195 .flags = ((1 << CS_CPU_EXCLUSIVE) | (1 << CS_MEM_EXCLUSIVE)),
196 .cpus_allowed = CPU_MASK_ALL,
197 .mems_allowed = NODE_MASK_ALL,
1da177e4
LT
198};
199
1da177e4 200/*
2df167a3
PM
201 * There are two global mutexes guarding cpuset structures. The first
202 * is the main control groups cgroup_mutex, accessed via
203 * cgroup_lock()/cgroup_unlock(). The second is the cpuset-specific
204 * callback_mutex, below. They can nest. It is ok to first take
205 * cgroup_mutex, then nest callback_mutex. We also require taking
206 * task_lock() when dereferencing a task's cpuset pointer. See "The
207 * task_lock() exception", at the end of this comment.
053199ed 208 *
3d3f26a7 209 * A task must hold both mutexes to modify cpusets. If a task
2df167a3 210 * holds cgroup_mutex, then it blocks others wanting that mutex,
3d3f26a7 211 * ensuring that it is the only task able to also acquire callback_mutex
053199ed
PJ
212 * and be able to modify cpusets. It can perform various checks on
213 * the cpuset structure first, knowing nothing will change. It can
2df167a3 214 * also allocate memory while just holding cgroup_mutex. While it is
053199ed 215 * performing these checks, various callback routines can briefly
3d3f26a7
IM
216 * acquire callback_mutex to query cpusets. Once it is ready to make
217 * the changes, it takes callback_mutex, blocking everyone else.
053199ed
PJ
218 *
219 * Calls to the kernel memory allocator can not be made while holding
3d3f26a7 220 * callback_mutex, as that would risk double tripping on callback_mutex
053199ed
PJ
221 * from one of the callbacks into the cpuset code from within
222 * __alloc_pages().
223 *
3d3f26a7 224 * If a task is only holding callback_mutex, then it has read-only
053199ed
PJ
225 * access to cpusets.
226 *
227 * The task_struct fields mems_allowed and mems_generation may only
228 * be accessed in the context of that task, so require no locks.
229 *
3d3f26a7 230 * The cpuset_common_file_read() handlers only hold callback_mutex across
053199ed
PJ
231 * small pieces of code, such as when reading out possibly multi-word
232 * cpumasks and nodemasks.
233 *
2df167a3
PM
234 * Accessing a task's cpuset should be done in accordance with the
235 * guidelines for accessing subsystem state in kernel/cgroup.c
1da177e4
LT
236 */
237
3d3f26a7 238static DEFINE_MUTEX(callback_mutex);
4247bdc6 239
8793d854
PM
240/* This is ugly, but preserves the userspace API for existing cpuset
241 * users. If someone tries to mount the "cpuset" filesystem, we
242 * silently switch it to mount "cgroup" instead */
454e2398
DH
243static int cpuset_get_sb(struct file_system_type *fs_type,
244 int flags, const char *unused_dev_name,
245 void *data, struct vfsmount *mnt)
1da177e4 246{
8793d854
PM
247 struct file_system_type *cgroup_fs = get_fs_type("cgroup");
248 int ret = -ENODEV;
249 if (cgroup_fs) {
250 char mountopts[] =
251 "cpuset,noprefix,"
252 "release_agent=/sbin/cpuset_release_agent";
253 ret = cgroup_fs->get_sb(cgroup_fs, flags,
254 unused_dev_name, mountopts, mnt);
255 put_filesystem(cgroup_fs);
256 }
257 return ret;
1da177e4
LT
258}
259
260static struct file_system_type cpuset_fs_type = {
261 .name = "cpuset",
262 .get_sb = cpuset_get_sb,
1da177e4
LT
263};
264
1da177e4
LT
265/*
266 * Return in *pmask the portion of a cpusets's cpus_allowed that
267 * are online. If none are online, walk up the cpuset hierarchy
268 * until we find one that does have some online cpus. If we get
269 * all the way to the top and still haven't found any online cpus,
270 * return cpu_online_map. Or if passed a NULL cs from an exit'ing
271 * task, return cpu_online_map.
272 *
273 * One way or another, we guarantee to return some non-empty subset
274 * of cpu_online_map.
275 *
3d3f26a7 276 * Call with callback_mutex held.
1da177e4
LT
277 */
278
279static void guarantee_online_cpus(const struct cpuset *cs, cpumask_t *pmask)
280{
281 while (cs && !cpus_intersects(cs->cpus_allowed, cpu_online_map))
282 cs = cs->parent;
283 if (cs)
284 cpus_and(*pmask, cs->cpus_allowed, cpu_online_map);
285 else
286 *pmask = cpu_online_map;
287 BUG_ON(!cpus_intersects(*pmask, cpu_online_map));
288}
289
290/*
291 * Return in *pmask the portion of a cpusets's mems_allowed that
0e1e7c7a
CL
292 * are online, with memory. If none are online with memory, walk
293 * up the cpuset hierarchy until we find one that does have some
294 * online mems. If we get all the way to the top and still haven't
295 * found any online mems, return node_states[N_HIGH_MEMORY].
1da177e4
LT
296 *
297 * One way or another, we guarantee to return some non-empty subset
0e1e7c7a 298 * of node_states[N_HIGH_MEMORY].
1da177e4 299 *
3d3f26a7 300 * Call with callback_mutex held.
1da177e4
LT
301 */
302
303static void guarantee_online_mems(const struct cpuset *cs, nodemask_t *pmask)
304{
0e1e7c7a
CL
305 while (cs && !nodes_intersects(cs->mems_allowed,
306 node_states[N_HIGH_MEMORY]))
1da177e4
LT
307 cs = cs->parent;
308 if (cs)
0e1e7c7a
CL
309 nodes_and(*pmask, cs->mems_allowed,
310 node_states[N_HIGH_MEMORY]);
1da177e4 311 else
0e1e7c7a
CL
312 *pmask = node_states[N_HIGH_MEMORY];
313 BUG_ON(!nodes_intersects(*pmask, node_states[N_HIGH_MEMORY]));
1da177e4
LT
314}
315
cf2a473c
PJ
316/**
317 * cpuset_update_task_memory_state - update task memory placement
318 *
319 * If the current tasks cpusets mems_allowed changed behind our
320 * backs, update current->mems_allowed, mems_generation and task NUMA
321 * mempolicy to the new value.
053199ed 322 *
cf2a473c
PJ
323 * Task mempolicy is updated by rebinding it relative to the
324 * current->cpuset if a task has its memory placement changed.
325 * Do not call this routine if in_interrupt().
326 *
4a01c8d5 327 * Call without callback_mutex or task_lock() held. May be
2df167a3
PM
328 * called with or without cgroup_mutex held. Thanks in part to
329 * 'the_top_cpuset_hack', the task's cpuset pointer will never
41f7f60d
DR
330 * be NULL. This routine also might acquire callback_mutex during
331 * call.
053199ed 332 *
6b9c2603
PJ
333 * Reading current->cpuset->mems_generation doesn't need task_lock
334 * to guard the current->cpuset derefence, because it is guarded
2df167a3 335 * from concurrent freeing of current->cpuset using RCU.
6b9c2603
PJ
336 *
337 * The rcu_dereference() is technically probably not needed,
338 * as I don't actually mind if I see a new cpuset pointer but
339 * an old value of mems_generation. However this really only
340 * matters on alpha systems using cpusets heavily. If I dropped
341 * that rcu_dereference(), it would save them a memory barrier.
342 * For all other arch's, rcu_dereference is a no-op anyway, and for
343 * alpha systems not using cpusets, another planned optimization,
344 * avoiding the rcu critical section for tasks in the root cpuset
345 * which is statically allocated, so can't vanish, will make this
346 * irrelevant. Better to use RCU as intended, than to engage in
347 * some cute trick to save a memory barrier that is impossible to
348 * test, for alpha systems using cpusets heavily, which might not
349 * even exist.
053199ed
PJ
350 *
351 * This routine is needed to update the per-task mems_allowed data,
352 * within the tasks context, when it is trying to allocate memory
353 * (in various mm/mempolicy.c routines) and notices that some other
354 * task has been modifying its cpuset.
1da177e4
LT
355 */
356
fe85a998 357void cpuset_update_task_memory_state(void)
1da177e4 358{
053199ed 359 int my_cpusets_mem_gen;
cf2a473c 360 struct task_struct *tsk = current;
6b9c2603 361 struct cpuset *cs;
053199ed 362
8793d854 363 if (task_cs(tsk) == &top_cpuset) {
03a285f5
PJ
364 /* Don't need rcu for top_cpuset. It's never freed. */
365 my_cpusets_mem_gen = top_cpuset.mems_generation;
366 } else {
367 rcu_read_lock();
da5ef6bb 368 my_cpusets_mem_gen = task_cs(tsk)->mems_generation;
03a285f5
PJ
369 rcu_read_unlock();
370 }
1da177e4 371
cf2a473c 372 if (my_cpusets_mem_gen != tsk->cpuset_mems_generation) {
3d3f26a7 373 mutex_lock(&callback_mutex);
cf2a473c 374 task_lock(tsk);
8793d854 375 cs = task_cs(tsk); /* Maybe changed when task not locked */
cf2a473c
PJ
376 guarantee_online_mems(cs, &tsk->mems_allowed);
377 tsk->cpuset_mems_generation = cs->mems_generation;
825a46af
PJ
378 if (is_spread_page(cs))
379 tsk->flags |= PF_SPREAD_PAGE;
380 else
381 tsk->flags &= ~PF_SPREAD_PAGE;
382 if (is_spread_slab(cs))
383 tsk->flags |= PF_SPREAD_SLAB;
384 else
385 tsk->flags &= ~PF_SPREAD_SLAB;
cf2a473c 386 task_unlock(tsk);
3d3f26a7 387 mutex_unlock(&callback_mutex);
74cb2155 388 mpol_rebind_task(tsk, &tsk->mems_allowed);
1da177e4
LT
389 }
390}
391
392/*
393 * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q?
394 *
395 * One cpuset is a subset of another if all its allowed CPUs and
396 * Memory Nodes are a subset of the other, and its exclusive flags
2df167a3 397 * are only set if the other's are set. Call holding cgroup_mutex.
1da177e4
LT
398 */
399
400static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q)
401{
402 return cpus_subset(p->cpus_allowed, q->cpus_allowed) &&
403 nodes_subset(p->mems_allowed, q->mems_allowed) &&
404 is_cpu_exclusive(p) <= is_cpu_exclusive(q) &&
405 is_mem_exclusive(p) <= is_mem_exclusive(q);
406}
407
408/*
409 * validate_change() - Used to validate that any proposed cpuset change
410 * follows the structural rules for cpusets.
411 *
412 * If we replaced the flag and mask values of the current cpuset
413 * (cur) with those values in the trial cpuset (trial), would
414 * our various subset and exclusive rules still be valid? Presumes
2df167a3 415 * cgroup_mutex held.
1da177e4
LT
416 *
417 * 'cur' is the address of an actual, in-use cpuset. Operations
418 * such as list traversal that depend on the actual address of the
419 * cpuset in the list must use cur below, not trial.
420 *
421 * 'trial' is the address of bulk structure copy of cur, with
422 * perhaps one or more of the fields cpus_allowed, mems_allowed,
423 * or flags changed to new, trial values.
424 *
425 * Return 0 if valid, -errno if not.
426 */
427
428static int validate_change(const struct cpuset *cur, const struct cpuset *trial)
429{
8793d854 430 struct cgroup *cont;
1da177e4
LT
431 struct cpuset *c, *par;
432
433 /* Each of our child cpusets must be a subset of us */
8793d854
PM
434 list_for_each_entry(cont, &cur->css.cgroup->children, sibling) {
435 if (!is_cpuset_subset(cgroup_cs(cont), trial))
1da177e4
LT
436 return -EBUSY;
437 }
438
439 /* Remaining checks don't apply to root cpuset */
69604067 440 if (cur == &top_cpuset)
1da177e4
LT
441 return 0;
442
69604067
PJ
443 par = cur->parent;
444
1da177e4
LT
445 /* We must be a subset of our parent cpuset */
446 if (!is_cpuset_subset(trial, par))
447 return -EACCES;
448
2df167a3
PM
449 /*
450 * If either I or some sibling (!= me) is exclusive, we can't
451 * overlap
452 */
8793d854
PM
453 list_for_each_entry(cont, &par->css.cgroup->children, sibling) {
454 c = cgroup_cs(cont);
1da177e4
LT
455 if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) &&
456 c != cur &&
457 cpus_intersects(trial->cpus_allowed, c->cpus_allowed))
458 return -EINVAL;
459 if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) &&
460 c != cur &&
461 nodes_intersects(trial->mems_allowed, c->mems_allowed))
462 return -EINVAL;
463 }
464
020958b6
PJ
465 /* Cpusets with tasks can't have empty cpus_allowed or mems_allowed */
466 if (cgroup_task_count(cur->css.cgroup)) {
467 if (cpus_empty(trial->cpus_allowed) ||
468 nodes_empty(trial->mems_allowed)) {
469 return -ENOSPC;
470 }
471 }
472
1da177e4
LT
473 return 0;
474}
475
029190c5
PJ
476/*
477 * Helper routine for rebuild_sched_domains().
478 * Do cpusets a, b have overlapping cpus_allowed masks?
479 */
480
481static int cpusets_overlap(struct cpuset *a, struct cpuset *b)
482{
483 return cpus_intersects(a->cpus_allowed, b->cpus_allowed);
484}
485
1d3504fc
HS
486static void
487update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c)
488{
489 if (!dattr)
490 return;
491 if (dattr->relax_domain_level < c->relax_domain_level)
492 dattr->relax_domain_level = c->relax_domain_level;
493 return;
494}
495
029190c5
PJ
496/*
497 * rebuild_sched_domains()
498 *
c372e817
LZ
499 * This routine will be called to rebuild the scheduler's dynamic
500 * sched domains:
501 * - if the flag 'sched_load_balance' of any cpuset with non-empty
502 * 'cpus' changes,
503 * - or if the 'cpus' allowed changes in any cpuset which has that
504 * flag enabled,
505 * - or if the 'sched_relax_domain_level' of any cpuset which has
506 * that flag enabled and with non-empty 'cpus' changes,
507 * - or if any cpuset with non-empty 'cpus' is removed,
508 * - or if a cpu gets offlined.
029190c5
PJ
509 *
510 * This routine builds a partial partition of the systems CPUs
511 * (the set of non-overlappping cpumask_t's in the array 'part'
512 * below), and passes that partial partition to the kernel/sched.c
513 * partition_sched_domains() routine, which will rebuild the
514 * schedulers load balancing domains (sched domains) as specified
515 * by that partial partition. A 'partial partition' is a set of
516 * non-overlapping subsets whose union is a subset of that set.
517 *
518 * See "What is sched_load_balance" in Documentation/cpusets.txt
519 * for a background explanation of this.
520 *
521 * Does not return errors, on the theory that the callers of this
522 * routine would rather not worry about failures to rebuild sched
523 * domains when operating in the severe memory shortage situations
524 * that could cause allocation failures below.
525 *
526 * Call with cgroup_mutex held. May take callback_mutex during
527 * call due to the kfifo_alloc() and kmalloc() calls. May nest
86ef5c9a 528 * a call to the get_online_cpus()/put_online_cpus() pair.
029190c5 529 * Must not be called holding callback_mutex, because we must not
86ef5c9a
GS
530 * call get_online_cpus() while holding callback_mutex. Elsewhere
531 * the kernel nests callback_mutex inside get_online_cpus() calls.
029190c5
PJ
532 * So the reverse nesting would risk an ABBA deadlock.
533 *
534 * The three key local variables below are:
535 * q - a kfifo queue of cpuset pointers, used to implement a
536 * top-down scan of all cpusets. This scan loads a pointer
537 * to each cpuset marked is_sched_load_balance into the
538 * array 'csa'. For our purposes, rebuilding the schedulers
539 * sched domains, we can ignore !is_sched_load_balance cpusets.
540 * csa - (for CpuSet Array) Array of pointers to all the cpusets
541 * that need to be load balanced, for convenient iterative
542 * access by the subsequent code that finds the best partition,
543 * i.e the set of domains (subsets) of CPUs such that the
544 * cpus_allowed of every cpuset marked is_sched_load_balance
545 * is a subset of one of these domains, while there are as
546 * many such domains as possible, each as small as possible.
547 * doms - Conversion of 'csa' to an array of cpumasks, for passing to
548 * the kernel/sched.c routine partition_sched_domains() in a
549 * convenient format, that can be easily compared to the prior
550 * value to determine what partition elements (sched domains)
551 * were changed (added or removed.)
552 *
553 * Finding the best partition (set of domains):
554 * The triple nested loops below over i, j, k scan over the
555 * load balanced cpusets (using the array of cpuset pointers in
556 * csa[]) looking for pairs of cpusets that have overlapping
557 * cpus_allowed, but which don't have the same 'pn' partition
558 * number and gives them in the same partition number. It keeps
559 * looping on the 'restart' label until it can no longer find
560 * any such pairs.
561 *
562 * The union of the cpus_allowed masks from the set of
563 * all cpusets having the same 'pn' value then form the one
564 * element of the partition (one sched domain) to be passed to
565 * partition_sched_domains().
566 */
567
e761b772 568void rebuild_sched_domains(void)
029190c5
PJ
569{
570 struct kfifo *q; /* queue of cpusets to be scanned */
571 struct cpuset *cp; /* scans q */
572 struct cpuset **csa; /* array of all cpuset ptrs */
573 int csn; /* how many cpuset ptrs in csa so far */
574 int i, j, k; /* indices for partition finding loops */
575 cpumask_t *doms; /* resulting partition; i.e. sched domains */
1d3504fc 576 struct sched_domain_attr *dattr; /* attributes for custom domains */
029190c5
PJ
577 int ndoms; /* number of sched domains in result */
578 int nslot; /* next empty doms[] cpumask_t slot */
579
580 q = NULL;
581 csa = NULL;
582 doms = NULL;
1d3504fc 583 dattr = NULL;
029190c5
PJ
584
585 /* Special case for the 99% of systems with one, full, sched domain */
586 if (is_sched_load_balance(&top_cpuset)) {
587 ndoms = 1;
588 doms = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
589 if (!doms)
590 goto rebuild;
1d3504fc
HS
591 dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL);
592 if (dattr) {
593 *dattr = SD_ATTR_INIT;
594 update_domain_attr(dattr, &top_cpuset);
595 }
029190c5
PJ
596 *doms = top_cpuset.cpus_allowed;
597 goto rebuild;
598 }
599
600 q = kfifo_alloc(number_of_cpusets * sizeof(cp), GFP_KERNEL, NULL);
601 if (IS_ERR(q))
602 goto done;
603 csa = kmalloc(number_of_cpusets * sizeof(cp), GFP_KERNEL);
604 if (!csa)
605 goto done;
606 csn = 0;
607
608 cp = &top_cpuset;
609 __kfifo_put(q, (void *)&cp, sizeof(cp));
610 while (__kfifo_get(q, (void *)&cp, sizeof(cp))) {
611 struct cgroup *cont;
612 struct cpuset *child; /* scans child cpusets of cp */
489a5393
LJ
613
614 if (cpus_empty(cp->cpus_allowed))
615 continue;
616
029190c5
PJ
617 if (is_sched_load_balance(cp))
618 csa[csn++] = cp;
489a5393 619
029190c5
PJ
620 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
621 child = cgroup_cs(cont);
622 __kfifo_put(q, (void *)&child, sizeof(cp));
623 }
624 }
625
626 for (i = 0; i < csn; i++)
627 csa[i]->pn = i;
628 ndoms = csn;
629
630restart:
631 /* Find the best partition (set of sched domains) */
632 for (i = 0; i < csn; i++) {
633 struct cpuset *a = csa[i];
634 int apn = a->pn;
635
636 for (j = 0; j < csn; j++) {
637 struct cpuset *b = csa[j];
638 int bpn = b->pn;
639
640 if (apn != bpn && cpusets_overlap(a, b)) {
641 for (k = 0; k < csn; k++) {
642 struct cpuset *c = csa[k];
643
644 if (c->pn == bpn)
645 c->pn = apn;
646 }
647 ndoms--; /* one less element */
648 goto restart;
649 }
650 }
651 }
652
653 /* Convert <csn, csa> to <ndoms, doms> */
654 doms = kmalloc(ndoms * sizeof(cpumask_t), GFP_KERNEL);
655 if (!doms)
656 goto rebuild;
1d3504fc 657 dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL);
029190c5
PJ
658
659 for (nslot = 0, i = 0; i < csn; i++) {
660 struct cpuset *a = csa[i];
661 int apn = a->pn;
662
663 if (apn >= 0) {
664 cpumask_t *dp = doms + nslot;
665
666 if (nslot == ndoms) {
667 static int warnings = 10;
668 if (warnings) {
669 printk(KERN_WARNING
670 "rebuild_sched_domains confused:"
671 " nslot %d, ndoms %d, csn %d, i %d,"
672 " apn %d\n",
673 nslot, ndoms, csn, i, apn);
674 warnings--;
675 }
676 continue;
677 }
678
679 cpus_clear(*dp);
1d3504fc
HS
680 if (dattr)
681 *(dattr + nslot) = SD_ATTR_INIT;
029190c5
PJ
682 for (j = i; j < csn; j++) {
683 struct cpuset *b = csa[j];
684
685 if (apn == b->pn) {
686 cpus_or(*dp, *dp, b->cpus_allowed);
687 b->pn = -1;
91cd4d6e
MX
688 if (dattr)
689 update_domain_attr(dattr
690 + nslot, b);
029190c5
PJ
691 }
692 }
693 nslot++;
694 }
695 }
696 BUG_ON(nslot != ndoms);
697
698rebuild:
699 /* Have scheduler rebuild sched domains */
86ef5c9a 700 get_online_cpus();
1d3504fc 701 partition_sched_domains(ndoms, doms, dattr);
86ef5c9a 702 put_online_cpus();
029190c5
PJ
703
704done:
705 if (q && !IS_ERR(q))
706 kfifo_free(q);
707 kfree(csa);
708 /* Don't kfree(doms) -- partition_sched_domains() does that. */
1d3504fc 709 /* Don't kfree(dattr) -- partition_sched_domains() does that. */
029190c5
PJ
710}
711
58f4790b
CW
712/**
713 * cpuset_test_cpumask - test a task's cpus_allowed versus its cpuset's
714 * @tsk: task to test
715 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
716 *
2df167a3 717 * Call with cgroup_mutex held. May take callback_mutex during call.
58f4790b
CW
718 * Called for each task in a cgroup by cgroup_scan_tasks().
719 * Return nonzero if this tasks's cpus_allowed mask should be changed (in other
720 * words, if its mask is not equal to its cpuset's mask).
053199ed 721 */
9e0c914c
AB
722static int cpuset_test_cpumask(struct task_struct *tsk,
723 struct cgroup_scanner *scan)
58f4790b
CW
724{
725 return !cpus_equal(tsk->cpus_allowed,
726 (cgroup_cs(scan->cg))->cpus_allowed);
727}
053199ed 728
58f4790b
CW
729/**
730 * cpuset_change_cpumask - make a task's cpus_allowed the same as its cpuset's
731 * @tsk: task to test
732 * @scan: struct cgroup_scanner containing the cgroup of the task
733 *
734 * Called by cgroup_scan_tasks() for each task in a cgroup whose
735 * cpus_allowed mask needs to be changed.
736 *
737 * We don't need to re-check for the cgroup/cpuset membership, since we're
738 * holding cgroup_lock() at this point.
739 */
9e0c914c
AB
740static void cpuset_change_cpumask(struct task_struct *tsk,
741 struct cgroup_scanner *scan)
58f4790b 742{
f9a86fcb 743 set_cpus_allowed_ptr(tsk, &((cgroup_cs(scan->cg))->cpus_allowed));
58f4790b
CW
744}
745
0b2f630a
MX
746/**
747 * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset.
748 * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed
749 *
750 * Called with cgroup_mutex held
751 *
752 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
753 * calling callback functions for each.
754 *
755 * Return 0 if successful, -errno if not.
756 */
757static int update_tasks_cpumask(struct cpuset *cs)
758{
759 struct cgroup_scanner scan;
760 struct ptr_heap heap;
761 int retval;
762
02412483
LJ
763 /*
764 * cgroup_scan_tasks() will initialize heap->gt for us.
765 * heap_init() is still needed here for we should not change
766 * cs->cpus_allowed when heap_init() fails.
767 */
768 retval = heap_init(&heap, PAGE_SIZE, GFP_KERNEL, NULL);
0b2f630a
MX
769 if (retval)
770 return retval;
771
772 scan.cg = cs->css.cgroup;
773 scan.test_task = cpuset_test_cpumask;
774 scan.process_task = cpuset_change_cpumask;
775 scan.heap = &heap;
776 retval = cgroup_scan_tasks(&scan);
777
778 heap_free(&heap);
779 return retval;
780}
781
58f4790b
CW
782/**
783 * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it
784 * @cs: the cpuset to consider
785 * @buf: buffer of cpu numbers written to this cpuset
786 */
e3712395 787static int update_cpumask(struct cpuset *cs, const char *buf)
1da177e4
LT
788{
789 struct cpuset trialcs;
58f4790b
CW
790 int retval;
791 int is_load_balanced;
1da177e4 792
4c4d50f7
PJ
793 /* top_cpuset.cpus_allowed tracks cpu_online_map; it's read-only */
794 if (cs == &top_cpuset)
795 return -EACCES;
796
1da177e4 797 trialcs = *cs;
6f7f02e7
DR
798
799 /*
c8d9c90c 800 * An empty cpus_allowed is ok only if the cpuset has no tasks.
020958b6
PJ
801 * Since cpulist_parse() fails on an empty mask, we special case
802 * that parsing. The validate_change() call ensures that cpusets
803 * with tasks have cpus.
6f7f02e7 804 */
020958b6 805 if (!*buf) {
6f7f02e7
DR
806 cpus_clear(trialcs.cpus_allowed);
807 } else {
808 retval = cpulist_parse(buf, trialcs.cpus_allowed);
809 if (retval < 0)
810 return retval;
37340746
LJ
811
812 if (!cpus_subset(trialcs.cpus_allowed, cpu_online_map))
813 return -EINVAL;
6f7f02e7 814 }
1da177e4 815 retval = validate_change(cs, &trialcs);
85d7b949
DG
816 if (retval < 0)
817 return retval;
029190c5 818
8707d8b8
PM
819 /* Nothing to do if the cpus didn't change */
820 if (cpus_equal(cs->cpus_allowed, trialcs.cpus_allowed))
821 return 0;
58f4790b 822
029190c5
PJ
823 is_load_balanced = is_sched_load_balance(&trialcs);
824
3d3f26a7 825 mutex_lock(&callback_mutex);
85d7b949 826 cs->cpus_allowed = trialcs.cpus_allowed;
3d3f26a7 827 mutex_unlock(&callback_mutex);
029190c5 828
8707d8b8
PM
829 /*
830 * Scan tasks in the cpuset, and update the cpumasks of any
58f4790b 831 * that need an update.
8707d8b8 832 */
0b2f630a
MX
833 retval = update_tasks_cpumask(cs);
834 if (retval < 0)
835 return retval;
58f4790b 836
8707d8b8 837 if (is_load_balanced)
029190c5 838 rebuild_sched_domains();
85d7b949 839 return 0;
1da177e4
LT
840}
841
e4e364e8
PJ
842/*
843 * cpuset_migrate_mm
844 *
845 * Migrate memory region from one set of nodes to another.
846 *
847 * Temporarilly set tasks mems_allowed to target nodes of migration,
848 * so that the migration code can allocate pages on these nodes.
849 *
2df167a3 850 * Call holding cgroup_mutex, so current's cpuset won't change
c8d9c90c 851 * during this call, as manage_mutex holds off any cpuset_attach()
e4e364e8
PJ
852 * calls. Therefore we don't need to take task_lock around the
853 * call to guarantee_online_mems(), as we know no one is changing
2df167a3 854 * our task's cpuset.
e4e364e8
PJ
855 *
856 * Hold callback_mutex around the two modifications of our tasks
857 * mems_allowed to synchronize with cpuset_mems_allowed().
858 *
859 * While the mm_struct we are migrating is typically from some
860 * other task, the task_struct mems_allowed that we are hacking
861 * is for our current task, which must allocate new pages for that
862 * migrating memory region.
863 *
864 * We call cpuset_update_task_memory_state() before hacking
865 * our tasks mems_allowed, so that we are assured of being in
866 * sync with our tasks cpuset, and in particular, callbacks to
867 * cpuset_update_task_memory_state() from nested page allocations
868 * won't see any mismatch of our cpuset and task mems_generation
869 * values, so won't overwrite our hacked tasks mems_allowed
870 * nodemask.
871 */
872
873static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from,
874 const nodemask_t *to)
875{
876 struct task_struct *tsk = current;
877
878 cpuset_update_task_memory_state();
879
880 mutex_lock(&callback_mutex);
881 tsk->mems_allowed = *to;
882 mutex_unlock(&callback_mutex);
883
884 do_migrate_pages(mm, from, to, MPOL_MF_MOVE_ALL);
885
886 mutex_lock(&callback_mutex);
8793d854 887 guarantee_online_mems(task_cs(tsk),&tsk->mems_allowed);
e4e364e8
PJ
888 mutex_unlock(&callback_mutex);
889}
890
8793d854
PM
891static void *cpuset_being_rebound;
892
0b2f630a
MX
893/**
894 * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset.
895 * @cs: the cpuset in which each task's mems_allowed mask needs to be changed
896 * @oldmem: old mems_allowed of cpuset cs
897 *
898 * Called with cgroup_mutex held
899 * Return 0 if successful, -errno if not.
900 */
901static int update_tasks_nodemask(struct cpuset *cs, const nodemask_t *oldmem)
1da177e4 902{
8793d854 903 struct task_struct *p;
4225399a
PJ
904 struct mm_struct **mmarray;
905 int i, n, ntasks;
04c19fa6 906 int migrate;
4225399a 907 int fudge;
8793d854 908 struct cgroup_iter it;
0b2f630a 909 int retval;
59dac16f 910
846a16bf 911 cpuset_being_rebound = cs; /* causes mpol_dup() rebind */
4225399a
PJ
912
913 fudge = 10; /* spare mmarray[] slots */
914 fudge += cpus_weight(cs->cpus_allowed); /* imagine one fork-bomb/cpu */
915 retval = -ENOMEM;
916
917 /*
918 * Allocate mmarray[] to hold mm reference for each task
919 * in cpuset cs. Can't kmalloc GFP_KERNEL while holding
920 * tasklist_lock. We could use GFP_ATOMIC, but with a
921 * few more lines of code, we can retry until we get a big
922 * enough mmarray[] w/o using GFP_ATOMIC.
923 */
924 while (1) {
8793d854 925 ntasks = cgroup_task_count(cs->css.cgroup); /* guess */
4225399a
PJ
926 ntasks += fudge;
927 mmarray = kmalloc(ntasks * sizeof(*mmarray), GFP_KERNEL);
928 if (!mmarray)
929 goto done;
c2aef333 930 read_lock(&tasklist_lock); /* block fork */
8793d854 931 if (cgroup_task_count(cs->css.cgroup) <= ntasks)
4225399a 932 break; /* got enough */
c2aef333 933 read_unlock(&tasklist_lock); /* try again */
4225399a
PJ
934 kfree(mmarray);
935 }
936
937 n = 0;
938
939 /* Load up mmarray[] with mm reference for each task in cpuset. */
8793d854
PM
940 cgroup_iter_start(cs->css.cgroup, &it);
941 while ((p = cgroup_iter_next(cs->css.cgroup, &it))) {
4225399a
PJ
942 struct mm_struct *mm;
943
944 if (n >= ntasks) {
945 printk(KERN_WARNING
946 "Cpuset mempolicy rebind incomplete.\n");
8793d854 947 break;
4225399a 948 }
4225399a
PJ
949 mm = get_task_mm(p);
950 if (!mm)
951 continue;
952 mmarray[n++] = mm;
8793d854
PM
953 }
954 cgroup_iter_end(cs->css.cgroup, &it);
c2aef333 955 read_unlock(&tasklist_lock);
4225399a
PJ
956
957 /*
958 * Now that we've dropped the tasklist spinlock, we can
959 * rebind the vma mempolicies of each mm in mmarray[] to their
960 * new cpuset, and release that mm. The mpol_rebind_mm()
961 * call takes mmap_sem, which we couldn't take while holding
846a16bf 962 * tasklist_lock. Forks can happen again now - the mpol_dup()
4225399a
PJ
963 * cpuset_being_rebound check will catch such forks, and rebind
964 * their vma mempolicies too. Because we still hold the global
2df167a3 965 * cgroup_mutex, we know that no other rebind effort will
4225399a
PJ
966 * be contending for the global variable cpuset_being_rebound.
967 * It's ok if we rebind the same mm twice; mpol_rebind_mm()
04c19fa6 968 * is idempotent. Also migrate pages in each mm to new nodes.
4225399a 969 */
04c19fa6 970 migrate = is_memory_migrate(cs);
4225399a
PJ
971 for (i = 0; i < n; i++) {
972 struct mm_struct *mm = mmarray[i];
973
974 mpol_rebind_mm(mm, &cs->mems_allowed);
e4e364e8 975 if (migrate)
0b2f630a 976 cpuset_migrate_mm(mm, oldmem, &cs->mems_allowed);
4225399a
PJ
977 mmput(mm);
978 }
979
2df167a3 980 /* We're done rebinding vmas to this cpuset's new mems_allowed. */
4225399a 981 kfree(mmarray);
8793d854 982 cpuset_being_rebound = NULL;
4225399a 983 retval = 0;
59dac16f 984done:
1da177e4
LT
985 return retval;
986}
987
0b2f630a
MX
988/*
989 * Handle user request to change the 'mems' memory placement
990 * of a cpuset. Needs to validate the request, update the
991 * cpusets mems_allowed and mems_generation, and for each
992 * task in the cpuset, rebind any vma mempolicies and if
993 * the cpuset is marked 'memory_migrate', migrate the tasks
994 * pages to the new memory.
995 *
996 * Call with cgroup_mutex held. May take callback_mutex during call.
997 * Will take tasklist_lock, scan tasklist for tasks in cpuset cs,
998 * lock each such tasks mm->mmap_sem, scan its vma's and rebind
999 * their mempolicies to the cpusets new mems_allowed.
1000 */
1001static int update_nodemask(struct cpuset *cs, const char *buf)
1002{
1003 struct cpuset trialcs;
1004 nodemask_t oldmem;
1005 int retval;
1006
1007 /*
1008 * top_cpuset.mems_allowed tracks node_stats[N_HIGH_MEMORY];
1009 * it's read-only
1010 */
1011 if (cs == &top_cpuset)
1012 return -EACCES;
1013
1014 trialcs = *cs;
1015
1016 /*
1017 * An empty mems_allowed is ok iff there are no tasks in the cpuset.
1018 * Since nodelist_parse() fails on an empty mask, we special case
1019 * that parsing. The validate_change() call ensures that cpusets
1020 * with tasks have memory.
1021 */
1022 if (!*buf) {
1023 nodes_clear(trialcs.mems_allowed);
1024 } else {
1025 retval = nodelist_parse(buf, trialcs.mems_allowed);
1026 if (retval < 0)
1027 goto done;
1028
1029 if (!nodes_subset(trialcs.mems_allowed,
1030 node_states[N_HIGH_MEMORY]))
1031 return -EINVAL;
1032 }
1033 oldmem = cs->mems_allowed;
1034 if (nodes_equal(oldmem, trialcs.mems_allowed)) {
1035 retval = 0; /* Too easy - nothing to do */
1036 goto done;
1037 }
1038 retval = validate_change(cs, &trialcs);
1039 if (retval < 0)
1040 goto done;
1041
1042 mutex_lock(&callback_mutex);
1043 cs->mems_allowed = trialcs.mems_allowed;
1044 cs->mems_generation = cpuset_mems_generation++;
1045 mutex_unlock(&callback_mutex);
1046
1047 retval = update_tasks_nodemask(cs, &oldmem);
1048done:
1049 return retval;
1050}
1051
8793d854
PM
1052int current_cpuset_is_being_rebound(void)
1053{
1054 return task_cs(current) == cpuset_being_rebound;
1055}
1056
5be7a479 1057static int update_relax_domain_level(struct cpuset *cs, s64 val)
1d3504fc 1058{
30e0e178
LZ
1059 if (val < -1 || val >= SD_LV_MAX)
1060 return -EINVAL;
1d3504fc
HS
1061
1062 if (val != cs->relax_domain_level) {
1063 cs->relax_domain_level = val;
c372e817
LZ
1064 if (!cpus_empty(cs->cpus_allowed) && is_sched_load_balance(cs))
1065 rebuild_sched_domains();
1d3504fc
HS
1066 }
1067
1068 return 0;
1069}
1070
1da177e4
LT
1071/*
1072 * update_flag - read a 0 or a 1 in a file and update associated flag
78608366
PM
1073 * bit: the bit to update (see cpuset_flagbits_t)
1074 * cs: the cpuset to update
1075 * turning_on: whether the flag is being set or cleared
053199ed 1076 *
2df167a3 1077 * Call with cgroup_mutex held.
1da177e4
LT
1078 */
1079
700fe1ab
PM
1080static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs,
1081 int turning_on)
1da177e4 1082{
1da177e4 1083 struct cpuset trialcs;
607717a6 1084 int err;
029190c5 1085 int cpus_nonempty, balance_flag_changed;
1da177e4 1086
1da177e4
LT
1087 trialcs = *cs;
1088 if (turning_on)
1089 set_bit(bit, &trialcs.flags);
1090 else
1091 clear_bit(bit, &trialcs.flags);
1092
1093 err = validate_change(cs, &trialcs);
85d7b949
DG
1094 if (err < 0)
1095 return err;
029190c5
PJ
1096
1097 cpus_nonempty = !cpus_empty(trialcs.cpus_allowed);
1098 balance_flag_changed = (is_sched_load_balance(cs) !=
1099 is_sched_load_balance(&trialcs));
1100
3d3f26a7 1101 mutex_lock(&callback_mutex);
69604067 1102 cs->flags = trialcs.flags;
3d3f26a7 1103 mutex_unlock(&callback_mutex);
85d7b949 1104
029190c5
PJ
1105 if (cpus_nonempty && balance_flag_changed)
1106 rebuild_sched_domains();
1107
85d7b949 1108 return 0;
1da177e4
LT
1109}
1110
3e0d98b9 1111/*
80f7228b 1112 * Frequency meter - How fast is some event occurring?
3e0d98b9
PJ
1113 *
1114 * These routines manage a digitally filtered, constant time based,
1115 * event frequency meter. There are four routines:
1116 * fmeter_init() - initialize a frequency meter.
1117 * fmeter_markevent() - called each time the event happens.
1118 * fmeter_getrate() - returns the recent rate of such events.
1119 * fmeter_update() - internal routine used to update fmeter.
1120 *
1121 * A common data structure is passed to each of these routines,
1122 * which is used to keep track of the state required to manage the
1123 * frequency meter and its digital filter.
1124 *
1125 * The filter works on the number of events marked per unit time.
1126 * The filter is single-pole low-pass recursive (IIR). The time unit
1127 * is 1 second. Arithmetic is done using 32-bit integers scaled to
1128 * simulate 3 decimal digits of precision (multiplied by 1000).
1129 *
1130 * With an FM_COEF of 933, and a time base of 1 second, the filter
1131 * has a half-life of 10 seconds, meaning that if the events quit
1132 * happening, then the rate returned from the fmeter_getrate()
1133 * will be cut in half each 10 seconds, until it converges to zero.
1134 *
1135 * It is not worth doing a real infinitely recursive filter. If more
1136 * than FM_MAXTICKS ticks have elapsed since the last filter event,
1137 * just compute FM_MAXTICKS ticks worth, by which point the level
1138 * will be stable.
1139 *
1140 * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid
1141 * arithmetic overflow in the fmeter_update() routine.
1142 *
1143 * Given the simple 32 bit integer arithmetic used, this meter works
1144 * best for reporting rates between one per millisecond (msec) and
1145 * one per 32 (approx) seconds. At constant rates faster than one
1146 * per msec it maxes out at values just under 1,000,000. At constant
1147 * rates between one per msec, and one per second it will stabilize
1148 * to a value N*1000, where N is the rate of events per second.
1149 * At constant rates between one per second and one per 32 seconds,
1150 * it will be choppy, moving up on the seconds that have an event,
1151 * and then decaying until the next event. At rates slower than
1152 * about one in 32 seconds, it decays all the way back to zero between
1153 * each event.
1154 */
1155
1156#define FM_COEF 933 /* coefficient for half-life of 10 secs */
1157#define FM_MAXTICKS ((time_t)99) /* useless computing more ticks than this */
1158#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */
1159#define FM_SCALE 1000 /* faux fixed point scale */
1160
1161/* Initialize a frequency meter */
1162static void fmeter_init(struct fmeter *fmp)
1163{
1164 fmp->cnt = 0;
1165 fmp->val = 0;
1166 fmp->time = 0;
1167 spin_lock_init(&fmp->lock);
1168}
1169
1170/* Internal meter update - process cnt events and update value */
1171static void fmeter_update(struct fmeter *fmp)
1172{
1173 time_t now = get_seconds();
1174 time_t ticks = now - fmp->time;
1175
1176 if (ticks == 0)
1177 return;
1178
1179 ticks = min(FM_MAXTICKS, ticks);
1180 while (ticks-- > 0)
1181 fmp->val = (FM_COEF * fmp->val) / FM_SCALE;
1182 fmp->time = now;
1183
1184 fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE;
1185 fmp->cnt = 0;
1186}
1187
1188/* Process any previous ticks, then bump cnt by one (times scale). */
1189static void fmeter_markevent(struct fmeter *fmp)
1190{
1191 spin_lock(&fmp->lock);
1192 fmeter_update(fmp);
1193 fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE);
1194 spin_unlock(&fmp->lock);
1195}
1196
1197/* Process any previous ticks, then return current value. */
1198static int fmeter_getrate(struct fmeter *fmp)
1199{
1200 int val;
1201
1202 spin_lock(&fmp->lock);
1203 fmeter_update(fmp);
1204 val = fmp->val;
1205 spin_unlock(&fmp->lock);
1206 return val;
1207}
1208
2df167a3 1209/* Called by cgroups to determine if a cpuset is usable; cgroup_mutex held */
8793d854
PM
1210static int cpuset_can_attach(struct cgroup_subsys *ss,
1211 struct cgroup *cont, struct task_struct *tsk)
1da177e4 1212{
8793d854 1213 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1214
1da177e4
LT
1215 if (cpus_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))
1216 return -ENOSPC;
9985b0ba
DR
1217 if (tsk->flags & PF_THREAD_BOUND) {
1218 cpumask_t mask;
1219
1220 mutex_lock(&callback_mutex);
1221 mask = cs->cpus_allowed;
1222 mutex_unlock(&callback_mutex);
1223 if (!cpus_equal(tsk->cpus_allowed, mask))
1224 return -EINVAL;
1225 }
1da177e4 1226
8793d854
PM
1227 return security_task_setscheduler(tsk, 0, NULL);
1228}
1da177e4 1229
8793d854
PM
1230static void cpuset_attach(struct cgroup_subsys *ss,
1231 struct cgroup *cont, struct cgroup *oldcont,
1232 struct task_struct *tsk)
1233{
1234 cpumask_t cpus;
1235 nodemask_t from, to;
1236 struct mm_struct *mm;
1237 struct cpuset *cs = cgroup_cs(cont);
1238 struct cpuset *oldcs = cgroup_cs(oldcont);
9985b0ba 1239 int err;
22fb52dd 1240
3d3f26a7 1241 mutex_lock(&callback_mutex);
1da177e4 1242 guarantee_online_cpus(cs, &cpus);
9985b0ba 1243 err = set_cpus_allowed_ptr(tsk, &cpus);
8793d854 1244 mutex_unlock(&callback_mutex);
9985b0ba
DR
1245 if (err)
1246 return;
1da177e4 1247
45b07ef3
PJ
1248 from = oldcs->mems_allowed;
1249 to = cs->mems_allowed;
4225399a
PJ
1250 mm = get_task_mm(tsk);
1251 if (mm) {
1252 mpol_rebind_mm(mm, &to);
2741a559 1253 if (is_memory_migrate(cs))
e4e364e8 1254 cpuset_migrate_mm(mm, &from, &to);
4225399a
PJ
1255 mmput(mm);
1256 }
1257
1da177e4
LT
1258}
1259
1260/* The various types of files and directories in a cpuset file system */
1261
1262typedef enum {
45b07ef3 1263 FILE_MEMORY_MIGRATE,
1da177e4
LT
1264 FILE_CPULIST,
1265 FILE_MEMLIST,
1266 FILE_CPU_EXCLUSIVE,
1267 FILE_MEM_EXCLUSIVE,
78608366 1268 FILE_MEM_HARDWALL,
029190c5 1269 FILE_SCHED_LOAD_BALANCE,
1d3504fc 1270 FILE_SCHED_RELAX_DOMAIN_LEVEL,
3e0d98b9
PJ
1271 FILE_MEMORY_PRESSURE_ENABLED,
1272 FILE_MEMORY_PRESSURE,
825a46af
PJ
1273 FILE_SPREAD_PAGE,
1274 FILE_SPREAD_SLAB,
1da177e4
LT
1275} cpuset_filetype_t;
1276
700fe1ab
PM
1277static int cpuset_write_u64(struct cgroup *cgrp, struct cftype *cft, u64 val)
1278{
1279 int retval = 0;
1280 struct cpuset *cs = cgroup_cs(cgrp);
1281 cpuset_filetype_t type = cft->private;
1282
e3712395 1283 if (!cgroup_lock_live_group(cgrp))
700fe1ab 1284 return -ENODEV;
700fe1ab
PM
1285
1286 switch (type) {
1da177e4 1287 case FILE_CPU_EXCLUSIVE:
700fe1ab 1288 retval = update_flag(CS_CPU_EXCLUSIVE, cs, val);
1da177e4
LT
1289 break;
1290 case FILE_MEM_EXCLUSIVE:
700fe1ab 1291 retval = update_flag(CS_MEM_EXCLUSIVE, cs, val);
1da177e4 1292 break;
78608366
PM
1293 case FILE_MEM_HARDWALL:
1294 retval = update_flag(CS_MEM_HARDWALL, cs, val);
1295 break;
029190c5 1296 case FILE_SCHED_LOAD_BALANCE:
700fe1ab 1297 retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val);
1d3504fc 1298 break;
45b07ef3 1299 case FILE_MEMORY_MIGRATE:
700fe1ab 1300 retval = update_flag(CS_MEMORY_MIGRATE, cs, val);
45b07ef3 1301 break;
3e0d98b9 1302 case FILE_MEMORY_PRESSURE_ENABLED:
700fe1ab 1303 cpuset_memory_pressure_enabled = !!val;
3e0d98b9
PJ
1304 break;
1305 case FILE_MEMORY_PRESSURE:
1306 retval = -EACCES;
1307 break;
825a46af 1308 case FILE_SPREAD_PAGE:
700fe1ab 1309 retval = update_flag(CS_SPREAD_PAGE, cs, val);
151a4420 1310 cs->mems_generation = cpuset_mems_generation++;
825a46af
PJ
1311 break;
1312 case FILE_SPREAD_SLAB:
700fe1ab 1313 retval = update_flag(CS_SPREAD_SLAB, cs, val);
151a4420 1314 cs->mems_generation = cpuset_mems_generation++;
825a46af 1315 break;
1da177e4
LT
1316 default:
1317 retval = -EINVAL;
700fe1ab 1318 break;
1da177e4 1319 }
8793d854 1320 cgroup_unlock();
1da177e4
LT
1321 return retval;
1322}
1323
5be7a479
PM
1324static int cpuset_write_s64(struct cgroup *cgrp, struct cftype *cft, s64 val)
1325{
1326 int retval = 0;
1327 struct cpuset *cs = cgroup_cs(cgrp);
1328 cpuset_filetype_t type = cft->private;
1329
e3712395 1330 if (!cgroup_lock_live_group(cgrp))
5be7a479 1331 return -ENODEV;
e3712395 1332
5be7a479
PM
1333 switch (type) {
1334 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1335 retval = update_relax_domain_level(cs, val);
1336 break;
1337 default:
1338 retval = -EINVAL;
1339 break;
1340 }
1341 cgroup_unlock();
1342 return retval;
1343}
1344
e3712395
PM
1345/*
1346 * Common handling for a write to a "cpus" or "mems" file.
1347 */
1348static int cpuset_write_resmask(struct cgroup *cgrp, struct cftype *cft,
1349 const char *buf)
1350{
1351 int retval = 0;
1352
1353 if (!cgroup_lock_live_group(cgrp))
1354 return -ENODEV;
1355
1356 switch (cft->private) {
1357 case FILE_CPULIST:
1358 retval = update_cpumask(cgroup_cs(cgrp), buf);
1359 break;
1360 case FILE_MEMLIST:
1361 retval = update_nodemask(cgroup_cs(cgrp), buf);
1362 break;
1363 default:
1364 retval = -EINVAL;
1365 break;
1366 }
1367 cgroup_unlock();
1368 return retval;
1369}
1370
1da177e4
LT
1371/*
1372 * These ascii lists should be read in a single call, by using a user
1373 * buffer large enough to hold the entire map. If read in smaller
1374 * chunks, there is no guarantee of atomicity. Since the display format
1375 * used, list of ranges of sequential numbers, is variable length,
1376 * and since these maps can change value dynamically, one could read
1377 * gibberish by doing partial reads while a list was changing.
1378 * A single large read to a buffer that crosses a page boundary is
1379 * ok, because the result being copied to user land is not recomputed
1380 * across a page fault.
1381 */
1382
1383static int cpuset_sprintf_cpulist(char *page, struct cpuset *cs)
1384{
1385 cpumask_t mask;
1386
3d3f26a7 1387 mutex_lock(&callback_mutex);
1da177e4 1388 mask = cs->cpus_allowed;
3d3f26a7 1389 mutex_unlock(&callback_mutex);
1da177e4
LT
1390
1391 return cpulist_scnprintf(page, PAGE_SIZE, mask);
1392}
1393
1394static int cpuset_sprintf_memlist(char *page, struct cpuset *cs)
1395{
1396 nodemask_t mask;
1397
3d3f26a7 1398 mutex_lock(&callback_mutex);
1da177e4 1399 mask = cs->mems_allowed;
3d3f26a7 1400 mutex_unlock(&callback_mutex);
1da177e4
LT
1401
1402 return nodelist_scnprintf(page, PAGE_SIZE, mask);
1403}
1404
8793d854
PM
1405static ssize_t cpuset_common_file_read(struct cgroup *cont,
1406 struct cftype *cft,
1407 struct file *file,
1408 char __user *buf,
1409 size_t nbytes, loff_t *ppos)
1da177e4 1410{
8793d854 1411 struct cpuset *cs = cgroup_cs(cont);
1da177e4
LT
1412 cpuset_filetype_t type = cft->private;
1413 char *page;
1414 ssize_t retval = 0;
1415 char *s;
1da177e4 1416
e12ba74d 1417 if (!(page = (char *)__get_free_page(GFP_TEMPORARY)))
1da177e4
LT
1418 return -ENOMEM;
1419
1420 s = page;
1421
1422 switch (type) {
1423 case FILE_CPULIST:
1424 s += cpuset_sprintf_cpulist(s, cs);
1425 break;
1426 case FILE_MEMLIST:
1427 s += cpuset_sprintf_memlist(s, cs);
1428 break;
1da177e4
LT
1429 default:
1430 retval = -EINVAL;
1431 goto out;
1432 }
1433 *s++ = '\n';
1da177e4 1434
eacaa1f5 1435 retval = simple_read_from_buffer(buf, nbytes, ppos, page, s - page);
1da177e4
LT
1436out:
1437 free_page((unsigned long)page);
1438 return retval;
1439}
1440
700fe1ab
PM
1441static u64 cpuset_read_u64(struct cgroup *cont, struct cftype *cft)
1442{
1443 struct cpuset *cs = cgroup_cs(cont);
1444 cpuset_filetype_t type = cft->private;
1445 switch (type) {
1446 case FILE_CPU_EXCLUSIVE:
1447 return is_cpu_exclusive(cs);
1448 case FILE_MEM_EXCLUSIVE:
1449 return is_mem_exclusive(cs);
78608366
PM
1450 case FILE_MEM_HARDWALL:
1451 return is_mem_hardwall(cs);
700fe1ab
PM
1452 case FILE_SCHED_LOAD_BALANCE:
1453 return is_sched_load_balance(cs);
1454 case FILE_MEMORY_MIGRATE:
1455 return is_memory_migrate(cs);
1456 case FILE_MEMORY_PRESSURE_ENABLED:
1457 return cpuset_memory_pressure_enabled;
1458 case FILE_MEMORY_PRESSURE:
1459 return fmeter_getrate(&cs->fmeter);
1460 case FILE_SPREAD_PAGE:
1461 return is_spread_page(cs);
1462 case FILE_SPREAD_SLAB:
1463 return is_spread_slab(cs);
1464 default:
1465 BUG();
1466 }
1467}
1da177e4 1468
5be7a479
PM
1469static s64 cpuset_read_s64(struct cgroup *cont, struct cftype *cft)
1470{
1471 struct cpuset *cs = cgroup_cs(cont);
1472 cpuset_filetype_t type = cft->private;
1473 switch (type) {
1474 case FILE_SCHED_RELAX_DOMAIN_LEVEL:
1475 return cs->relax_domain_level;
1476 default:
1477 BUG();
1478 }
1479}
1480
1da177e4
LT
1481
1482/*
1483 * for the common functions, 'private' gives the type of file
1484 */
1485
addf2c73
PM
1486static struct cftype files[] = {
1487 {
1488 .name = "cpus",
1489 .read = cpuset_common_file_read,
e3712395
PM
1490 .write_string = cpuset_write_resmask,
1491 .max_write_len = (100U + 6 * NR_CPUS),
addf2c73
PM
1492 .private = FILE_CPULIST,
1493 },
1494
1495 {
1496 .name = "mems",
1497 .read = cpuset_common_file_read,
e3712395
PM
1498 .write_string = cpuset_write_resmask,
1499 .max_write_len = (100U + 6 * MAX_NUMNODES),
addf2c73
PM
1500 .private = FILE_MEMLIST,
1501 },
1502
1503 {
1504 .name = "cpu_exclusive",
1505 .read_u64 = cpuset_read_u64,
1506 .write_u64 = cpuset_write_u64,
1507 .private = FILE_CPU_EXCLUSIVE,
1508 },
1509
1510 {
1511 .name = "mem_exclusive",
1512 .read_u64 = cpuset_read_u64,
1513 .write_u64 = cpuset_write_u64,
1514 .private = FILE_MEM_EXCLUSIVE,
1515 },
1516
78608366
PM
1517 {
1518 .name = "mem_hardwall",
1519 .read_u64 = cpuset_read_u64,
1520 .write_u64 = cpuset_write_u64,
1521 .private = FILE_MEM_HARDWALL,
1522 },
1523
addf2c73
PM
1524 {
1525 .name = "sched_load_balance",
1526 .read_u64 = cpuset_read_u64,
1527 .write_u64 = cpuset_write_u64,
1528 .private = FILE_SCHED_LOAD_BALANCE,
1529 },
1530
1531 {
1532 .name = "sched_relax_domain_level",
5be7a479
PM
1533 .read_s64 = cpuset_read_s64,
1534 .write_s64 = cpuset_write_s64,
addf2c73
PM
1535 .private = FILE_SCHED_RELAX_DOMAIN_LEVEL,
1536 },
1537
1538 {
1539 .name = "memory_migrate",
1540 .read_u64 = cpuset_read_u64,
1541 .write_u64 = cpuset_write_u64,
1542 .private = FILE_MEMORY_MIGRATE,
1543 },
1544
1545 {
1546 .name = "memory_pressure",
1547 .read_u64 = cpuset_read_u64,
1548 .write_u64 = cpuset_write_u64,
1549 .private = FILE_MEMORY_PRESSURE,
1550 },
1551
1552 {
1553 .name = "memory_spread_page",
1554 .read_u64 = cpuset_read_u64,
1555 .write_u64 = cpuset_write_u64,
1556 .private = FILE_SPREAD_PAGE,
1557 },
1558
1559 {
1560 .name = "memory_spread_slab",
1561 .read_u64 = cpuset_read_u64,
1562 .write_u64 = cpuset_write_u64,
1563 .private = FILE_SPREAD_SLAB,
1564 },
45b07ef3
PJ
1565};
1566
3e0d98b9
PJ
1567static struct cftype cft_memory_pressure_enabled = {
1568 .name = "memory_pressure_enabled",
700fe1ab
PM
1569 .read_u64 = cpuset_read_u64,
1570 .write_u64 = cpuset_write_u64,
3e0d98b9
PJ
1571 .private = FILE_MEMORY_PRESSURE_ENABLED,
1572};
1573
8793d854 1574static int cpuset_populate(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4
LT
1575{
1576 int err;
1577
addf2c73
PM
1578 err = cgroup_add_files(cont, ss, files, ARRAY_SIZE(files));
1579 if (err)
1da177e4 1580 return err;
8793d854 1581 /* memory_pressure_enabled is in root cpuset only */
addf2c73 1582 if (!cont->parent)
8793d854 1583 err = cgroup_add_file(cont, ss,
addf2c73
PM
1584 &cft_memory_pressure_enabled);
1585 return err;
1da177e4
LT
1586}
1587
8793d854
PM
1588/*
1589 * post_clone() is called at the end of cgroup_clone().
1590 * 'cgroup' was just created automatically as a result of
1591 * a cgroup_clone(), and the current task is about to
1592 * be moved into 'cgroup'.
1593 *
1594 * Currently we refuse to set up the cgroup - thereby
1595 * refusing the task to be entered, and as a result refusing
1596 * the sys_unshare() or clone() which initiated it - if any
1597 * sibling cpusets have exclusive cpus or mem.
1598 *
1599 * If this becomes a problem for some users who wish to
1600 * allow that scenario, then cpuset_post_clone() could be
1601 * changed to grant parent->cpus_allowed-sibling_cpus_exclusive
2df167a3
PM
1602 * (and likewise for mems) to the new cgroup. Called with cgroup_mutex
1603 * held.
8793d854
PM
1604 */
1605static void cpuset_post_clone(struct cgroup_subsys *ss,
1606 struct cgroup *cgroup)
1607{
1608 struct cgroup *parent, *child;
1609 struct cpuset *cs, *parent_cs;
1610
1611 parent = cgroup->parent;
1612 list_for_each_entry(child, &parent->children, sibling) {
1613 cs = cgroup_cs(child);
1614 if (is_mem_exclusive(cs) || is_cpu_exclusive(cs))
1615 return;
1616 }
1617 cs = cgroup_cs(cgroup);
1618 parent_cs = cgroup_cs(parent);
1619
1620 cs->mems_allowed = parent_cs->mems_allowed;
1621 cs->cpus_allowed = parent_cs->cpus_allowed;
1622 return;
1623}
1624
1da177e4
LT
1625/*
1626 * cpuset_create - create a cpuset
2df167a3
PM
1627 * ss: cpuset cgroup subsystem
1628 * cont: control group that the new cpuset will be part of
1da177e4
LT
1629 */
1630
8793d854
PM
1631static struct cgroup_subsys_state *cpuset_create(
1632 struct cgroup_subsys *ss,
1633 struct cgroup *cont)
1da177e4
LT
1634{
1635 struct cpuset *cs;
8793d854 1636 struct cpuset *parent;
1da177e4 1637
8793d854
PM
1638 if (!cont->parent) {
1639 /* This is early initialization for the top cgroup */
1640 top_cpuset.mems_generation = cpuset_mems_generation++;
1641 return &top_cpuset.css;
1642 }
1643 parent = cgroup_cs(cont->parent);
1da177e4
LT
1644 cs = kmalloc(sizeof(*cs), GFP_KERNEL);
1645 if (!cs)
8793d854 1646 return ERR_PTR(-ENOMEM);
1da177e4 1647
cf2a473c 1648 cpuset_update_task_memory_state();
1da177e4 1649 cs->flags = 0;
825a46af
PJ
1650 if (is_spread_page(parent))
1651 set_bit(CS_SPREAD_PAGE, &cs->flags);
1652 if (is_spread_slab(parent))
1653 set_bit(CS_SPREAD_SLAB, &cs->flags);
029190c5 1654 set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags);
f9a86fcb
MT
1655 cpus_clear(cs->cpus_allowed);
1656 nodes_clear(cs->mems_allowed);
151a4420 1657 cs->mems_generation = cpuset_mems_generation++;
3e0d98b9 1658 fmeter_init(&cs->fmeter);
1d3504fc 1659 cs->relax_domain_level = -1;
1da177e4
LT
1660
1661 cs->parent = parent;
202f72d5 1662 number_of_cpusets++;
8793d854 1663 return &cs->css ;
1da177e4
LT
1664}
1665
029190c5
PJ
1666/*
1667 * Locking note on the strange update_flag() call below:
1668 *
1669 * If the cpuset being removed has its flag 'sched_load_balance'
1670 * enabled, then simulate turning sched_load_balance off, which
86ef5c9a 1671 * will call rebuild_sched_domains(). The get_online_cpus()
029190c5
PJ
1672 * call in rebuild_sched_domains() must not be made while holding
1673 * callback_mutex. Elsewhere the kernel nests callback_mutex inside
86ef5c9a 1674 * get_online_cpus() calls. So the reverse nesting would risk an
029190c5
PJ
1675 * ABBA deadlock.
1676 */
1677
8793d854 1678static void cpuset_destroy(struct cgroup_subsys *ss, struct cgroup *cont)
1da177e4 1679{
8793d854 1680 struct cpuset *cs = cgroup_cs(cont);
1da177e4 1681
cf2a473c 1682 cpuset_update_task_memory_state();
029190c5
PJ
1683
1684 if (is_sched_load_balance(cs))
700fe1ab 1685 update_flag(CS_SCHED_LOAD_BALANCE, cs, 0);
029190c5 1686
202f72d5 1687 number_of_cpusets--;
8793d854 1688 kfree(cs);
1da177e4
LT
1689}
1690
8793d854
PM
1691struct cgroup_subsys cpuset_subsys = {
1692 .name = "cpuset",
1693 .create = cpuset_create,
1694 .destroy = cpuset_destroy,
1695 .can_attach = cpuset_can_attach,
1696 .attach = cpuset_attach,
1697 .populate = cpuset_populate,
1698 .post_clone = cpuset_post_clone,
1699 .subsys_id = cpuset_subsys_id,
1700 .early_init = 1,
1701};
1702
c417f024
PJ
1703/*
1704 * cpuset_init_early - just enough so that the calls to
1705 * cpuset_update_task_memory_state() in early init code
1706 * are harmless.
1707 */
1708
1709int __init cpuset_init_early(void)
1710{
8793d854 1711 top_cpuset.mems_generation = cpuset_mems_generation++;
c417f024
PJ
1712 return 0;
1713}
1714
8793d854 1715
1da177e4
LT
1716/**
1717 * cpuset_init - initialize cpusets at system boot
1718 *
1719 * Description: Initialize top_cpuset and the cpuset internal file system,
1720 **/
1721
1722int __init cpuset_init(void)
1723{
8793d854 1724 int err = 0;
1da177e4 1725
f9a86fcb
MT
1726 cpus_setall(top_cpuset.cpus_allowed);
1727 nodes_setall(top_cpuset.mems_allowed);
1da177e4 1728
3e0d98b9 1729 fmeter_init(&top_cpuset.fmeter);
151a4420 1730 top_cpuset.mems_generation = cpuset_mems_generation++;
029190c5 1731 set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags);
1d3504fc 1732 top_cpuset.relax_domain_level = -1;
1da177e4 1733
1da177e4
LT
1734 err = register_filesystem(&cpuset_fs_type);
1735 if (err < 0)
8793d854
PM
1736 return err;
1737
202f72d5 1738 number_of_cpusets = 1;
8793d854 1739 return 0;
1da177e4
LT
1740}
1741
956db3ca
CW
1742/**
1743 * cpuset_do_move_task - move a given task to another cpuset
1744 * @tsk: pointer to task_struct the task to move
1745 * @scan: struct cgroup_scanner contained in its struct cpuset_hotplug_scanner
1746 *
1747 * Called by cgroup_scan_tasks() for each task in a cgroup.
1748 * Return nonzero to stop the walk through the tasks.
1749 */
9e0c914c
AB
1750static void cpuset_do_move_task(struct task_struct *tsk,
1751 struct cgroup_scanner *scan)
956db3ca
CW
1752{
1753 struct cpuset_hotplug_scanner *chsp;
1754
1755 chsp = container_of(scan, struct cpuset_hotplug_scanner, scan);
1756 cgroup_attach_task(chsp->to, tsk);
1757}
1758
1759/**
1760 * move_member_tasks_to_cpuset - move tasks from one cpuset to another
1761 * @from: cpuset in which the tasks currently reside
1762 * @to: cpuset to which the tasks will be moved
1763 *
c8d9c90c
PJ
1764 * Called with cgroup_mutex held
1765 * callback_mutex must not be held, as cpuset_attach() will take it.
956db3ca
CW
1766 *
1767 * The cgroup_scan_tasks() function will scan all the tasks in a cgroup,
1768 * calling callback functions for each.
1769 */
1770static void move_member_tasks_to_cpuset(struct cpuset *from, struct cpuset *to)
1771{
1772 struct cpuset_hotplug_scanner scan;
1773
1774 scan.scan.cg = from->css.cgroup;
1775 scan.scan.test_task = NULL; /* select all tasks in cgroup */
1776 scan.scan.process_task = cpuset_do_move_task;
1777 scan.scan.heap = NULL;
1778 scan.to = to->css.cgroup;
1779
da5ef6bb 1780 if (cgroup_scan_tasks(&scan.scan))
956db3ca
CW
1781 printk(KERN_ERR "move_member_tasks_to_cpuset: "
1782 "cgroup_scan_tasks failed\n");
1783}
1784
b1aac8bb
PJ
1785/*
1786 * If common_cpu_mem_hotplug_unplug(), below, unplugs any CPUs
1787 * or memory nodes, we need to walk over the cpuset hierarchy,
1788 * removing that CPU or node from all cpusets. If this removes the
956db3ca
CW
1789 * last CPU or node from a cpuset, then move the tasks in the empty
1790 * cpuset to its next-highest non-empty parent.
b1aac8bb 1791 *
c8d9c90c
PJ
1792 * Called with cgroup_mutex held
1793 * callback_mutex must not be held, as cpuset_attach() will take it.
b1aac8bb 1794 */
956db3ca
CW
1795static void remove_tasks_in_empty_cpuset(struct cpuset *cs)
1796{
1797 struct cpuset *parent;
1798
c8d9c90c
PJ
1799 /*
1800 * The cgroup's css_sets list is in use if there are tasks
1801 * in the cpuset; the list is empty if there are none;
1802 * the cs->css.refcnt seems always 0.
1803 */
956db3ca
CW
1804 if (list_empty(&cs->css.cgroup->css_sets))
1805 return;
b1aac8bb 1806
956db3ca
CW
1807 /*
1808 * Find its next-highest non-empty parent, (top cpuset
1809 * has online cpus, so can't be empty).
1810 */
1811 parent = cs->parent;
b4501295
PJ
1812 while (cpus_empty(parent->cpus_allowed) ||
1813 nodes_empty(parent->mems_allowed))
956db3ca 1814 parent = parent->parent;
956db3ca
CW
1815
1816 move_member_tasks_to_cpuset(cs, parent);
1817}
1818
1819/*
1820 * Walk the specified cpuset subtree and look for empty cpusets.
1821 * The tasks of such cpuset must be moved to a parent cpuset.
1822 *
2df167a3 1823 * Called with cgroup_mutex held. We take callback_mutex to modify
956db3ca
CW
1824 * cpus_allowed and mems_allowed.
1825 *
1826 * This walk processes the tree from top to bottom, completing one layer
1827 * before dropping down to the next. It always processes a node before
1828 * any of its children.
1829 *
1830 * For now, since we lack memory hot unplug, we'll never see a cpuset
1831 * that has tasks along with an empty 'mems'. But if we did see such
1832 * a cpuset, we'd handle it just like we do if its 'cpus' was empty.
1833 */
1834static void scan_for_empty_cpusets(const struct cpuset *root)
b1aac8bb 1835{
8d1e6266 1836 LIST_HEAD(queue);
956db3ca
CW
1837 struct cpuset *cp; /* scans cpusets being updated */
1838 struct cpuset *child; /* scans child cpusets of cp */
8793d854 1839 struct cgroup *cont;
f9b4fb8d 1840 nodemask_t oldmems;
b1aac8bb 1841
956db3ca
CW
1842 list_add_tail((struct list_head *)&root->stack_list, &queue);
1843
956db3ca 1844 while (!list_empty(&queue)) {
8d1e6266 1845 cp = list_first_entry(&queue, struct cpuset, stack_list);
956db3ca
CW
1846 list_del(queue.next);
1847 list_for_each_entry(cont, &cp->css.cgroup->children, sibling) {
1848 child = cgroup_cs(cont);
1849 list_add_tail(&child->stack_list, &queue);
1850 }
b4501295
PJ
1851
1852 /* Continue past cpusets with all cpus, mems online */
1853 if (cpus_subset(cp->cpus_allowed, cpu_online_map) &&
1854 nodes_subset(cp->mems_allowed, node_states[N_HIGH_MEMORY]))
1855 continue;
1856
f9b4fb8d
MX
1857 oldmems = cp->mems_allowed;
1858
956db3ca 1859 /* Remove offline cpus and mems from this cpuset. */
b4501295 1860 mutex_lock(&callback_mutex);
956db3ca
CW
1861 cpus_and(cp->cpus_allowed, cp->cpus_allowed, cpu_online_map);
1862 nodes_and(cp->mems_allowed, cp->mems_allowed,
1863 node_states[N_HIGH_MEMORY]);
b4501295
PJ
1864 mutex_unlock(&callback_mutex);
1865
1866 /* Move tasks from the empty cpuset to a parent */
c8d9c90c 1867 if (cpus_empty(cp->cpus_allowed) ||
b4501295 1868 nodes_empty(cp->mems_allowed))
956db3ca 1869 remove_tasks_in_empty_cpuset(cp);
f9b4fb8d
MX
1870 else {
1871 update_tasks_cpumask(cp);
1872 update_tasks_nodemask(cp, &oldmems);
1873 }
b1aac8bb
PJ
1874 }
1875}
1876
1877/*
1878 * The cpus_allowed and mems_allowed nodemasks in the top_cpuset track
0e1e7c7a 1879 * cpu_online_map and node_states[N_HIGH_MEMORY]. Force the top cpuset to
956db3ca 1880 * track what's online after any CPU or memory node hotplug or unplug event.
b1aac8bb
PJ
1881 *
1882 * Since there are two callers of this routine, one for CPU hotplug
1883 * events and one for memory node hotplug events, we could have coded
1884 * two separate routines here. We code it as a single common routine
1885 * in order to minimize text size.
1886 */
1887
3e84050c 1888static void common_cpu_mem_hotplug_unplug(int rebuild_sd)
b1aac8bb 1889{
8793d854 1890 cgroup_lock();
b1aac8bb 1891
b1aac8bb 1892 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 1893 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
956db3ca 1894 scan_for_empty_cpusets(&top_cpuset);
b1aac8bb 1895
5c8e1ed1
MK
1896 /*
1897 * Scheduler destroys domains on hotplug events.
1898 * Rebuild them based on the current settings.
1899 */
3e84050c
DA
1900 if (rebuild_sd)
1901 rebuild_sched_domains();
5c8e1ed1 1902
8793d854 1903 cgroup_unlock();
b1aac8bb 1904}
b1aac8bb 1905
4c4d50f7
PJ
1906/*
1907 * The top_cpuset tracks what CPUs and Memory Nodes are online,
1908 * period. This is necessary in order to make cpusets transparent
1909 * (of no affect) on systems that are actively using CPU hotplug
1910 * but making no active use of cpusets.
1911 *
38837fc7
PJ
1912 * This routine ensures that top_cpuset.cpus_allowed tracks
1913 * cpu_online_map on each CPU hotplug (cpuhp) event.
4c4d50f7
PJ
1914 */
1915
029190c5
PJ
1916static int cpuset_handle_cpuhp(struct notifier_block *unused_nb,
1917 unsigned long phase, void *unused_cpu)
4c4d50f7 1918{
3e84050c
DA
1919 switch (phase) {
1920 case CPU_UP_CANCELED:
1921 case CPU_UP_CANCELED_FROZEN:
1922 case CPU_DOWN_FAILED:
1923 case CPU_DOWN_FAILED_FROZEN:
1924 case CPU_ONLINE:
1925 case CPU_ONLINE_FROZEN:
1926 case CPU_DEAD:
1927 case CPU_DEAD_FROZEN:
1928 common_cpu_mem_hotplug_unplug(1);
1929 break;
1930 default:
ac076758 1931 return NOTIFY_DONE;
3e84050c 1932 }
ac076758 1933
3e84050c 1934 return NOTIFY_OK;
4c4d50f7 1935}
4c4d50f7 1936
b1aac8bb 1937#ifdef CONFIG_MEMORY_HOTPLUG
38837fc7 1938/*
0e1e7c7a
CL
1939 * Keep top_cpuset.mems_allowed tracking node_states[N_HIGH_MEMORY].
1940 * Call this routine anytime after you change
1941 * node_states[N_HIGH_MEMORY].
38837fc7
PJ
1942 * See also the previous routine cpuset_handle_cpuhp().
1943 */
1944
1af98928 1945void cpuset_track_online_nodes(void)
38837fc7 1946{
3e84050c 1947 common_cpu_mem_hotplug_unplug(0);
38837fc7
PJ
1948}
1949#endif
1950
1da177e4
LT
1951/**
1952 * cpuset_init_smp - initialize cpus_allowed
1953 *
1954 * Description: Finish top cpuset after cpu, node maps are initialized
1955 **/
1956
1957void __init cpuset_init_smp(void)
1958{
1959 top_cpuset.cpus_allowed = cpu_online_map;
0e1e7c7a 1960 top_cpuset.mems_allowed = node_states[N_HIGH_MEMORY];
4c4d50f7
PJ
1961
1962 hotcpu_notifier(cpuset_handle_cpuhp, 0);
1da177e4
LT
1963}
1964
1965/**
1da177e4
LT
1966 * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset.
1967 * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed.
f9a86fcb 1968 * @pmask: pointer to cpumask_t variable to receive cpus_allowed set.
1da177e4
LT
1969 *
1970 * Description: Returns the cpumask_t cpus_allowed of the cpuset
1971 * attached to the specified @tsk. Guaranteed to return some non-empty
1972 * subset of cpu_online_map, even if this means going outside the
1973 * tasks cpuset.
1974 **/
1975
f9a86fcb 1976void cpuset_cpus_allowed(struct task_struct *tsk, cpumask_t *pmask)
1da177e4 1977{
3d3f26a7 1978 mutex_lock(&callback_mutex);
f9a86fcb 1979 cpuset_cpus_allowed_locked(tsk, pmask);
470fd646 1980 mutex_unlock(&callback_mutex);
470fd646
CW
1981}
1982
1983/**
1984 * cpuset_cpus_allowed_locked - return cpus_allowed mask from a tasks cpuset.
2df167a3 1985 * Must be called with callback_mutex held.
470fd646 1986 **/
f9a86fcb 1987void cpuset_cpus_allowed_locked(struct task_struct *tsk, cpumask_t *pmask)
470fd646 1988{
909d75a3 1989 task_lock(tsk);
f9a86fcb 1990 guarantee_online_cpus(task_cs(tsk), pmask);
909d75a3 1991 task_unlock(tsk);
1da177e4
LT
1992}
1993
1994void cpuset_init_current_mems_allowed(void)
1995{
f9a86fcb 1996 nodes_setall(current->mems_allowed);
1da177e4
LT
1997}
1998
909d75a3
PJ
1999/**
2000 * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset.
2001 * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed.
2002 *
2003 * Description: Returns the nodemask_t mems_allowed of the cpuset
2004 * attached to the specified @tsk. Guaranteed to return some non-empty
0e1e7c7a 2005 * subset of node_states[N_HIGH_MEMORY], even if this means going outside the
909d75a3
PJ
2006 * tasks cpuset.
2007 **/
2008
2009nodemask_t cpuset_mems_allowed(struct task_struct *tsk)
2010{
2011 nodemask_t mask;
2012
3d3f26a7 2013 mutex_lock(&callback_mutex);
909d75a3 2014 task_lock(tsk);
8793d854 2015 guarantee_online_mems(task_cs(tsk), &mask);
909d75a3 2016 task_unlock(tsk);
3d3f26a7 2017 mutex_unlock(&callback_mutex);
909d75a3
PJ
2018
2019 return mask;
2020}
2021
d9fd8a6d 2022/**
19770b32
MG
2023 * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed
2024 * @nodemask: the nodemask to be checked
d9fd8a6d 2025 *
19770b32 2026 * Are any of the nodes in the nodemask allowed in current->mems_allowed?
1da177e4 2027 */
19770b32 2028int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask)
1da177e4 2029{
19770b32 2030 return nodes_intersects(*nodemask, current->mems_allowed);
1da177e4
LT
2031}
2032
9bf2229f 2033/*
78608366
PM
2034 * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or
2035 * mem_hardwall ancestor to the specified cpuset. Call holding
2036 * callback_mutex. If no ancestor is mem_exclusive or mem_hardwall
2037 * (an unusual configuration), then returns the root cpuset.
9bf2229f 2038 */
78608366 2039static const struct cpuset *nearest_hardwall_ancestor(const struct cpuset *cs)
9bf2229f 2040{
78608366 2041 while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && cs->parent)
9bf2229f
PJ
2042 cs = cs->parent;
2043 return cs;
2044}
2045
d9fd8a6d 2046/**
02a0e53d 2047 * cpuset_zone_allowed_softwall - Can we allocate on zone z's memory node?
9bf2229f 2048 * @z: is this zone on an allowed node?
02a0e53d 2049 * @gfp_mask: memory allocation flags
d9fd8a6d 2050 *
02a0e53d
PJ
2051 * If we're in interrupt, yes, we can always allocate. If
2052 * __GFP_THISNODE is set, yes, we can always allocate. If zone
9bf2229f
PJ
2053 * z's node is in our tasks mems_allowed, yes. If it's not a
2054 * __GFP_HARDWALL request and this zone's nodes is in the nearest
78608366 2055 * hardwalled cpuset ancestor to this tasks cpuset, yes.
c596d9f3
DR
2056 * If the task has been OOM killed and has access to memory reserves
2057 * as specified by the TIF_MEMDIE flag, yes.
9bf2229f
PJ
2058 * Otherwise, no.
2059 *
02a0e53d
PJ
2060 * If __GFP_HARDWALL is set, cpuset_zone_allowed_softwall()
2061 * reduces to cpuset_zone_allowed_hardwall(). Otherwise,
2062 * cpuset_zone_allowed_softwall() might sleep, and might allow a zone
2063 * from an enclosing cpuset.
2064 *
2065 * cpuset_zone_allowed_hardwall() only handles the simpler case of
2066 * hardwall cpusets, and never sleeps.
2067 *
2068 * The __GFP_THISNODE placement logic is really handled elsewhere,
2069 * by forcibly using a zonelist starting at a specified node, and by
2070 * (in get_page_from_freelist()) refusing to consider the zones for
2071 * any node on the zonelist except the first. By the time any such
2072 * calls get to this routine, we should just shut up and say 'yes'.
2073 *
9bf2229f 2074 * GFP_USER allocations are marked with the __GFP_HARDWALL bit,
c596d9f3
DR
2075 * and do not allow allocations outside the current tasks cpuset
2076 * unless the task has been OOM killed as is marked TIF_MEMDIE.
9bf2229f 2077 * GFP_KERNEL allocations are not so marked, so can escape to the
78608366 2078 * nearest enclosing hardwalled ancestor cpuset.
9bf2229f 2079 *
02a0e53d
PJ
2080 * Scanning up parent cpusets requires callback_mutex. The
2081 * __alloc_pages() routine only calls here with __GFP_HARDWALL bit
2082 * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the
2083 * current tasks mems_allowed came up empty on the first pass over
2084 * the zonelist. So only GFP_KERNEL allocations, if all nodes in the
2085 * cpuset are short of memory, might require taking the callback_mutex
2086 * mutex.
9bf2229f 2087 *
36be57ff 2088 * The first call here from mm/page_alloc:get_page_from_freelist()
02a0e53d
PJ
2089 * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets,
2090 * so no allocation on a node outside the cpuset is allowed (unless
2091 * in interrupt, of course).
36be57ff
PJ
2092 *
2093 * The second pass through get_page_from_freelist() doesn't even call
2094 * here for GFP_ATOMIC calls. For those calls, the __alloc_pages()
2095 * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set
2096 * in alloc_flags. That logic and the checks below have the combined
2097 * affect that:
9bf2229f
PJ
2098 * in_interrupt - any node ok (current task context irrelevant)
2099 * GFP_ATOMIC - any node ok
c596d9f3 2100 * TIF_MEMDIE - any node ok
78608366 2101 * GFP_KERNEL - any node in enclosing hardwalled cpuset ok
9bf2229f 2102 * GFP_USER - only nodes in current tasks mems allowed ok.
36be57ff
PJ
2103 *
2104 * Rule:
02a0e53d 2105 * Don't call cpuset_zone_allowed_softwall if you can't sleep, unless you
36be57ff
PJ
2106 * pass in the __GFP_HARDWALL flag set in gfp_flag, which disables
2107 * the code that might scan up ancestor cpusets and sleep.
02a0e53d 2108 */
9bf2229f 2109
02a0e53d 2110int __cpuset_zone_allowed_softwall(struct zone *z, gfp_t gfp_mask)
1da177e4 2111{
9bf2229f
PJ
2112 int node; /* node that zone z is on */
2113 const struct cpuset *cs; /* current cpuset ancestors */
29afd49b 2114 int allowed; /* is allocation in zone z allowed? */
9bf2229f 2115
9b819d20 2116 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
9bf2229f 2117 return 1;
89fa3024 2118 node = zone_to_nid(z);
92d1dbd2 2119 might_sleep_if(!(gfp_mask & __GFP_HARDWALL));
9bf2229f
PJ
2120 if (node_isset(node, current->mems_allowed))
2121 return 1;
c596d9f3
DR
2122 /*
2123 * Allow tasks that have access to memory reserves because they have
2124 * been OOM killed to get memory anywhere.
2125 */
2126 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2127 return 1;
9bf2229f
PJ
2128 if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */
2129 return 0;
2130
5563e770
BP
2131 if (current->flags & PF_EXITING) /* Let dying task have memory */
2132 return 1;
2133
9bf2229f 2134 /* Not hardwall and node outside mems_allowed: scan up cpusets */
3d3f26a7 2135 mutex_lock(&callback_mutex);
053199ed 2136
053199ed 2137 task_lock(current);
78608366 2138 cs = nearest_hardwall_ancestor(task_cs(current));
053199ed
PJ
2139 task_unlock(current);
2140
9bf2229f 2141 allowed = node_isset(node, cs->mems_allowed);
3d3f26a7 2142 mutex_unlock(&callback_mutex);
9bf2229f 2143 return allowed;
1da177e4
LT
2144}
2145
02a0e53d
PJ
2146/*
2147 * cpuset_zone_allowed_hardwall - Can we allocate on zone z's memory node?
2148 * @z: is this zone on an allowed node?
2149 * @gfp_mask: memory allocation flags
2150 *
2151 * If we're in interrupt, yes, we can always allocate.
2152 * If __GFP_THISNODE is set, yes, we can always allocate. If zone
c596d9f3
DR
2153 * z's node is in our tasks mems_allowed, yes. If the task has been
2154 * OOM killed and has access to memory reserves as specified by the
2155 * TIF_MEMDIE flag, yes. Otherwise, no.
02a0e53d
PJ
2156 *
2157 * The __GFP_THISNODE placement logic is really handled elsewhere,
2158 * by forcibly using a zonelist starting at a specified node, and by
2159 * (in get_page_from_freelist()) refusing to consider the zones for
2160 * any node on the zonelist except the first. By the time any such
2161 * calls get to this routine, we should just shut up and say 'yes'.
2162 *
2163 * Unlike the cpuset_zone_allowed_softwall() variant, above,
2164 * this variant requires that the zone be in the current tasks
2165 * mems_allowed or that we're in interrupt. It does not scan up the
2166 * cpuset hierarchy for the nearest enclosing mem_exclusive cpuset.
2167 * It never sleeps.
2168 */
2169
2170int __cpuset_zone_allowed_hardwall(struct zone *z, gfp_t gfp_mask)
2171{
2172 int node; /* node that zone z is on */
2173
2174 if (in_interrupt() || (gfp_mask & __GFP_THISNODE))
2175 return 1;
2176 node = zone_to_nid(z);
2177 if (node_isset(node, current->mems_allowed))
2178 return 1;
dedf8b79
DW
2179 /*
2180 * Allow tasks that have access to memory reserves because they have
2181 * been OOM killed to get memory anywhere.
2182 */
2183 if (unlikely(test_thread_flag(TIF_MEMDIE)))
2184 return 1;
02a0e53d
PJ
2185 return 0;
2186}
2187
505970b9
PJ
2188/**
2189 * cpuset_lock - lock out any changes to cpuset structures
2190 *
3d3f26a7 2191 * The out of memory (oom) code needs to mutex_lock cpusets
505970b9 2192 * from being changed while it scans the tasklist looking for a
3d3f26a7 2193 * task in an overlapping cpuset. Expose callback_mutex via this
505970b9
PJ
2194 * cpuset_lock() routine, so the oom code can lock it, before
2195 * locking the task list. The tasklist_lock is a spinlock, so
3d3f26a7 2196 * must be taken inside callback_mutex.
505970b9
PJ
2197 */
2198
2199void cpuset_lock(void)
2200{
3d3f26a7 2201 mutex_lock(&callback_mutex);
505970b9
PJ
2202}
2203
2204/**
2205 * cpuset_unlock - release lock on cpuset changes
2206 *
2207 * Undo the lock taken in a previous cpuset_lock() call.
2208 */
2209
2210void cpuset_unlock(void)
2211{
3d3f26a7 2212 mutex_unlock(&callback_mutex);
505970b9
PJ
2213}
2214
825a46af
PJ
2215/**
2216 * cpuset_mem_spread_node() - On which node to begin search for a page
2217 *
2218 * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for
2219 * tasks in a cpuset with is_spread_page or is_spread_slab set),
2220 * and if the memory allocation used cpuset_mem_spread_node()
2221 * to determine on which node to start looking, as it will for
2222 * certain page cache or slab cache pages such as used for file
2223 * system buffers and inode caches, then instead of starting on the
2224 * local node to look for a free page, rather spread the starting
2225 * node around the tasks mems_allowed nodes.
2226 *
2227 * We don't have to worry about the returned node being offline
2228 * because "it can't happen", and even if it did, it would be ok.
2229 *
2230 * The routines calling guarantee_online_mems() are careful to
2231 * only set nodes in task->mems_allowed that are online. So it
2232 * should not be possible for the following code to return an
2233 * offline node. But if it did, that would be ok, as this routine
2234 * is not returning the node where the allocation must be, only
2235 * the node where the search should start. The zonelist passed to
2236 * __alloc_pages() will include all nodes. If the slab allocator
2237 * is passed an offline node, it will fall back to the local node.
2238 * See kmem_cache_alloc_node().
2239 */
2240
2241int cpuset_mem_spread_node(void)
2242{
2243 int node;
2244
2245 node = next_node(current->cpuset_mem_spread_rotor, current->mems_allowed);
2246 if (node == MAX_NUMNODES)
2247 node = first_node(current->mems_allowed);
2248 current->cpuset_mem_spread_rotor = node;
2249 return node;
2250}
2251EXPORT_SYMBOL_GPL(cpuset_mem_spread_node);
2252
ef08e3b4 2253/**
bbe373f2
DR
2254 * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's?
2255 * @tsk1: pointer to task_struct of some task.
2256 * @tsk2: pointer to task_struct of some other task.
2257 *
2258 * Description: Return true if @tsk1's mems_allowed intersects the
2259 * mems_allowed of @tsk2. Used by the OOM killer to determine if
2260 * one of the task's memory usage might impact the memory available
2261 * to the other.
ef08e3b4
PJ
2262 **/
2263
bbe373f2
DR
2264int cpuset_mems_allowed_intersects(const struct task_struct *tsk1,
2265 const struct task_struct *tsk2)
ef08e3b4 2266{
bbe373f2 2267 return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed);
ef08e3b4
PJ
2268}
2269
3e0d98b9
PJ
2270/*
2271 * Collection of memory_pressure is suppressed unless
2272 * this flag is enabled by writing "1" to the special
2273 * cpuset file 'memory_pressure_enabled' in the root cpuset.
2274 */
2275
c5b2aff8 2276int cpuset_memory_pressure_enabled __read_mostly;
3e0d98b9
PJ
2277
2278/**
2279 * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims.
2280 *
2281 * Keep a running average of the rate of synchronous (direct)
2282 * page reclaim efforts initiated by tasks in each cpuset.
2283 *
2284 * This represents the rate at which some task in the cpuset
2285 * ran low on memory on all nodes it was allowed to use, and
2286 * had to enter the kernels page reclaim code in an effort to
2287 * create more free memory by tossing clean pages or swapping
2288 * or writing dirty pages.
2289 *
2290 * Display to user space in the per-cpuset read-only file
2291 * "memory_pressure". Value displayed is an integer
2292 * representing the recent rate of entry into the synchronous
2293 * (direct) page reclaim by any task attached to the cpuset.
2294 **/
2295
2296void __cpuset_memory_pressure_bump(void)
2297{
3e0d98b9 2298 task_lock(current);
8793d854 2299 fmeter_markevent(&task_cs(current)->fmeter);
3e0d98b9
PJ
2300 task_unlock(current);
2301}
2302
8793d854 2303#ifdef CONFIG_PROC_PID_CPUSET
1da177e4
LT
2304/*
2305 * proc_cpuset_show()
2306 * - Print tasks cpuset path into seq_file.
2307 * - Used for /proc/<pid>/cpuset.
053199ed
PJ
2308 * - No need to task_lock(tsk) on this tsk->cpuset reference, as it
2309 * doesn't really matter if tsk->cpuset changes after we read it,
c8d9c90c 2310 * and we take cgroup_mutex, keeping cpuset_attach() from changing it
2df167a3 2311 * anyway.
1da177e4 2312 */
029190c5 2313static int proc_cpuset_show(struct seq_file *m, void *unused_v)
1da177e4 2314{
13b41b09 2315 struct pid *pid;
1da177e4
LT
2316 struct task_struct *tsk;
2317 char *buf;
8793d854 2318 struct cgroup_subsys_state *css;
99f89551 2319 int retval;
1da177e4 2320
99f89551 2321 retval = -ENOMEM;
1da177e4
LT
2322 buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
2323 if (!buf)
99f89551
EB
2324 goto out;
2325
2326 retval = -ESRCH;
13b41b09
EB
2327 pid = m->private;
2328 tsk = get_pid_task(pid, PIDTYPE_PID);
99f89551
EB
2329 if (!tsk)
2330 goto out_free;
1da177e4 2331
99f89551 2332 retval = -EINVAL;
8793d854
PM
2333 cgroup_lock();
2334 css = task_subsys_state(tsk, cpuset_subsys_id);
2335 retval = cgroup_path(css->cgroup, buf, PAGE_SIZE);
1da177e4 2336 if (retval < 0)
99f89551 2337 goto out_unlock;
1da177e4
LT
2338 seq_puts(m, buf);
2339 seq_putc(m, '\n');
99f89551 2340out_unlock:
8793d854 2341 cgroup_unlock();
99f89551
EB
2342 put_task_struct(tsk);
2343out_free:
1da177e4 2344 kfree(buf);
99f89551 2345out:
1da177e4
LT
2346 return retval;
2347}
2348
2349static int cpuset_open(struct inode *inode, struct file *file)
2350{
13b41b09
EB
2351 struct pid *pid = PROC_I(inode)->pid;
2352 return single_open(file, proc_cpuset_show, pid);
1da177e4
LT
2353}
2354
9a32144e 2355const struct file_operations proc_cpuset_operations = {
1da177e4
LT
2356 .open = cpuset_open,
2357 .read = seq_read,
2358 .llseek = seq_lseek,
2359 .release = single_release,
2360};
8793d854 2361#endif /* CONFIG_PROC_PID_CPUSET */
1da177e4
LT
2362
2363/* Display task cpus_allowed, mems_allowed in /proc/<pid>/status file. */
df5f8314
EB
2364void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task)
2365{
2366 seq_printf(m, "Cpus_allowed:\t");
2367 m->count += cpumask_scnprintf(m->buf + m->count, m->size - m->count,
2368 task->cpus_allowed);
2369 seq_printf(m, "\n");
39106dcf
MT
2370 seq_printf(m, "Cpus_allowed_list:\t");
2371 m->count += cpulist_scnprintf(m->buf + m->count, m->size - m->count,
2372 task->cpus_allowed);
2373 seq_printf(m, "\n");
df5f8314
EB
2374 seq_printf(m, "Mems_allowed:\t");
2375 m->count += nodemask_scnprintf(m->buf + m->count, m->size - m->count,
2376 task->mems_allowed);
2377 seq_printf(m, "\n");
39106dcf
MT
2378 seq_printf(m, "Mems_allowed_list:\t");
2379 m->count += nodelist_scnprintf(m->buf + m->count, m->size - m->count,
2380 task->mems_allowed);
2381 seq_printf(m, "\n");
1da177e4 2382}