ipc/sem.c: optimize sem_lock()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
1da177e4
LT
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
624dffcb 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 10 * Enforced range limit on SEM_UNDO
046c6884 11 * (c) 2001 Red Hat Inc
1da177e4
LT
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
c5cf6359
MS
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
16 *
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
19 *
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
23 *
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
26 *
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
40 *
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51 * count_semzcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
74 */
75
1da177e4
LT
76#include <linux/slab.h>
77#include <linux/spinlock.h>
78#include <linux/init.h>
79#include <linux/proc_fs.h>
80#include <linux/time.h>
1da177e4
LT
81#include <linux/security.h>
82#include <linux/syscalls.h>
83#include <linux/audit.h>
c59ede7b 84#include <linux/capability.h>
19b4946c 85#include <linux/seq_file.h>
3e148c79 86#include <linux/rwsem.h>
e3893534 87#include <linux/nsproxy.h>
ae5e1b22 88#include <linux/ipc_namespace.h>
5f921ae9 89
1da177e4
LT
90#include <asm/uaccess.h>
91#include "util.h"
92
e57940d7
MS
93/* One semaphore structure for each semaphore in the system. */
94struct sem {
95 int semval; /* current value */
96 int sempid; /* pid of last operation */
6062a8dc 97 spinlock_t lock; /* spinlock for fine-grained semtimedop */
ab63bc97
MS
98 struct list_head pending_alter; /* pending single-sop operations */
99 /* that alter the semaphore */
100 struct list_head pending_const; /* pending single-sop operations */
101 /* that do not alter the semaphore*/
bf6830ad 102 time_t sem_otime; /* candidate for sem_otime */
0824e44c 103} ____cacheline_aligned_in_smp;
e57940d7
MS
104
105/* One queue for each sleeping process in the system. */
106struct sem_queue {
e57940d7
MS
107 struct list_head list; /* queue of pending operations */
108 struct task_struct *sleeper; /* this process */
109 struct sem_undo *undo; /* undo structure */
110 int pid; /* process id of requesting process */
111 int status; /* completion status of operation */
112 struct sembuf *sops; /* array of pending operations */
113 int nsops; /* number of operations */
114 int alter; /* does *sops alter the array? */
115};
116
117/* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
119 */
120struct sem_undo {
121 struct list_head list_proc; /* per-process list: *
122 * all undos from one process
123 * rcu protected */
124 struct rcu_head rcu; /* rcu struct for sem_undo */
125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
126 struct list_head list_id; /* per semaphore array list:
127 * all undos for one array */
128 int semid; /* semaphore set identifier */
129 short *semadj; /* array of adjustments */
130 /* one per semaphore */
131};
132
133/* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
135 */
136struct sem_undo_list {
137 atomic_t refcnt;
138 spinlock_t lock;
139 struct list_head list_proc;
140};
141
142
ed2ddbf8 143#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 144
1b531f21 145#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
1da177e4 146
7748dbfa 147static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 148static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 149#ifdef CONFIG_PROC_FS
19b4946c 150static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
151#endif
152
153#define SEMMSL_FAST 256 /* 512 bytes on stack */
154#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
155
156/*
b56e88e2 157 * Locking:
1da177e4 158 * sem_undo.id_next,
b56e88e2 159 * sem_array.complex_count,
ab63bc97 160 * sem_array.pending{_alter,_cont},
b56e88e2 161 * sem_array.sem_undo: global sem_lock() for read/write
1da177e4
LT
162 * sem_undo.proc_next: only "current" is allowed to read/write that field.
163 *
b56e88e2
MS
164 * sem_array.sem_base[i].pending_{const,alter}:
165 * global or semaphore sem_lock() for read/write
1da177e4
LT
166 */
167
e3893534
KK
168#define sc_semmsl sem_ctls[0]
169#define sc_semmns sem_ctls[1]
170#define sc_semopm sem_ctls[2]
171#define sc_semmni sem_ctls[3]
172
ed2ddbf8 173void sem_init_ns(struct ipc_namespace *ns)
e3893534 174{
e3893534
KK
175 ns->sc_semmsl = SEMMSL;
176 ns->sc_semmns = SEMMNS;
177 ns->sc_semopm = SEMOPM;
178 ns->sc_semmni = SEMMNI;
179 ns->used_sems = 0;
ed2ddbf8 180 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
181}
182
ae5e1b22 183#ifdef CONFIG_IPC_NS
e3893534
KK
184void sem_exit_ns(struct ipc_namespace *ns)
185{
01b8b07a 186 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 187 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
e3893534 188}
ae5e1b22 189#endif
1da177e4
LT
190
191void __init sem_init (void)
192{
ed2ddbf8 193 sem_init_ns(&init_ipc_ns);
19b4946c
MW
194 ipc_init_proc_interface("sysvipc/sem",
195 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 196 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
197}
198
e5639c52
MS
199/**
200 * unmerge_queues - unmerge queues, if possible.
201 * @sma: semaphore array
202 *
203 * The function unmerges the wait queues if complex_count is 0.
204 * It must be called prior to dropping the global semaphore array lock.
205 */
206static void unmerge_queues(struct sem_array *sma)
207{
208 struct sem_queue *q, *tq;
209
210 /* complex operations still around? */
211 if (sma->complex_count)
212 return;
213 /*
214 * We will switch back to simple mode.
215 * Move all pending operation back into the per-semaphore
216 * queues.
217 */
218 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 struct sem *curr;
220 curr = &sma->sem_base[q->sops[0].sem_num];
221
222 list_add_tail(&q->list, &curr->pending_alter);
223 }
224 INIT_LIST_HEAD(&sma->pending_alter);
225}
226
227/**
228 * merge_queues - Merge single semop queues into global queue
229 * @sma: semaphore array
230 *
231 * This function merges all per-semaphore queues into the global queue.
232 * It is necessary to achieve FIFO ordering for the pending single-sop
233 * operations when a multi-semop operation must sleep.
234 * Only the alter operations must be moved, the const operations can stay.
235 */
236static void merge_queues(struct sem_array *sma)
237{
238 int i;
239 for (i = 0; i < sma->sem_nsems; i++) {
240 struct sem *sem = sma->sem_base + i;
241
242 list_splice_init(&sem->pending_alter, &sma->pending_alter);
243 }
244}
245
e84ca333
DB
246static void sem_rcu_free(struct rcu_head *head)
247{
248 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249 struct sem_array *sma = ipc_rcu_to_struct(p);
250
251 security_sem_free(sma);
252 ipc_rcu_free(head);
253}
254
184076a9
MS
255/*
256 * Wait until all currently ongoing simple ops have completed.
257 * Caller must own sem_perm.lock.
258 * New simple ops cannot start, because simple ops first check
259 * that sem_perm.lock is free.
901f6fed 260 * that a) sem_perm.lock is free and b) complex_count is 0.
184076a9
MS
261 */
262static void sem_wait_array(struct sem_array *sma)
263{
264 int i;
265 struct sem *sem;
266
901f6fed
MS
267 if (sma->complex_count) {
268 /* The thread that increased sma->complex_count waited on
269 * all sem->lock locks. Thus we don't need to wait again.
270 */
271 return;
272 }
273
184076a9
MS
274 for (i = 0; i < sma->sem_nsems; i++) {
275 sem = sma->sem_base + i;
276 spin_unlock_wait(&sem->lock);
277 }
278}
279
6062a8dc
RR
280/*
281 * If the request contains only one semaphore operation, and there are
282 * no complex transactions pending, lock only the semaphore involved.
283 * Otherwise, lock the entire semaphore array, since we either have
284 * multiple semaphores in our own semops, or we need to look at
285 * semaphores from other pending complex operations.
6062a8dc
RR
286 */
287static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
288 int nsops)
289{
184076a9 290 struct sem *sem;
6062a8dc 291
184076a9
MS
292 if (nsops != 1) {
293 /* Complex operation - acquire a full lock */
294 ipc_lock_object(&sma->sem_perm);
6062a8dc 295
184076a9
MS
296 /* And wait until all simple ops that are processed
297 * right now have dropped their locks.
6062a8dc 298 */
184076a9
MS
299 sem_wait_array(sma);
300 return -1;
301 }
302
303 /*
304 * Only one semaphore affected - try to optimize locking.
305 * The rules are:
306 * - optimized locking is possible if no complex operation
307 * is either enqueued or processed right now.
308 * - The test for enqueued complex ops is simple:
309 * sma->complex_count != 0
310 * - Testing for complex ops that are processed right now is
311 * a bit more difficult. Complex ops acquire the full lock
312 * and first wait that the running simple ops have completed.
313 * (see above)
314 * Thus: If we own a simple lock and the global lock is free
315 * and complex_count is now 0, then it will stay 0 and
316 * thus just locking sem->lock is sufficient.
317 */
318 sem = sma->sem_base + sops->sem_num;
6062a8dc 319
184076a9 320 if (sma->complex_count == 0) {
6062a8dc 321 /*
184076a9
MS
322 * It appears that no complex operation is around.
323 * Acquire the per-semaphore lock.
6062a8dc 324 */
184076a9
MS
325 spin_lock(&sem->lock);
326
327 /* Then check that the global lock is free */
328 if (!spin_is_locked(&sma->sem_perm.lock)) {
329 /* spin_is_locked() is not a memory barrier */
330 smp_mb();
331
332 /* Now repeat the test of complex_count:
333 * It can't change anymore until we drop sem->lock.
334 * Thus: if is now 0, then it will stay 0.
335 */
336 if (sma->complex_count == 0) {
337 /* fast path successful! */
338 return sops->sem_num;
339 }
6062a8dc 340 }
184076a9
MS
341 spin_unlock(&sem->lock);
342 }
343
344 /* slow path: acquire the full lock */
345 ipc_lock_object(&sma->sem_perm);
6062a8dc 346
184076a9
MS
347 if (sma->complex_count == 0) {
348 /* False alarm:
349 * There is no complex operation, thus we can switch
350 * back to the fast path.
351 */
352 spin_lock(&sem->lock);
353 ipc_unlock_object(&sma->sem_perm);
354 return sops->sem_num;
6062a8dc 355 } else {
184076a9
MS
356 /* Not a false alarm, thus complete the sequence for a
357 * full lock.
6062a8dc 358 */
184076a9
MS
359 sem_wait_array(sma);
360 return -1;
6062a8dc 361 }
6062a8dc
RR
362}
363
364static inline void sem_unlock(struct sem_array *sma, int locknum)
365{
366 if (locknum == -1) {
e5639c52 367 unmerge_queues(sma);
115d40db 368 ipc_unlock_object(&sma->sem_perm);
6062a8dc
RR
369 } else {
370 struct sem *sem = sma->sem_base + locknum;
371 spin_unlock(&sem->lock);
372 }
6062a8dc
RR
373}
374
3e148c79 375/*
33b74669 376 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 377 * is not held.
321310ce
LT
378 *
379 * The caller holds the RCU read lock.
3e148c79 380 */
6062a8dc
RR
381static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
382 int id, struct sembuf *sops, int nsops, int *locknum)
023a5355 383{
c460b662
RR
384 struct kern_ipc_perm *ipcp;
385 struct sem_array *sma;
03f02c76 386
c460b662 387 ipcp = ipc_obtain_object(&sem_ids(ns), id);
321310ce
LT
388 if (IS_ERR(ipcp))
389 return ERR_CAST(ipcp);
b1ed88b4 390
6062a8dc
RR
391 sma = container_of(ipcp, struct sem_array, sem_perm);
392 *locknum = sem_lock(sma, sops, nsops);
c460b662
RR
393
394 /* ipc_rmid() may have already freed the ID while sem_lock
395 * was spinning: verify that the structure is still valid
396 */
397 if (!ipcp->deleted)
398 return container_of(ipcp, struct sem_array, sem_perm);
399
6062a8dc 400 sem_unlock(sma, *locknum);
321310ce 401 return ERR_PTR(-EINVAL);
023a5355
ND
402}
403
16df3674
DB
404static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
405{
406 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
407
408 if (IS_ERR(ipcp))
409 return ERR_CAST(ipcp);
410
411 return container_of(ipcp, struct sem_array, sem_perm);
412}
413
16df3674
DB
414static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
415 int id)
416{
417 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
418
419 if (IS_ERR(ipcp))
420 return ERR_CAST(ipcp);
b1ed88b4 421
03f02c76 422 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
423}
424
6ff37972
PP
425static inline void sem_lock_and_putref(struct sem_array *sma)
426{
6062a8dc 427 sem_lock(sma, NULL, -1);
e84ca333 428 ipc_rcu_putref(sma, ipc_rcu_free);
6ff37972
PP
429}
430
7ca7e564
ND
431static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
432{
433 ipc_rmid(&sem_ids(ns), &s->sem_perm);
434}
435
1da177e4
LT
436/*
437 * Lockless wakeup algorithm:
438 * Without the check/retry algorithm a lockless wakeup is possible:
439 * - queue.status is initialized to -EINTR before blocking.
440 * - wakeup is performed by
ab63bc97 441 * * unlinking the queue entry from the pending list
1da177e4
LT
442 * * setting queue.status to IN_WAKEUP
443 * This is the notification for the blocked thread that a
444 * result value is imminent.
445 * * call wake_up_process
446 * * set queue.status to the final value.
447 * - the previously blocked thread checks queue.status:
448 * * if it's IN_WAKEUP, then it must wait until the value changes
449 * * if it's not -EINTR, then the operation was completed by
450 * update_queue. semtimedop can return queue.status without
5f921ae9 451 * performing any operation on the sem array.
1da177e4
LT
452 * * otherwise it must acquire the spinlock and check what's up.
453 *
454 * The two-stage algorithm is necessary to protect against the following
455 * races:
456 * - if queue.status is set after wake_up_process, then the woken up idle
457 * thread could race forward and try (and fail) to acquire sma->lock
458 * before update_queue had a chance to set queue.status
459 * - if queue.status is written before wake_up_process and if the
460 * blocked process is woken up by a signal between writing
461 * queue.status and the wake_up_process, then the woken up
462 * process could return from semtimedop and die by calling
463 * sys_exit before wake_up_process is called. Then wake_up_process
464 * will oops, because the task structure is already invalid.
465 * (yes, this happened on s390 with sysv msg).
466 *
467 */
468#define IN_WAKEUP 1
469
f4566f04
ND
470/**
471 * newary - Create a new semaphore set
472 * @ns: namespace
473 * @params: ptr to the structure that contains key, semflg and nsems
474 *
33b74669 475 * Called with sem_ids.rwsem held (as a writer)
f4566f04
ND
476 */
477
7748dbfa 478static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4
LT
479{
480 int id;
481 int retval;
482 struct sem_array *sma;
483 int size;
7748dbfa
ND
484 key_t key = params->key;
485 int nsems = params->u.nsems;
486 int semflg = params->flg;
b97e820f 487 int i;
1da177e4
LT
488
489 if (!nsems)
490 return -EINVAL;
e3893534 491 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
492 return -ENOSPC;
493
494 size = sizeof (*sma) + nsems * sizeof (struct sem);
495 sma = ipc_rcu_alloc(size);
496 if (!sma) {
497 return -ENOMEM;
498 }
499 memset (sma, 0, size);
500
501 sma->sem_perm.mode = (semflg & S_IRWXUGO);
502 sma->sem_perm.key = key;
503
504 sma->sem_perm.security = NULL;
505 retval = security_sem_alloc(sma);
506 if (retval) {
e84ca333 507 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
508 return retval;
509 }
510
e3893534 511 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
283bb7fa 512 if (id < 0) {
e84ca333 513 ipc_rcu_putref(sma, sem_rcu_free);
283bb7fa 514 return id;
1da177e4 515 }
e3893534 516 ns->used_sems += nsems;
1da177e4
LT
517
518 sma->sem_base = (struct sem *) &sma[1];
b97e820f 519
6062a8dc 520 for (i = 0; i < nsems; i++) {
ab63bc97
MS
521 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
522 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
6062a8dc
RR
523 spin_lock_init(&sma->sem_base[i].lock);
524 }
b97e820f
MS
525
526 sma->complex_count = 0;
ab63bc97
MS
527 INIT_LIST_HEAD(&sma->pending_alter);
528 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 529 INIT_LIST_HEAD(&sma->list_id);
1da177e4
LT
530 sma->sem_nsems = nsems;
531 sma->sem_ctime = get_seconds();
6062a8dc 532 sem_unlock(sma, -1);
6d49dab8 533 rcu_read_unlock();
1da177e4 534
7ca7e564 535 return sma->sem_perm.id;
1da177e4
LT
536}
537
7748dbfa 538
f4566f04 539/*
33b74669 540 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 541 */
03f02c76 542static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
7748dbfa 543{
03f02c76
ND
544 struct sem_array *sma;
545
546 sma = container_of(ipcp, struct sem_array, sem_perm);
547 return security_sem_associate(sma, semflg);
7748dbfa
ND
548}
549
f4566f04 550/*
33b74669 551 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 552 */
03f02c76
ND
553static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
554 struct ipc_params *params)
7748dbfa 555{
03f02c76
ND
556 struct sem_array *sma;
557
558 sma = container_of(ipcp, struct sem_array, sem_perm);
559 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
560 return -EINVAL;
561
562 return 0;
563}
564
d5460c99 565SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
1da177e4 566{
e3893534 567 struct ipc_namespace *ns;
7748dbfa
ND
568 struct ipc_ops sem_ops;
569 struct ipc_params sem_params;
e3893534
KK
570
571 ns = current->nsproxy->ipc_ns;
1da177e4 572
e3893534 573 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 574 return -EINVAL;
7ca7e564 575
7748dbfa
ND
576 sem_ops.getnew = newary;
577 sem_ops.associate = sem_security;
578 sem_ops.more_checks = sem_more_checks;
579
580 sem_params.key = key;
581 sem_params.flg = semflg;
582 sem_params.u.nsems = nsems;
1da177e4 583
7748dbfa 584 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
585}
586
b56e88e2
MS
587/** perform_atomic_semop - Perform (if possible) a semaphore operation
588 * @sma: semaphore array
589 * @sops: array with operations that should be checked
590 * @nsems: number of sops
591 * @un: undo array
592 * @pid: pid that did the change
593 *
594 * Returns 0 if the operation was possible.
595 * Returns 1 if the operation is impossible, the caller must sleep.
596 * Negative values are error codes.
1da177e4
LT
597 */
598
b56e88e2 599static int perform_atomic_semop(struct sem_array *sma, struct sembuf *sops,
1da177e4
LT
600 int nsops, struct sem_undo *un, int pid)
601{
602 int result, sem_op;
603 struct sembuf *sop;
604 struct sem * curr;
605
606 for (sop = sops; sop < sops + nsops; sop++) {
607 curr = sma->sem_base + sop->sem_num;
608 sem_op = sop->sem_op;
609 result = curr->semval;
610
611 if (!sem_op && result)
612 goto would_block;
613
614 result += sem_op;
615 if (result < 0)
616 goto would_block;
617 if (result > SEMVMX)
618 goto out_of_range;
619 if (sop->sem_flg & SEM_UNDO) {
620 int undo = un->semadj[sop->sem_num] - sem_op;
621 /*
622 * Exceeding the undo range is an error.
623 */
624 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
625 goto out_of_range;
626 }
627 curr->semval = result;
628 }
629
630 sop--;
631 while (sop >= sops) {
632 sma->sem_base[sop->sem_num].sempid = pid;
633 if (sop->sem_flg & SEM_UNDO)
634 un->semadj[sop->sem_num] -= sop->sem_op;
635 sop--;
636 }
637
1da177e4
LT
638 return 0;
639
640out_of_range:
641 result = -ERANGE;
642 goto undo;
643
644would_block:
645 if (sop->sem_flg & IPC_NOWAIT)
646 result = -EAGAIN;
647 else
648 result = 1;
649
650undo:
651 sop--;
652 while (sop >= sops) {
653 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
654 sop--;
655 }
656
657 return result;
658}
659
0a2b9d4c
MS
660/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
661 * @q: queue entry that must be signaled
662 * @error: Error value for the signal
663 *
664 * Prepare the wake-up of the queue entry q.
d4212093 665 */
0a2b9d4c
MS
666static void wake_up_sem_queue_prepare(struct list_head *pt,
667 struct sem_queue *q, int error)
d4212093 668{
0a2b9d4c
MS
669 if (list_empty(pt)) {
670 /*
671 * Hold preempt off so that we don't get preempted and have the
672 * wakee busy-wait until we're scheduled back on.
673 */
674 preempt_disable();
675 }
d4212093 676 q->status = IN_WAKEUP;
0a2b9d4c
MS
677 q->pid = error;
678
9f1bc2c9 679 list_add_tail(&q->list, pt);
0a2b9d4c
MS
680}
681
682/**
683 * wake_up_sem_queue_do(pt) - do the actual wake-up
684 * @pt: list of tasks to be woken up
685 *
686 * Do the actual wake-up.
687 * The function is called without any locks held, thus the semaphore array
688 * could be destroyed already and the tasks can disappear as soon as the
689 * status is set to the actual return code.
690 */
691static void wake_up_sem_queue_do(struct list_head *pt)
692{
693 struct sem_queue *q, *t;
694 int did_something;
695
696 did_something = !list_empty(pt);
9f1bc2c9 697 list_for_each_entry_safe(q, t, pt, list) {
0a2b9d4c
MS
698 wake_up_process(q->sleeper);
699 /* q can disappear immediately after writing q->status. */
700 smp_wmb();
701 q->status = q->pid;
702 }
703 if (did_something)
704 preempt_enable();
d4212093
NP
705}
706
b97e820f
MS
707static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
708{
709 list_del(&q->list);
9f1bc2c9 710 if (q->nsops > 1)
b97e820f
MS
711 sma->complex_count--;
712}
713
fd5db422
MS
714/** check_restart(sma, q)
715 * @sma: semaphore array
716 * @q: the operation that just completed
717 *
718 * update_queue is O(N^2) when it restarts scanning the whole queue of
719 * waiting operations. Therefore this function checks if the restart is
720 * really necessary. It is called after a previously waiting operation
ab63bc97
MS
721 * modified the array.
722 * Note that wait-for-zero operations are handled without restart.
fd5db422
MS
723 */
724static int check_restart(struct sem_array *sma, struct sem_queue *q)
725{
ab63bc97
MS
726 /* pending complex alter operations are too difficult to analyse */
727 if (!list_empty(&sma->pending_alter))
fd5db422
MS
728 return 1;
729
730 /* we were a sleeping complex operation. Too difficult */
731 if (q->nsops > 1)
732 return 1;
733
ab63bc97
MS
734 /* It is impossible that someone waits for the new value:
735 * - complex operations always restart.
736 * - wait-for-zero are handled seperately.
737 * - q is a previously sleeping simple operation that
738 * altered the array. It must be a decrement, because
739 * simple increments never sleep.
740 * - If there are older (higher priority) decrements
741 * in the queue, then they have observed the original
742 * semval value and couldn't proceed. The operation
743 * decremented to value - thus they won't proceed either.
744 */
745 return 0;
746}
fd5db422 747
ab63bc97
MS
748/**
749 * wake_const_ops(sma, semnum, pt) - Wake up non-alter tasks
750 * @sma: semaphore array.
751 * @semnum: semaphore that was modified.
752 * @pt: list head for the tasks that must be woken up.
753 *
754 * wake_const_ops must be called after a semaphore in a semaphore array
755 * was set to 0. If complex const operations are pending, wake_const_ops must
756 * be called with semnum = -1, as well as with the number of each modified
757 * semaphore.
758 * The tasks that must be woken up are added to @pt. The return code
759 * is stored in q->pid.
760 * The function returns 1 if at least one operation was completed successfully.
761 */
762static int wake_const_ops(struct sem_array *sma, int semnum,
763 struct list_head *pt)
764{
765 struct sem_queue *q;
766 struct list_head *walk;
767 struct list_head *pending_list;
768 int semop_completed = 0;
769
770 if (semnum == -1)
771 pending_list = &sma->pending_const;
772 else
773 pending_list = &sma->sem_base[semnum].pending_const;
fd5db422 774
ab63bc97
MS
775 walk = pending_list->next;
776 while (walk != pending_list) {
777 int error;
778
779 q = container_of(walk, struct sem_queue, list);
780 walk = walk->next;
781
b56e88e2
MS
782 error = perform_atomic_semop(sma, q->sops, q->nsops,
783 q->undo, q->pid);
ab63bc97
MS
784
785 if (error <= 0) {
786 /* operation completed, remove from queue & wakeup */
787
788 unlink_queue(sma, q);
789
790 wake_up_sem_queue_prepare(pt, q, error);
791 if (error == 0)
792 semop_completed = 1;
793 }
794 }
795 return semop_completed;
796}
797
798/**
799 * do_smart_wakeup_zero(sma, sops, nsops, pt) - wakeup all wait for zero tasks
800 * @sma: semaphore array
801 * @sops: operations that were performed
802 * @nsops: number of operations
803 * @pt: list head of the tasks that must be woken up.
804 *
805 * do_smart_wakeup_zero() checks all required queue for wait-for-zero
806 * operations, based on the actual changes that were performed on the
807 * semaphore array.
808 * The function returns 1 if at least one operation was completed successfully.
809 */
810static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
811 int nsops, struct list_head *pt)
812{
813 int i;
814 int semop_completed = 0;
815 int got_zero = 0;
816
817 /* first: the per-semaphore queues, if known */
818 if (sops) {
819 for (i = 0; i < nsops; i++) {
820 int num = sops[i].sem_num;
821
822 if (sma->sem_base[num].semval == 0) {
823 got_zero = 1;
824 semop_completed |= wake_const_ops(sma, num, pt);
825 }
826 }
827 } else {
828 /*
829 * No sops means modified semaphores not known.
830 * Assume all were changed.
fd5db422 831 */
ab63bc97
MS
832 for (i = 0; i < sma->sem_nsems; i++) {
833 if (sma->sem_base[i].semval == 0) {
834 got_zero = 1;
835 semop_completed |= wake_const_ops(sma, i, pt);
836 }
837 }
fd5db422
MS
838 }
839 /*
ab63bc97
MS
840 * If one of the modified semaphores got 0,
841 * then check the global queue, too.
fd5db422 842 */
ab63bc97
MS
843 if (got_zero)
844 semop_completed |= wake_const_ops(sma, -1, pt);
fd5db422 845
ab63bc97 846 return semop_completed;
fd5db422
MS
847}
848
636c6be8
MS
849
850/**
851 * update_queue(sma, semnum): Look for tasks that can be completed.
852 * @sma: semaphore array.
853 * @semnum: semaphore that was modified.
0a2b9d4c 854 * @pt: list head for the tasks that must be woken up.
636c6be8
MS
855 *
856 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
857 * was modified. If multiple semaphores were modified, update_queue must
858 * be called with semnum = -1, as well as with the number of each modified
859 * semaphore.
0a2b9d4c
MS
860 * The tasks that must be woken up are added to @pt. The return code
861 * is stored in q->pid.
ab63bc97
MS
862 * The function internally checks if const operations can now succeed.
863 *
0a2b9d4c 864 * The function return 1 if at least one semop was completed successfully.
1da177e4 865 */
0a2b9d4c 866static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
1da177e4 867{
636c6be8
MS
868 struct sem_queue *q;
869 struct list_head *walk;
870 struct list_head *pending_list;
0a2b9d4c 871 int semop_completed = 0;
636c6be8 872
9f1bc2c9 873 if (semnum == -1)
ab63bc97 874 pending_list = &sma->pending_alter;
9f1bc2c9 875 else
ab63bc97 876 pending_list = &sma->sem_base[semnum].pending_alter;
9cad200c
NP
877
878again:
636c6be8
MS
879 walk = pending_list->next;
880 while (walk != pending_list) {
fd5db422 881 int error, restart;
636c6be8 882
9f1bc2c9 883 q = container_of(walk, struct sem_queue, list);
636c6be8 884 walk = walk->next;
1da177e4 885
d987f8b2
MS
886 /* If we are scanning the single sop, per-semaphore list of
887 * one semaphore and that semaphore is 0, then it is not
ab63bc97 888 * necessary to scan further: simple increments
d987f8b2
MS
889 * that affect only one entry succeed immediately and cannot
890 * be in the per semaphore pending queue, and decrements
891 * cannot be successful if the value is already 0.
892 */
ab63bc97 893 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
d987f8b2
MS
894 break;
895
b56e88e2 896 error = perform_atomic_semop(sma, q->sops, q->nsops,
1da177e4
LT
897 q->undo, q->pid);
898
899 /* Does q->sleeper still need to sleep? */
9cad200c
NP
900 if (error > 0)
901 continue;
902
b97e820f 903 unlink_queue(sma, q);
9cad200c 904
0a2b9d4c 905 if (error) {
fd5db422 906 restart = 0;
0a2b9d4c
MS
907 } else {
908 semop_completed = 1;
ab63bc97 909 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
fd5db422 910 restart = check_restart(sma, q);
0a2b9d4c 911 }
fd5db422 912
0a2b9d4c 913 wake_up_sem_queue_prepare(pt, q, error);
fd5db422 914 if (restart)
9cad200c 915 goto again;
1da177e4 916 }
0a2b9d4c 917 return semop_completed;
1da177e4
LT
918}
919
0a2b9d4c
MS
920/**
921 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
fd5db422
MS
922 * @sma: semaphore array
923 * @sops: operations that were performed
924 * @nsops: number of operations
0a2b9d4c
MS
925 * @otime: force setting otime
926 * @pt: list head of the tasks that must be woken up.
fd5db422 927 *
ab63bc97
MS
928 * do_smart_update() does the required calls to update_queue and wakeup_zero,
929 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c
MS
930 * Note that the function does not do the actual wake-up: the caller is
931 * responsible for calling wake_up_sem_queue_do(@pt).
932 * It is safe to perform this call after dropping all locks.
fd5db422 933 */
0a2b9d4c
MS
934static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
935 int otime, struct list_head *pt)
fd5db422
MS
936{
937 int i;
938
ab63bc97
MS
939 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
940
e5639c52
MS
941 if (!list_empty(&sma->pending_alter)) {
942 /* semaphore array uses the global queue - just process it. */
943 otime |= update_queue(sma, -1, pt);
944 } else {
945 if (!sops) {
946 /*
947 * No sops, thus the modified semaphores are not
948 * known. Check all.
949 */
950 for (i = 0; i < sma->sem_nsems; i++)
951 otime |= update_queue(sma, i, pt);
952 } else {
953 /*
954 * Check the semaphores that were increased:
955 * - No complex ops, thus all sleeping ops are
956 * decrease.
957 * - if we decreased the value, then any sleeping
958 * semaphore ops wont be able to run: If the
959 * previous value was too small, then the new
960 * value will be too small, too.
961 */
962 for (i = 0; i < nsops; i++) {
963 if (sops[i].sem_op > 0) {
964 otime |= update_queue(sma,
965 sops[i].sem_num, pt);
966 }
ab465df9 967 }
9f1bc2c9 968 }
fd5db422 969 }
bf6830ad
MS
970 if (otime) {
971 if (sops == NULL) {
972 sma->sem_base[0].sem_otime = get_seconds();
973 } else {
974 sma->sem_base[sops[0].sem_num].sem_otime =
975 get_seconds();
976 }
977 }
fd5db422
MS
978}
979
980
1da177e4
LT
981/* The following counts are associated to each semaphore:
982 * semncnt number of tasks waiting on semval being nonzero
983 * semzcnt number of tasks waiting on semval being zero
984 * This model assumes that a task waits on exactly one semaphore.
985 * Since semaphore operations are to be performed atomically, tasks actually
986 * wait on a whole sequence of semaphores simultaneously.
987 * The counts we return here are a rough approximation, but still
988 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
989 */
990static int count_semncnt (struct sem_array * sma, ushort semnum)
991{
992 int semncnt;
993 struct sem_queue * q;
994
995 semncnt = 0;
ab63bc97 996 list_for_each_entry(q, &sma->sem_base[semnum].pending_alter, list) {
de2657f9
RR
997 struct sembuf * sops = q->sops;
998 BUG_ON(sops->sem_num != semnum);
999 if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT))
1000 semncnt++;
1001 }
1002
ab63bc97 1003 list_for_each_entry(q, &sma->pending_alter, list) {
1da177e4
LT
1004 struct sembuf * sops = q->sops;
1005 int nsops = q->nsops;
1006 int i;
1007 for (i = 0; i < nsops; i++)
1008 if (sops[i].sem_num == semnum
1009 && (sops[i].sem_op < 0)
1010 && !(sops[i].sem_flg & IPC_NOWAIT))
1011 semncnt++;
1012 }
1013 return semncnt;
1014}
a1193f8e 1015
1da177e4
LT
1016static int count_semzcnt (struct sem_array * sma, ushort semnum)
1017{
1018 int semzcnt;
1019 struct sem_queue * q;
1020
1021 semzcnt = 0;
ab63bc97 1022 list_for_each_entry(q, &sma->sem_base[semnum].pending_const, list) {
ebc2e5e6
RR
1023 struct sembuf * sops = q->sops;
1024 BUG_ON(sops->sem_num != semnum);
1025 if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT))
1026 semzcnt++;
1027 }
1028
ab63bc97 1029 list_for_each_entry(q, &sma->pending_const, list) {
1da177e4
LT
1030 struct sembuf * sops = q->sops;
1031 int nsops = q->nsops;
1032 int i;
1033 for (i = 0; i < nsops; i++)
1034 if (sops[i].sem_num == semnum
1035 && (sops[i].sem_op == 0)
1036 && !(sops[i].sem_flg & IPC_NOWAIT))
1037 semzcnt++;
1038 }
1039 return semzcnt;
1040}
1041
33b74669
DB
1042/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1043 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1044 * remains locked on exit.
1da177e4 1045 */
01b8b07a 1046static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1047{
380af1b3
MS
1048 struct sem_undo *un, *tu;
1049 struct sem_queue *q, *tq;
01b8b07a 1050 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
0a2b9d4c 1051 struct list_head tasks;
9f1bc2c9 1052 int i;
1da177e4 1053
380af1b3 1054 /* Free the existing undo structures for this semaphore set. */
115d40db 1055 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1056 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1057 list_del(&un->list_id);
1058 spin_lock(&un->ulp->lock);
1da177e4 1059 un->semid = -1;
380af1b3
MS
1060 list_del_rcu(&un->list_proc);
1061 spin_unlock(&un->ulp->lock);
693a8b6e 1062 kfree_rcu(un, rcu);
380af1b3 1063 }
1da177e4
LT
1064
1065 /* Wake up all pending processes and let them fail with EIDRM. */
0a2b9d4c 1066 INIT_LIST_HEAD(&tasks);
ab63bc97
MS
1067 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1068 unlink_queue(sma, q);
1069 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1070 }
1071
1072 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1073 unlink_queue(sma, q);
0a2b9d4c 1074 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1da177e4 1075 }
9f1bc2c9
RR
1076 for (i = 0; i < sma->sem_nsems; i++) {
1077 struct sem *sem = sma->sem_base + i;
ab63bc97
MS
1078 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1079 unlink_queue(sma, q);
1080 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1081 }
1082 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9
RR
1083 unlink_queue(sma, q);
1084 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1085 }
1086 }
1da177e4 1087
7ca7e564
ND
1088 /* Remove the semaphore set from the IDR */
1089 sem_rmid(ns, sma);
6062a8dc 1090 sem_unlock(sma, -1);
6d49dab8 1091 rcu_read_unlock();
1da177e4 1092
0a2b9d4c 1093 wake_up_sem_queue_do(&tasks);
e3893534 1094 ns->used_sems -= sma->sem_nsems;
e84ca333 1095 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1096}
1097
1098static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1099{
1100 switch(version) {
1101 case IPC_64:
1102 return copy_to_user(buf, in, sizeof(*in));
1103 case IPC_OLD:
1104 {
1105 struct semid_ds out;
1106
982f7c2b
DR
1107 memset(&out, 0, sizeof(out));
1108
1da177e4
LT
1109 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1110
1111 out.sem_otime = in->sem_otime;
1112 out.sem_ctime = in->sem_ctime;
1113 out.sem_nsems = in->sem_nsems;
1114
1115 return copy_to_user(buf, &out, sizeof(out));
1116 }
1117 default:
1118 return -EINVAL;
1119 }
1120}
1121
bf6830ad
MS
1122static time_t get_semotime(struct sem_array *sma)
1123{
1124 int i;
1125 time_t res;
1126
1127 res = sma->sem_base[0].sem_otime;
1128 for (i = 1; i < sma->sem_nsems; i++) {
1129 time_t to = sma->sem_base[i].sem_otime;
1130
1131 if (to > res)
1132 res = to;
1133 }
1134 return res;
1135}
1136
4b9fcb0e 1137static int semctl_nolock(struct ipc_namespace *ns, int semid,
e1fd1f49 1138 int cmd, int version, void __user *p)
1da177e4 1139{
e5cc9c7b 1140 int err;
1da177e4
LT
1141 struct sem_array *sma;
1142
1143 switch(cmd) {
1144 case IPC_INFO:
1145 case SEM_INFO:
1146 {
1147 struct seminfo seminfo;
1148 int max_id;
1149
1150 err = security_sem_semctl(NULL, cmd);
1151 if (err)
1152 return err;
1153
1154 memset(&seminfo,0,sizeof(seminfo));
e3893534
KK
1155 seminfo.semmni = ns->sc_semmni;
1156 seminfo.semmns = ns->sc_semmns;
1157 seminfo.semmsl = ns->sc_semmsl;
1158 seminfo.semopm = ns->sc_semopm;
1da177e4
LT
1159 seminfo.semvmx = SEMVMX;
1160 seminfo.semmnu = SEMMNU;
1161 seminfo.semmap = SEMMAP;
1162 seminfo.semume = SEMUME;
33b74669 1163 down_read(&sem_ids(ns).rwsem);
1da177e4 1164 if (cmd == SEM_INFO) {
e3893534
KK
1165 seminfo.semusz = sem_ids(ns).in_use;
1166 seminfo.semaem = ns->used_sems;
1da177e4
LT
1167 } else {
1168 seminfo.semusz = SEMUSZ;
1169 seminfo.semaem = SEMAEM;
1170 }
7ca7e564 1171 max_id = ipc_get_maxid(&sem_ids(ns));
33b74669 1172 up_read(&sem_ids(ns).rwsem);
e1fd1f49 1173 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1da177e4
LT
1174 return -EFAULT;
1175 return (max_id < 0) ? 0: max_id;
1176 }
4b9fcb0e 1177 case IPC_STAT:
1da177e4
LT
1178 case SEM_STAT:
1179 {
1180 struct semid64_ds tbuf;
16df3674
DB
1181 int id = 0;
1182
1183 memset(&tbuf, 0, sizeof(tbuf));
1da177e4 1184
941b0304 1185 rcu_read_lock();
4b9fcb0e 1186 if (cmd == SEM_STAT) {
16df3674
DB
1187 sma = sem_obtain_object(ns, semid);
1188 if (IS_ERR(sma)) {
1189 err = PTR_ERR(sma);
1190 goto out_unlock;
1191 }
4b9fcb0e
PP
1192 id = sma->sem_perm.id;
1193 } else {
16df3674
DB
1194 sma = sem_obtain_object_check(ns, semid);
1195 if (IS_ERR(sma)) {
1196 err = PTR_ERR(sma);
1197 goto out_unlock;
1198 }
4b9fcb0e 1199 }
1da177e4
LT
1200
1201 err = -EACCES;
b0e77598 1202 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1da177e4
LT
1203 goto out_unlock;
1204
1205 err = security_sem_semctl(sma, cmd);
1206 if (err)
1207 goto out_unlock;
1208
1da177e4 1209 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
bf6830ad
MS
1210 tbuf.sem_otime = get_semotime(sma);
1211 tbuf.sem_ctime = sma->sem_ctime;
1212 tbuf.sem_nsems = sma->sem_nsems;
16df3674 1213 rcu_read_unlock();
e1fd1f49 1214 if (copy_semid_to_user(p, &tbuf, version))
1da177e4
LT
1215 return -EFAULT;
1216 return id;
1217 }
1218 default:
1219 return -EINVAL;
1220 }
1da177e4 1221out_unlock:
16df3674 1222 rcu_read_unlock();
1da177e4
LT
1223 return err;
1224}
1225
e1fd1f49
AV
1226static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1227 unsigned long arg)
1228{
1229 struct sem_undo *un;
1230 struct sem_array *sma;
1231 struct sem* curr;
1232 int err;
e1fd1f49
AV
1233 struct list_head tasks;
1234 int val;
1235#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1236 /* big-endian 64bit */
1237 val = arg >> 32;
1238#else
1239 /* 32bit or little-endian 64bit */
1240 val = arg;
1241#endif
1242
6062a8dc
RR
1243 if (val > SEMVMX || val < 0)
1244 return -ERANGE;
e1fd1f49
AV
1245
1246 INIT_LIST_HEAD(&tasks);
e1fd1f49 1247
6062a8dc
RR
1248 rcu_read_lock();
1249 sma = sem_obtain_object_check(ns, semid);
1250 if (IS_ERR(sma)) {
1251 rcu_read_unlock();
1252 return PTR_ERR(sma);
1253 }
1254
1255 if (semnum < 0 || semnum >= sma->sem_nsems) {
1256 rcu_read_unlock();
1257 return -EINVAL;
1258 }
1259
1260
1261 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1262 rcu_read_unlock();
1263 return -EACCES;
1264 }
e1fd1f49
AV
1265
1266 err = security_sem_semctl(sma, SETVAL);
6062a8dc
RR
1267 if (err) {
1268 rcu_read_unlock();
1269 return -EACCES;
1270 }
e1fd1f49 1271
6062a8dc 1272 sem_lock(sma, NULL, -1);
e1fd1f49
AV
1273
1274 curr = &sma->sem_base[semnum];
1275
115d40db 1276 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1277 list_for_each_entry(un, &sma->list_id, list_id)
1278 un->semadj[semnum] = 0;
1279
1280 curr->semval = val;
1281 curr->sempid = task_tgid_vnr(current);
1282 sma->sem_ctime = get_seconds();
1283 /* maybe some queued-up processes were waiting for this */
1284 do_smart_update(sma, NULL, 0, 0, &tasks);
6062a8dc 1285 sem_unlock(sma, -1);
6d49dab8 1286 rcu_read_unlock();
e1fd1f49 1287 wake_up_sem_queue_do(&tasks);
6062a8dc 1288 return 0;
e1fd1f49
AV
1289}
1290
e3893534 1291static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1292 int cmd, void __user *p)
1da177e4
LT
1293{
1294 struct sem_array *sma;
1295 struct sem* curr;
16df3674 1296 int err, nsems;
1da177e4
LT
1297 ushort fast_sem_io[SEMMSL_FAST];
1298 ushort* sem_io = fast_sem_io;
0a2b9d4c 1299 struct list_head tasks;
1da177e4 1300
16df3674
DB
1301 INIT_LIST_HEAD(&tasks);
1302
1303 rcu_read_lock();
1304 sma = sem_obtain_object_check(ns, semid);
1305 if (IS_ERR(sma)) {
1306 rcu_read_unlock();
023a5355 1307 return PTR_ERR(sma);
16df3674 1308 }
1da177e4
LT
1309
1310 nsems = sma->sem_nsems;
1311
1da177e4 1312 err = -EACCES;
c728b9c8
LT
1313 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1314 goto out_rcu_wakeup;
1da177e4
LT
1315
1316 err = security_sem_semctl(sma, cmd);
c728b9c8
LT
1317 if (err)
1318 goto out_rcu_wakeup;
1da177e4
LT
1319
1320 err = -EACCES;
1321 switch (cmd) {
1322 case GETALL:
1323 {
e1fd1f49 1324 ushort __user *array = p;
1da177e4
LT
1325 int i;
1326
ce857229 1327 sem_lock(sma, NULL, -1);
1da177e4 1328 if(nsems > SEMMSL_FAST) {
ce857229
AV
1329 if (!ipc_rcu_getref(sma)) {
1330 sem_unlock(sma, -1);
6d49dab8 1331 rcu_read_unlock();
ce857229
AV
1332 err = -EIDRM;
1333 goto out_free;
1334 }
1335 sem_unlock(sma, -1);
6d49dab8 1336 rcu_read_unlock();
1da177e4
LT
1337 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1338 if(sem_io == NULL) {
e84ca333 1339 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1340 return -ENOMEM;
1341 }
1342
4091fd94 1343 rcu_read_lock();
6ff37972 1344 sem_lock_and_putref(sma);
1da177e4 1345 if (sma->sem_perm.deleted) {
6062a8dc 1346 sem_unlock(sma, -1);
6d49dab8 1347 rcu_read_unlock();
1da177e4
LT
1348 err = -EIDRM;
1349 goto out_free;
1350 }
ce857229 1351 }
1da177e4
LT
1352 for (i = 0; i < sma->sem_nsems; i++)
1353 sem_io[i] = sma->sem_base[i].semval;
6062a8dc 1354 sem_unlock(sma, -1);
6d49dab8 1355 rcu_read_unlock();
1da177e4
LT
1356 err = 0;
1357 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1358 err = -EFAULT;
1359 goto out_free;
1360 }
1361 case SETALL:
1362 {
1363 int i;
1364 struct sem_undo *un;
1365
6062a8dc
RR
1366 if (!ipc_rcu_getref(sma)) {
1367 rcu_read_unlock();
1368 return -EIDRM;
1369 }
16df3674 1370 rcu_read_unlock();
1da177e4
LT
1371
1372 if(nsems > SEMMSL_FAST) {
1373 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1374 if(sem_io == NULL) {
e84ca333 1375 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1376 return -ENOMEM;
1377 }
1378 }
1379
e1fd1f49 1380 if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
e84ca333 1381 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1382 err = -EFAULT;
1383 goto out_free;
1384 }
1385
1386 for (i = 0; i < nsems; i++) {
1387 if (sem_io[i] > SEMVMX) {
e84ca333 1388 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1389 err = -ERANGE;
1390 goto out_free;
1391 }
1392 }
4091fd94 1393 rcu_read_lock();
6ff37972 1394 sem_lock_and_putref(sma);
1da177e4 1395 if (sma->sem_perm.deleted) {
6062a8dc 1396 sem_unlock(sma, -1);
6d49dab8 1397 rcu_read_unlock();
1da177e4
LT
1398 err = -EIDRM;
1399 goto out_free;
1400 }
1401
1402 for (i = 0; i < nsems; i++)
1403 sma->sem_base[i].semval = sem_io[i];
4daa28f6 1404
115d40db 1405 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1406 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1407 for (i = 0; i < nsems; i++)
1408 un->semadj[i] = 0;
4daa28f6 1409 }
1da177e4
LT
1410 sma->sem_ctime = get_seconds();
1411 /* maybe some queued-up processes were waiting for this */
0a2b9d4c 1412 do_smart_update(sma, NULL, 0, 0, &tasks);
1da177e4
LT
1413 err = 0;
1414 goto out_unlock;
1415 }
e1fd1f49 1416 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1417 }
1418 err = -EINVAL;
c728b9c8
LT
1419 if (semnum < 0 || semnum >= nsems)
1420 goto out_rcu_wakeup;
1da177e4 1421
6062a8dc 1422 sem_lock(sma, NULL, -1);
1da177e4
LT
1423 curr = &sma->sem_base[semnum];
1424
1425 switch (cmd) {
1426 case GETVAL:
1427 err = curr->semval;
1428 goto out_unlock;
1429 case GETPID:
1430 err = curr->sempid;
1431 goto out_unlock;
1432 case GETNCNT:
1433 err = count_semncnt(sma,semnum);
1434 goto out_unlock;
1435 case GETZCNT:
1436 err = count_semzcnt(sma,semnum);
1437 goto out_unlock;
1da177e4 1438 }
16df3674 1439
1da177e4 1440out_unlock:
6062a8dc 1441 sem_unlock(sma, -1);
c728b9c8 1442out_rcu_wakeup:
6d49dab8 1443 rcu_read_unlock();
0a2b9d4c 1444 wake_up_sem_queue_do(&tasks);
1da177e4
LT
1445out_free:
1446 if(sem_io != fast_sem_io)
1447 ipc_free(sem_io, sizeof(ushort)*nsems);
1448 return err;
1449}
1450
016d7132
PP
1451static inline unsigned long
1452copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4
LT
1453{
1454 switch(version) {
1455 case IPC_64:
016d7132 1456 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1457 return -EFAULT;
1da177e4 1458 return 0;
1da177e4
LT
1459 case IPC_OLD:
1460 {
1461 struct semid_ds tbuf_old;
1462
1463 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1464 return -EFAULT;
1465
016d7132
PP
1466 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1467 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1468 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1469
1470 return 0;
1471 }
1472 default:
1473 return -EINVAL;
1474 }
1475}
1476
522bb2a2 1477/*
33b74669 1478 * This function handles some semctl commands which require the rwsem
522bb2a2 1479 * to be held in write mode.
33b74669 1480 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1481 */
21a4826a 1482static int semctl_down(struct ipc_namespace *ns, int semid,
e1fd1f49 1483 int cmd, int version, void __user *p)
1da177e4
LT
1484{
1485 struct sem_array *sma;
1486 int err;
016d7132 1487 struct semid64_ds semid64;
1da177e4
LT
1488 struct kern_ipc_perm *ipcp;
1489
1490 if(cmd == IPC_SET) {
e1fd1f49 1491 if (copy_semid_from_user(&semid64, p, version))
1da177e4 1492 return -EFAULT;
1da177e4 1493 }
073115d6 1494
33b74669 1495 down_write(&sem_ids(ns).rwsem);
ac9bc6e3
DB
1496 rcu_read_lock();
1497
16df3674
DB
1498 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1499 &semid64.sem_perm, 0);
ac9bc6e3
DB
1500 if (IS_ERR(ipcp)) {
1501 err = PTR_ERR(ipcp);
ac9bc6e3
DB
1502 goto out_unlock1;
1503 }
073115d6 1504
a5f75e7f 1505 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4
LT
1506
1507 err = security_sem_semctl(sma, cmd);
ac9bc6e3
DB
1508 if (err)
1509 goto out_unlock1;
1da177e4 1510
ac9bc6e3 1511 switch (cmd) {
1da177e4 1512 case IPC_RMID:
6062a8dc 1513 sem_lock(sma, NULL, -1);
ac9bc6e3 1514 /* freeary unlocks the ipc object and rcu */
01b8b07a 1515 freeary(ns, ipcp);
522bb2a2 1516 goto out_up;
1da177e4 1517 case IPC_SET:
6062a8dc 1518 sem_lock(sma, NULL, -1);
1efdb69b
EB
1519 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1520 if (err)
ac9bc6e3 1521 goto out_unlock0;
1da177e4 1522 sma->sem_ctime = get_seconds();
1da177e4
LT
1523 break;
1524 default:
1da177e4 1525 err = -EINVAL;
ac9bc6e3 1526 goto out_unlock1;
1da177e4 1527 }
1da177e4 1528
ac9bc6e3 1529out_unlock0:
6062a8dc 1530 sem_unlock(sma, -1);
ac9bc6e3 1531out_unlock1:
6d49dab8 1532 rcu_read_unlock();
522bb2a2 1533out_up:
33b74669 1534 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1535 return err;
1536}
1537
e1fd1f49 1538SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1da177e4 1539{
1da177e4 1540 int version;
e3893534 1541 struct ipc_namespace *ns;
e1fd1f49 1542 void __user *p = (void __user *)arg;
1da177e4
LT
1543
1544 if (semid < 0)
1545 return -EINVAL;
1546
1547 version = ipc_parse_version(&cmd);
e3893534 1548 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1549
1550 switch(cmd) {
1551 case IPC_INFO:
1552 case SEM_INFO:
4b9fcb0e 1553 case IPC_STAT:
1da177e4 1554 case SEM_STAT:
e1fd1f49 1555 return semctl_nolock(ns, semid, cmd, version, p);
1da177e4
LT
1556 case GETALL:
1557 case GETVAL:
1558 case GETPID:
1559 case GETNCNT:
1560 case GETZCNT:
1da177e4 1561 case SETALL:
e1fd1f49
AV
1562 return semctl_main(ns, semid, semnum, cmd, p);
1563 case SETVAL:
1564 return semctl_setval(ns, semid, semnum, arg);
1da177e4
LT
1565 case IPC_RMID:
1566 case IPC_SET:
e1fd1f49 1567 return semctl_down(ns, semid, cmd, version, p);
1da177e4
LT
1568 default:
1569 return -EINVAL;
1570 }
1571}
1572
1da177e4
LT
1573/* If the task doesn't already have a undo_list, then allocate one
1574 * here. We guarantee there is only one thread using this undo list,
1575 * and current is THE ONE
1576 *
1577 * If this allocation and assignment succeeds, but later
1578 * portions of this code fail, there is no need to free the sem_undo_list.
1579 * Just let it stay associated with the task, and it'll be freed later
1580 * at exit time.
1581 *
1582 * This can block, so callers must hold no locks.
1583 */
1584static inline int get_undo_list(struct sem_undo_list **undo_listp)
1585{
1586 struct sem_undo_list *undo_list;
1da177e4
LT
1587
1588 undo_list = current->sysvsem.undo_list;
1589 if (!undo_list) {
2453a306 1590 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1591 if (undo_list == NULL)
1592 return -ENOMEM;
00a5dfdb 1593 spin_lock_init(&undo_list->lock);
1da177e4 1594 atomic_set(&undo_list->refcnt, 1);
4daa28f6
MS
1595 INIT_LIST_HEAD(&undo_list->list_proc);
1596
1da177e4
LT
1597 current->sysvsem.undo_list = undo_list;
1598 }
1599 *undo_listp = undo_list;
1600 return 0;
1601}
1602
bf17bb71 1603static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1604{
bf17bb71 1605 struct sem_undo *un;
4daa28f6 1606
bf17bb71
NP
1607 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1608 if (un->semid == semid)
1609 return un;
1da177e4 1610 }
4daa28f6 1611 return NULL;
1da177e4
LT
1612}
1613
bf17bb71
NP
1614static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1615{
1616 struct sem_undo *un;
1617
1618 assert_spin_locked(&ulp->lock);
1619
1620 un = __lookup_undo(ulp, semid);
1621 if (un) {
1622 list_del_rcu(&un->list_proc);
1623 list_add_rcu(&un->list_proc, &ulp->list_proc);
1624 }
1625 return un;
1626}
1627
4daa28f6
MS
1628/**
1629 * find_alloc_undo - Lookup (and if not present create) undo array
1630 * @ns: namespace
1631 * @semid: semaphore array id
1632 *
1633 * The function looks up (and if not present creates) the undo structure.
1634 * The size of the undo structure depends on the size of the semaphore
1635 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1636 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1637 * performs a rcu_read_lock().
4daa28f6
MS
1638 */
1639static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1640{
1641 struct sem_array *sma;
1642 struct sem_undo_list *ulp;
1643 struct sem_undo *un, *new;
6062a8dc 1644 int nsems, error;
1da177e4
LT
1645
1646 error = get_undo_list(&ulp);
1647 if (error)
1648 return ERR_PTR(error);
1649
380af1b3 1650 rcu_read_lock();
c530c6ac 1651 spin_lock(&ulp->lock);
1da177e4 1652 un = lookup_undo(ulp, semid);
c530c6ac 1653 spin_unlock(&ulp->lock);
1da177e4
LT
1654 if (likely(un!=NULL))
1655 goto out;
1656
1657 /* no undo structure around - allocate one. */
4daa28f6 1658 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1659 sma = sem_obtain_object_check(ns, semid);
1660 if (IS_ERR(sma)) {
1661 rcu_read_unlock();
4de85cd6 1662 return ERR_CAST(sma);
16df3674 1663 }
023a5355 1664
1da177e4 1665 nsems = sma->sem_nsems;
6062a8dc
RR
1666 if (!ipc_rcu_getref(sma)) {
1667 rcu_read_unlock();
1668 un = ERR_PTR(-EIDRM);
1669 goto out;
1670 }
16df3674 1671 rcu_read_unlock();
1da177e4 1672
4daa28f6 1673 /* step 2: allocate new undo structure */
4668edc3 1674 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1675 if (!new) {
e84ca333 1676 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1677 return ERR_PTR(-ENOMEM);
1678 }
1da177e4 1679
380af1b3 1680 /* step 3: Acquire the lock on semaphore array */
4091fd94 1681 rcu_read_lock();
6ff37972 1682 sem_lock_and_putref(sma);
1da177e4 1683 if (sma->sem_perm.deleted) {
6062a8dc 1684 sem_unlock(sma, -1);
6d49dab8 1685 rcu_read_unlock();
1da177e4
LT
1686 kfree(new);
1687 un = ERR_PTR(-EIDRM);
1688 goto out;
1689 }
380af1b3
MS
1690 spin_lock(&ulp->lock);
1691
1692 /*
1693 * step 4: check for races: did someone else allocate the undo struct?
1694 */
1695 un = lookup_undo(ulp, semid);
1696 if (un) {
1697 kfree(new);
1698 goto success;
1699 }
4daa28f6
MS
1700 /* step 5: initialize & link new undo structure */
1701 new->semadj = (short *) &new[1];
380af1b3 1702 new->ulp = ulp;
4daa28f6
MS
1703 new->semid = semid;
1704 assert_spin_locked(&ulp->lock);
380af1b3 1705 list_add_rcu(&new->list_proc, &ulp->list_proc);
115d40db 1706 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1707 list_add(&new->list_id, &sma->list_id);
380af1b3 1708 un = new;
4daa28f6 1709
380af1b3 1710success:
c530c6ac 1711 spin_unlock(&ulp->lock);
6062a8dc 1712 sem_unlock(sma, -1);
1da177e4
LT
1713out:
1714 return un;
1715}
1716
c61284e9
MS
1717
1718/**
1719 * get_queue_result - Retrieve the result code from sem_queue
1720 * @q: Pointer to queue structure
1721 *
1722 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1723 * q->status, then we must loop until the value is replaced with the final
1724 * value: This may happen if a task is woken up by an unrelated event (e.g.
1725 * signal) and in parallel the task is woken up by another task because it got
1726 * the requested semaphores.
1727 *
1728 * The function can be called with or without holding the semaphore spinlock.
1729 */
1730static int get_queue_result(struct sem_queue *q)
1731{
1732 int error;
1733
1734 error = q->status;
1735 while (unlikely(error == IN_WAKEUP)) {
1736 cpu_relax();
1737 error = q->status;
1738 }
1739
1740 return error;
1741}
1742
d5460c99
HC
1743SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1744 unsigned, nsops, const struct timespec __user *, timeout)
1da177e4
LT
1745{
1746 int error = -EINVAL;
1747 struct sem_array *sma;
1748 struct sembuf fast_sops[SEMOPM_FAST];
1749 struct sembuf* sops = fast_sops, *sop;
1750 struct sem_undo *un;
6062a8dc 1751 int undos = 0, alter = 0, max, locknum;
1da177e4
LT
1752 struct sem_queue queue;
1753 unsigned long jiffies_left = 0;
e3893534 1754 struct ipc_namespace *ns;
0a2b9d4c 1755 struct list_head tasks;
e3893534
KK
1756
1757 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1758
1759 if (nsops < 1 || semid < 0)
1760 return -EINVAL;
e3893534 1761 if (nsops > ns->sc_semopm)
1da177e4
LT
1762 return -E2BIG;
1763 if(nsops > SEMOPM_FAST) {
1764 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1765 if(sops==NULL)
1766 return -ENOMEM;
1767 }
1768 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1769 error=-EFAULT;
1770 goto out_free;
1771 }
1772 if (timeout) {
1773 struct timespec _timeout;
1774 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1775 error = -EFAULT;
1776 goto out_free;
1777 }
1778 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1779 _timeout.tv_nsec >= 1000000000L) {
1780 error = -EINVAL;
1781 goto out_free;
1782 }
1783 jiffies_left = timespec_to_jiffies(&_timeout);
1784 }
1785 max = 0;
1786 for (sop = sops; sop < sops + nsops; sop++) {
1787 if (sop->sem_num >= max)
1788 max = sop->sem_num;
1789 if (sop->sem_flg & SEM_UNDO)
b78755ab
MS
1790 undos = 1;
1791 if (sop->sem_op != 0)
1da177e4
LT
1792 alter = 1;
1793 }
1da177e4 1794
6062a8dc
RR
1795 INIT_LIST_HEAD(&tasks);
1796
1da177e4 1797 if (undos) {
6062a8dc 1798 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 1799 un = find_alloc_undo(ns, semid);
1da177e4
LT
1800 if (IS_ERR(un)) {
1801 error = PTR_ERR(un);
1802 goto out_free;
1803 }
6062a8dc 1804 } else {
1da177e4 1805 un = NULL;
6062a8dc
RR
1806 rcu_read_lock();
1807 }
1da177e4 1808
16df3674 1809 sma = sem_obtain_object_check(ns, semid);
023a5355 1810 if (IS_ERR(sma)) {
6062a8dc 1811 rcu_read_unlock();
023a5355 1812 error = PTR_ERR(sma);
1da177e4 1813 goto out_free;
023a5355
ND
1814 }
1815
16df3674 1816 error = -EFBIG;
c728b9c8
LT
1817 if (max >= sma->sem_nsems)
1818 goto out_rcu_wakeup;
16df3674
DB
1819
1820 error = -EACCES;
c728b9c8
LT
1821 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1822 goto out_rcu_wakeup;
16df3674
DB
1823
1824 error = security_sem_semop(sma, sops, nsops, alter);
c728b9c8
LT
1825 if (error)
1826 goto out_rcu_wakeup;
16df3674 1827
1da177e4 1828 /*
4daa28f6 1829 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 1830 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 1831 * and now a new array with received the same id. Check and fail.
25985edc 1832 * This case can be detected checking un->semid. The existence of
380af1b3 1833 * "un" itself is guaranteed by rcu.
1da177e4 1834 */
4daa28f6 1835 error = -EIDRM;
6062a8dc
RR
1836 locknum = sem_lock(sma, sops, nsops);
1837 if (un && un->semid == -1)
1838 goto out_unlock_free;
4daa28f6 1839
b56e88e2
MS
1840 error = perform_atomic_semop(sma, sops, nsops, un,
1841 task_tgid_vnr(current));
1da177e4
LT
1842 if (error <= 0) {
1843 if (alter && error == 0)
0a2b9d4c 1844 do_smart_update(sma, sops, nsops, 1, &tasks);
636c6be8 1845
1da177e4
LT
1846 goto out_unlock_free;
1847 }
1848
1849 /* We need to sleep on this operation, so we put the current
1850 * task into the pending queue and go to sleep.
1851 */
1852
1da177e4
LT
1853 queue.sops = sops;
1854 queue.nsops = nsops;
1855 queue.undo = un;
b488893a 1856 queue.pid = task_tgid_vnr(current);
1da177e4 1857 queue.alter = alter;
1da177e4 1858
b97e820f
MS
1859 if (nsops == 1) {
1860 struct sem *curr;
1861 curr = &sma->sem_base[sops->sem_num];
1862
e5639c52
MS
1863 if (alter) {
1864 if (sma->complex_count) {
1865 list_add_tail(&queue.list,
1866 &sma->pending_alter);
1867 } else {
1868
1869 list_add_tail(&queue.list,
1870 &curr->pending_alter);
1871 }
1872 } else {
ab63bc97 1873 list_add_tail(&queue.list, &curr->pending_const);
e5639c52 1874 }
b97e820f 1875 } else {
e5639c52
MS
1876 if (!sma->complex_count)
1877 merge_queues(sma);
1878
9f1bc2c9 1879 if (alter)
ab63bc97 1880 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 1881 else
ab63bc97
MS
1882 list_add_tail(&queue.list, &sma->pending_const);
1883
b97e820f
MS
1884 sma->complex_count++;
1885 }
1886
1da177e4
LT
1887 queue.status = -EINTR;
1888 queue.sleeper = current;
0b0577f6
MS
1889
1890sleep_again:
1da177e4 1891 current->state = TASK_INTERRUPTIBLE;
6062a8dc 1892 sem_unlock(sma, locknum);
6d49dab8 1893 rcu_read_unlock();
1da177e4
LT
1894
1895 if (timeout)
1896 jiffies_left = schedule_timeout(jiffies_left);
1897 else
1898 schedule();
1899
c61284e9 1900 error = get_queue_result(&queue);
1da177e4
LT
1901
1902 if (error != -EINTR) {
1903 /* fast path: update_queue already obtained all requested
c61284e9
MS
1904 * resources.
1905 * Perform a smp_mb(): User space could assume that semop()
1906 * is a memory barrier: Without the mb(), the cpu could
1907 * speculatively read in user space stale data that was
1908 * overwritten by the previous owner of the semaphore.
1909 */
1910 smp_mb();
1911
1da177e4
LT
1912 goto out_free;
1913 }
1914
321310ce 1915 rcu_read_lock();
6062a8dc 1916 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
d694ad62
MS
1917
1918 /*
1919 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1920 */
1921 error = get_queue_result(&queue);
1922
1923 /*
1924 * Array removed? If yes, leave without sem_unlock().
1925 */
023a5355 1926 if (IS_ERR(sma)) {
321310ce 1927 rcu_read_unlock();
1da177e4
LT
1928 goto out_free;
1929 }
1930
c61284e9 1931
1da177e4 1932 /*
d694ad62
MS
1933 * If queue.status != -EINTR we are woken up by another process.
1934 * Leave without unlink_queue(), but with sem_unlock().
1da177e4 1935 */
c61284e9 1936
1da177e4
LT
1937 if (error != -EINTR) {
1938 goto out_unlock_free;
1939 }
1940
1941 /*
1942 * If an interrupt occurred we have to clean up the queue
1943 */
1944 if (timeout && jiffies_left == 0)
1945 error = -EAGAIN;
0b0577f6
MS
1946
1947 /*
1948 * If the wakeup was spurious, just retry
1949 */
1950 if (error == -EINTR && !signal_pending(current))
1951 goto sleep_again;
1952
b97e820f 1953 unlink_queue(sma, &queue);
1da177e4
LT
1954
1955out_unlock_free:
6062a8dc 1956 sem_unlock(sma, locknum);
c728b9c8 1957out_rcu_wakeup:
6d49dab8 1958 rcu_read_unlock();
0a2b9d4c 1959 wake_up_sem_queue_do(&tasks);
1da177e4
LT
1960out_free:
1961 if(sops != fast_sops)
1962 kfree(sops);
1963 return error;
1964}
1965
d5460c99
HC
1966SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1967 unsigned, nsops)
1da177e4
LT
1968{
1969 return sys_semtimedop(semid, tsops, nsops, NULL);
1970}
1971
1972/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1973 * parent and child tasks.
1da177e4
LT
1974 */
1975
1976int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1977{
1978 struct sem_undo_list *undo_list;
1979 int error;
1980
1981 if (clone_flags & CLONE_SYSVSEM) {
1982 error = get_undo_list(&undo_list);
1983 if (error)
1984 return error;
1da177e4
LT
1985 atomic_inc(&undo_list->refcnt);
1986 tsk->sysvsem.undo_list = undo_list;
1987 } else
1988 tsk->sysvsem.undo_list = NULL;
1989
1990 return 0;
1991}
1992
1993/*
1994 * add semadj values to semaphores, free undo structures.
1995 * undo structures are not freed when semaphore arrays are destroyed
1996 * so some of them may be out of date.
1997 * IMPLEMENTATION NOTE: There is some confusion over whether the
1998 * set of adjustments that needs to be done should be done in an atomic
1999 * manner or not. That is, if we are attempting to decrement the semval
2000 * should we queue up and wait until we can do so legally?
2001 * The original implementation attempted to do this (queue and wait).
2002 * The current implementation does not do so. The POSIX standard
2003 * and SVID should be consulted to determine what behavior is mandated.
2004 */
2005void exit_sem(struct task_struct *tsk)
2006{
4daa28f6 2007 struct sem_undo_list *ulp;
1da177e4 2008
4daa28f6
MS
2009 ulp = tsk->sysvsem.undo_list;
2010 if (!ulp)
1da177e4 2011 return;
9edff4ab 2012 tsk->sysvsem.undo_list = NULL;
1da177e4 2013
4daa28f6 2014 if (!atomic_dec_and_test(&ulp->refcnt))
1da177e4
LT
2015 return;
2016
380af1b3 2017 for (;;) {
1da177e4 2018 struct sem_array *sma;
380af1b3 2019 struct sem_undo *un;
0a2b9d4c 2020 struct list_head tasks;
6062a8dc 2021 int semid, i;
4daa28f6 2022
380af1b3 2023 rcu_read_lock();
05725f7e
JP
2024 un = list_entry_rcu(ulp->list_proc.next,
2025 struct sem_undo, list_proc);
380af1b3
MS
2026 if (&un->list_proc == &ulp->list_proc)
2027 semid = -1;
2028 else
2029 semid = un->semid;
4daa28f6 2030
6062a8dc
RR
2031 if (semid == -1) {
2032 rcu_read_unlock();
380af1b3 2033 break;
6062a8dc 2034 }
1da177e4 2035
6062a8dc 2036 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
380af1b3 2037 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2038 if (IS_ERR(sma)) {
2039 rcu_read_unlock();
380af1b3 2040 continue;
6062a8dc 2041 }
1da177e4 2042
6062a8dc 2043 sem_lock(sma, NULL, -1);
bf17bb71 2044 un = __lookup_undo(ulp, semid);
380af1b3
MS
2045 if (un == NULL) {
2046 /* exit_sem raced with IPC_RMID+semget() that created
2047 * exactly the same semid. Nothing to do.
2048 */
6062a8dc 2049 sem_unlock(sma, -1);
6d49dab8 2050 rcu_read_unlock();
380af1b3
MS
2051 continue;
2052 }
2053
2054 /* remove un from the linked lists */
115d40db 2055 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2056 list_del(&un->list_id);
2057
380af1b3
MS
2058 spin_lock(&ulp->lock);
2059 list_del_rcu(&un->list_proc);
2060 spin_unlock(&ulp->lock);
2061
4daa28f6
MS
2062 /* perform adjustments registered in un */
2063 for (i = 0; i < sma->sem_nsems; i++) {
5f921ae9 2064 struct sem * semaphore = &sma->sem_base[i];
4daa28f6
MS
2065 if (un->semadj[i]) {
2066 semaphore->semval += un->semadj[i];
1da177e4
LT
2067 /*
2068 * Range checks of the new semaphore value,
2069 * not defined by sus:
2070 * - Some unices ignore the undo entirely
2071 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2072 * - some cap the value (e.g. FreeBSD caps
2073 * at 0, but doesn't enforce SEMVMX)
2074 *
2075 * Linux caps the semaphore value, both at 0
2076 * and at SEMVMX.
2077 *
2078 * Manfred <manfred@colorfullife.com>
2079 */
5f921ae9
IM
2080 if (semaphore->semval < 0)
2081 semaphore->semval = 0;
2082 if (semaphore->semval > SEMVMX)
2083 semaphore->semval = SEMVMX;
b488893a 2084 semaphore->sempid = task_tgid_vnr(current);
1da177e4
LT
2085 }
2086 }
1da177e4 2087 /* maybe some queued-up processes were waiting for this */
0a2b9d4c
MS
2088 INIT_LIST_HEAD(&tasks);
2089 do_smart_update(sma, NULL, 0, 1, &tasks);
6062a8dc 2090 sem_unlock(sma, -1);
6d49dab8 2091 rcu_read_unlock();
0a2b9d4c 2092 wake_up_sem_queue_do(&tasks);
380af1b3 2093
693a8b6e 2094 kfree_rcu(un, rcu);
1da177e4 2095 }
4daa28f6 2096 kfree(ulp);
1da177e4
LT
2097}
2098
2099#ifdef CONFIG_PROC_FS
19b4946c 2100static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2101{
1efdb69b 2102 struct user_namespace *user_ns = seq_user_ns(s);
19b4946c 2103 struct sem_array *sma = it;
bf6830ad
MS
2104 time_t sem_otime;
2105
2106 sem_otime = get_semotime(sma);
19b4946c
MW
2107
2108 return seq_printf(s,
b97e820f 2109 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
19b4946c 2110 sma->sem_perm.key,
7ca7e564 2111 sma->sem_perm.id,
19b4946c
MW
2112 sma->sem_perm.mode,
2113 sma->sem_nsems,
1efdb69b
EB
2114 from_kuid_munged(user_ns, sma->sem_perm.uid),
2115 from_kgid_munged(user_ns, sma->sem_perm.gid),
2116 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2117 from_kgid_munged(user_ns, sma->sem_perm.cgid),
bf6830ad 2118 sem_otime,
19b4946c 2119 sma->sem_ctime);
1da177e4
LT
2120}
2121#endif