ipc: fix race with LSMs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
1da177e4
LT
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
624dffcb 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 10 * Enforced range limit on SEM_UNDO
046c6884 11 * (c) 2001 Red Hat Inc
1da177e4
LT
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
c5cf6359
MS
14 * Further wakeup optimizations, documentation
15 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
16 *
17 * support for audit of ipc object properties and permission changes
18 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
19 *
20 * namespaces support
21 * OpenVZ, SWsoft Inc.
22 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
23 *
24 * Implementation notes: (May 2010)
25 * This file implements System V semaphores.
26 *
27 * User space visible behavior:
28 * - FIFO ordering for semop() operations (just FIFO, not starvation
29 * protection)
30 * - multiple semaphore operations that alter the same semaphore in
31 * one semop() are handled.
32 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
33 * SETALL calls.
34 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
35 * - undo adjustments at process exit are limited to 0..SEMVMX.
36 * - namespace are supported.
37 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
38 * to /proc/sys/kernel/sem.
39 * - statistics about the usage are reported in /proc/sysvipc/sem.
40 *
41 * Internals:
42 * - scalability:
43 * - all global variables are read-mostly.
44 * - semop() calls and semctl(RMID) are synchronized by RCU.
45 * - most operations do write operations (actually: spin_lock calls) to
46 * the per-semaphore array structure.
47 * Thus: Perfect SMP scaling between independent semaphore arrays.
48 * If multiple semaphores in one array are used, then cache line
49 * trashing on the semaphore array spinlock will limit the scaling.
50 * - semncnt and semzcnt are calculated on demand in count_semncnt() and
51 * count_semzcnt()
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
57 * dropping all locks. (see wake_up_sem_queue_prepare(),
58 * wake_up_sem_queue_do())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - The synchronizations between wake-ups due to a timeout/signal and a
64 * wake-up due to a completed semaphore operation is achieved by using an
65 * intermediate state (IN_WAKEUP).
66 * - UNDO values are stored in an array (one per process and per
67 * semaphore array, lazily allocated). For backwards compatibility, multiple
68 * modes for the UNDO variables are supported (per process, per thread)
69 * (see copy_semundo, CLONE_SYSVSEM)
70 * - There are two lists of the pending operations: a per-array list
71 * and per-semaphore list (stored in the array). This allows to achieve FIFO
72 * ordering without always scanning all pending operations.
73 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
74 */
75
1da177e4
LT
76#include <linux/slab.h>
77#include <linux/spinlock.h>
78#include <linux/init.h>
79#include <linux/proc_fs.h>
80#include <linux/time.h>
1da177e4
LT
81#include <linux/security.h>
82#include <linux/syscalls.h>
83#include <linux/audit.h>
c59ede7b 84#include <linux/capability.h>
19b4946c 85#include <linux/seq_file.h>
3e148c79 86#include <linux/rwsem.h>
e3893534 87#include <linux/nsproxy.h>
ae5e1b22 88#include <linux/ipc_namespace.h>
5f921ae9 89
1da177e4
LT
90#include <asm/uaccess.h>
91#include "util.h"
92
e57940d7
MS
93/* One semaphore structure for each semaphore in the system. */
94struct sem {
95 int semval; /* current value */
96 int sempid; /* pid of last operation */
6062a8dc 97 spinlock_t lock; /* spinlock for fine-grained semtimedop */
ab63bc97
MS
98 struct list_head pending_alter; /* pending single-sop operations */
99 /* that alter the semaphore */
100 struct list_head pending_const; /* pending single-sop operations */
101 /* that do not alter the semaphore*/
bf6830ad 102 time_t sem_otime; /* candidate for sem_otime */
0824e44c 103} ____cacheline_aligned_in_smp;
e57940d7
MS
104
105/* One queue for each sleeping process in the system. */
106struct sem_queue {
e57940d7
MS
107 struct list_head list; /* queue of pending operations */
108 struct task_struct *sleeper; /* this process */
109 struct sem_undo *undo; /* undo structure */
110 int pid; /* process id of requesting process */
111 int status; /* completion status of operation */
112 struct sembuf *sops; /* array of pending operations */
113 int nsops; /* number of operations */
114 int alter; /* does *sops alter the array? */
115};
116
117/* Each task has a list of undo requests. They are executed automatically
118 * when the process exits.
119 */
120struct sem_undo {
121 struct list_head list_proc; /* per-process list: *
122 * all undos from one process
123 * rcu protected */
124 struct rcu_head rcu; /* rcu struct for sem_undo */
125 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
126 struct list_head list_id; /* per semaphore array list:
127 * all undos for one array */
128 int semid; /* semaphore set identifier */
129 short *semadj; /* array of adjustments */
130 /* one per semaphore */
131};
132
133/* sem_undo_list controls shared access to the list of sem_undo structures
134 * that may be shared among all a CLONE_SYSVSEM task group.
135 */
136struct sem_undo_list {
137 atomic_t refcnt;
138 spinlock_t lock;
139 struct list_head list_proc;
140};
141
142
ed2ddbf8 143#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 144
1b531f21 145#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
1da177e4 146
7748dbfa 147static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 148static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 149#ifdef CONFIG_PROC_FS
19b4946c 150static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
151#endif
152
153#define SEMMSL_FAST 256 /* 512 bytes on stack */
154#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
155
156/*
b56e88e2 157 * Locking:
1da177e4 158 * sem_undo.id_next,
b56e88e2 159 * sem_array.complex_count,
ab63bc97 160 * sem_array.pending{_alter,_cont},
b56e88e2 161 * sem_array.sem_undo: global sem_lock() for read/write
1da177e4
LT
162 * sem_undo.proc_next: only "current" is allowed to read/write that field.
163 *
b56e88e2
MS
164 * sem_array.sem_base[i].pending_{const,alter}:
165 * global or semaphore sem_lock() for read/write
1da177e4
LT
166 */
167
e3893534
KK
168#define sc_semmsl sem_ctls[0]
169#define sc_semmns sem_ctls[1]
170#define sc_semopm sem_ctls[2]
171#define sc_semmni sem_ctls[3]
172
ed2ddbf8 173void sem_init_ns(struct ipc_namespace *ns)
e3893534 174{
e3893534
KK
175 ns->sc_semmsl = SEMMSL;
176 ns->sc_semmns = SEMMNS;
177 ns->sc_semopm = SEMOPM;
178 ns->sc_semmni = SEMMNI;
179 ns->used_sems = 0;
ed2ddbf8 180 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
181}
182
ae5e1b22 183#ifdef CONFIG_IPC_NS
e3893534
KK
184void sem_exit_ns(struct ipc_namespace *ns)
185{
01b8b07a 186 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 187 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
e3893534 188}
ae5e1b22 189#endif
1da177e4
LT
190
191void __init sem_init (void)
192{
ed2ddbf8 193 sem_init_ns(&init_ipc_ns);
19b4946c
MW
194 ipc_init_proc_interface("sysvipc/sem",
195 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 196 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
197}
198
e5639c52
MS
199/**
200 * unmerge_queues - unmerge queues, if possible.
201 * @sma: semaphore array
202 *
203 * The function unmerges the wait queues if complex_count is 0.
204 * It must be called prior to dropping the global semaphore array lock.
205 */
206static void unmerge_queues(struct sem_array *sma)
207{
208 struct sem_queue *q, *tq;
209
210 /* complex operations still around? */
211 if (sma->complex_count)
212 return;
213 /*
214 * We will switch back to simple mode.
215 * Move all pending operation back into the per-semaphore
216 * queues.
217 */
218 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
219 struct sem *curr;
220 curr = &sma->sem_base[q->sops[0].sem_num];
221
222 list_add_tail(&q->list, &curr->pending_alter);
223 }
224 INIT_LIST_HEAD(&sma->pending_alter);
225}
226
227/**
228 * merge_queues - Merge single semop queues into global queue
229 * @sma: semaphore array
230 *
231 * This function merges all per-semaphore queues into the global queue.
232 * It is necessary to achieve FIFO ordering for the pending single-sop
233 * operations when a multi-semop operation must sleep.
234 * Only the alter operations must be moved, the const operations can stay.
235 */
236static void merge_queues(struct sem_array *sma)
237{
238 int i;
239 for (i = 0; i < sma->sem_nsems; i++) {
240 struct sem *sem = sma->sem_base + i;
241
242 list_splice_init(&sem->pending_alter, &sma->pending_alter);
243 }
244}
245
e84ca333
DB
246static void sem_rcu_free(struct rcu_head *head)
247{
248 struct ipc_rcu *p = container_of(head, struct ipc_rcu, rcu);
249 struct sem_array *sma = ipc_rcu_to_struct(p);
250
251 security_sem_free(sma);
252 ipc_rcu_free(head);
253}
254
6062a8dc
RR
255/*
256 * If the request contains only one semaphore operation, and there are
257 * no complex transactions pending, lock only the semaphore involved.
258 * Otherwise, lock the entire semaphore array, since we either have
259 * multiple semaphores in our own semops, or we need to look at
260 * semaphores from other pending complex operations.
261 *
262 * Carefully guard against sma->complex_count changing between zero
263 * and non-zero while we are spinning for the lock. The value of
264 * sma->complex_count cannot change while we are holding the lock,
265 * so sem_unlock should be fine.
266 *
267 * The global lock path checks that all the local locks have been released,
268 * checking each local lock once. This means that the local lock paths
269 * cannot start their critical sections while the global lock is held.
270 */
271static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
272 int nsops)
273{
274 int locknum;
275 again:
276 if (nsops == 1 && !sma->complex_count) {
277 struct sem *sem = sma->sem_base + sops->sem_num;
278
279 /* Lock just the semaphore we are interested in. */
280 spin_lock(&sem->lock);
281
282 /*
283 * If sma->complex_count was set while we were spinning,
284 * we may need to look at things we did not lock here.
285 */
286 if (unlikely(sma->complex_count)) {
287 spin_unlock(&sem->lock);
288 goto lock_array;
289 }
290
291 /*
292 * Another process is holding the global lock on the
293 * sem_array; we cannot enter our critical section,
294 * but have to wait for the global lock to be released.
295 */
296 if (unlikely(spin_is_locked(&sma->sem_perm.lock))) {
297 spin_unlock(&sem->lock);
298 spin_unlock_wait(&sma->sem_perm.lock);
299 goto again;
300 }
301
302 locknum = sops->sem_num;
303 } else {
304 int i;
305 /*
306 * Lock the semaphore array, and wait for all of the
307 * individual semaphore locks to go away. The code
308 * above ensures no new single-lock holders will enter
309 * their critical section while the array lock is held.
310 */
311 lock_array:
115d40db 312 ipc_lock_object(&sma->sem_perm);
6062a8dc
RR
313 for (i = 0; i < sma->sem_nsems; i++) {
314 struct sem *sem = sma->sem_base + i;
315 spin_unlock_wait(&sem->lock);
316 }
317 locknum = -1;
318 }
319 return locknum;
320}
321
322static inline void sem_unlock(struct sem_array *sma, int locknum)
323{
324 if (locknum == -1) {
e5639c52 325 unmerge_queues(sma);
115d40db 326 ipc_unlock_object(&sma->sem_perm);
6062a8dc
RR
327 } else {
328 struct sem *sem = sma->sem_base + locknum;
329 spin_unlock(&sem->lock);
330 }
6062a8dc
RR
331}
332
3e148c79 333/*
33b74669 334 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 335 * is not held.
321310ce
LT
336 *
337 * The caller holds the RCU read lock.
3e148c79 338 */
6062a8dc
RR
339static inline struct sem_array *sem_obtain_lock(struct ipc_namespace *ns,
340 int id, struct sembuf *sops, int nsops, int *locknum)
023a5355 341{
c460b662
RR
342 struct kern_ipc_perm *ipcp;
343 struct sem_array *sma;
03f02c76 344
c460b662 345 ipcp = ipc_obtain_object(&sem_ids(ns), id);
321310ce
LT
346 if (IS_ERR(ipcp))
347 return ERR_CAST(ipcp);
b1ed88b4 348
6062a8dc
RR
349 sma = container_of(ipcp, struct sem_array, sem_perm);
350 *locknum = sem_lock(sma, sops, nsops);
c460b662
RR
351
352 /* ipc_rmid() may have already freed the ID while sem_lock
353 * was spinning: verify that the structure is still valid
354 */
355 if (!ipcp->deleted)
356 return container_of(ipcp, struct sem_array, sem_perm);
357
6062a8dc 358 sem_unlock(sma, *locknum);
321310ce 359 return ERR_PTR(-EINVAL);
023a5355
ND
360}
361
16df3674
DB
362static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
363{
364 struct kern_ipc_perm *ipcp = ipc_obtain_object(&sem_ids(ns), id);
365
366 if (IS_ERR(ipcp))
367 return ERR_CAST(ipcp);
368
369 return container_of(ipcp, struct sem_array, sem_perm);
370}
371
16df3674
DB
372static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
373 int id)
374{
375 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
376
377 if (IS_ERR(ipcp))
378 return ERR_CAST(ipcp);
b1ed88b4 379
03f02c76 380 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
381}
382
6ff37972
PP
383static inline void sem_lock_and_putref(struct sem_array *sma)
384{
6062a8dc 385 sem_lock(sma, NULL, -1);
e84ca333 386 ipc_rcu_putref(sma, ipc_rcu_free);
6ff37972
PP
387}
388
7ca7e564
ND
389static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
390{
391 ipc_rmid(&sem_ids(ns), &s->sem_perm);
392}
393
1da177e4
LT
394/*
395 * Lockless wakeup algorithm:
396 * Without the check/retry algorithm a lockless wakeup is possible:
397 * - queue.status is initialized to -EINTR before blocking.
398 * - wakeup is performed by
ab63bc97 399 * * unlinking the queue entry from the pending list
1da177e4
LT
400 * * setting queue.status to IN_WAKEUP
401 * This is the notification for the blocked thread that a
402 * result value is imminent.
403 * * call wake_up_process
404 * * set queue.status to the final value.
405 * - the previously blocked thread checks queue.status:
406 * * if it's IN_WAKEUP, then it must wait until the value changes
407 * * if it's not -EINTR, then the operation was completed by
408 * update_queue. semtimedop can return queue.status without
5f921ae9 409 * performing any operation on the sem array.
1da177e4
LT
410 * * otherwise it must acquire the spinlock and check what's up.
411 *
412 * The two-stage algorithm is necessary to protect against the following
413 * races:
414 * - if queue.status is set after wake_up_process, then the woken up idle
415 * thread could race forward and try (and fail) to acquire sma->lock
416 * before update_queue had a chance to set queue.status
417 * - if queue.status is written before wake_up_process and if the
418 * blocked process is woken up by a signal between writing
419 * queue.status and the wake_up_process, then the woken up
420 * process could return from semtimedop and die by calling
421 * sys_exit before wake_up_process is called. Then wake_up_process
422 * will oops, because the task structure is already invalid.
423 * (yes, this happened on s390 with sysv msg).
424 *
425 */
426#define IN_WAKEUP 1
427
f4566f04
ND
428/**
429 * newary - Create a new semaphore set
430 * @ns: namespace
431 * @params: ptr to the structure that contains key, semflg and nsems
432 *
33b74669 433 * Called with sem_ids.rwsem held (as a writer)
f4566f04
ND
434 */
435
7748dbfa 436static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4
LT
437{
438 int id;
439 int retval;
440 struct sem_array *sma;
441 int size;
7748dbfa
ND
442 key_t key = params->key;
443 int nsems = params->u.nsems;
444 int semflg = params->flg;
b97e820f 445 int i;
1da177e4
LT
446
447 if (!nsems)
448 return -EINVAL;
e3893534 449 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
450 return -ENOSPC;
451
452 size = sizeof (*sma) + nsems * sizeof (struct sem);
453 sma = ipc_rcu_alloc(size);
454 if (!sma) {
455 return -ENOMEM;
456 }
457 memset (sma, 0, size);
458
459 sma->sem_perm.mode = (semflg & S_IRWXUGO);
460 sma->sem_perm.key = key;
461
462 sma->sem_perm.security = NULL;
463 retval = security_sem_alloc(sma);
464 if (retval) {
e84ca333 465 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
466 return retval;
467 }
468
e3893534 469 id = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
283bb7fa 470 if (id < 0) {
e84ca333 471 ipc_rcu_putref(sma, sem_rcu_free);
283bb7fa 472 return id;
1da177e4 473 }
e3893534 474 ns->used_sems += nsems;
1da177e4
LT
475
476 sma->sem_base = (struct sem *) &sma[1];
b97e820f 477
6062a8dc 478 for (i = 0; i < nsems; i++) {
ab63bc97
MS
479 INIT_LIST_HEAD(&sma->sem_base[i].pending_alter);
480 INIT_LIST_HEAD(&sma->sem_base[i].pending_const);
6062a8dc
RR
481 spin_lock_init(&sma->sem_base[i].lock);
482 }
b97e820f
MS
483
484 sma->complex_count = 0;
ab63bc97
MS
485 INIT_LIST_HEAD(&sma->pending_alter);
486 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 487 INIT_LIST_HEAD(&sma->list_id);
1da177e4
LT
488 sma->sem_nsems = nsems;
489 sma->sem_ctime = get_seconds();
6062a8dc 490 sem_unlock(sma, -1);
6d49dab8 491 rcu_read_unlock();
1da177e4 492
7ca7e564 493 return sma->sem_perm.id;
1da177e4
LT
494}
495
7748dbfa 496
f4566f04 497/*
33b74669 498 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 499 */
03f02c76 500static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
7748dbfa 501{
03f02c76
ND
502 struct sem_array *sma;
503
504 sma = container_of(ipcp, struct sem_array, sem_perm);
505 return security_sem_associate(sma, semflg);
7748dbfa
ND
506}
507
f4566f04 508/*
33b74669 509 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 510 */
03f02c76
ND
511static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
512 struct ipc_params *params)
7748dbfa 513{
03f02c76
ND
514 struct sem_array *sma;
515
516 sma = container_of(ipcp, struct sem_array, sem_perm);
517 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
518 return -EINVAL;
519
520 return 0;
521}
522
d5460c99 523SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
1da177e4 524{
e3893534 525 struct ipc_namespace *ns;
7748dbfa
ND
526 struct ipc_ops sem_ops;
527 struct ipc_params sem_params;
e3893534
KK
528
529 ns = current->nsproxy->ipc_ns;
1da177e4 530
e3893534 531 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 532 return -EINVAL;
7ca7e564 533
7748dbfa
ND
534 sem_ops.getnew = newary;
535 sem_ops.associate = sem_security;
536 sem_ops.more_checks = sem_more_checks;
537
538 sem_params.key = key;
539 sem_params.flg = semflg;
540 sem_params.u.nsems = nsems;
1da177e4 541
7748dbfa 542 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
543}
544
b56e88e2
MS
545/** perform_atomic_semop - Perform (if possible) a semaphore operation
546 * @sma: semaphore array
547 * @sops: array with operations that should be checked
548 * @nsems: number of sops
549 * @un: undo array
550 * @pid: pid that did the change
551 *
552 * Returns 0 if the operation was possible.
553 * Returns 1 if the operation is impossible, the caller must sleep.
554 * Negative values are error codes.
1da177e4
LT
555 */
556
b56e88e2 557static int perform_atomic_semop(struct sem_array *sma, struct sembuf *sops,
1da177e4
LT
558 int nsops, struct sem_undo *un, int pid)
559{
560 int result, sem_op;
561 struct sembuf *sop;
562 struct sem * curr;
563
564 for (sop = sops; sop < sops + nsops; sop++) {
565 curr = sma->sem_base + sop->sem_num;
566 sem_op = sop->sem_op;
567 result = curr->semval;
568
569 if (!sem_op && result)
570 goto would_block;
571
572 result += sem_op;
573 if (result < 0)
574 goto would_block;
575 if (result > SEMVMX)
576 goto out_of_range;
577 if (sop->sem_flg & SEM_UNDO) {
578 int undo = un->semadj[sop->sem_num] - sem_op;
579 /*
580 * Exceeding the undo range is an error.
581 */
582 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
583 goto out_of_range;
584 }
585 curr->semval = result;
586 }
587
588 sop--;
589 while (sop >= sops) {
590 sma->sem_base[sop->sem_num].sempid = pid;
591 if (sop->sem_flg & SEM_UNDO)
592 un->semadj[sop->sem_num] -= sop->sem_op;
593 sop--;
594 }
595
1da177e4
LT
596 return 0;
597
598out_of_range:
599 result = -ERANGE;
600 goto undo;
601
602would_block:
603 if (sop->sem_flg & IPC_NOWAIT)
604 result = -EAGAIN;
605 else
606 result = 1;
607
608undo:
609 sop--;
610 while (sop >= sops) {
611 sma->sem_base[sop->sem_num].semval -= sop->sem_op;
612 sop--;
613 }
614
615 return result;
616}
617
0a2b9d4c
MS
618/** wake_up_sem_queue_prepare(q, error): Prepare wake-up
619 * @q: queue entry that must be signaled
620 * @error: Error value for the signal
621 *
622 * Prepare the wake-up of the queue entry q.
d4212093 623 */
0a2b9d4c
MS
624static void wake_up_sem_queue_prepare(struct list_head *pt,
625 struct sem_queue *q, int error)
d4212093 626{
0a2b9d4c
MS
627 if (list_empty(pt)) {
628 /*
629 * Hold preempt off so that we don't get preempted and have the
630 * wakee busy-wait until we're scheduled back on.
631 */
632 preempt_disable();
633 }
d4212093 634 q->status = IN_WAKEUP;
0a2b9d4c
MS
635 q->pid = error;
636
9f1bc2c9 637 list_add_tail(&q->list, pt);
0a2b9d4c
MS
638}
639
640/**
641 * wake_up_sem_queue_do(pt) - do the actual wake-up
642 * @pt: list of tasks to be woken up
643 *
644 * Do the actual wake-up.
645 * The function is called without any locks held, thus the semaphore array
646 * could be destroyed already and the tasks can disappear as soon as the
647 * status is set to the actual return code.
648 */
649static void wake_up_sem_queue_do(struct list_head *pt)
650{
651 struct sem_queue *q, *t;
652 int did_something;
653
654 did_something = !list_empty(pt);
9f1bc2c9 655 list_for_each_entry_safe(q, t, pt, list) {
0a2b9d4c
MS
656 wake_up_process(q->sleeper);
657 /* q can disappear immediately after writing q->status. */
658 smp_wmb();
659 q->status = q->pid;
660 }
661 if (did_something)
662 preempt_enable();
d4212093
NP
663}
664
b97e820f
MS
665static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
666{
667 list_del(&q->list);
9f1bc2c9 668 if (q->nsops > 1)
b97e820f
MS
669 sma->complex_count--;
670}
671
fd5db422
MS
672/** check_restart(sma, q)
673 * @sma: semaphore array
674 * @q: the operation that just completed
675 *
676 * update_queue is O(N^2) when it restarts scanning the whole queue of
677 * waiting operations. Therefore this function checks if the restart is
678 * really necessary. It is called after a previously waiting operation
ab63bc97
MS
679 * modified the array.
680 * Note that wait-for-zero operations are handled without restart.
fd5db422
MS
681 */
682static int check_restart(struct sem_array *sma, struct sem_queue *q)
683{
ab63bc97
MS
684 /* pending complex alter operations are too difficult to analyse */
685 if (!list_empty(&sma->pending_alter))
fd5db422
MS
686 return 1;
687
688 /* we were a sleeping complex operation. Too difficult */
689 if (q->nsops > 1)
690 return 1;
691
ab63bc97
MS
692 /* It is impossible that someone waits for the new value:
693 * - complex operations always restart.
694 * - wait-for-zero are handled seperately.
695 * - q is a previously sleeping simple operation that
696 * altered the array. It must be a decrement, because
697 * simple increments never sleep.
698 * - If there are older (higher priority) decrements
699 * in the queue, then they have observed the original
700 * semval value and couldn't proceed. The operation
701 * decremented to value - thus they won't proceed either.
702 */
703 return 0;
704}
fd5db422 705
ab63bc97
MS
706/**
707 * wake_const_ops(sma, semnum, pt) - Wake up non-alter tasks
708 * @sma: semaphore array.
709 * @semnum: semaphore that was modified.
710 * @pt: list head for the tasks that must be woken up.
711 *
712 * wake_const_ops must be called after a semaphore in a semaphore array
713 * was set to 0. If complex const operations are pending, wake_const_ops must
714 * be called with semnum = -1, as well as with the number of each modified
715 * semaphore.
716 * The tasks that must be woken up are added to @pt. The return code
717 * is stored in q->pid.
718 * The function returns 1 if at least one operation was completed successfully.
719 */
720static int wake_const_ops(struct sem_array *sma, int semnum,
721 struct list_head *pt)
722{
723 struct sem_queue *q;
724 struct list_head *walk;
725 struct list_head *pending_list;
726 int semop_completed = 0;
727
728 if (semnum == -1)
729 pending_list = &sma->pending_const;
730 else
731 pending_list = &sma->sem_base[semnum].pending_const;
fd5db422 732
ab63bc97
MS
733 walk = pending_list->next;
734 while (walk != pending_list) {
735 int error;
736
737 q = container_of(walk, struct sem_queue, list);
738 walk = walk->next;
739
b56e88e2
MS
740 error = perform_atomic_semop(sma, q->sops, q->nsops,
741 q->undo, q->pid);
ab63bc97
MS
742
743 if (error <= 0) {
744 /* operation completed, remove from queue & wakeup */
745
746 unlink_queue(sma, q);
747
748 wake_up_sem_queue_prepare(pt, q, error);
749 if (error == 0)
750 semop_completed = 1;
751 }
752 }
753 return semop_completed;
754}
755
756/**
757 * do_smart_wakeup_zero(sma, sops, nsops, pt) - wakeup all wait for zero tasks
758 * @sma: semaphore array
759 * @sops: operations that were performed
760 * @nsops: number of operations
761 * @pt: list head of the tasks that must be woken up.
762 *
763 * do_smart_wakeup_zero() checks all required queue for wait-for-zero
764 * operations, based on the actual changes that were performed on the
765 * semaphore array.
766 * The function returns 1 if at least one operation was completed successfully.
767 */
768static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
769 int nsops, struct list_head *pt)
770{
771 int i;
772 int semop_completed = 0;
773 int got_zero = 0;
774
775 /* first: the per-semaphore queues, if known */
776 if (sops) {
777 for (i = 0; i < nsops; i++) {
778 int num = sops[i].sem_num;
779
780 if (sma->sem_base[num].semval == 0) {
781 got_zero = 1;
782 semop_completed |= wake_const_ops(sma, num, pt);
783 }
784 }
785 } else {
786 /*
787 * No sops means modified semaphores not known.
788 * Assume all were changed.
fd5db422 789 */
ab63bc97
MS
790 for (i = 0; i < sma->sem_nsems; i++) {
791 if (sma->sem_base[i].semval == 0) {
792 got_zero = 1;
793 semop_completed |= wake_const_ops(sma, i, pt);
794 }
795 }
fd5db422
MS
796 }
797 /*
ab63bc97
MS
798 * If one of the modified semaphores got 0,
799 * then check the global queue, too.
fd5db422 800 */
ab63bc97
MS
801 if (got_zero)
802 semop_completed |= wake_const_ops(sma, -1, pt);
fd5db422 803
ab63bc97 804 return semop_completed;
fd5db422
MS
805}
806
636c6be8
MS
807
808/**
809 * update_queue(sma, semnum): Look for tasks that can be completed.
810 * @sma: semaphore array.
811 * @semnum: semaphore that was modified.
0a2b9d4c 812 * @pt: list head for the tasks that must be woken up.
636c6be8
MS
813 *
814 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
815 * was modified. If multiple semaphores were modified, update_queue must
816 * be called with semnum = -1, as well as with the number of each modified
817 * semaphore.
0a2b9d4c
MS
818 * The tasks that must be woken up are added to @pt. The return code
819 * is stored in q->pid.
ab63bc97
MS
820 * The function internally checks if const operations can now succeed.
821 *
0a2b9d4c 822 * The function return 1 if at least one semop was completed successfully.
1da177e4 823 */
0a2b9d4c 824static int update_queue(struct sem_array *sma, int semnum, struct list_head *pt)
1da177e4 825{
636c6be8
MS
826 struct sem_queue *q;
827 struct list_head *walk;
828 struct list_head *pending_list;
0a2b9d4c 829 int semop_completed = 0;
636c6be8 830
9f1bc2c9 831 if (semnum == -1)
ab63bc97 832 pending_list = &sma->pending_alter;
9f1bc2c9 833 else
ab63bc97 834 pending_list = &sma->sem_base[semnum].pending_alter;
9cad200c
NP
835
836again:
636c6be8
MS
837 walk = pending_list->next;
838 while (walk != pending_list) {
fd5db422 839 int error, restart;
636c6be8 840
9f1bc2c9 841 q = container_of(walk, struct sem_queue, list);
636c6be8 842 walk = walk->next;
1da177e4 843
d987f8b2
MS
844 /* If we are scanning the single sop, per-semaphore list of
845 * one semaphore and that semaphore is 0, then it is not
ab63bc97 846 * necessary to scan further: simple increments
d987f8b2
MS
847 * that affect only one entry succeed immediately and cannot
848 * be in the per semaphore pending queue, and decrements
849 * cannot be successful if the value is already 0.
850 */
ab63bc97 851 if (semnum != -1 && sma->sem_base[semnum].semval == 0)
d987f8b2
MS
852 break;
853
b56e88e2 854 error = perform_atomic_semop(sma, q->sops, q->nsops,
1da177e4
LT
855 q->undo, q->pid);
856
857 /* Does q->sleeper still need to sleep? */
9cad200c
NP
858 if (error > 0)
859 continue;
860
b97e820f 861 unlink_queue(sma, q);
9cad200c 862
0a2b9d4c 863 if (error) {
fd5db422 864 restart = 0;
0a2b9d4c
MS
865 } else {
866 semop_completed = 1;
ab63bc97 867 do_smart_wakeup_zero(sma, q->sops, q->nsops, pt);
fd5db422 868 restart = check_restart(sma, q);
0a2b9d4c 869 }
fd5db422 870
0a2b9d4c 871 wake_up_sem_queue_prepare(pt, q, error);
fd5db422 872 if (restart)
9cad200c 873 goto again;
1da177e4 874 }
0a2b9d4c 875 return semop_completed;
1da177e4
LT
876}
877
0a2b9d4c
MS
878/**
879 * do_smart_update(sma, sops, nsops, otime, pt) - optimized update_queue
fd5db422
MS
880 * @sma: semaphore array
881 * @sops: operations that were performed
882 * @nsops: number of operations
0a2b9d4c
MS
883 * @otime: force setting otime
884 * @pt: list head of the tasks that must be woken up.
fd5db422 885 *
ab63bc97
MS
886 * do_smart_update() does the required calls to update_queue and wakeup_zero,
887 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c
MS
888 * Note that the function does not do the actual wake-up: the caller is
889 * responsible for calling wake_up_sem_queue_do(@pt).
890 * It is safe to perform this call after dropping all locks.
fd5db422 891 */
0a2b9d4c
MS
892static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
893 int otime, struct list_head *pt)
fd5db422
MS
894{
895 int i;
896
ab63bc97
MS
897 otime |= do_smart_wakeup_zero(sma, sops, nsops, pt);
898
e5639c52
MS
899 if (!list_empty(&sma->pending_alter)) {
900 /* semaphore array uses the global queue - just process it. */
901 otime |= update_queue(sma, -1, pt);
902 } else {
903 if (!sops) {
904 /*
905 * No sops, thus the modified semaphores are not
906 * known. Check all.
907 */
908 for (i = 0; i < sma->sem_nsems; i++)
909 otime |= update_queue(sma, i, pt);
910 } else {
911 /*
912 * Check the semaphores that were increased:
913 * - No complex ops, thus all sleeping ops are
914 * decrease.
915 * - if we decreased the value, then any sleeping
916 * semaphore ops wont be able to run: If the
917 * previous value was too small, then the new
918 * value will be too small, too.
919 */
920 for (i = 0; i < nsops; i++) {
921 if (sops[i].sem_op > 0) {
922 otime |= update_queue(sma,
923 sops[i].sem_num, pt);
924 }
ab465df9 925 }
9f1bc2c9 926 }
fd5db422 927 }
bf6830ad
MS
928 if (otime) {
929 if (sops == NULL) {
930 sma->sem_base[0].sem_otime = get_seconds();
931 } else {
932 sma->sem_base[sops[0].sem_num].sem_otime =
933 get_seconds();
934 }
935 }
fd5db422
MS
936}
937
938
1da177e4
LT
939/* The following counts are associated to each semaphore:
940 * semncnt number of tasks waiting on semval being nonzero
941 * semzcnt number of tasks waiting on semval being zero
942 * This model assumes that a task waits on exactly one semaphore.
943 * Since semaphore operations are to be performed atomically, tasks actually
944 * wait on a whole sequence of semaphores simultaneously.
945 * The counts we return here are a rough approximation, but still
946 * warrant that semncnt+semzcnt>0 if the task is on the pending queue.
947 */
948static int count_semncnt (struct sem_array * sma, ushort semnum)
949{
950 int semncnt;
951 struct sem_queue * q;
952
953 semncnt = 0;
ab63bc97 954 list_for_each_entry(q, &sma->sem_base[semnum].pending_alter, list) {
de2657f9
RR
955 struct sembuf * sops = q->sops;
956 BUG_ON(sops->sem_num != semnum);
957 if ((sops->sem_op < 0) && !(sops->sem_flg & IPC_NOWAIT))
958 semncnt++;
959 }
960
ab63bc97 961 list_for_each_entry(q, &sma->pending_alter, list) {
1da177e4
LT
962 struct sembuf * sops = q->sops;
963 int nsops = q->nsops;
964 int i;
965 for (i = 0; i < nsops; i++)
966 if (sops[i].sem_num == semnum
967 && (sops[i].sem_op < 0)
968 && !(sops[i].sem_flg & IPC_NOWAIT))
969 semncnt++;
970 }
971 return semncnt;
972}
a1193f8e 973
1da177e4
LT
974static int count_semzcnt (struct sem_array * sma, ushort semnum)
975{
976 int semzcnt;
977 struct sem_queue * q;
978
979 semzcnt = 0;
ab63bc97 980 list_for_each_entry(q, &sma->sem_base[semnum].pending_const, list) {
ebc2e5e6
RR
981 struct sembuf * sops = q->sops;
982 BUG_ON(sops->sem_num != semnum);
983 if ((sops->sem_op == 0) && !(sops->sem_flg & IPC_NOWAIT))
984 semzcnt++;
985 }
986
ab63bc97 987 list_for_each_entry(q, &sma->pending_const, list) {
1da177e4
LT
988 struct sembuf * sops = q->sops;
989 int nsops = q->nsops;
990 int i;
991 for (i = 0; i < nsops; i++)
992 if (sops[i].sem_num == semnum
993 && (sops[i].sem_op == 0)
994 && !(sops[i].sem_flg & IPC_NOWAIT))
995 semzcnt++;
996 }
997 return semzcnt;
998}
999
33b74669
DB
1000/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1001 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1002 * remains locked on exit.
1da177e4 1003 */
01b8b07a 1004static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1005{
380af1b3
MS
1006 struct sem_undo *un, *tu;
1007 struct sem_queue *q, *tq;
01b8b07a 1008 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
0a2b9d4c 1009 struct list_head tasks;
9f1bc2c9 1010 int i;
1da177e4 1011
380af1b3 1012 /* Free the existing undo structures for this semaphore set. */
115d40db 1013 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1014 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1015 list_del(&un->list_id);
1016 spin_lock(&un->ulp->lock);
1da177e4 1017 un->semid = -1;
380af1b3
MS
1018 list_del_rcu(&un->list_proc);
1019 spin_unlock(&un->ulp->lock);
693a8b6e 1020 kfree_rcu(un, rcu);
380af1b3 1021 }
1da177e4
LT
1022
1023 /* Wake up all pending processes and let them fail with EIDRM. */
0a2b9d4c 1024 INIT_LIST_HEAD(&tasks);
ab63bc97
MS
1025 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1026 unlink_queue(sma, q);
1027 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1028 }
1029
1030 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1031 unlink_queue(sma, q);
0a2b9d4c 1032 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1da177e4 1033 }
9f1bc2c9
RR
1034 for (i = 0; i < sma->sem_nsems; i++) {
1035 struct sem *sem = sma->sem_base + i;
ab63bc97
MS
1036 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1037 unlink_queue(sma, q);
1038 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1039 }
1040 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9
RR
1041 unlink_queue(sma, q);
1042 wake_up_sem_queue_prepare(&tasks, q, -EIDRM);
1043 }
1044 }
1da177e4 1045
7ca7e564
ND
1046 /* Remove the semaphore set from the IDR */
1047 sem_rmid(ns, sma);
6062a8dc 1048 sem_unlock(sma, -1);
6d49dab8 1049 rcu_read_unlock();
1da177e4 1050
0a2b9d4c 1051 wake_up_sem_queue_do(&tasks);
e3893534 1052 ns->used_sems -= sma->sem_nsems;
e84ca333 1053 ipc_rcu_putref(sma, sem_rcu_free);
1da177e4
LT
1054}
1055
1056static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1057{
1058 switch(version) {
1059 case IPC_64:
1060 return copy_to_user(buf, in, sizeof(*in));
1061 case IPC_OLD:
1062 {
1063 struct semid_ds out;
1064
982f7c2b
DR
1065 memset(&out, 0, sizeof(out));
1066
1da177e4
LT
1067 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1068
1069 out.sem_otime = in->sem_otime;
1070 out.sem_ctime = in->sem_ctime;
1071 out.sem_nsems = in->sem_nsems;
1072
1073 return copy_to_user(buf, &out, sizeof(out));
1074 }
1075 default:
1076 return -EINVAL;
1077 }
1078}
1079
bf6830ad
MS
1080static time_t get_semotime(struct sem_array *sma)
1081{
1082 int i;
1083 time_t res;
1084
1085 res = sma->sem_base[0].sem_otime;
1086 for (i = 1; i < sma->sem_nsems; i++) {
1087 time_t to = sma->sem_base[i].sem_otime;
1088
1089 if (to > res)
1090 res = to;
1091 }
1092 return res;
1093}
1094
4b9fcb0e 1095static int semctl_nolock(struct ipc_namespace *ns, int semid,
e1fd1f49 1096 int cmd, int version, void __user *p)
1da177e4 1097{
e5cc9c7b 1098 int err;
1da177e4
LT
1099 struct sem_array *sma;
1100
1101 switch(cmd) {
1102 case IPC_INFO:
1103 case SEM_INFO:
1104 {
1105 struct seminfo seminfo;
1106 int max_id;
1107
1108 err = security_sem_semctl(NULL, cmd);
1109 if (err)
1110 return err;
1111
1112 memset(&seminfo,0,sizeof(seminfo));
e3893534
KK
1113 seminfo.semmni = ns->sc_semmni;
1114 seminfo.semmns = ns->sc_semmns;
1115 seminfo.semmsl = ns->sc_semmsl;
1116 seminfo.semopm = ns->sc_semopm;
1da177e4
LT
1117 seminfo.semvmx = SEMVMX;
1118 seminfo.semmnu = SEMMNU;
1119 seminfo.semmap = SEMMAP;
1120 seminfo.semume = SEMUME;
33b74669 1121 down_read(&sem_ids(ns).rwsem);
1da177e4 1122 if (cmd == SEM_INFO) {
e3893534
KK
1123 seminfo.semusz = sem_ids(ns).in_use;
1124 seminfo.semaem = ns->used_sems;
1da177e4
LT
1125 } else {
1126 seminfo.semusz = SEMUSZ;
1127 seminfo.semaem = SEMAEM;
1128 }
7ca7e564 1129 max_id = ipc_get_maxid(&sem_ids(ns));
33b74669 1130 up_read(&sem_ids(ns).rwsem);
e1fd1f49 1131 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1da177e4
LT
1132 return -EFAULT;
1133 return (max_id < 0) ? 0: max_id;
1134 }
4b9fcb0e 1135 case IPC_STAT:
1da177e4
LT
1136 case SEM_STAT:
1137 {
1138 struct semid64_ds tbuf;
16df3674
DB
1139 int id = 0;
1140
1141 memset(&tbuf, 0, sizeof(tbuf));
1da177e4 1142
941b0304 1143 rcu_read_lock();
4b9fcb0e 1144 if (cmd == SEM_STAT) {
16df3674
DB
1145 sma = sem_obtain_object(ns, semid);
1146 if (IS_ERR(sma)) {
1147 err = PTR_ERR(sma);
1148 goto out_unlock;
1149 }
4b9fcb0e
PP
1150 id = sma->sem_perm.id;
1151 } else {
16df3674
DB
1152 sma = sem_obtain_object_check(ns, semid);
1153 if (IS_ERR(sma)) {
1154 err = PTR_ERR(sma);
1155 goto out_unlock;
1156 }
4b9fcb0e 1157 }
1da177e4
LT
1158
1159 err = -EACCES;
b0e77598 1160 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1da177e4
LT
1161 goto out_unlock;
1162
1163 err = security_sem_semctl(sma, cmd);
1164 if (err)
1165 goto out_unlock;
1166
1da177e4 1167 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
bf6830ad
MS
1168 tbuf.sem_otime = get_semotime(sma);
1169 tbuf.sem_ctime = sma->sem_ctime;
1170 tbuf.sem_nsems = sma->sem_nsems;
16df3674 1171 rcu_read_unlock();
e1fd1f49 1172 if (copy_semid_to_user(p, &tbuf, version))
1da177e4
LT
1173 return -EFAULT;
1174 return id;
1175 }
1176 default:
1177 return -EINVAL;
1178 }
1da177e4 1179out_unlock:
16df3674 1180 rcu_read_unlock();
1da177e4
LT
1181 return err;
1182}
1183
e1fd1f49
AV
1184static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1185 unsigned long arg)
1186{
1187 struct sem_undo *un;
1188 struct sem_array *sma;
1189 struct sem* curr;
1190 int err;
e1fd1f49
AV
1191 struct list_head tasks;
1192 int val;
1193#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1194 /* big-endian 64bit */
1195 val = arg >> 32;
1196#else
1197 /* 32bit or little-endian 64bit */
1198 val = arg;
1199#endif
1200
6062a8dc
RR
1201 if (val > SEMVMX || val < 0)
1202 return -ERANGE;
e1fd1f49
AV
1203
1204 INIT_LIST_HEAD(&tasks);
e1fd1f49 1205
6062a8dc
RR
1206 rcu_read_lock();
1207 sma = sem_obtain_object_check(ns, semid);
1208 if (IS_ERR(sma)) {
1209 rcu_read_unlock();
1210 return PTR_ERR(sma);
1211 }
1212
1213 if (semnum < 0 || semnum >= sma->sem_nsems) {
1214 rcu_read_unlock();
1215 return -EINVAL;
1216 }
1217
1218
1219 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1220 rcu_read_unlock();
1221 return -EACCES;
1222 }
e1fd1f49
AV
1223
1224 err = security_sem_semctl(sma, SETVAL);
6062a8dc
RR
1225 if (err) {
1226 rcu_read_unlock();
1227 return -EACCES;
1228 }
e1fd1f49 1229
6062a8dc 1230 sem_lock(sma, NULL, -1);
e1fd1f49
AV
1231
1232 curr = &sma->sem_base[semnum];
1233
115d40db 1234 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1235 list_for_each_entry(un, &sma->list_id, list_id)
1236 un->semadj[semnum] = 0;
1237
1238 curr->semval = val;
1239 curr->sempid = task_tgid_vnr(current);
1240 sma->sem_ctime = get_seconds();
1241 /* maybe some queued-up processes were waiting for this */
1242 do_smart_update(sma, NULL, 0, 0, &tasks);
6062a8dc 1243 sem_unlock(sma, -1);
6d49dab8 1244 rcu_read_unlock();
e1fd1f49 1245 wake_up_sem_queue_do(&tasks);
6062a8dc 1246 return 0;
e1fd1f49
AV
1247}
1248
e3893534 1249static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1250 int cmd, void __user *p)
1da177e4
LT
1251{
1252 struct sem_array *sma;
1253 struct sem* curr;
16df3674 1254 int err, nsems;
1da177e4
LT
1255 ushort fast_sem_io[SEMMSL_FAST];
1256 ushort* sem_io = fast_sem_io;
0a2b9d4c 1257 struct list_head tasks;
1da177e4 1258
16df3674
DB
1259 INIT_LIST_HEAD(&tasks);
1260
1261 rcu_read_lock();
1262 sma = sem_obtain_object_check(ns, semid);
1263 if (IS_ERR(sma)) {
1264 rcu_read_unlock();
023a5355 1265 return PTR_ERR(sma);
16df3674 1266 }
1da177e4
LT
1267
1268 nsems = sma->sem_nsems;
1269
1da177e4 1270 err = -EACCES;
c728b9c8
LT
1271 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1272 goto out_rcu_wakeup;
1da177e4
LT
1273
1274 err = security_sem_semctl(sma, cmd);
c728b9c8
LT
1275 if (err)
1276 goto out_rcu_wakeup;
1da177e4
LT
1277
1278 err = -EACCES;
1279 switch (cmd) {
1280 case GETALL:
1281 {
e1fd1f49 1282 ushort __user *array = p;
1da177e4
LT
1283 int i;
1284
ce857229 1285 sem_lock(sma, NULL, -1);
1da177e4 1286 if(nsems > SEMMSL_FAST) {
ce857229
AV
1287 if (!ipc_rcu_getref(sma)) {
1288 sem_unlock(sma, -1);
6d49dab8 1289 rcu_read_unlock();
ce857229
AV
1290 err = -EIDRM;
1291 goto out_free;
1292 }
1293 sem_unlock(sma, -1);
6d49dab8 1294 rcu_read_unlock();
1da177e4
LT
1295 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1296 if(sem_io == NULL) {
e84ca333 1297 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1298 return -ENOMEM;
1299 }
1300
4091fd94 1301 rcu_read_lock();
6ff37972 1302 sem_lock_and_putref(sma);
1da177e4 1303 if (sma->sem_perm.deleted) {
6062a8dc 1304 sem_unlock(sma, -1);
6d49dab8 1305 rcu_read_unlock();
1da177e4
LT
1306 err = -EIDRM;
1307 goto out_free;
1308 }
ce857229 1309 }
1da177e4
LT
1310 for (i = 0; i < sma->sem_nsems; i++)
1311 sem_io[i] = sma->sem_base[i].semval;
6062a8dc 1312 sem_unlock(sma, -1);
6d49dab8 1313 rcu_read_unlock();
1da177e4
LT
1314 err = 0;
1315 if(copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1316 err = -EFAULT;
1317 goto out_free;
1318 }
1319 case SETALL:
1320 {
1321 int i;
1322 struct sem_undo *un;
1323
6062a8dc
RR
1324 if (!ipc_rcu_getref(sma)) {
1325 rcu_read_unlock();
1326 return -EIDRM;
1327 }
16df3674 1328 rcu_read_unlock();
1da177e4
LT
1329
1330 if(nsems > SEMMSL_FAST) {
1331 sem_io = ipc_alloc(sizeof(ushort)*nsems);
1332 if(sem_io == NULL) {
e84ca333 1333 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1334 return -ENOMEM;
1335 }
1336 }
1337
e1fd1f49 1338 if (copy_from_user (sem_io, p, nsems*sizeof(ushort))) {
e84ca333 1339 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1340 err = -EFAULT;
1341 goto out_free;
1342 }
1343
1344 for (i = 0; i < nsems; i++) {
1345 if (sem_io[i] > SEMVMX) {
e84ca333 1346 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1347 err = -ERANGE;
1348 goto out_free;
1349 }
1350 }
4091fd94 1351 rcu_read_lock();
6ff37972 1352 sem_lock_and_putref(sma);
1da177e4 1353 if (sma->sem_perm.deleted) {
6062a8dc 1354 sem_unlock(sma, -1);
6d49dab8 1355 rcu_read_unlock();
1da177e4
LT
1356 err = -EIDRM;
1357 goto out_free;
1358 }
1359
1360 for (i = 0; i < nsems; i++)
1361 sma->sem_base[i].semval = sem_io[i];
4daa28f6 1362
115d40db 1363 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1364 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1365 for (i = 0; i < nsems; i++)
1366 un->semadj[i] = 0;
4daa28f6 1367 }
1da177e4
LT
1368 sma->sem_ctime = get_seconds();
1369 /* maybe some queued-up processes were waiting for this */
0a2b9d4c 1370 do_smart_update(sma, NULL, 0, 0, &tasks);
1da177e4
LT
1371 err = 0;
1372 goto out_unlock;
1373 }
e1fd1f49 1374 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1375 }
1376 err = -EINVAL;
c728b9c8
LT
1377 if (semnum < 0 || semnum >= nsems)
1378 goto out_rcu_wakeup;
1da177e4 1379
6062a8dc 1380 sem_lock(sma, NULL, -1);
1da177e4
LT
1381 curr = &sma->sem_base[semnum];
1382
1383 switch (cmd) {
1384 case GETVAL:
1385 err = curr->semval;
1386 goto out_unlock;
1387 case GETPID:
1388 err = curr->sempid;
1389 goto out_unlock;
1390 case GETNCNT:
1391 err = count_semncnt(sma,semnum);
1392 goto out_unlock;
1393 case GETZCNT:
1394 err = count_semzcnt(sma,semnum);
1395 goto out_unlock;
1da177e4 1396 }
16df3674 1397
1da177e4 1398out_unlock:
6062a8dc 1399 sem_unlock(sma, -1);
c728b9c8 1400out_rcu_wakeup:
6d49dab8 1401 rcu_read_unlock();
0a2b9d4c 1402 wake_up_sem_queue_do(&tasks);
1da177e4
LT
1403out_free:
1404 if(sem_io != fast_sem_io)
1405 ipc_free(sem_io, sizeof(ushort)*nsems);
1406 return err;
1407}
1408
016d7132
PP
1409static inline unsigned long
1410copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4
LT
1411{
1412 switch(version) {
1413 case IPC_64:
016d7132 1414 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1415 return -EFAULT;
1da177e4 1416 return 0;
1da177e4
LT
1417 case IPC_OLD:
1418 {
1419 struct semid_ds tbuf_old;
1420
1421 if(copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1422 return -EFAULT;
1423
016d7132
PP
1424 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1425 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1426 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1427
1428 return 0;
1429 }
1430 default:
1431 return -EINVAL;
1432 }
1433}
1434
522bb2a2 1435/*
33b74669 1436 * This function handles some semctl commands which require the rwsem
522bb2a2 1437 * to be held in write mode.
33b74669 1438 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1439 */
21a4826a 1440static int semctl_down(struct ipc_namespace *ns, int semid,
e1fd1f49 1441 int cmd, int version, void __user *p)
1da177e4
LT
1442{
1443 struct sem_array *sma;
1444 int err;
016d7132 1445 struct semid64_ds semid64;
1da177e4
LT
1446 struct kern_ipc_perm *ipcp;
1447
1448 if(cmd == IPC_SET) {
e1fd1f49 1449 if (copy_semid_from_user(&semid64, p, version))
1da177e4 1450 return -EFAULT;
1da177e4 1451 }
073115d6 1452
33b74669 1453 down_write(&sem_ids(ns).rwsem);
ac9bc6e3
DB
1454 rcu_read_lock();
1455
16df3674
DB
1456 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1457 &semid64.sem_perm, 0);
ac9bc6e3
DB
1458 if (IS_ERR(ipcp)) {
1459 err = PTR_ERR(ipcp);
ac9bc6e3
DB
1460 goto out_unlock1;
1461 }
073115d6 1462
a5f75e7f 1463 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4
LT
1464
1465 err = security_sem_semctl(sma, cmd);
ac9bc6e3
DB
1466 if (err)
1467 goto out_unlock1;
1da177e4 1468
ac9bc6e3 1469 switch (cmd) {
1da177e4 1470 case IPC_RMID:
6062a8dc 1471 sem_lock(sma, NULL, -1);
ac9bc6e3 1472 /* freeary unlocks the ipc object and rcu */
01b8b07a 1473 freeary(ns, ipcp);
522bb2a2 1474 goto out_up;
1da177e4 1475 case IPC_SET:
6062a8dc 1476 sem_lock(sma, NULL, -1);
1efdb69b
EB
1477 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1478 if (err)
ac9bc6e3 1479 goto out_unlock0;
1da177e4 1480 sma->sem_ctime = get_seconds();
1da177e4
LT
1481 break;
1482 default:
1da177e4 1483 err = -EINVAL;
ac9bc6e3 1484 goto out_unlock1;
1da177e4 1485 }
1da177e4 1486
ac9bc6e3 1487out_unlock0:
6062a8dc 1488 sem_unlock(sma, -1);
ac9bc6e3 1489out_unlock1:
6d49dab8 1490 rcu_read_unlock();
522bb2a2 1491out_up:
33b74669 1492 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1493 return err;
1494}
1495
e1fd1f49 1496SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1da177e4 1497{
1da177e4 1498 int version;
e3893534 1499 struct ipc_namespace *ns;
e1fd1f49 1500 void __user *p = (void __user *)arg;
1da177e4
LT
1501
1502 if (semid < 0)
1503 return -EINVAL;
1504
1505 version = ipc_parse_version(&cmd);
e3893534 1506 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1507
1508 switch(cmd) {
1509 case IPC_INFO:
1510 case SEM_INFO:
4b9fcb0e 1511 case IPC_STAT:
1da177e4 1512 case SEM_STAT:
e1fd1f49 1513 return semctl_nolock(ns, semid, cmd, version, p);
1da177e4
LT
1514 case GETALL:
1515 case GETVAL:
1516 case GETPID:
1517 case GETNCNT:
1518 case GETZCNT:
1da177e4 1519 case SETALL:
e1fd1f49
AV
1520 return semctl_main(ns, semid, semnum, cmd, p);
1521 case SETVAL:
1522 return semctl_setval(ns, semid, semnum, arg);
1da177e4
LT
1523 case IPC_RMID:
1524 case IPC_SET:
e1fd1f49 1525 return semctl_down(ns, semid, cmd, version, p);
1da177e4
LT
1526 default:
1527 return -EINVAL;
1528 }
1529}
1530
1da177e4
LT
1531/* If the task doesn't already have a undo_list, then allocate one
1532 * here. We guarantee there is only one thread using this undo list,
1533 * and current is THE ONE
1534 *
1535 * If this allocation and assignment succeeds, but later
1536 * portions of this code fail, there is no need to free the sem_undo_list.
1537 * Just let it stay associated with the task, and it'll be freed later
1538 * at exit time.
1539 *
1540 * This can block, so callers must hold no locks.
1541 */
1542static inline int get_undo_list(struct sem_undo_list **undo_listp)
1543{
1544 struct sem_undo_list *undo_list;
1da177e4
LT
1545
1546 undo_list = current->sysvsem.undo_list;
1547 if (!undo_list) {
2453a306 1548 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1549 if (undo_list == NULL)
1550 return -ENOMEM;
00a5dfdb 1551 spin_lock_init(&undo_list->lock);
1da177e4 1552 atomic_set(&undo_list->refcnt, 1);
4daa28f6
MS
1553 INIT_LIST_HEAD(&undo_list->list_proc);
1554
1da177e4
LT
1555 current->sysvsem.undo_list = undo_list;
1556 }
1557 *undo_listp = undo_list;
1558 return 0;
1559}
1560
bf17bb71 1561static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1562{
bf17bb71 1563 struct sem_undo *un;
4daa28f6 1564
bf17bb71
NP
1565 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1566 if (un->semid == semid)
1567 return un;
1da177e4 1568 }
4daa28f6 1569 return NULL;
1da177e4
LT
1570}
1571
bf17bb71
NP
1572static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1573{
1574 struct sem_undo *un;
1575
1576 assert_spin_locked(&ulp->lock);
1577
1578 un = __lookup_undo(ulp, semid);
1579 if (un) {
1580 list_del_rcu(&un->list_proc);
1581 list_add_rcu(&un->list_proc, &ulp->list_proc);
1582 }
1583 return un;
1584}
1585
4daa28f6
MS
1586/**
1587 * find_alloc_undo - Lookup (and if not present create) undo array
1588 * @ns: namespace
1589 * @semid: semaphore array id
1590 *
1591 * The function looks up (and if not present creates) the undo structure.
1592 * The size of the undo structure depends on the size of the semaphore
1593 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1594 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1595 * performs a rcu_read_lock().
4daa28f6
MS
1596 */
1597static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1598{
1599 struct sem_array *sma;
1600 struct sem_undo_list *ulp;
1601 struct sem_undo *un, *new;
6062a8dc 1602 int nsems, error;
1da177e4
LT
1603
1604 error = get_undo_list(&ulp);
1605 if (error)
1606 return ERR_PTR(error);
1607
380af1b3 1608 rcu_read_lock();
c530c6ac 1609 spin_lock(&ulp->lock);
1da177e4 1610 un = lookup_undo(ulp, semid);
c530c6ac 1611 spin_unlock(&ulp->lock);
1da177e4
LT
1612 if (likely(un!=NULL))
1613 goto out;
1614
1615 /* no undo structure around - allocate one. */
4daa28f6 1616 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1617 sma = sem_obtain_object_check(ns, semid);
1618 if (IS_ERR(sma)) {
1619 rcu_read_unlock();
4de85cd6 1620 return ERR_CAST(sma);
16df3674 1621 }
023a5355 1622
1da177e4 1623 nsems = sma->sem_nsems;
6062a8dc
RR
1624 if (!ipc_rcu_getref(sma)) {
1625 rcu_read_unlock();
1626 un = ERR_PTR(-EIDRM);
1627 goto out;
1628 }
16df3674 1629 rcu_read_unlock();
1da177e4 1630
4daa28f6 1631 /* step 2: allocate new undo structure */
4668edc3 1632 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1633 if (!new) {
e84ca333 1634 ipc_rcu_putref(sma, ipc_rcu_free);
1da177e4
LT
1635 return ERR_PTR(-ENOMEM);
1636 }
1da177e4 1637
380af1b3 1638 /* step 3: Acquire the lock on semaphore array */
4091fd94 1639 rcu_read_lock();
6ff37972 1640 sem_lock_and_putref(sma);
1da177e4 1641 if (sma->sem_perm.deleted) {
6062a8dc 1642 sem_unlock(sma, -1);
6d49dab8 1643 rcu_read_unlock();
1da177e4
LT
1644 kfree(new);
1645 un = ERR_PTR(-EIDRM);
1646 goto out;
1647 }
380af1b3
MS
1648 spin_lock(&ulp->lock);
1649
1650 /*
1651 * step 4: check for races: did someone else allocate the undo struct?
1652 */
1653 un = lookup_undo(ulp, semid);
1654 if (un) {
1655 kfree(new);
1656 goto success;
1657 }
4daa28f6
MS
1658 /* step 5: initialize & link new undo structure */
1659 new->semadj = (short *) &new[1];
380af1b3 1660 new->ulp = ulp;
4daa28f6
MS
1661 new->semid = semid;
1662 assert_spin_locked(&ulp->lock);
380af1b3 1663 list_add_rcu(&new->list_proc, &ulp->list_proc);
115d40db 1664 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1665 list_add(&new->list_id, &sma->list_id);
380af1b3 1666 un = new;
4daa28f6 1667
380af1b3 1668success:
c530c6ac 1669 spin_unlock(&ulp->lock);
6062a8dc 1670 sem_unlock(sma, -1);
1da177e4
LT
1671out:
1672 return un;
1673}
1674
c61284e9
MS
1675
1676/**
1677 * get_queue_result - Retrieve the result code from sem_queue
1678 * @q: Pointer to queue structure
1679 *
1680 * Retrieve the return code from the pending queue. If IN_WAKEUP is found in
1681 * q->status, then we must loop until the value is replaced with the final
1682 * value: This may happen if a task is woken up by an unrelated event (e.g.
1683 * signal) and in parallel the task is woken up by another task because it got
1684 * the requested semaphores.
1685 *
1686 * The function can be called with or without holding the semaphore spinlock.
1687 */
1688static int get_queue_result(struct sem_queue *q)
1689{
1690 int error;
1691
1692 error = q->status;
1693 while (unlikely(error == IN_WAKEUP)) {
1694 cpu_relax();
1695 error = q->status;
1696 }
1697
1698 return error;
1699}
1700
d5460c99
HC
1701SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1702 unsigned, nsops, const struct timespec __user *, timeout)
1da177e4
LT
1703{
1704 int error = -EINVAL;
1705 struct sem_array *sma;
1706 struct sembuf fast_sops[SEMOPM_FAST];
1707 struct sembuf* sops = fast_sops, *sop;
1708 struct sem_undo *un;
6062a8dc 1709 int undos = 0, alter = 0, max, locknum;
1da177e4
LT
1710 struct sem_queue queue;
1711 unsigned long jiffies_left = 0;
e3893534 1712 struct ipc_namespace *ns;
0a2b9d4c 1713 struct list_head tasks;
e3893534
KK
1714
1715 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1716
1717 if (nsops < 1 || semid < 0)
1718 return -EINVAL;
e3893534 1719 if (nsops > ns->sc_semopm)
1da177e4
LT
1720 return -E2BIG;
1721 if(nsops > SEMOPM_FAST) {
1722 sops = kmalloc(sizeof(*sops)*nsops,GFP_KERNEL);
1723 if(sops==NULL)
1724 return -ENOMEM;
1725 }
1726 if (copy_from_user (sops, tsops, nsops * sizeof(*tsops))) {
1727 error=-EFAULT;
1728 goto out_free;
1729 }
1730 if (timeout) {
1731 struct timespec _timeout;
1732 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1733 error = -EFAULT;
1734 goto out_free;
1735 }
1736 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1737 _timeout.tv_nsec >= 1000000000L) {
1738 error = -EINVAL;
1739 goto out_free;
1740 }
1741 jiffies_left = timespec_to_jiffies(&_timeout);
1742 }
1743 max = 0;
1744 for (sop = sops; sop < sops + nsops; sop++) {
1745 if (sop->sem_num >= max)
1746 max = sop->sem_num;
1747 if (sop->sem_flg & SEM_UNDO)
b78755ab
MS
1748 undos = 1;
1749 if (sop->sem_op != 0)
1da177e4
LT
1750 alter = 1;
1751 }
1da177e4 1752
6062a8dc
RR
1753 INIT_LIST_HEAD(&tasks);
1754
1da177e4 1755 if (undos) {
6062a8dc 1756 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 1757 un = find_alloc_undo(ns, semid);
1da177e4
LT
1758 if (IS_ERR(un)) {
1759 error = PTR_ERR(un);
1760 goto out_free;
1761 }
6062a8dc 1762 } else {
1da177e4 1763 un = NULL;
6062a8dc
RR
1764 rcu_read_lock();
1765 }
1da177e4 1766
16df3674 1767 sma = sem_obtain_object_check(ns, semid);
023a5355 1768 if (IS_ERR(sma)) {
6062a8dc 1769 rcu_read_unlock();
023a5355 1770 error = PTR_ERR(sma);
1da177e4 1771 goto out_free;
023a5355
ND
1772 }
1773
16df3674 1774 error = -EFBIG;
c728b9c8
LT
1775 if (max >= sma->sem_nsems)
1776 goto out_rcu_wakeup;
16df3674
DB
1777
1778 error = -EACCES;
c728b9c8
LT
1779 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO))
1780 goto out_rcu_wakeup;
16df3674
DB
1781
1782 error = security_sem_semop(sma, sops, nsops, alter);
c728b9c8
LT
1783 if (error)
1784 goto out_rcu_wakeup;
16df3674 1785
1da177e4 1786 /*
4daa28f6 1787 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 1788 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 1789 * and now a new array with received the same id. Check and fail.
25985edc 1790 * This case can be detected checking un->semid. The existence of
380af1b3 1791 * "un" itself is guaranteed by rcu.
1da177e4 1792 */
4daa28f6 1793 error = -EIDRM;
6062a8dc
RR
1794 locknum = sem_lock(sma, sops, nsops);
1795 if (un && un->semid == -1)
1796 goto out_unlock_free;
4daa28f6 1797
b56e88e2
MS
1798 error = perform_atomic_semop(sma, sops, nsops, un,
1799 task_tgid_vnr(current));
1da177e4
LT
1800 if (error <= 0) {
1801 if (alter && error == 0)
0a2b9d4c 1802 do_smart_update(sma, sops, nsops, 1, &tasks);
636c6be8 1803
1da177e4
LT
1804 goto out_unlock_free;
1805 }
1806
1807 /* We need to sleep on this operation, so we put the current
1808 * task into the pending queue and go to sleep.
1809 */
1810
1da177e4
LT
1811 queue.sops = sops;
1812 queue.nsops = nsops;
1813 queue.undo = un;
b488893a 1814 queue.pid = task_tgid_vnr(current);
1da177e4 1815 queue.alter = alter;
1da177e4 1816
b97e820f
MS
1817 if (nsops == 1) {
1818 struct sem *curr;
1819 curr = &sma->sem_base[sops->sem_num];
1820
e5639c52
MS
1821 if (alter) {
1822 if (sma->complex_count) {
1823 list_add_tail(&queue.list,
1824 &sma->pending_alter);
1825 } else {
1826
1827 list_add_tail(&queue.list,
1828 &curr->pending_alter);
1829 }
1830 } else {
ab63bc97 1831 list_add_tail(&queue.list, &curr->pending_const);
e5639c52 1832 }
b97e820f 1833 } else {
e5639c52
MS
1834 if (!sma->complex_count)
1835 merge_queues(sma);
1836
9f1bc2c9 1837 if (alter)
ab63bc97 1838 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 1839 else
ab63bc97
MS
1840 list_add_tail(&queue.list, &sma->pending_const);
1841
b97e820f
MS
1842 sma->complex_count++;
1843 }
1844
1da177e4
LT
1845 queue.status = -EINTR;
1846 queue.sleeper = current;
0b0577f6
MS
1847
1848sleep_again:
1da177e4 1849 current->state = TASK_INTERRUPTIBLE;
6062a8dc 1850 sem_unlock(sma, locknum);
6d49dab8 1851 rcu_read_unlock();
1da177e4
LT
1852
1853 if (timeout)
1854 jiffies_left = schedule_timeout(jiffies_left);
1855 else
1856 schedule();
1857
c61284e9 1858 error = get_queue_result(&queue);
1da177e4
LT
1859
1860 if (error != -EINTR) {
1861 /* fast path: update_queue already obtained all requested
c61284e9
MS
1862 * resources.
1863 * Perform a smp_mb(): User space could assume that semop()
1864 * is a memory barrier: Without the mb(), the cpu could
1865 * speculatively read in user space stale data that was
1866 * overwritten by the previous owner of the semaphore.
1867 */
1868 smp_mb();
1869
1da177e4
LT
1870 goto out_free;
1871 }
1872
321310ce 1873 rcu_read_lock();
6062a8dc 1874 sma = sem_obtain_lock(ns, semid, sops, nsops, &locknum);
d694ad62
MS
1875
1876 /*
1877 * Wait until it's guaranteed that no wakeup_sem_queue_do() is ongoing.
1878 */
1879 error = get_queue_result(&queue);
1880
1881 /*
1882 * Array removed? If yes, leave without sem_unlock().
1883 */
023a5355 1884 if (IS_ERR(sma)) {
321310ce 1885 rcu_read_unlock();
1da177e4
LT
1886 goto out_free;
1887 }
1888
c61284e9 1889
1da177e4 1890 /*
d694ad62
MS
1891 * If queue.status != -EINTR we are woken up by another process.
1892 * Leave without unlink_queue(), but with sem_unlock().
1da177e4 1893 */
c61284e9 1894
1da177e4
LT
1895 if (error != -EINTR) {
1896 goto out_unlock_free;
1897 }
1898
1899 /*
1900 * If an interrupt occurred we have to clean up the queue
1901 */
1902 if (timeout && jiffies_left == 0)
1903 error = -EAGAIN;
0b0577f6
MS
1904
1905 /*
1906 * If the wakeup was spurious, just retry
1907 */
1908 if (error == -EINTR && !signal_pending(current))
1909 goto sleep_again;
1910
b97e820f 1911 unlink_queue(sma, &queue);
1da177e4
LT
1912
1913out_unlock_free:
6062a8dc 1914 sem_unlock(sma, locknum);
c728b9c8 1915out_rcu_wakeup:
6d49dab8 1916 rcu_read_unlock();
0a2b9d4c 1917 wake_up_sem_queue_do(&tasks);
1da177e4
LT
1918out_free:
1919 if(sops != fast_sops)
1920 kfree(sops);
1921 return error;
1922}
1923
d5460c99
HC
1924SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
1925 unsigned, nsops)
1da177e4
LT
1926{
1927 return sys_semtimedop(semid, tsops, nsops, NULL);
1928}
1929
1930/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
1931 * parent and child tasks.
1da177e4
LT
1932 */
1933
1934int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
1935{
1936 struct sem_undo_list *undo_list;
1937 int error;
1938
1939 if (clone_flags & CLONE_SYSVSEM) {
1940 error = get_undo_list(&undo_list);
1941 if (error)
1942 return error;
1da177e4
LT
1943 atomic_inc(&undo_list->refcnt);
1944 tsk->sysvsem.undo_list = undo_list;
1945 } else
1946 tsk->sysvsem.undo_list = NULL;
1947
1948 return 0;
1949}
1950
1951/*
1952 * add semadj values to semaphores, free undo structures.
1953 * undo structures are not freed when semaphore arrays are destroyed
1954 * so some of them may be out of date.
1955 * IMPLEMENTATION NOTE: There is some confusion over whether the
1956 * set of adjustments that needs to be done should be done in an atomic
1957 * manner or not. That is, if we are attempting to decrement the semval
1958 * should we queue up and wait until we can do so legally?
1959 * The original implementation attempted to do this (queue and wait).
1960 * The current implementation does not do so. The POSIX standard
1961 * and SVID should be consulted to determine what behavior is mandated.
1962 */
1963void exit_sem(struct task_struct *tsk)
1964{
4daa28f6 1965 struct sem_undo_list *ulp;
1da177e4 1966
4daa28f6
MS
1967 ulp = tsk->sysvsem.undo_list;
1968 if (!ulp)
1da177e4 1969 return;
9edff4ab 1970 tsk->sysvsem.undo_list = NULL;
1da177e4 1971
4daa28f6 1972 if (!atomic_dec_and_test(&ulp->refcnt))
1da177e4
LT
1973 return;
1974
380af1b3 1975 for (;;) {
1da177e4 1976 struct sem_array *sma;
380af1b3 1977 struct sem_undo *un;
0a2b9d4c 1978 struct list_head tasks;
6062a8dc 1979 int semid, i;
4daa28f6 1980
380af1b3 1981 rcu_read_lock();
05725f7e
JP
1982 un = list_entry_rcu(ulp->list_proc.next,
1983 struct sem_undo, list_proc);
380af1b3
MS
1984 if (&un->list_proc == &ulp->list_proc)
1985 semid = -1;
1986 else
1987 semid = un->semid;
4daa28f6 1988
6062a8dc
RR
1989 if (semid == -1) {
1990 rcu_read_unlock();
380af1b3 1991 break;
6062a8dc 1992 }
1da177e4 1993
6062a8dc 1994 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, un->semid);
380af1b3 1995 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
1996 if (IS_ERR(sma)) {
1997 rcu_read_unlock();
380af1b3 1998 continue;
6062a8dc 1999 }
1da177e4 2000
6062a8dc 2001 sem_lock(sma, NULL, -1);
bf17bb71 2002 un = __lookup_undo(ulp, semid);
380af1b3
MS
2003 if (un == NULL) {
2004 /* exit_sem raced with IPC_RMID+semget() that created
2005 * exactly the same semid. Nothing to do.
2006 */
6062a8dc 2007 sem_unlock(sma, -1);
6d49dab8 2008 rcu_read_unlock();
380af1b3
MS
2009 continue;
2010 }
2011
2012 /* remove un from the linked lists */
115d40db 2013 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2014 list_del(&un->list_id);
2015
380af1b3
MS
2016 spin_lock(&ulp->lock);
2017 list_del_rcu(&un->list_proc);
2018 spin_unlock(&ulp->lock);
2019
4daa28f6
MS
2020 /* perform adjustments registered in un */
2021 for (i = 0; i < sma->sem_nsems; i++) {
5f921ae9 2022 struct sem * semaphore = &sma->sem_base[i];
4daa28f6
MS
2023 if (un->semadj[i]) {
2024 semaphore->semval += un->semadj[i];
1da177e4
LT
2025 /*
2026 * Range checks of the new semaphore value,
2027 * not defined by sus:
2028 * - Some unices ignore the undo entirely
2029 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2030 * - some cap the value (e.g. FreeBSD caps
2031 * at 0, but doesn't enforce SEMVMX)
2032 *
2033 * Linux caps the semaphore value, both at 0
2034 * and at SEMVMX.
2035 *
2036 * Manfred <manfred@colorfullife.com>
2037 */
5f921ae9
IM
2038 if (semaphore->semval < 0)
2039 semaphore->semval = 0;
2040 if (semaphore->semval > SEMVMX)
2041 semaphore->semval = SEMVMX;
b488893a 2042 semaphore->sempid = task_tgid_vnr(current);
1da177e4
LT
2043 }
2044 }
1da177e4 2045 /* maybe some queued-up processes were waiting for this */
0a2b9d4c
MS
2046 INIT_LIST_HEAD(&tasks);
2047 do_smart_update(sma, NULL, 0, 1, &tasks);
6062a8dc 2048 sem_unlock(sma, -1);
6d49dab8 2049 rcu_read_unlock();
0a2b9d4c 2050 wake_up_sem_queue_do(&tasks);
380af1b3 2051
693a8b6e 2052 kfree_rcu(un, rcu);
1da177e4 2053 }
4daa28f6 2054 kfree(ulp);
1da177e4
LT
2055}
2056
2057#ifdef CONFIG_PROC_FS
19b4946c 2058static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2059{
1efdb69b 2060 struct user_namespace *user_ns = seq_user_ns(s);
19b4946c 2061 struct sem_array *sma = it;
bf6830ad
MS
2062 time_t sem_otime;
2063
2064 sem_otime = get_semotime(sma);
19b4946c
MW
2065
2066 return seq_printf(s,
b97e820f 2067 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
19b4946c 2068 sma->sem_perm.key,
7ca7e564 2069 sma->sem_perm.id,
19b4946c
MW
2070 sma->sem_perm.mode,
2071 sma->sem_nsems,
1efdb69b
EB
2072 from_kuid_munged(user_ns, sma->sem_perm.uid),
2073 from_kgid_munged(user_ns, sma->sem_perm.gid),
2074 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2075 from_kgid_munged(user_ns, sma->sem_perm.cgid),
bf6830ad 2076 sem_otime,
19b4946c 2077 sma->sem_ctime);
1da177e4
LT
2078}
2079#endif