pNFS: Handle allocation errors correctly in filelayout_alloc_layout_hdr()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8
AV
19#include <linux/acct.h> /* acct_auto_close_mnt */
20#include <linux/ramfs.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
0bb80f24 24#include <linux/proc_ns.h>
20b4fb48 25#include <linux/magic.h>
07b20889 26#include "pnode.h"
948730b0 27#include "internal.h"
1da177e4 28
13f14b4d
ED
29#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
30#define HASH_SIZE (1UL << HASH_SHIFT)
31
5addc5dd 32static int event;
73cd49ec 33static DEFINE_IDA(mnt_id_ida);
719f5d7f 34static DEFINE_IDA(mnt_group_ida);
99b7db7b 35static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
36static int mnt_id_start = 0;
37static int mnt_group_start = 1;
1da177e4 38
fa3536cc 39static struct list_head *mount_hashtable __read_mostly;
84d17192 40static struct list_head *mountpoint_hashtable __read_mostly;
e18b890b 41static struct kmem_cache *mnt_cache __read_mostly;
390c6843 42static struct rw_semaphore namespace_sem;
1da177e4 43
f87fd4c2 44/* /sys/fs */
00d26666
GKH
45struct kobject *fs_kobj;
46EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 47
99b7db7b
NP
48/*
49 * vfsmount lock may be taken for read to prevent changes to the
50 * vfsmount hash, ie. during mountpoint lookups or walking back
51 * up the tree.
52 *
53 * It should be taken for write in all cases where the vfsmount
54 * tree or hash is modified or when a vfsmount structure is modified.
55 */
56DEFINE_BRLOCK(vfsmount_lock);
57
1da177e4
LT
58static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
59{
b58fed8b
RP
60 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
61 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
62 tmp = tmp + (tmp >> HASH_SHIFT);
63 return tmp & (HASH_SIZE - 1);
1da177e4
LT
64}
65
3d733633
DH
66#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
67
99b7db7b
NP
68/*
69 * allocation is serialized by namespace_sem, but we need the spinlock to
70 * serialize with freeing.
71 */
b105e270 72static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
73{
74 int res;
75
76retry:
77 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 78 spin_lock(&mnt_id_lock);
15169fe7 79 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 80 if (!res)
15169fe7 81 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 82 spin_unlock(&mnt_id_lock);
73cd49ec
MS
83 if (res == -EAGAIN)
84 goto retry;
85
86 return res;
87}
88
b105e270 89static void mnt_free_id(struct mount *mnt)
73cd49ec 90{
15169fe7 91 int id = mnt->mnt_id;
99b7db7b 92 spin_lock(&mnt_id_lock);
f21f6220
AV
93 ida_remove(&mnt_id_ida, id);
94 if (mnt_id_start > id)
95 mnt_id_start = id;
99b7db7b 96 spin_unlock(&mnt_id_lock);
73cd49ec
MS
97}
98
719f5d7f
MS
99/*
100 * Allocate a new peer group ID
101 *
102 * mnt_group_ida is protected by namespace_sem
103 */
4b8b21f4 104static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 105{
f21f6220
AV
106 int res;
107
719f5d7f
MS
108 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
109 return -ENOMEM;
110
f21f6220
AV
111 res = ida_get_new_above(&mnt_group_ida,
112 mnt_group_start,
15169fe7 113 &mnt->mnt_group_id);
f21f6220 114 if (!res)
15169fe7 115 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
116
117 return res;
719f5d7f
MS
118}
119
120/*
121 * Release a peer group ID
122 */
4b8b21f4 123void mnt_release_group_id(struct mount *mnt)
719f5d7f 124{
15169fe7 125 int id = mnt->mnt_group_id;
f21f6220
AV
126 ida_remove(&mnt_group_ida, id);
127 if (mnt_group_start > id)
128 mnt_group_start = id;
15169fe7 129 mnt->mnt_group_id = 0;
719f5d7f
MS
130}
131
b3e19d92
NP
132/*
133 * vfsmount lock must be held for read
134 */
83adc753 135static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
136{
137#ifdef CONFIG_SMP
68e8a9fe 138 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
139#else
140 preempt_disable();
68e8a9fe 141 mnt->mnt_count += n;
b3e19d92
NP
142 preempt_enable();
143#endif
144}
145
b3e19d92
NP
146/*
147 * vfsmount lock must be held for write
148 */
83adc753 149unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
150{
151#ifdef CONFIG_SMP
f03c6599 152 unsigned int count = 0;
b3e19d92
NP
153 int cpu;
154
155 for_each_possible_cpu(cpu) {
68e8a9fe 156 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
157 }
158
159 return count;
160#else
68e8a9fe 161 return mnt->mnt_count;
b3e19d92
NP
162#endif
163}
164
b105e270 165static struct mount *alloc_vfsmnt(const char *name)
1da177e4 166{
c63181e6
AV
167 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
168 if (mnt) {
73cd49ec
MS
169 int err;
170
c63181e6 171 err = mnt_alloc_id(mnt);
88b38782
LZ
172 if (err)
173 goto out_free_cache;
174
175 if (name) {
c63181e6
AV
176 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
177 if (!mnt->mnt_devname)
88b38782 178 goto out_free_id;
73cd49ec
MS
179 }
180
b3e19d92 181#ifdef CONFIG_SMP
c63181e6
AV
182 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
183 if (!mnt->mnt_pcp)
b3e19d92
NP
184 goto out_free_devname;
185
c63181e6 186 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 187#else
c63181e6
AV
188 mnt->mnt_count = 1;
189 mnt->mnt_writers = 0;
b3e19d92
NP
190#endif
191
c63181e6
AV
192 INIT_LIST_HEAD(&mnt->mnt_hash);
193 INIT_LIST_HEAD(&mnt->mnt_child);
194 INIT_LIST_HEAD(&mnt->mnt_mounts);
195 INIT_LIST_HEAD(&mnt->mnt_list);
196 INIT_LIST_HEAD(&mnt->mnt_expire);
197 INIT_LIST_HEAD(&mnt->mnt_share);
198 INIT_LIST_HEAD(&mnt->mnt_slave_list);
199 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
200#ifdef CONFIG_FSNOTIFY
201 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 202#endif
1da177e4 203 }
c63181e6 204 return mnt;
88b38782 205
d3ef3d73 206#ifdef CONFIG_SMP
207out_free_devname:
c63181e6 208 kfree(mnt->mnt_devname);
d3ef3d73 209#endif
88b38782 210out_free_id:
c63181e6 211 mnt_free_id(mnt);
88b38782 212out_free_cache:
c63181e6 213 kmem_cache_free(mnt_cache, mnt);
88b38782 214 return NULL;
1da177e4
LT
215}
216
3d733633
DH
217/*
218 * Most r/o checks on a fs are for operations that take
219 * discrete amounts of time, like a write() or unlink().
220 * We must keep track of when those operations start
221 * (for permission checks) and when they end, so that
222 * we can determine when writes are able to occur to
223 * a filesystem.
224 */
225/*
226 * __mnt_is_readonly: check whether a mount is read-only
227 * @mnt: the mount to check for its write status
228 *
229 * This shouldn't be used directly ouside of the VFS.
230 * It does not guarantee that the filesystem will stay
231 * r/w, just that it is right *now*. This can not and
232 * should not be used in place of IS_RDONLY(inode).
233 * mnt_want/drop_write() will _keep_ the filesystem
234 * r/w.
235 */
236int __mnt_is_readonly(struct vfsmount *mnt)
237{
2e4b7fcd
DH
238 if (mnt->mnt_flags & MNT_READONLY)
239 return 1;
240 if (mnt->mnt_sb->s_flags & MS_RDONLY)
241 return 1;
242 return 0;
3d733633
DH
243}
244EXPORT_SYMBOL_GPL(__mnt_is_readonly);
245
83adc753 246static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 247{
248#ifdef CONFIG_SMP
68e8a9fe 249 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 250#else
68e8a9fe 251 mnt->mnt_writers++;
d3ef3d73 252#endif
253}
3d733633 254
83adc753 255static inline void mnt_dec_writers(struct mount *mnt)
3d733633 256{
d3ef3d73 257#ifdef CONFIG_SMP
68e8a9fe 258 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 259#else
68e8a9fe 260 mnt->mnt_writers--;
d3ef3d73 261#endif
3d733633 262}
3d733633 263
83adc753 264static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 265{
d3ef3d73 266#ifdef CONFIG_SMP
267 unsigned int count = 0;
3d733633 268 int cpu;
3d733633
DH
269
270 for_each_possible_cpu(cpu) {
68e8a9fe 271 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 272 }
3d733633 273
d3ef3d73 274 return count;
275#else
276 return mnt->mnt_writers;
277#endif
3d733633
DH
278}
279
4ed5e82f
MS
280static int mnt_is_readonly(struct vfsmount *mnt)
281{
282 if (mnt->mnt_sb->s_readonly_remount)
283 return 1;
284 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
285 smp_rmb();
286 return __mnt_is_readonly(mnt);
287}
288
8366025e 289/*
eb04c282
JK
290 * Most r/o & frozen checks on a fs are for operations that take discrete
291 * amounts of time, like a write() or unlink(). We must keep track of when
292 * those operations start (for permission checks) and when they end, so that we
293 * can determine when writes are able to occur to a filesystem.
8366025e
DH
294 */
295/**
eb04c282 296 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 297 * @m: the mount on which to take a write
8366025e 298 *
eb04c282
JK
299 * This tells the low-level filesystem that a write is about to be performed to
300 * it, and makes sure that writes are allowed (mnt it read-write) before
301 * returning success. This operation does not protect against filesystem being
302 * frozen. When the write operation is finished, __mnt_drop_write() must be
303 * called. This is effectively a refcount.
8366025e 304 */
eb04c282 305int __mnt_want_write(struct vfsmount *m)
8366025e 306{
83adc753 307 struct mount *mnt = real_mount(m);
3d733633 308 int ret = 0;
3d733633 309
d3ef3d73 310 preempt_disable();
c6653a83 311 mnt_inc_writers(mnt);
d3ef3d73 312 /*
c6653a83 313 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 314 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
315 * incremented count after it has set MNT_WRITE_HOLD.
316 */
317 smp_mb();
1e75529e 318 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 319 cpu_relax();
320 /*
321 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
322 * be set to match its requirements. So we must not load that until
323 * MNT_WRITE_HOLD is cleared.
324 */
325 smp_rmb();
4ed5e82f 326 if (mnt_is_readonly(m)) {
c6653a83 327 mnt_dec_writers(mnt);
3d733633 328 ret = -EROFS;
3d733633 329 }
d3ef3d73 330 preempt_enable();
eb04c282
JK
331
332 return ret;
333}
334
335/**
336 * mnt_want_write - get write access to a mount
337 * @m: the mount on which to take a write
338 *
339 * This tells the low-level filesystem that a write is about to be performed to
340 * it, and makes sure that writes are allowed (mount is read-write, filesystem
341 * is not frozen) before returning success. When the write operation is
342 * finished, mnt_drop_write() must be called. This is effectively a refcount.
343 */
344int mnt_want_write(struct vfsmount *m)
345{
346 int ret;
347
348 sb_start_write(m->mnt_sb);
349 ret = __mnt_want_write(m);
350 if (ret)
351 sb_end_write(m->mnt_sb);
3d733633 352 return ret;
8366025e
DH
353}
354EXPORT_SYMBOL_GPL(mnt_want_write);
355
96029c4e 356/**
357 * mnt_clone_write - get write access to a mount
358 * @mnt: the mount on which to take a write
359 *
360 * This is effectively like mnt_want_write, except
361 * it must only be used to take an extra write reference
362 * on a mountpoint that we already know has a write reference
363 * on it. This allows some optimisation.
364 *
365 * After finished, mnt_drop_write must be called as usual to
366 * drop the reference.
367 */
368int mnt_clone_write(struct vfsmount *mnt)
369{
370 /* superblock may be r/o */
371 if (__mnt_is_readonly(mnt))
372 return -EROFS;
373 preempt_disable();
83adc753 374 mnt_inc_writers(real_mount(mnt));
96029c4e 375 preempt_enable();
376 return 0;
377}
378EXPORT_SYMBOL_GPL(mnt_clone_write);
379
380/**
eb04c282 381 * __mnt_want_write_file - get write access to a file's mount
96029c4e 382 * @file: the file who's mount on which to take a write
383 *
eb04c282 384 * This is like __mnt_want_write, but it takes a file and can
96029c4e 385 * do some optimisations if the file is open for write already
386 */
eb04c282 387int __mnt_want_write_file(struct file *file)
96029c4e 388{
496ad9aa 389 struct inode *inode = file_inode(file);
eb04c282 390
2d8dd38a 391 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
eb04c282 392 return __mnt_want_write(file->f_path.mnt);
96029c4e 393 else
394 return mnt_clone_write(file->f_path.mnt);
395}
eb04c282
JK
396
397/**
398 * mnt_want_write_file - get write access to a file's mount
399 * @file: the file who's mount on which to take a write
400 *
401 * This is like mnt_want_write, but it takes a file and can
402 * do some optimisations if the file is open for write already
403 */
404int mnt_want_write_file(struct file *file)
405{
406 int ret;
407
408 sb_start_write(file->f_path.mnt->mnt_sb);
409 ret = __mnt_want_write_file(file);
410 if (ret)
411 sb_end_write(file->f_path.mnt->mnt_sb);
412 return ret;
413}
96029c4e 414EXPORT_SYMBOL_GPL(mnt_want_write_file);
415
8366025e 416/**
eb04c282 417 * __mnt_drop_write - give up write access to a mount
8366025e
DH
418 * @mnt: the mount on which to give up write access
419 *
420 * Tells the low-level filesystem that we are done
421 * performing writes to it. Must be matched with
eb04c282 422 * __mnt_want_write() call above.
8366025e 423 */
eb04c282 424void __mnt_drop_write(struct vfsmount *mnt)
8366025e 425{
d3ef3d73 426 preempt_disable();
83adc753 427 mnt_dec_writers(real_mount(mnt));
d3ef3d73 428 preempt_enable();
8366025e 429}
eb04c282
JK
430
431/**
432 * mnt_drop_write - give up write access to a mount
433 * @mnt: the mount on which to give up write access
434 *
435 * Tells the low-level filesystem that we are done performing writes to it and
436 * also allows filesystem to be frozen again. Must be matched with
437 * mnt_want_write() call above.
438 */
439void mnt_drop_write(struct vfsmount *mnt)
440{
441 __mnt_drop_write(mnt);
442 sb_end_write(mnt->mnt_sb);
443}
8366025e
DH
444EXPORT_SYMBOL_GPL(mnt_drop_write);
445
eb04c282
JK
446void __mnt_drop_write_file(struct file *file)
447{
448 __mnt_drop_write(file->f_path.mnt);
449}
450
2a79f17e
AV
451void mnt_drop_write_file(struct file *file)
452{
453 mnt_drop_write(file->f_path.mnt);
454}
455EXPORT_SYMBOL(mnt_drop_write_file);
456
83adc753 457static int mnt_make_readonly(struct mount *mnt)
8366025e 458{
3d733633
DH
459 int ret = 0;
460
962830df 461 br_write_lock(&vfsmount_lock);
83adc753 462 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 463 /*
d3ef3d73 464 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
465 * should be visible before we do.
3d733633 466 */
d3ef3d73 467 smp_mb();
468
3d733633 469 /*
d3ef3d73 470 * With writers on hold, if this value is zero, then there are
471 * definitely no active writers (although held writers may subsequently
472 * increment the count, they'll have to wait, and decrement it after
473 * seeing MNT_READONLY).
474 *
475 * It is OK to have counter incremented on one CPU and decremented on
476 * another: the sum will add up correctly. The danger would be when we
477 * sum up each counter, if we read a counter before it is incremented,
478 * but then read another CPU's count which it has been subsequently
479 * decremented from -- we would see more decrements than we should.
480 * MNT_WRITE_HOLD protects against this scenario, because
481 * mnt_want_write first increments count, then smp_mb, then spins on
482 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
483 * we're counting up here.
3d733633 484 */
c6653a83 485 if (mnt_get_writers(mnt) > 0)
d3ef3d73 486 ret = -EBUSY;
487 else
83adc753 488 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 489 /*
490 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
491 * that become unheld will see MNT_READONLY.
492 */
493 smp_wmb();
83adc753 494 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
962830df 495 br_write_unlock(&vfsmount_lock);
3d733633 496 return ret;
8366025e 497}
8366025e 498
83adc753 499static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 500{
962830df 501 br_write_lock(&vfsmount_lock);
83adc753 502 mnt->mnt.mnt_flags &= ~MNT_READONLY;
962830df 503 br_write_unlock(&vfsmount_lock);
2e4b7fcd
DH
504}
505
4ed5e82f
MS
506int sb_prepare_remount_readonly(struct super_block *sb)
507{
508 struct mount *mnt;
509 int err = 0;
510
8e8b8796
MS
511 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
512 if (atomic_long_read(&sb->s_remove_count))
513 return -EBUSY;
514
962830df 515 br_write_lock(&vfsmount_lock);
4ed5e82f
MS
516 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
517 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
518 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
519 smp_mb();
520 if (mnt_get_writers(mnt) > 0) {
521 err = -EBUSY;
522 break;
523 }
524 }
525 }
8e8b8796
MS
526 if (!err && atomic_long_read(&sb->s_remove_count))
527 err = -EBUSY;
528
4ed5e82f
MS
529 if (!err) {
530 sb->s_readonly_remount = 1;
531 smp_wmb();
532 }
533 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
534 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
535 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
536 }
962830df 537 br_write_unlock(&vfsmount_lock);
4ed5e82f
MS
538
539 return err;
540}
541
b105e270 542static void free_vfsmnt(struct mount *mnt)
1da177e4 543{
52ba1621 544 kfree(mnt->mnt_devname);
73cd49ec 545 mnt_free_id(mnt);
d3ef3d73 546#ifdef CONFIG_SMP
68e8a9fe 547 free_percpu(mnt->mnt_pcp);
d3ef3d73 548#endif
b105e270 549 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
550}
551
552/*
a05964f3
RP
553 * find the first or last mount at @dentry on vfsmount @mnt depending on
554 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 555 * vfsmount_lock must be held for read or write.
1da177e4 556 */
c7105365 557struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 558 int dir)
1da177e4 559{
b58fed8b
RP
560 struct list_head *head = mount_hashtable + hash(mnt, dentry);
561 struct list_head *tmp = head;
c7105365 562 struct mount *p, *found = NULL;
1da177e4 563
1da177e4 564 for (;;) {
a05964f3 565 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
566 p = NULL;
567 if (tmp == head)
568 break;
1b8e5564 569 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 570 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 571 found = p;
1da177e4
LT
572 break;
573 }
574 }
1da177e4
LT
575 return found;
576}
577
a05964f3 578/*
f015f126
DH
579 * lookup_mnt - Return the first child mount mounted at path
580 *
581 * "First" means first mounted chronologically. If you create the
582 * following mounts:
583 *
584 * mount /dev/sda1 /mnt
585 * mount /dev/sda2 /mnt
586 * mount /dev/sda3 /mnt
587 *
588 * Then lookup_mnt() on the base /mnt dentry in the root mount will
589 * return successively the root dentry and vfsmount of /dev/sda1, then
590 * /dev/sda2, then /dev/sda3, then NULL.
591 *
592 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 593 */
1c755af4 594struct vfsmount *lookup_mnt(struct path *path)
a05964f3 595{
c7105365 596 struct mount *child_mnt;
99b7db7b 597
962830df 598 br_read_lock(&vfsmount_lock);
c7105365
AV
599 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
600 if (child_mnt) {
601 mnt_add_count(child_mnt, 1);
962830df 602 br_read_unlock(&vfsmount_lock);
c7105365
AV
603 return &child_mnt->mnt;
604 } else {
962830df 605 br_read_unlock(&vfsmount_lock);
c7105365
AV
606 return NULL;
607 }
a05964f3
RP
608}
609
84d17192
AV
610static struct mountpoint *new_mountpoint(struct dentry *dentry)
611{
612 struct list_head *chain = mountpoint_hashtable + hash(NULL, dentry);
613 struct mountpoint *mp;
614
615 list_for_each_entry(mp, chain, m_hash) {
616 if (mp->m_dentry == dentry) {
617 /* might be worth a WARN_ON() */
618 if (d_unlinked(dentry))
619 return ERR_PTR(-ENOENT);
620 mp->m_count++;
621 return mp;
622 }
623 }
624
625 mp = kmalloc(sizeof(struct mountpoint), GFP_KERNEL);
626 if (!mp)
627 return ERR_PTR(-ENOMEM);
628
629 spin_lock(&dentry->d_lock);
630 if (d_unlinked(dentry)) {
631 spin_unlock(&dentry->d_lock);
632 kfree(mp);
633 return ERR_PTR(-ENOENT);
634 }
635 dentry->d_flags |= DCACHE_MOUNTED;
636 spin_unlock(&dentry->d_lock);
637 mp->m_dentry = dentry;
638 mp->m_count = 1;
639 list_add(&mp->m_hash, chain);
640 return mp;
641}
642
643static void put_mountpoint(struct mountpoint *mp)
644{
645 if (!--mp->m_count) {
646 struct dentry *dentry = mp->m_dentry;
647 spin_lock(&dentry->d_lock);
648 dentry->d_flags &= ~DCACHE_MOUNTED;
649 spin_unlock(&dentry->d_lock);
650 list_del(&mp->m_hash);
651 kfree(mp);
652 }
653}
654
143c8c91 655static inline int check_mnt(struct mount *mnt)
1da177e4 656{
6b3286ed 657 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
658}
659
99b7db7b
NP
660/*
661 * vfsmount lock must be held for write
662 */
6b3286ed 663static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
664{
665 if (ns) {
666 ns->event = ++event;
667 wake_up_interruptible(&ns->poll);
668 }
669}
670
99b7db7b
NP
671/*
672 * vfsmount lock must be held for write
673 */
6b3286ed 674static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
675{
676 if (ns && ns->event != event) {
677 ns->event = event;
678 wake_up_interruptible(&ns->poll);
679 }
680}
681
99b7db7b
NP
682/*
683 * vfsmount lock must be held for write
684 */
419148da
AV
685static void detach_mnt(struct mount *mnt, struct path *old_path)
686{
a73324da 687 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
688 old_path->mnt = &mnt->mnt_parent->mnt;
689 mnt->mnt_parent = mnt;
a73324da 690 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 691 list_del_init(&mnt->mnt_child);
1b8e5564 692 list_del_init(&mnt->mnt_hash);
84d17192
AV
693 put_mountpoint(mnt->mnt_mp);
694 mnt->mnt_mp = NULL;
1da177e4
LT
695}
696
99b7db7b
NP
697/*
698 * vfsmount lock must be held for write
699 */
84d17192
AV
700void mnt_set_mountpoint(struct mount *mnt,
701 struct mountpoint *mp,
44d964d6 702 struct mount *child_mnt)
b90fa9ae 703{
84d17192 704 mp->m_count++;
3a2393d7 705 mnt_add_count(mnt, 1); /* essentially, that's mntget */
84d17192 706 child_mnt->mnt_mountpoint = dget(mp->m_dentry);
3a2393d7 707 child_mnt->mnt_parent = mnt;
84d17192 708 child_mnt->mnt_mp = mp;
b90fa9ae
RP
709}
710
99b7db7b
NP
711/*
712 * vfsmount lock must be held for write
713 */
84d17192
AV
714static void attach_mnt(struct mount *mnt,
715 struct mount *parent,
716 struct mountpoint *mp)
1da177e4 717{
84d17192 718 mnt_set_mountpoint(parent, mp, mnt);
1b8e5564 719 list_add_tail(&mnt->mnt_hash, mount_hashtable +
84d17192
AV
720 hash(&parent->mnt, mp->m_dentry));
721 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
b90fa9ae
RP
722}
723
724/*
99b7db7b 725 * vfsmount lock must be held for write
b90fa9ae 726 */
4b2619a5 727static void commit_tree(struct mount *mnt)
b90fa9ae 728{
0714a533 729 struct mount *parent = mnt->mnt_parent;
83adc753 730 struct mount *m;
b90fa9ae 731 LIST_HEAD(head);
143c8c91 732 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 733
0714a533 734 BUG_ON(parent == mnt);
b90fa9ae 735
1a4eeaf2 736 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 737 list_for_each_entry(m, &head, mnt_list)
143c8c91 738 m->mnt_ns = n;
f03c6599 739
b90fa9ae
RP
740 list_splice(&head, n->list.prev);
741
1b8e5564 742 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 743 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 744 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 745 touch_mnt_namespace(n);
1da177e4
LT
746}
747
909b0a88 748static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 749{
6b41d536
AV
750 struct list_head *next = p->mnt_mounts.next;
751 if (next == &p->mnt_mounts) {
1da177e4 752 while (1) {
909b0a88 753 if (p == root)
1da177e4 754 return NULL;
6b41d536
AV
755 next = p->mnt_child.next;
756 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 757 break;
0714a533 758 p = p->mnt_parent;
1da177e4
LT
759 }
760 }
6b41d536 761 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
762}
763
315fc83e 764static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 765{
6b41d536
AV
766 struct list_head *prev = p->mnt_mounts.prev;
767 while (prev != &p->mnt_mounts) {
768 p = list_entry(prev, struct mount, mnt_child);
769 prev = p->mnt_mounts.prev;
9676f0c6
RP
770 }
771 return p;
772}
773
9d412a43
AV
774struct vfsmount *
775vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
776{
b105e270 777 struct mount *mnt;
9d412a43
AV
778 struct dentry *root;
779
780 if (!type)
781 return ERR_PTR(-ENODEV);
782
783 mnt = alloc_vfsmnt(name);
784 if (!mnt)
785 return ERR_PTR(-ENOMEM);
786
787 if (flags & MS_KERNMOUNT)
b105e270 788 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
789
790 root = mount_fs(type, flags, name, data);
791 if (IS_ERR(root)) {
792 free_vfsmnt(mnt);
793 return ERR_CAST(root);
794 }
795
b105e270
AV
796 mnt->mnt.mnt_root = root;
797 mnt->mnt.mnt_sb = root->d_sb;
a73324da 798 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 799 mnt->mnt_parent = mnt;
962830df 800 br_write_lock(&vfsmount_lock);
39f7c4db 801 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
962830df 802 br_write_unlock(&vfsmount_lock);
b105e270 803 return &mnt->mnt;
9d412a43
AV
804}
805EXPORT_SYMBOL_GPL(vfs_kern_mount);
806
87129cc0 807static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 808 int flag)
1da177e4 809{
87129cc0 810 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
811 struct mount *mnt;
812 int err;
1da177e4 813
be34d1a3
DH
814 mnt = alloc_vfsmnt(old->mnt_devname);
815 if (!mnt)
816 return ERR_PTR(-ENOMEM);
719f5d7f 817
7a472ef4 818 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
819 mnt->mnt_group_id = 0; /* not a peer of original */
820 else
821 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 822
be34d1a3
DH
823 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
824 err = mnt_alloc_group_id(mnt);
825 if (err)
826 goto out_free;
1da177e4 827 }
be34d1a3
DH
828
829 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
132c94e3
EB
830 /* Don't allow unprivileged users to change mount flags */
831 if ((flag & CL_UNPRIVILEGED) && (mnt->mnt.mnt_flags & MNT_READONLY))
832 mnt->mnt.mnt_flags |= MNT_LOCK_READONLY;
833
be34d1a3
DH
834 atomic_inc(&sb->s_active);
835 mnt->mnt.mnt_sb = sb;
836 mnt->mnt.mnt_root = dget(root);
837 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
838 mnt->mnt_parent = mnt;
839 br_write_lock(&vfsmount_lock);
840 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
841 br_write_unlock(&vfsmount_lock);
842
7a472ef4
EB
843 if ((flag & CL_SLAVE) ||
844 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
845 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
846 mnt->mnt_master = old;
847 CLEAR_MNT_SHARED(mnt);
848 } else if (!(flag & CL_PRIVATE)) {
849 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
850 list_add(&mnt->mnt_share, &old->mnt_share);
851 if (IS_MNT_SLAVE(old))
852 list_add(&mnt->mnt_slave, &old->mnt_slave);
853 mnt->mnt_master = old->mnt_master;
854 }
855 if (flag & CL_MAKE_SHARED)
856 set_mnt_shared(mnt);
857
858 /* stick the duplicate mount on the same expiry list
859 * as the original if that was on one */
860 if (flag & CL_EXPIRE) {
861 if (!list_empty(&old->mnt_expire))
862 list_add(&mnt->mnt_expire, &old->mnt_expire);
863 }
864
cb338d06 865 return mnt;
719f5d7f
MS
866
867 out_free:
868 free_vfsmnt(mnt);
be34d1a3 869 return ERR_PTR(err);
1da177e4
LT
870}
871
83adc753 872static inline void mntfree(struct mount *mnt)
1da177e4 873{
83adc753
AV
874 struct vfsmount *m = &mnt->mnt;
875 struct super_block *sb = m->mnt_sb;
b3e19d92 876
3d733633
DH
877 /*
878 * This probably indicates that somebody messed
879 * up a mnt_want/drop_write() pair. If this
880 * happens, the filesystem was probably unable
881 * to make r/w->r/o transitions.
882 */
d3ef3d73 883 /*
b3e19d92
NP
884 * The locking used to deal with mnt_count decrement provides barriers,
885 * so mnt_get_writers() below is safe.
d3ef3d73 886 */
c6653a83 887 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
888 fsnotify_vfsmount_delete(m);
889 dput(m->mnt_root);
890 free_vfsmnt(mnt);
1da177e4
LT
891 deactivate_super(sb);
892}
893
900148dc 894static void mntput_no_expire(struct mount *mnt)
b3e19d92 895{
b3e19d92 896put_again:
f03c6599 897#ifdef CONFIG_SMP
962830df 898 br_read_lock(&vfsmount_lock);
f7a99c5b
AV
899 if (likely(mnt->mnt_ns)) {
900 /* shouldn't be the last one */
aa9c0e07 901 mnt_add_count(mnt, -1);
962830df 902 br_read_unlock(&vfsmount_lock);
f03c6599 903 return;
b3e19d92 904 }
962830df 905 br_read_unlock(&vfsmount_lock);
b3e19d92 906
962830df 907 br_write_lock(&vfsmount_lock);
aa9c0e07 908 mnt_add_count(mnt, -1);
b3e19d92 909 if (mnt_get_count(mnt)) {
962830df 910 br_write_unlock(&vfsmount_lock);
99b7db7b
NP
911 return;
912 }
b3e19d92 913#else
aa9c0e07 914 mnt_add_count(mnt, -1);
b3e19d92 915 if (likely(mnt_get_count(mnt)))
99b7db7b 916 return;
962830df 917 br_write_lock(&vfsmount_lock);
f03c6599 918#endif
863d684f
AV
919 if (unlikely(mnt->mnt_pinned)) {
920 mnt_add_count(mnt, mnt->mnt_pinned + 1);
921 mnt->mnt_pinned = 0;
962830df 922 br_write_unlock(&vfsmount_lock);
900148dc 923 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 924 goto put_again;
7b7b1ace 925 }
962830df 926
39f7c4db 927 list_del(&mnt->mnt_instance);
962830df 928 br_write_unlock(&vfsmount_lock);
b3e19d92
NP
929 mntfree(mnt);
930}
b3e19d92
NP
931
932void mntput(struct vfsmount *mnt)
933{
934 if (mnt) {
863d684f 935 struct mount *m = real_mount(mnt);
b3e19d92 936 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
937 if (unlikely(m->mnt_expiry_mark))
938 m->mnt_expiry_mark = 0;
939 mntput_no_expire(m);
b3e19d92
NP
940 }
941}
942EXPORT_SYMBOL(mntput);
943
944struct vfsmount *mntget(struct vfsmount *mnt)
945{
946 if (mnt)
83adc753 947 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
948 return mnt;
949}
950EXPORT_SYMBOL(mntget);
951
7b7b1ace
AV
952void mnt_pin(struct vfsmount *mnt)
953{
962830df 954 br_write_lock(&vfsmount_lock);
863d684f 955 real_mount(mnt)->mnt_pinned++;
962830df 956 br_write_unlock(&vfsmount_lock);
7b7b1ace 957}
7b7b1ace
AV
958EXPORT_SYMBOL(mnt_pin);
959
863d684f 960void mnt_unpin(struct vfsmount *m)
7b7b1ace 961{
863d684f 962 struct mount *mnt = real_mount(m);
962830df 963 br_write_lock(&vfsmount_lock);
7b7b1ace 964 if (mnt->mnt_pinned) {
863d684f 965 mnt_add_count(mnt, 1);
7b7b1ace
AV
966 mnt->mnt_pinned--;
967 }
962830df 968 br_write_unlock(&vfsmount_lock);
7b7b1ace 969}
7b7b1ace 970EXPORT_SYMBOL(mnt_unpin);
1da177e4 971
b3b304a2
MS
972static inline void mangle(struct seq_file *m, const char *s)
973{
974 seq_escape(m, s, " \t\n\\");
975}
976
977/*
978 * Simple .show_options callback for filesystems which don't want to
979 * implement more complex mount option showing.
980 *
981 * See also save_mount_options().
982 */
34c80b1d 983int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 984{
2a32cebd
AV
985 const char *options;
986
987 rcu_read_lock();
34c80b1d 988 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
989
990 if (options != NULL && options[0]) {
991 seq_putc(m, ',');
992 mangle(m, options);
993 }
2a32cebd 994 rcu_read_unlock();
b3b304a2
MS
995
996 return 0;
997}
998EXPORT_SYMBOL(generic_show_options);
999
1000/*
1001 * If filesystem uses generic_show_options(), this function should be
1002 * called from the fill_super() callback.
1003 *
1004 * The .remount_fs callback usually needs to be handled in a special
1005 * way, to make sure, that previous options are not overwritten if the
1006 * remount fails.
1007 *
1008 * Also note, that if the filesystem's .remount_fs function doesn't
1009 * reset all options to their default value, but changes only newly
1010 * given options, then the displayed options will not reflect reality
1011 * any more.
1012 */
1013void save_mount_options(struct super_block *sb, char *options)
1014{
2a32cebd
AV
1015 BUG_ON(sb->s_options);
1016 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
1017}
1018EXPORT_SYMBOL(save_mount_options);
1019
2a32cebd
AV
1020void replace_mount_options(struct super_block *sb, char *options)
1021{
1022 char *old = sb->s_options;
1023 rcu_assign_pointer(sb->s_options, options);
1024 if (old) {
1025 synchronize_rcu();
1026 kfree(old);
1027 }
1028}
1029EXPORT_SYMBOL(replace_mount_options);
1030
a1a2c409 1031#ifdef CONFIG_PROC_FS
0226f492 1032/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1033static void *m_start(struct seq_file *m, loff_t *pos)
1034{
6ce6e24e 1035 struct proc_mounts *p = proc_mounts(m);
1da177e4 1036
390c6843 1037 down_read(&namespace_sem);
a1a2c409 1038 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
1039}
1040
1041static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1042{
6ce6e24e 1043 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1044
a1a2c409 1045 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
1046}
1047
1048static void m_stop(struct seq_file *m, void *v)
1049{
390c6843 1050 up_read(&namespace_sem);
1da177e4
LT
1051}
1052
0226f492 1053static int m_show(struct seq_file *m, void *v)
2d4d4864 1054{
6ce6e24e 1055 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1056 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1057 return p->show(m, &r->mnt);
1da177e4
LT
1058}
1059
a1a2c409 1060const struct seq_operations mounts_op = {
1da177e4
LT
1061 .start = m_start,
1062 .next = m_next,
1063 .stop = m_stop,
0226f492 1064 .show = m_show,
b4629fe2 1065};
a1a2c409 1066#endif /* CONFIG_PROC_FS */
b4629fe2 1067
1da177e4
LT
1068/**
1069 * may_umount_tree - check if a mount tree is busy
1070 * @mnt: root of mount tree
1071 *
1072 * This is called to check if a tree of mounts has any
1073 * open files, pwds, chroots or sub mounts that are
1074 * busy.
1075 */
909b0a88 1076int may_umount_tree(struct vfsmount *m)
1da177e4 1077{
909b0a88 1078 struct mount *mnt = real_mount(m);
36341f64
RP
1079 int actual_refs = 0;
1080 int minimum_refs = 0;
315fc83e 1081 struct mount *p;
909b0a88 1082 BUG_ON(!m);
1da177e4 1083
b3e19d92 1084 /* write lock needed for mnt_get_count */
962830df 1085 br_write_lock(&vfsmount_lock);
909b0a88 1086 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1087 actual_refs += mnt_get_count(p);
1da177e4 1088 minimum_refs += 2;
1da177e4 1089 }
962830df 1090 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1091
1092 if (actual_refs > minimum_refs)
e3474a8e 1093 return 0;
1da177e4 1094
e3474a8e 1095 return 1;
1da177e4
LT
1096}
1097
1098EXPORT_SYMBOL(may_umount_tree);
1099
1100/**
1101 * may_umount - check if a mount point is busy
1102 * @mnt: root of mount
1103 *
1104 * This is called to check if a mount point has any
1105 * open files, pwds, chroots or sub mounts. If the
1106 * mount has sub mounts this will return busy
1107 * regardless of whether the sub mounts are busy.
1108 *
1109 * Doesn't take quota and stuff into account. IOW, in some cases it will
1110 * give false negatives. The main reason why it's here is that we need
1111 * a non-destructive way to look for easily umountable filesystems.
1112 */
1113int may_umount(struct vfsmount *mnt)
1114{
e3474a8e 1115 int ret = 1;
8ad08d8a 1116 down_read(&namespace_sem);
962830df 1117 br_write_lock(&vfsmount_lock);
1ab59738 1118 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1119 ret = 0;
962830df 1120 br_write_unlock(&vfsmount_lock);
8ad08d8a 1121 up_read(&namespace_sem);
a05964f3 1122 return ret;
1da177e4
LT
1123}
1124
1125EXPORT_SYMBOL(may_umount);
1126
e3197d83
AV
1127static LIST_HEAD(unmounted); /* protected by namespace_sem */
1128
97216be0 1129static void namespace_unlock(void)
70fbcdf4 1130{
d5e50f74 1131 struct mount *mnt;
97216be0
AV
1132 LIST_HEAD(head);
1133
1134 if (likely(list_empty(&unmounted))) {
1135 up_write(&namespace_sem);
1136 return;
1137 }
1138
1139 list_splice_init(&unmounted, &head);
1140 up_write(&namespace_sem);
1141
1142 while (!list_empty(&head)) {
1143 mnt = list_first_entry(&head, struct mount, mnt_hash);
1b8e5564 1144 list_del_init(&mnt->mnt_hash);
676da58d 1145 if (mnt_has_parent(mnt)) {
70fbcdf4 1146 struct dentry *dentry;
863d684f 1147 struct mount *m;
99b7db7b 1148
962830df 1149 br_write_lock(&vfsmount_lock);
a73324da 1150 dentry = mnt->mnt_mountpoint;
863d684f 1151 m = mnt->mnt_parent;
a73324da 1152 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1153 mnt->mnt_parent = mnt;
7c4b93d8 1154 m->mnt_ghosts--;
962830df 1155 br_write_unlock(&vfsmount_lock);
70fbcdf4 1156 dput(dentry);
863d684f 1157 mntput(&m->mnt);
70fbcdf4 1158 }
d5e50f74 1159 mntput(&mnt->mnt);
70fbcdf4
RP
1160 }
1161}
1162
97216be0 1163static inline void namespace_lock(void)
e3197d83 1164{
97216be0 1165 down_write(&namespace_sem);
e3197d83
AV
1166}
1167
99b7db7b
NP
1168/*
1169 * vfsmount lock must be held for write
1170 * namespace_sem must be held for write
1171 */
328e6d90 1172void umount_tree(struct mount *mnt, int propagate)
1da177e4 1173{
7b8a53fd 1174 LIST_HEAD(tmp_list);
315fc83e 1175 struct mount *p;
1da177e4 1176
909b0a88 1177 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1178 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1179
a05964f3 1180 if (propagate)
7b8a53fd 1181 propagate_umount(&tmp_list);
a05964f3 1182
1b8e5564 1183 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1184 list_del_init(&p->mnt_expire);
1a4eeaf2 1185 list_del_init(&p->mnt_list);
143c8c91
AV
1186 __touch_mnt_namespace(p->mnt_ns);
1187 p->mnt_ns = NULL;
6b41d536 1188 list_del_init(&p->mnt_child);
676da58d 1189 if (mnt_has_parent(p)) {
863d684f 1190 p->mnt_parent->mnt_ghosts++;
84d17192
AV
1191 put_mountpoint(p->mnt_mp);
1192 p->mnt_mp = NULL;
7c4b93d8 1193 }
0f0afb1d 1194 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1195 }
328e6d90 1196 list_splice(&tmp_list, &unmounted);
1da177e4
LT
1197}
1198
b54b9be7 1199static void shrink_submounts(struct mount *mnt);
c35038be 1200
1ab59738 1201static int do_umount(struct mount *mnt, int flags)
1da177e4 1202{
1ab59738 1203 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4
LT
1204 int retval;
1205
1ab59738 1206 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1207 if (retval)
1208 return retval;
1209
1210 /*
1211 * Allow userspace to request a mountpoint be expired rather than
1212 * unmounting unconditionally. Unmount only happens if:
1213 * (1) the mark is already set (the mark is cleared by mntput())
1214 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1215 */
1216 if (flags & MNT_EXPIRE) {
1ab59738 1217 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1218 flags & (MNT_FORCE | MNT_DETACH))
1219 return -EINVAL;
1220
b3e19d92
NP
1221 /*
1222 * probably don't strictly need the lock here if we examined
1223 * all race cases, but it's a slowpath.
1224 */
962830df 1225 br_write_lock(&vfsmount_lock);
83adc753 1226 if (mnt_get_count(mnt) != 2) {
962830df 1227 br_write_unlock(&vfsmount_lock);
1da177e4 1228 return -EBUSY;
b3e19d92 1229 }
962830df 1230 br_write_unlock(&vfsmount_lock);
1da177e4 1231
863d684f 1232 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1233 return -EAGAIN;
1234 }
1235
1236 /*
1237 * If we may have to abort operations to get out of this
1238 * mount, and they will themselves hold resources we must
1239 * allow the fs to do things. In the Unix tradition of
1240 * 'Gee thats tricky lets do it in userspace' the umount_begin
1241 * might fail to complete on the first run through as other tasks
1242 * must return, and the like. Thats for the mount program to worry
1243 * about for the moment.
1244 */
1245
42faad99 1246 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1247 sb->s_op->umount_begin(sb);
42faad99 1248 }
1da177e4
LT
1249
1250 /*
1251 * No sense to grab the lock for this test, but test itself looks
1252 * somewhat bogus. Suggestions for better replacement?
1253 * Ho-hum... In principle, we might treat that as umount + switch
1254 * to rootfs. GC would eventually take care of the old vfsmount.
1255 * Actually it makes sense, especially if rootfs would contain a
1256 * /reboot - static binary that would close all descriptors and
1257 * call reboot(9). Then init(8) could umount root and exec /reboot.
1258 */
1ab59738 1259 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1260 /*
1261 * Special case for "unmounting" root ...
1262 * we just try to remount it readonly.
1263 */
1264 down_write(&sb->s_umount);
4aa98cf7 1265 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1266 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1267 up_write(&sb->s_umount);
1268 return retval;
1269 }
1270
97216be0 1271 namespace_lock();
962830df 1272 br_write_lock(&vfsmount_lock);
5addc5dd 1273 event++;
1da177e4 1274
c35038be 1275 if (!(flags & MNT_DETACH))
b54b9be7 1276 shrink_submounts(mnt);
c35038be 1277
1da177e4 1278 retval = -EBUSY;
a05964f3 1279 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1280 if (!list_empty(&mnt->mnt_list))
328e6d90 1281 umount_tree(mnt, 1);
1da177e4
LT
1282 retval = 0;
1283 }
962830df 1284 br_write_unlock(&vfsmount_lock);
e3197d83 1285 namespace_unlock();
1da177e4
LT
1286 return retval;
1287}
1288
9b40bc90
AV
1289/*
1290 * Is the caller allowed to modify his namespace?
1291 */
1292static inline bool may_mount(void)
1293{
1294 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1295}
1296
1da177e4
LT
1297/*
1298 * Now umount can handle mount points as well as block devices.
1299 * This is important for filesystems which use unnamed block devices.
1300 *
1301 * We now support a flag for forced unmount like the other 'big iron'
1302 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1303 */
1304
bdc480e3 1305SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1306{
2d8f3038 1307 struct path path;
900148dc 1308 struct mount *mnt;
1da177e4 1309 int retval;
db1f05bb 1310 int lookup_flags = 0;
1da177e4 1311
db1f05bb
MS
1312 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1313 return -EINVAL;
1314
9b40bc90
AV
1315 if (!may_mount())
1316 return -EPERM;
1317
db1f05bb
MS
1318 if (!(flags & UMOUNT_NOFOLLOW))
1319 lookup_flags |= LOOKUP_FOLLOW;
1320
1321 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1322 if (retval)
1323 goto out;
900148dc 1324 mnt = real_mount(path.mnt);
1da177e4 1325 retval = -EINVAL;
2d8f3038 1326 if (path.dentry != path.mnt->mnt_root)
1da177e4 1327 goto dput_and_out;
143c8c91 1328 if (!check_mnt(mnt))
1da177e4
LT
1329 goto dput_and_out;
1330
900148dc 1331 retval = do_umount(mnt, flags);
1da177e4 1332dput_and_out:
429731b1 1333 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1334 dput(path.dentry);
900148dc 1335 mntput_no_expire(mnt);
1da177e4
LT
1336out:
1337 return retval;
1338}
1339
1340#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1341
1342/*
b58fed8b 1343 * The 2.0 compatible umount. No flags.
1da177e4 1344 */
bdc480e3 1345SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1346{
b58fed8b 1347 return sys_umount(name, 0);
1da177e4
LT
1348}
1349
1350#endif
1351
8823c079
EB
1352static bool mnt_ns_loop(struct path *path)
1353{
1354 /* Could bind mounting the mount namespace inode cause a
1355 * mount namespace loop?
1356 */
1357 struct inode *inode = path->dentry->d_inode;
0bb80f24 1358 struct proc_ns *ei;
8823c079
EB
1359 struct mnt_namespace *mnt_ns;
1360
1361 if (!proc_ns_inode(inode))
1362 return false;
1363
0bb80f24 1364 ei = get_proc_ns(inode);
8823c079
EB
1365 if (ei->ns_ops != &mntns_operations)
1366 return false;
1367
1368 mnt_ns = ei->ns;
1369 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1370}
1371
87129cc0 1372struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1373 int flag)
1da177e4 1374{
84d17192 1375 struct mount *res, *p, *q, *r, *parent;
1da177e4 1376
fc7be130 1377 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
be34d1a3 1378 return ERR_PTR(-EINVAL);
9676f0c6 1379
36341f64 1380 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1381 if (IS_ERR(q))
1382 return q;
1383
a73324da 1384 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1385
1386 p = mnt;
6b41d536 1387 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1388 struct mount *s;
7ec02ef1 1389 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1390 continue;
1391
909b0a88 1392 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1393 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1394 s = skip_mnt_tree(s);
1395 continue;
1396 }
0714a533
AV
1397 while (p != s->mnt_parent) {
1398 p = p->mnt_parent;
1399 q = q->mnt_parent;
1da177e4 1400 }
87129cc0 1401 p = s;
84d17192 1402 parent = q;
87129cc0 1403 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1404 if (IS_ERR(q))
1405 goto out;
962830df 1406 br_write_lock(&vfsmount_lock);
1a4eeaf2 1407 list_add_tail(&q->mnt_list, &res->mnt_list);
84d17192 1408 attach_mnt(q, parent, p->mnt_mp);
962830df 1409 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1410 }
1411 }
1412 return res;
be34d1a3 1413out:
1da177e4 1414 if (res) {
962830df 1415 br_write_lock(&vfsmount_lock);
328e6d90 1416 umount_tree(res, 0);
962830df 1417 br_write_unlock(&vfsmount_lock);
1da177e4 1418 }
be34d1a3 1419 return q;
1da177e4
LT
1420}
1421
be34d1a3
DH
1422/* Caller should check returned pointer for errors */
1423
589ff870 1424struct vfsmount *collect_mounts(struct path *path)
8aec0809 1425{
cb338d06 1426 struct mount *tree;
97216be0 1427 namespace_lock();
87129cc0
AV
1428 tree = copy_tree(real_mount(path->mnt), path->dentry,
1429 CL_COPY_ALL | CL_PRIVATE);
328e6d90 1430 namespace_unlock();
be34d1a3 1431 if (IS_ERR(tree))
2bee1e0f 1432 return ERR_CAST(tree);
be34d1a3 1433 return &tree->mnt;
8aec0809
AV
1434}
1435
1436void drop_collected_mounts(struct vfsmount *mnt)
1437{
97216be0 1438 namespace_lock();
962830df 1439 br_write_lock(&vfsmount_lock);
328e6d90 1440 umount_tree(real_mount(mnt), 0);
962830df 1441 br_write_unlock(&vfsmount_lock);
3ab6abee 1442 namespace_unlock();
8aec0809
AV
1443}
1444
1f707137
AV
1445int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1446 struct vfsmount *root)
1447{
1a4eeaf2 1448 struct mount *mnt;
1f707137
AV
1449 int res = f(root, arg);
1450 if (res)
1451 return res;
1a4eeaf2
AV
1452 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1453 res = f(&mnt->mnt, arg);
1f707137
AV
1454 if (res)
1455 return res;
1456 }
1457 return 0;
1458}
1459
4b8b21f4 1460static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1461{
315fc83e 1462 struct mount *p;
719f5d7f 1463
909b0a88 1464 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1465 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1466 mnt_release_group_id(p);
719f5d7f
MS
1467 }
1468}
1469
4b8b21f4 1470static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1471{
315fc83e 1472 struct mount *p;
719f5d7f 1473
909b0a88 1474 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1475 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1476 int err = mnt_alloc_group_id(p);
719f5d7f 1477 if (err) {
4b8b21f4 1478 cleanup_group_ids(mnt, p);
719f5d7f
MS
1479 return err;
1480 }
1481 }
1482 }
1483
1484 return 0;
1485}
1486
b90fa9ae
RP
1487/*
1488 * @source_mnt : mount tree to be attached
21444403
RP
1489 * @nd : place the mount tree @source_mnt is attached
1490 * @parent_nd : if non-null, detach the source_mnt from its parent and
1491 * store the parent mount and mountpoint dentry.
1492 * (done when source_mnt is moved)
b90fa9ae
RP
1493 *
1494 * NOTE: in the table below explains the semantics when a source mount
1495 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1496 * ---------------------------------------------------------------------------
1497 * | BIND MOUNT OPERATION |
1498 * |**************************************************************************
1499 * | source-->| shared | private | slave | unbindable |
1500 * | dest | | | | |
1501 * | | | | | | |
1502 * | v | | | | |
1503 * |**************************************************************************
1504 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1505 * | | | | | |
1506 * |non-shared| shared (+) | private | slave (*) | invalid |
1507 * ***************************************************************************
b90fa9ae
RP
1508 * A bind operation clones the source mount and mounts the clone on the
1509 * destination mount.
1510 *
1511 * (++) the cloned mount is propagated to all the mounts in the propagation
1512 * tree of the destination mount and the cloned mount is added to
1513 * the peer group of the source mount.
1514 * (+) the cloned mount is created under the destination mount and is marked
1515 * as shared. The cloned mount is added to the peer group of the source
1516 * mount.
5afe0022
RP
1517 * (+++) the mount is propagated to all the mounts in the propagation tree
1518 * of the destination mount and the cloned mount is made slave
1519 * of the same master as that of the source mount. The cloned mount
1520 * is marked as 'shared and slave'.
1521 * (*) the cloned mount is made a slave of the same master as that of the
1522 * source mount.
1523 *
9676f0c6
RP
1524 * ---------------------------------------------------------------------------
1525 * | MOVE MOUNT OPERATION |
1526 * |**************************************************************************
1527 * | source-->| shared | private | slave | unbindable |
1528 * | dest | | | | |
1529 * | | | | | | |
1530 * | v | | | | |
1531 * |**************************************************************************
1532 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1533 * | | | | | |
1534 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1535 * ***************************************************************************
5afe0022
RP
1536 *
1537 * (+) the mount is moved to the destination. And is then propagated to
1538 * all the mounts in the propagation tree of the destination mount.
21444403 1539 * (+*) the mount is moved to the destination.
5afe0022
RP
1540 * (+++) the mount is moved to the destination and is then propagated to
1541 * all the mounts belonging to the destination mount's propagation tree.
1542 * the mount is marked as 'shared and slave'.
1543 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1544 *
1545 * if the source mount is a tree, the operations explained above is
1546 * applied to each mount in the tree.
1547 * Must be called without spinlocks held, since this function can sleep
1548 * in allocations.
1549 */
0fb54e50 1550static int attach_recursive_mnt(struct mount *source_mnt,
84d17192
AV
1551 struct mount *dest_mnt,
1552 struct mountpoint *dest_mp,
1553 struct path *parent_path)
b90fa9ae
RP
1554{
1555 LIST_HEAD(tree_list);
315fc83e 1556 struct mount *child, *p;
719f5d7f 1557 int err;
b90fa9ae 1558
fc7be130 1559 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1560 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1561 if (err)
1562 goto out;
1563 }
84d17192 1564 err = propagate_mnt(dest_mnt, dest_mp, source_mnt, &tree_list);
719f5d7f
MS
1565 if (err)
1566 goto out_cleanup_ids;
b90fa9ae 1567
962830df 1568 br_write_lock(&vfsmount_lock);
df1a1ad2 1569
fc7be130 1570 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1571 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1572 set_mnt_shared(p);
b90fa9ae 1573 }
1a390689 1574 if (parent_path) {
0fb54e50 1575 detach_mnt(source_mnt, parent_path);
84d17192 1576 attach_mnt(source_mnt, dest_mnt, dest_mp);
143c8c91 1577 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1578 } else {
84d17192 1579 mnt_set_mountpoint(dest_mnt, dest_mp, source_mnt);
0fb54e50 1580 commit_tree(source_mnt);
21444403 1581 }
b90fa9ae 1582
1b8e5564
AV
1583 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1584 list_del_init(&child->mnt_hash);
4b2619a5 1585 commit_tree(child);
b90fa9ae 1586 }
962830df 1587 br_write_unlock(&vfsmount_lock);
99b7db7b 1588
b90fa9ae 1589 return 0;
719f5d7f
MS
1590
1591 out_cleanup_ids:
fc7be130 1592 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1593 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1594 out:
1595 return err;
b90fa9ae
RP
1596}
1597
84d17192 1598static struct mountpoint *lock_mount(struct path *path)
b12cea91
AV
1599{
1600 struct vfsmount *mnt;
84d17192 1601 struct dentry *dentry = path->dentry;
b12cea91 1602retry:
84d17192
AV
1603 mutex_lock(&dentry->d_inode->i_mutex);
1604 if (unlikely(cant_mount(dentry))) {
1605 mutex_unlock(&dentry->d_inode->i_mutex);
1606 return ERR_PTR(-ENOENT);
b12cea91 1607 }
97216be0 1608 namespace_lock();
b12cea91 1609 mnt = lookup_mnt(path);
84d17192
AV
1610 if (likely(!mnt)) {
1611 struct mountpoint *mp = new_mountpoint(dentry);
1612 if (IS_ERR(mp)) {
97216be0 1613 namespace_unlock();
84d17192
AV
1614 mutex_unlock(&dentry->d_inode->i_mutex);
1615 return mp;
1616 }
1617 return mp;
1618 }
97216be0 1619 namespace_unlock();
b12cea91
AV
1620 mutex_unlock(&path->dentry->d_inode->i_mutex);
1621 path_put(path);
1622 path->mnt = mnt;
84d17192 1623 dentry = path->dentry = dget(mnt->mnt_root);
b12cea91
AV
1624 goto retry;
1625}
1626
84d17192 1627static void unlock_mount(struct mountpoint *where)
b12cea91 1628{
84d17192
AV
1629 struct dentry *dentry = where->m_dentry;
1630 put_mountpoint(where);
328e6d90 1631 namespace_unlock();
84d17192 1632 mutex_unlock(&dentry->d_inode->i_mutex);
b12cea91
AV
1633}
1634
84d17192 1635static int graft_tree(struct mount *mnt, struct mount *p, struct mountpoint *mp)
1da177e4 1636{
95bc5f25 1637 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1638 return -EINVAL;
1639
84d17192 1640 if (S_ISDIR(mp->m_dentry->d_inode->i_mode) !=
95bc5f25 1641 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1642 return -ENOTDIR;
1643
84d17192 1644 return attach_recursive_mnt(mnt, p, mp, NULL);
1da177e4
LT
1645}
1646
7a2e8a8f
VA
1647/*
1648 * Sanity check the flags to change_mnt_propagation.
1649 */
1650
1651static int flags_to_propagation_type(int flags)
1652{
7c6e984d 1653 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1654
1655 /* Fail if any non-propagation flags are set */
1656 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1657 return 0;
1658 /* Only one propagation flag should be set */
1659 if (!is_power_of_2(type))
1660 return 0;
1661 return type;
1662}
1663
07b20889
RP
1664/*
1665 * recursively change the type of the mountpoint.
1666 */
0a0d8a46 1667static int do_change_type(struct path *path, int flag)
07b20889 1668{
315fc83e 1669 struct mount *m;
4b8b21f4 1670 struct mount *mnt = real_mount(path->mnt);
07b20889 1671 int recurse = flag & MS_REC;
7a2e8a8f 1672 int type;
719f5d7f 1673 int err = 0;
07b20889 1674
2d92ab3c 1675 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1676 return -EINVAL;
1677
7a2e8a8f
VA
1678 type = flags_to_propagation_type(flag);
1679 if (!type)
1680 return -EINVAL;
1681
97216be0 1682 namespace_lock();
719f5d7f
MS
1683 if (type == MS_SHARED) {
1684 err = invent_group_ids(mnt, recurse);
1685 if (err)
1686 goto out_unlock;
1687 }
1688
962830df 1689 br_write_lock(&vfsmount_lock);
909b0a88 1690 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1691 change_mnt_propagation(m, type);
962830df 1692 br_write_unlock(&vfsmount_lock);
719f5d7f
MS
1693
1694 out_unlock:
97216be0 1695 namespace_unlock();
719f5d7f 1696 return err;
07b20889
RP
1697}
1698
1da177e4
LT
1699/*
1700 * do loopback mount.
1701 */
808d4e3c 1702static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1703 int recurse)
1da177e4 1704{
2d92ab3c 1705 struct path old_path;
84d17192
AV
1706 struct mount *mnt = NULL, *old, *parent;
1707 struct mountpoint *mp;
57eccb83 1708 int err;
1da177e4
LT
1709 if (!old_name || !*old_name)
1710 return -EINVAL;
815d405c 1711 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1712 if (err)
1713 return err;
1714
8823c079
EB
1715 err = -EINVAL;
1716 if (mnt_ns_loop(&old_path))
1717 goto out;
1718
84d17192
AV
1719 mp = lock_mount(path);
1720 err = PTR_ERR(mp);
1721 if (IS_ERR(mp))
b12cea91
AV
1722 goto out;
1723
87129cc0 1724 old = real_mount(old_path.mnt);
84d17192 1725 parent = real_mount(path->mnt);
87129cc0 1726
1da177e4 1727 err = -EINVAL;
fc7be130 1728 if (IS_MNT_UNBINDABLE(old))
b12cea91 1729 goto out2;
9676f0c6 1730
84d17192 1731 if (!check_mnt(parent) || !check_mnt(old))
b12cea91 1732 goto out2;
1da177e4 1733
ccd48bc7 1734 if (recurse)
87129cc0 1735 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1736 else
87129cc0 1737 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1738
be34d1a3
DH
1739 if (IS_ERR(mnt)) {
1740 err = PTR_ERR(mnt);
e9c5d8a5 1741 goto out2;
be34d1a3 1742 }
ccd48bc7 1743
84d17192 1744 err = graft_tree(mnt, parent, mp);
ccd48bc7 1745 if (err) {
962830df 1746 br_write_lock(&vfsmount_lock);
328e6d90 1747 umount_tree(mnt, 0);
962830df 1748 br_write_unlock(&vfsmount_lock);
5b83d2c5 1749 }
b12cea91 1750out2:
84d17192 1751 unlock_mount(mp);
ccd48bc7 1752out:
2d92ab3c 1753 path_put(&old_path);
1da177e4
LT
1754 return err;
1755}
1756
2e4b7fcd
DH
1757static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1758{
1759 int error = 0;
1760 int readonly_request = 0;
1761
1762 if (ms_flags & MS_RDONLY)
1763 readonly_request = 1;
1764 if (readonly_request == __mnt_is_readonly(mnt))
1765 return 0;
1766
90563b19
EB
1767 if (mnt->mnt_flags & MNT_LOCK_READONLY)
1768 return -EPERM;
1769
2e4b7fcd 1770 if (readonly_request)
83adc753 1771 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1772 else
83adc753 1773 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1774 return error;
1775}
1776
1da177e4
LT
1777/*
1778 * change filesystem flags. dir should be a physical root of filesystem.
1779 * If you've mounted a non-root directory somewhere and want to do remount
1780 * on it - tough luck.
1781 */
0a0d8a46 1782static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1783 void *data)
1784{
1785 int err;
2d92ab3c 1786 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1787 struct mount *mnt = real_mount(path->mnt);
1da177e4 1788
143c8c91 1789 if (!check_mnt(mnt))
1da177e4
LT
1790 return -EINVAL;
1791
2d92ab3c 1792 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1793 return -EINVAL;
1794
ff36fe2c
EP
1795 err = security_sb_remount(sb, data);
1796 if (err)
1797 return err;
1798
1da177e4 1799 down_write(&sb->s_umount);
2e4b7fcd 1800 if (flags & MS_BIND)
2d92ab3c 1801 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1802 else if (!capable(CAP_SYS_ADMIN))
1803 err = -EPERM;
4aa98cf7 1804 else
2e4b7fcd 1805 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1806 if (!err) {
962830df 1807 br_write_lock(&vfsmount_lock);
143c8c91
AV
1808 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1809 mnt->mnt.mnt_flags = mnt_flags;
962830df 1810 br_write_unlock(&vfsmount_lock);
7b43a79f 1811 }
1da177e4 1812 up_write(&sb->s_umount);
0e55a7cc 1813 if (!err) {
962830df 1814 br_write_lock(&vfsmount_lock);
143c8c91 1815 touch_mnt_namespace(mnt->mnt_ns);
962830df 1816 br_write_unlock(&vfsmount_lock);
0e55a7cc 1817 }
1da177e4
LT
1818 return err;
1819}
1820
cbbe362c 1821static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1822{
315fc83e 1823 struct mount *p;
909b0a88 1824 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1825 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1826 return 1;
1827 }
1828 return 0;
1829}
1830
808d4e3c 1831static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1832{
2d92ab3c 1833 struct path old_path, parent_path;
676da58d 1834 struct mount *p;
0fb54e50 1835 struct mount *old;
84d17192 1836 struct mountpoint *mp;
57eccb83 1837 int err;
1da177e4
LT
1838 if (!old_name || !*old_name)
1839 return -EINVAL;
2d92ab3c 1840 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1841 if (err)
1842 return err;
1843
84d17192
AV
1844 mp = lock_mount(path);
1845 err = PTR_ERR(mp);
1846 if (IS_ERR(mp))
cc53ce53
DH
1847 goto out;
1848
143c8c91 1849 old = real_mount(old_path.mnt);
fc7be130 1850 p = real_mount(path->mnt);
143c8c91 1851
1da177e4 1852 err = -EINVAL;
fc7be130 1853 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1854 goto out1;
1855
1da177e4 1856 err = -EINVAL;
2d92ab3c 1857 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1858 goto out1;
1da177e4 1859
676da58d 1860 if (!mnt_has_parent(old))
21444403 1861 goto out1;
1da177e4 1862
2d92ab3c
AV
1863 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1864 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1865 goto out1;
1866 /*
1867 * Don't move a mount residing in a shared parent.
1868 */
fc7be130 1869 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1870 goto out1;
9676f0c6
RP
1871 /*
1872 * Don't move a mount tree containing unbindable mounts to a destination
1873 * mount which is shared.
1874 */
fc7be130 1875 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1876 goto out1;
1da177e4 1877 err = -ELOOP;
fc7be130 1878 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1879 if (p == old)
21444403 1880 goto out1;
1da177e4 1881
84d17192 1882 err = attach_recursive_mnt(old, real_mount(path->mnt), mp, &parent_path);
4ac91378 1883 if (err)
21444403 1884 goto out1;
1da177e4
LT
1885
1886 /* if the mount is moved, it should no longer be expire
1887 * automatically */
6776db3d 1888 list_del_init(&old->mnt_expire);
1da177e4 1889out1:
84d17192 1890 unlock_mount(mp);
1da177e4 1891out:
1da177e4 1892 if (!err)
1a390689 1893 path_put(&parent_path);
2d92ab3c 1894 path_put(&old_path);
1da177e4
LT
1895 return err;
1896}
1897
9d412a43
AV
1898static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1899{
1900 int err;
1901 const char *subtype = strchr(fstype, '.');
1902 if (subtype) {
1903 subtype++;
1904 err = -EINVAL;
1905 if (!subtype[0])
1906 goto err;
1907 } else
1908 subtype = "";
1909
1910 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1911 err = -ENOMEM;
1912 if (!mnt->mnt_sb->s_subtype)
1913 goto err;
1914 return mnt;
1915
1916 err:
1917 mntput(mnt);
1918 return ERR_PTR(err);
1919}
1920
9d412a43
AV
1921/*
1922 * add a mount into a namespace's mount tree
1923 */
95bc5f25 1924static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43 1925{
84d17192
AV
1926 struct mountpoint *mp;
1927 struct mount *parent;
9d412a43
AV
1928 int err;
1929
1930 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1931
84d17192
AV
1932 mp = lock_mount(path);
1933 if (IS_ERR(mp))
1934 return PTR_ERR(mp);
9d412a43 1935
84d17192 1936 parent = real_mount(path->mnt);
9d412a43 1937 err = -EINVAL;
84d17192 1938 if (unlikely(!check_mnt(parent))) {
156cacb1
AV
1939 /* that's acceptable only for automounts done in private ns */
1940 if (!(mnt_flags & MNT_SHRINKABLE))
1941 goto unlock;
1942 /* ... and for those we'd better have mountpoint still alive */
84d17192 1943 if (!parent->mnt_ns)
156cacb1
AV
1944 goto unlock;
1945 }
9d412a43
AV
1946
1947 /* Refuse the same filesystem on the same mount point */
1948 err = -EBUSY;
95bc5f25 1949 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1950 path->mnt->mnt_root == path->dentry)
1951 goto unlock;
1952
1953 err = -EINVAL;
95bc5f25 1954 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1955 goto unlock;
1956
95bc5f25 1957 newmnt->mnt.mnt_flags = mnt_flags;
84d17192 1958 err = graft_tree(newmnt, parent, mp);
9d412a43
AV
1959
1960unlock:
84d17192 1961 unlock_mount(mp);
9d412a43
AV
1962 return err;
1963}
b1e75df4 1964
1da177e4
LT
1965/*
1966 * create a new mount for userspace and request it to be added into the
1967 * namespace's tree
1968 */
0c55cfc4 1969static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 1970 int mnt_flags, const char *name, void *data)
1da177e4 1971{
0c55cfc4 1972 struct file_system_type *type;
9b40bc90 1973 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 1974 struct vfsmount *mnt;
15f9a3f3 1975 int err;
1da177e4 1976
0c55cfc4 1977 if (!fstype)
1da177e4
LT
1978 return -EINVAL;
1979
0c55cfc4
EB
1980 type = get_fs_type(fstype);
1981 if (!type)
1982 return -ENODEV;
1983
1984 if (user_ns != &init_user_ns) {
1985 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
1986 put_filesystem(type);
1987 return -EPERM;
1988 }
1989 /* Only in special cases allow devices from mounts
1990 * created outside the initial user namespace.
1991 */
1992 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1993 flags |= MS_NODEV;
1994 mnt_flags |= MNT_NODEV;
1995 }
1996 }
1997
1998 mnt = vfs_kern_mount(type, flags, name, data);
1999 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
2000 !mnt->mnt_sb->s_subtype)
2001 mnt = fs_set_subtype(mnt, fstype);
2002
2003 put_filesystem(type);
1da177e4
LT
2004 if (IS_ERR(mnt))
2005 return PTR_ERR(mnt);
2006
95bc5f25 2007 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
2008 if (err)
2009 mntput(mnt);
2010 return err;
1da177e4
LT
2011}
2012
19a167af
AV
2013int finish_automount(struct vfsmount *m, struct path *path)
2014{
6776db3d 2015 struct mount *mnt = real_mount(m);
19a167af
AV
2016 int err;
2017 /* The new mount record should have at least 2 refs to prevent it being
2018 * expired before we get a chance to add it
2019 */
6776db3d 2020 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
2021
2022 if (m->mnt_sb == path->mnt->mnt_sb &&
2023 m->mnt_root == path->dentry) {
b1e75df4
AV
2024 err = -ELOOP;
2025 goto fail;
19a167af
AV
2026 }
2027
95bc5f25 2028 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2029 if (!err)
2030 return 0;
2031fail:
2032 /* remove m from any expiration list it may be on */
6776db3d 2033 if (!list_empty(&mnt->mnt_expire)) {
97216be0 2034 namespace_lock();
962830df 2035 br_write_lock(&vfsmount_lock);
6776db3d 2036 list_del_init(&mnt->mnt_expire);
962830df 2037 br_write_unlock(&vfsmount_lock);
97216be0 2038 namespace_unlock();
19a167af 2039 }
b1e75df4
AV
2040 mntput(m);
2041 mntput(m);
19a167af
AV
2042 return err;
2043}
2044
ea5b778a
DH
2045/**
2046 * mnt_set_expiry - Put a mount on an expiration list
2047 * @mnt: The mount to list.
2048 * @expiry_list: The list to add the mount to.
2049 */
2050void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2051{
97216be0 2052 namespace_lock();
962830df 2053 br_write_lock(&vfsmount_lock);
ea5b778a 2054
6776db3d 2055 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2056
962830df 2057 br_write_unlock(&vfsmount_lock);
97216be0 2058 namespace_unlock();
ea5b778a
DH
2059}
2060EXPORT_SYMBOL(mnt_set_expiry);
2061
1da177e4
LT
2062/*
2063 * process a list of expirable mountpoints with the intent of discarding any
2064 * mountpoints that aren't in use and haven't been touched since last we came
2065 * here
2066 */
2067void mark_mounts_for_expiry(struct list_head *mounts)
2068{
761d5c38 2069 struct mount *mnt, *next;
1da177e4
LT
2070 LIST_HEAD(graveyard);
2071
2072 if (list_empty(mounts))
2073 return;
2074
97216be0 2075 namespace_lock();
962830df 2076 br_write_lock(&vfsmount_lock);
1da177e4
LT
2077
2078 /* extract from the expiration list every vfsmount that matches the
2079 * following criteria:
2080 * - only referenced by its parent vfsmount
2081 * - still marked for expiry (marked on the last call here; marks are
2082 * cleared by mntput())
2083 */
6776db3d 2084 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2085 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2086 propagate_mount_busy(mnt, 1))
1da177e4 2087 continue;
6776db3d 2088 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2089 }
bcc5c7d2 2090 while (!list_empty(&graveyard)) {
6776db3d 2091 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2092 touch_mnt_namespace(mnt->mnt_ns);
328e6d90 2093 umount_tree(mnt, 1);
bcc5c7d2 2094 }
962830df 2095 br_write_unlock(&vfsmount_lock);
3ab6abee 2096 namespace_unlock();
5528f911
TM
2097}
2098
2099EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2100
2101/*
2102 * Ripoff of 'select_parent()'
2103 *
2104 * search the list of submounts for a given mountpoint, and move any
2105 * shrinkable submounts to the 'graveyard' list.
2106 */
692afc31 2107static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2108{
692afc31 2109 struct mount *this_parent = parent;
5528f911
TM
2110 struct list_head *next;
2111 int found = 0;
2112
2113repeat:
6b41d536 2114 next = this_parent->mnt_mounts.next;
5528f911 2115resume:
6b41d536 2116 while (next != &this_parent->mnt_mounts) {
5528f911 2117 struct list_head *tmp = next;
6b41d536 2118 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2119
2120 next = tmp->next;
692afc31 2121 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2122 continue;
5528f911
TM
2123 /*
2124 * Descend a level if the d_mounts list is non-empty.
2125 */
6b41d536 2126 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2127 this_parent = mnt;
2128 goto repeat;
2129 }
1da177e4 2130
1ab59738 2131 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2132 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2133 found++;
2134 }
1da177e4 2135 }
5528f911
TM
2136 /*
2137 * All done at this level ... ascend and resume the search
2138 */
2139 if (this_parent != parent) {
6b41d536 2140 next = this_parent->mnt_child.next;
0714a533 2141 this_parent = this_parent->mnt_parent;
5528f911
TM
2142 goto resume;
2143 }
2144 return found;
2145}
2146
2147/*
2148 * process a list of expirable mountpoints with the intent of discarding any
2149 * submounts of a specific parent mountpoint
99b7db7b
NP
2150 *
2151 * vfsmount_lock must be held for write
5528f911 2152 */
b54b9be7 2153static void shrink_submounts(struct mount *mnt)
5528f911
TM
2154{
2155 LIST_HEAD(graveyard);
761d5c38 2156 struct mount *m;
5528f911 2157
5528f911 2158 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2159 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2160 while (!list_empty(&graveyard)) {
761d5c38 2161 m = list_first_entry(&graveyard, struct mount,
6776db3d 2162 mnt_expire);
143c8c91 2163 touch_mnt_namespace(m->mnt_ns);
328e6d90 2164 umount_tree(m, 1);
bcc5c7d2
AV
2165 }
2166 }
1da177e4
LT
2167}
2168
1da177e4
LT
2169/*
2170 * Some copy_from_user() implementations do not return the exact number of
2171 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2172 * Note that this function differs from copy_from_user() in that it will oops
2173 * on bad values of `to', rather than returning a short copy.
2174 */
b58fed8b
RP
2175static long exact_copy_from_user(void *to, const void __user * from,
2176 unsigned long n)
1da177e4
LT
2177{
2178 char *t = to;
2179 const char __user *f = from;
2180 char c;
2181
2182 if (!access_ok(VERIFY_READ, from, n))
2183 return n;
2184
2185 while (n) {
2186 if (__get_user(c, f)) {
2187 memset(t, 0, n);
2188 break;
2189 }
2190 *t++ = c;
2191 f++;
2192 n--;
2193 }
2194 return n;
2195}
2196
b58fed8b 2197int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2198{
2199 int i;
2200 unsigned long page;
2201 unsigned long size;
b58fed8b 2202
1da177e4
LT
2203 *where = 0;
2204 if (!data)
2205 return 0;
2206
2207 if (!(page = __get_free_page(GFP_KERNEL)))
2208 return -ENOMEM;
2209
2210 /* We only care that *some* data at the address the user
2211 * gave us is valid. Just in case, we'll zero
2212 * the remainder of the page.
2213 */
2214 /* copy_from_user cannot cross TASK_SIZE ! */
2215 size = TASK_SIZE - (unsigned long)data;
2216 if (size > PAGE_SIZE)
2217 size = PAGE_SIZE;
2218
2219 i = size - exact_copy_from_user((void *)page, data, size);
2220 if (!i) {
b58fed8b 2221 free_page(page);
1da177e4
LT
2222 return -EFAULT;
2223 }
2224 if (i != PAGE_SIZE)
2225 memset((char *)page + i, 0, PAGE_SIZE - i);
2226 *where = page;
2227 return 0;
2228}
2229
eca6f534
VN
2230int copy_mount_string(const void __user *data, char **where)
2231{
2232 char *tmp;
2233
2234 if (!data) {
2235 *where = NULL;
2236 return 0;
2237 }
2238
2239 tmp = strndup_user(data, PAGE_SIZE);
2240 if (IS_ERR(tmp))
2241 return PTR_ERR(tmp);
2242
2243 *where = tmp;
2244 return 0;
2245}
2246
1da177e4
LT
2247/*
2248 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2249 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2250 *
2251 * data is a (void *) that can point to any structure up to
2252 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2253 * information (or be NULL).
2254 *
2255 * Pre-0.97 versions of mount() didn't have a flags word.
2256 * When the flags word was introduced its top half was required
2257 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2258 * Therefore, if this magic number is present, it carries no information
2259 * and must be discarded.
2260 */
808d4e3c
AV
2261long do_mount(const char *dev_name, const char *dir_name,
2262 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2263{
2d92ab3c 2264 struct path path;
1da177e4
LT
2265 int retval = 0;
2266 int mnt_flags = 0;
2267
2268 /* Discard magic */
2269 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2270 flags &= ~MS_MGC_MSK;
2271
2272 /* Basic sanity checks */
2273
2274 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2275 return -EINVAL;
1da177e4
LT
2276
2277 if (data_page)
2278 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2279
a27ab9f2
TH
2280 /* ... and get the mountpoint */
2281 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2282 if (retval)
2283 return retval;
2284
2285 retval = security_sb_mount(dev_name, &path,
2286 type_page, flags, data_page);
0d5cadb8
AV
2287 if (!retval && !may_mount())
2288 retval = -EPERM;
a27ab9f2
TH
2289 if (retval)
2290 goto dput_out;
2291
613cbe3d
AK
2292 /* Default to relatime unless overriden */
2293 if (!(flags & MS_NOATIME))
2294 mnt_flags |= MNT_RELATIME;
0a1c01c9 2295
1da177e4
LT
2296 /* Separate the per-mountpoint flags */
2297 if (flags & MS_NOSUID)
2298 mnt_flags |= MNT_NOSUID;
2299 if (flags & MS_NODEV)
2300 mnt_flags |= MNT_NODEV;
2301 if (flags & MS_NOEXEC)
2302 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2303 if (flags & MS_NOATIME)
2304 mnt_flags |= MNT_NOATIME;
2305 if (flags & MS_NODIRATIME)
2306 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2307 if (flags & MS_STRICTATIME)
2308 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2309 if (flags & MS_RDONLY)
2310 mnt_flags |= MNT_READONLY;
fc33a7bb 2311
7a4dec53 2312 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2313 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2314 MS_STRICTATIME);
1da177e4 2315
1da177e4 2316 if (flags & MS_REMOUNT)
2d92ab3c 2317 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2318 data_page);
2319 else if (flags & MS_BIND)
2d92ab3c 2320 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2321 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2322 retval = do_change_type(&path, flags);
1da177e4 2323 else if (flags & MS_MOVE)
2d92ab3c 2324 retval = do_move_mount(&path, dev_name);
1da177e4 2325 else
2d92ab3c 2326 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2327 dev_name, data_page);
2328dput_out:
2d92ab3c 2329 path_put(&path);
1da177e4
LT
2330 return retval;
2331}
2332
771b1371
EB
2333static void free_mnt_ns(struct mnt_namespace *ns)
2334{
98f842e6 2335 proc_free_inum(ns->proc_inum);
771b1371
EB
2336 put_user_ns(ns->user_ns);
2337 kfree(ns);
2338}
2339
8823c079
EB
2340/*
2341 * Assign a sequence number so we can detect when we attempt to bind
2342 * mount a reference to an older mount namespace into the current
2343 * mount namespace, preventing reference counting loops. A 64bit
2344 * number incrementing at 10Ghz will take 12,427 years to wrap which
2345 * is effectively never, so we can ignore the possibility.
2346 */
2347static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2348
771b1371 2349static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2350{
2351 struct mnt_namespace *new_ns;
98f842e6 2352 int ret;
cf8d2c11
TM
2353
2354 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2355 if (!new_ns)
2356 return ERR_PTR(-ENOMEM);
98f842e6
EB
2357 ret = proc_alloc_inum(&new_ns->proc_inum);
2358 if (ret) {
2359 kfree(new_ns);
2360 return ERR_PTR(ret);
2361 }
8823c079 2362 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2363 atomic_set(&new_ns->count, 1);
2364 new_ns->root = NULL;
2365 INIT_LIST_HEAD(&new_ns->list);
2366 init_waitqueue_head(&new_ns->poll);
2367 new_ns->event = 0;
771b1371 2368 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2369 return new_ns;
2370}
2371
741a2951
JD
2372/*
2373 * Allocate a new namespace structure and populate it with contents
2374 * copied from the namespace of the passed in task structure.
2375 */
e3222c4e 2376static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
771b1371 2377 struct user_namespace *user_ns, struct fs_struct *fs)
1da177e4 2378{
6b3286ed 2379 struct mnt_namespace *new_ns;
7f2da1e7 2380 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2381 struct mount *p, *q;
be08d6d2 2382 struct mount *old = mnt_ns->root;
cb338d06 2383 struct mount *new;
7a472ef4 2384 int copy_flags;
1da177e4 2385
771b1371 2386 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2387 if (IS_ERR(new_ns))
2388 return new_ns;
1da177e4 2389
97216be0 2390 namespace_lock();
1da177e4 2391 /* First pass: copy the tree topology */
7a472ef4
EB
2392 copy_flags = CL_COPY_ALL | CL_EXPIRE;
2393 if (user_ns != mnt_ns->user_ns)
132c94e3 2394 copy_flags |= CL_SHARED_TO_SLAVE | CL_UNPRIVILEGED;
7a472ef4 2395 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2396 if (IS_ERR(new)) {
328e6d90 2397 namespace_unlock();
771b1371 2398 free_mnt_ns(new_ns);
be34d1a3 2399 return ERR_CAST(new);
1da177e4 2400 }
be08d6d2 2401 new_ns->root = new;
962830df 2402 br_write_lock(&vfsmount_lock);
1a4eeaf2 2403 list_add_tail(&new_ns->list, &new->mnt_list);
962830df 2404 br_write_unlock(&vfsmount_lock);
1da177e4
LT
2405
2406 /*
2407 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2408 * as belonging to new namespace. We have already acquired a private
2409 * fs_struct, so tsk->fs->lock is not needed.
2410 */
909b0a88 2411 p = old;
cb338d06 2412 q = new;
1da177e4 2413 while (p) {
143c8c91 2414 q->mnt_ns = new_ns;
1da177e4 2415 if (fs) {
315fc83e
AV
2416 if (&p->mnt == fs->root.mnt) {
2417 fs->root.mnt = mntget(&q->mnt);
315fc83e 2418 rootmnt = &p->mnt;
1da177e4 2419 }
315fc83e
AV
2420 if (&p->mnt == fs->pwd.mnt) {
2421 fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2422 pwdmnt = &p->mnt;
1da177e4 2423 }
1da177e4 2424 }
909b0a88
AV
2425 p = next_mnt(p, old);
2426 q = next_mnt(q, new);
1da177e4 2427 }
328e6d90 2428 namespace_unlock();
1da177e4 2429
1da177e4 2430 if (rootmnt)
f03c6599 2431 mntput(rootmnt);
1da177e4 2432 if (pwdmnt)
f03c6599 2433 mntput(pwdmnt);
1da177e4 2434
741a2951
JD
2435 return new_ns;
2436}
2437
213dd266 2438struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
771b1371 2439 struct user_namespace *user_ns, struct fs_struct *new_fs)
741a2951 2440{
6b3286ed 2441 struct mnt_namespace *new_ns;
741a2951 2442
e3222c4e 2443 BUG_ON(!ns);
6b3286ed 2444 get_mnt_ns(ns);
741a2951
JD
2445
2446 if (!(flags & CLONE_NEWNS))
e3222c4e 2447 return ns;
741a2951 2448
771b1371 2449 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
741a2951 2450
6b3286ed 2451 put_mnt_ns(ns);
e3222c4e 2452 return new_ns;
1da177e4
LT
2453}
2454
cf8d2c11
TM
2455/**
2456 * create_mnt_ns - creates a private namespace and adds a root filesystem
2457 * @mnt: pointer to the new root filesystem mountpoint
2458 */
1a4eeaf2 2459static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2460{
771b1371 2461 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2462 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2463 struct mount *mnt = real_mount(m);
2464 mnt->mnt_ns = new_ns;
be08d6d2 2465 new_ns->root = mnt;
b1983cd8 2466 list_add(&mnt->mnt_list, &new_ns->list);
c1334495 2467 } else {
1a4eeaf2 2468 mntput(m);
cf8d2c11
TM
2469 }
2470 return new_ns;
2471}
cf8d2c11 2472
ea441d11
AV
2473struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2474{
2475 struct mnt_namespace *ns;
d31da0f0 2476 struct super_block *s;
ea441d11
AV
2477 struct path path;
2478 int err;
2479
2480 ns = create_mnt_ns(mnt);
2481 if (IS_ERR(ns))
2482 return ERR_CAST(ns);
2483
2484 err = vfs_path_lookup(mnt->mnt_root, mnt,
2485 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2486
2487 put_mnt_ns(ns);
2488
2489 if (err)
2490 return ERR_PTR(err);
2491
2492 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2493 s = path.mnt->mnt_sb;
2494 atomic_inc(&s->s_active);
ea441d11
AV
2495 mntput(path.mnt);
2496 /* lock the sucker */
d31da0f0 2497 down_write(&s->s_umount);
ea441d11
AV
2498 /* ... and return the root of (sub)tree on it */
2499 return path.dentry;
2500}
2501EXPORT_SYMBOL(mount_subtree);
2502
bdc480e3
HC
2503SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2504 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2505{
eca6f534
VN
2506 int ret;
2507 char *kernel_type;
91a27b2a 2508 struct filename *kernel_dir;
eca6f534 2509 char *kernel_dev;
1da177e4 2510 unsigned long data_page;
1da177e4 2511
eca6f534
VN
2512 ret = copy_mount_string(type, &kernel_type);
2513 if (ret < 0)
2514 goto out_type;
1da177e4 2515
eca6f534
VN
2516 kernel_dir = getname(dir_name);
2517 if (IS_ERR(kernel_dir)) {
2518 ret = PTR_ERR(kernel_dir);
2519 goto out_dir;
2520 }
1da177e4 2521
eca6f534
VN
2522 ret = copy_mount_string(dev_name, &kernel_dev);
2523 if (ret < 0)
2524 goto out_dev;
1da177e4 2525
eca6f534
VN
2526 ret = copy_mount_options(data, &data_page);
2527 if (ret < 0)
2528 goto out_data;
1da177e4 2529
91a27b2a 2530 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2531 (void *) data_page);
1da177e4 2532
eca6f534
VN
2533 free_page(data_page);
2534out_data:
2535 kfree(kernel_dev);
2536out_dev:
2537 putname(kernel_dir);
2538out_dir:
2539 kfree(kernel_type);
2540out_type:
2541 return ret;
1da177e4
LT
2542}
2543
afac7cba
AV
2544/*
2545 * Return true if path is reachable from root
2546 *
2547 * namespace_sem or vfsmount_lock is held
2548 */
643822b4 2549bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2550 const struct path *root)
2551{
643822b4 2552 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2553 dentry = mnt->mnt_mountpoint;
0714a533 2554 mnt = mnt->mnt_parent;
afac7cba 2555 }
643822b4 2556 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2557}
2558
2559int path_is_under(struct path *path1, struct path *path2)
2560{
2561 int res;
962830df 2562 br_read_lock(&vfsmount_lock);
643822b4 2563 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2564 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2565 return res;
2566}
2567EXPORT_SYMBOL(path_is_under);
2568
1da177e4
LT
2569/*
2570 * pivot_root Semantics:
2571 * Moves the root file system of the current process to the directory put_old,
2572 * makes new_root as the new root file system of the current process, and sets
2573 * root/cwd of all processes which had them on the current root to new_root.
2574 *
2575 * Restrictions:
2576 * The new_root and put_old must be directories, and must not be on the
2577 * same file system as the current process root. The put_old must be
2578 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2579 * pointed to by put_old must yield the same directory as new_root. No other
2580 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2581 *
4a0d11fa
NB
2582 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2583 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2584 * in this situation.
2585 *
1da177e4
LT
2586 * Notes:
2587 * - we don't move root/cwd if they are not at the root (reason: if something
2588 * cared enough to change them, it's probably wrong to force them elsewhere)
2589 * - it's okay to pick a root that isn't the root of a file system, e.g.
2590 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2591 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2592 * first.
2593 */
3480b257
HC
2594SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2595 const char __user *, put_old)
1da177e4 2596{
2d8f3038 2597 struct path new, old, parent_path, root_parent, root;
84d17192
AV
2598 struct mount *new_mnt, *root_mnt, *old_mnt;
2599 struct mountpoint *old_mp, *root_mp;
1da177e4
LT
2600 int error;
2601
9b40bc90 2602 if (!may_mount())
1da177e4
LT
2603 return -EPERM;
2604
2d8f3038 2605 error = user_path_dir(new_root, &new);
1da177e4
LT
2606 if (error)
2607 goto out0;
1da177e4 2608
2d8f3038 2609 error = user_path_dir(put_old, &old);
1da177e4
LT
2610 if (error)
2611 goto out1;
2612
2d8f3038 2613 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2614 if (error)
2615 goto out2;
1da177e4 2616
f7ad3c6b 2617 get_fs_root(current->fs, &root);
84d17192
AV
2618 old_mp = lock_mount(&old);
2619 error = PTR_ERR(old_mp);
2620 if (IS_ERR(old_mp))
b12cea91
AV
2621 goto out3;
2622
1da177e4 2623 error = -EINVAL;
419148da
AV
2624 new_mnt = real_mount(new.mnt);
2625 root_mnt = real_mount(root.mnt);
84d17192
AV
2626 old_mnt = real_mount(old.mnt);
2627 if (IS_MNT_SHARED(old_mnt) ||
fc7be130
AV
2628 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2629 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2630 goto out4;
143c8c91 2631 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2632 goto out4;
1da177e4 2633 error = -ENOENT;
f3da392e 2634 if (d_unlinked(new.dentry))
b12cea91 2635 goto out4;
1da177e4 2636 error = -EBUSY;
84d17192 2637 if (new_mnt == root_mnt || old_mnt == root_mnt)
b12cea91 2638 goto out4; /* loop, on the same file system */
1da177e4 2639 error = -EINVAL;
8c3ee42e 2640 if (root.mnt->mnt_root != root.dentry)
b12cea91 2641 goto out4; /* not a mountpoint */
676da58d 2642 if (!mnt_has_parent(root_mnt))
b12cea91 2643 goto out4; /* not attached */
84d17192 2644 root_mp = root_mnt->mnt_mp;
2d8f3038 2645 if (new.mnt->mnt_root != new.dentry)
b12cea91 2646 goto out4; /* not a mountpoint */
676da58d 2647 if (!mnt_has_parent(new_mnt))
b12cea91 2648 goto out4; /* not attached */
4ac91378 2649 /* make sure we can reach put_old from new_root */
84d17192 2650 if (!is_path_reachable(old_mnt, old.dentry, &new))
b12cea91 2651 goto out4;
84d17192 2652 root_mp->m_count++; /* pin it so it won't go away */
962830df 2653 br_write_lock(&vfsmount_lock);
419148da
AV
2654 detach_mnt(new_mnt, &parent_path);
2655 detach_mnt(root_mnt, &root_parent);
4ac91378 2656 /* mount old root on put_old */
84d17192 2657 attach_mnt(root_mnt, old_mnt, old_mp);
4ac91378 2658 /* mount new_root on / */
84d17192 2659 attach_mnt(new_mnt, real_mount(root_parent.mnt), root_mp);
6b3286ed 2660 touch_mnt_namespace(current->nsproxy->mnt_ns);
962830df 2661 br_write_unlock(&vfsmount_lock);
2d8f3038 2662 chroot_fs_refs(&root, &new);
84d17192 2663 put_mountpoint(root_mp);
1da177e4 2664 error = 0;
b12cea91 2665out4:
84d17192 2666 unlock_mount(old_mp);
b12cea91
AV
2667 if (!error) {
2668 path_put(&root_parent);
2669 path_put(&parent_path);
2670 }
2671out3:
8c3ee42e 2672 path_put(&root);
b12cea91 2673out2:
2d8f3038 2674 path_put(&old);
1da177e4 2675out1:
2d8f3038 2676 path_put(&new);
1da177e4 2677out0:
1da177e4 2678 return error;
1da177e4
LT
2679}
2680
2681static void __init init_mount_tree(void)
2682{
2683 struct vfsmount *mnt;
6b3286ed 2684 struct mnt_namespace *ns;
ac748a09 2685 struct path root;
0c55cfc4 2686 struct file_system_type *type;
1da177e4 2687
0c55cfc4
EB
2688 type = get_fs_type("rootfs");
2689 if (!type)
2690 panic("Can't find rootfs type");
2691 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2692 put_filesystem(type);
1da177e4
LT
2693 if (IS_ERR(mnt))
2694 panic("Can't create rootfs");
b3e19d92 2695
3b22edc5
TM
2696 ns = create_mnt_ns(mnt);
2697 if (IS_ERR(ns))
1da177e4 2698 panic("Can't allocate initial namespace");
6b3286ed
KK
2699
2700 init_task.nsproxy->mnt_ns = ns;
2701 get_mnt_ns(ns);
2702
be08d6d2
AV
2703 root.mnt = mnt;
2704 root.dentry = mnt->mnt_root;
ac748a09
JB
2705
2706 set_fs_pwd(current->fs, &root);
2707 set_fs_root(current->fs, &root);
1da177e4
LT
2708}
2709
74bf17cf 2710void __init mnt_init(void)
1da177e4 2711{
13f14b4d 2712 unsigned u;
15a67dd8 2713 int err;
1da177e4 2714
390c6843
RP
2715 init_rwsem(&namespace_sem);
2716
7d6fec45 2717 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2718 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2719
b58fed8b 2720 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
84d17192 2721 mountpoint_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4 2722
84d17192 2723 if (!mount_hashtable || !mountpoint_hashtable)
1da177e4
LT
2724 panic("Failed to allocate mount hash table\n");
2725
80cdc6da 2726 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2727
2728 for (u = 0; u < HASH_SIZE; u++)
2729 INIT_LIST_HEAD(&mount_hashtable[u]);
84d17192
AV
2730 for (u = 0; u < HASH_SIZE; u++)
2731 INIT_LIST_HEAD(&mountpoint_hashtable[u]);
1da177e4 2732
962830df 2733 br_lock_init(&vfsmount_lock);
99b7db7b 2734
15a67dd8
RD
2735 err = sysfs_init();
2736 if (err)
2737 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2738 __func__, err);
00d26666
GKH
2739 fs_kobj = kobject_create_and_add("fs", NULL);
2740 if (!fs_kobj)
8e24eea7 2741 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2742 init_rootfs();
2743 init_mount_tree();
2744}
2745
616511d0 2746void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2747{
d498b25a 2748 if (!atomic_dec_and_test(&ns->count))
616511d0 2749 return;
97216be0 2750 namespace_lock();
962830df 2751 br_write_lock(&vfsmount_lock);
328e6d90 2752 umount_tree(ns->root, 0);
962830df 2753 br_write_unlock(&vfsmount_lock);
3ab6abee 2754 namespace_unlock();
771b1371 2755 free_mnt_ns(ns);
1da177e4 2756}
9d412a43
AV
2757
2758struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2759{
423e0ab0
TC
2760 struct vfsmount *mnt;
2761 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2762 if (!IS_ERR(mnt)) {
2763 /*
2764 * it is a longterm mount, don't release mnt until
2765 * we unmount before file sys is unregistered
2766 */
f7a99c5b 2767 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2768 }
2769 return mnt;
9d412a43
AV
2770}
2771EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2772
2773void kern_unmount(struct vfsmount *mnt)
2774{
2775 /* release long term mount so mount point can be released */
2776 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b
AV
2777 br_write_lock(&vfsmount_lock);
2778 real_mount(mnt)->mnt_ns = NULL;
2779 br_write_unlock(&vfsmount_lock);
423e0ab0
TC
2780 mntput(mnt);
2781 }
2782}
2783EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2784
2785bool our_mnt(struct vfsmount *mnt)
2786{
143c8c91 2787 return check_mnt(real_mount(mnt));
02125a82 2788}
8823c079 2789
3151527e
EB
2790bool current_chrooted(void)
2791{
2792 /* Does the current process have a non-standard root */
2793 struct path ns_root;
2794 struct path fs_root;
2795 bool chrooted;
2796
2797 /* Find the namespace root */
2798 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2799 ns_root.dentry = ns_root.mnt->mnt_root;
2800 path_get(&ns_root);
2801 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2802 ;
2803
2804 get_fs_root(current->fs, &fs_root);
2805
2806 chrooted = !path_equal(&fs_root, &ns_root);
2807
2808 path_put(&fs_root);
2809 path_put(&ns_root);
2810
2811 return chrooted;
2812}
2813
87a8ebd6
EB
2814void update_mnt_policy(struct user_namespace *userns)
2815{
2816 struct mnt_namespace *ns = current->nsproxy->mnt_ns;
2817 struct mount *mnt;
2818
2819 down_read(&namespace_sem);
2820 list_for_each_entry(mnt, &ns->list, mnt_list) {
2821 switch (mnt->mnt.mnt_sb->s_magic) {
2822 case SYSFS_MAGIC:
2823 userns->may_mount_sysfs = true;
2824 break;
2825 case PROC_SUPER_MAGIC:
2826 userns->may_mount_proc = true;
2827 break;
2828 }
2829 if (userns->may_mount_sysfs && userns->may_mount_proc)
2830 break;
2831 }
2832 up_read(&namespace_sem);
2833}
2834
8823c079
EB
2835static void *mntns_get(struct task_struct *task)
2836{
2837 struct mnt_namespace *ns = NULL;
2838 struct nsproxy *nsproxy;
2839
2840 rcu_read_lock();
2841 nsproxy = task_nsproxy(task);
2842 if (nsproxy) {
2843 ns = nsproxy->mnt_ns;
2844 get_mnt_ns(ns);
2845 }
2846 rcu_read_unlock();
2847
2848 return ns;
2849}
2850
2851static void mntns_put(void *ns)
2852{
2853 put_mnt_ns(ns);
2854}
2855
2856static int mntns_install(struct nsproxy *nsproxy, void *ns)
2857{
2858 struct fs_struct *fs = current->fs;
2859 struct mnt_namespace *mnt_ns = ns;
2860 struct path root;
2861
0c55cfc4 2862 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5e4a0847
EB
2863 !nsown_capable(CAP_SYS_CHROOT) ||
2864 !nsown_capable(CAP_SYS_ADMIN))
ae11e0f1 2865 return -EPERM;
8823c079
EB
2866
2867 if (fs->users != 1)
2868 return -EINVAL;
2869
2870 get_mnt_ns(mnt_ns);
2871 put_mnt_ns(nsproxy->mnt_ns);
2872 nsproxy->mnt_ns = mnt_ns;
2873
2874 /* Find the root */
2875 root.mnt = &mnt_ns->root->mnt;
2876 root.dentry = mnt_ns->root->mnt.mnt_root;
2877 path_get(&root);
2878 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2879 ;
2880
2881 /* Update the pwd and root */
2882 set_fs_pwd(fs, &root);
2883 set_fs_root(fs, &root);
2884
2885 path_put(&root);
2886 return 0;
2887}
2888
98f842e6
EB
2889static unsigned int mntns_inum(void *ns)
2890{
2891 struct mnt_namespace *mnt_ns = ns;
2892 return mnt_ns->proc_inum;
2893}
2894
8823c079
EB
2895const struct proc_ns_operations mntns_operations = {
2896 .name = "mnt",
2897 .type = CLONE_NEWNS,
2898 .get = mntns_get,
2899 .put = mntns_put,
2900 .install = mntns_install,
98f842e6 2901 .inum = mntns_inum,
8823c079 2902};