userns: Don't allow creation if the user is chrooted
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4 11#include <linux/syscalls.h>
d10577a8 12#include <linux/export.h>
16f7e0fe 13#include <linux/capability.h>
6b3286ed 14#include <linux/mnt_namespace.h>
771b1371 15#include <linux/user_namespace.h>
1da177e4
LT
16#include <linux/namei.h>
17#include <linux/security.h>
73cd49ec 18#include <linux/idr.h>
d10577a8
AV
19#include <linux/acct.h> /* acct_auto_close_mnt */
20#include <linux/ramfs.h> /* init_rootfs */
21#include <linux/fs_struct.h> /* get_fs_root et.al. */
22#include <linux/fsnotify.h> /* fsnotify_vfsmount_delete */
23#include <linux/uaccess.h>
8823c079 24#include <linux/proc_fs.h>
07b20889 25#include "pnode.h"
948730b0 26#include "internal.h"
1da177e4 27
13f14b4d
ED
28#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
29#define HASH_SIZE (1UL << HASH_SHIFT)
30
5addc5dd 31static int event;
73cd49ec 32static DEFINE_IDA(mnt_id_ida);
719f5d7f 33static DEFINE_IDA(mnt_group_ida);
99b7db7b 34static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
35static int mnt_id_start = 0;
36static int mnt_group_start = 1;
1da177e4 37
fa3536cc 38static struct list_head *mount_hashtable __read_mostly;
e18b890b 39static struct kmem_cache *mnt_cache __read_mostly;
390c6843 40static struct rw_semaphore namespace_sem;
1da177e4 41
f87fd4c2 42/* /sys/fs */
00d26666
GKH
43struct kobject *fs_kobj;
44EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 45
99b7db7b
NP
46/*
47 * vfsmount lock may be taken for read to prevent changes to the
48 * vfsmount hash, ie. during mountpoint lookups or walking back
49 * up the tree.
50 *
51 * It should be taken for write in all cases where the vfsmount
52 * tree or hash is modified or when a vfsmount structure is modified.
53 */
54DEFINE_BRLOCK(vfsmount_lock);
55
1da177e4
LT
56static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
57{
b58fed8b
RP
58 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
59 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
60 tmp = tmp + (tmp >> HASH_SHIFT);
61 return tmp & (HASH_SIZE - 1);
1da177e4
LT
62}
63
3d733633
DH
64#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
65
99b7db7b
NP
66/*
67 * allocation is serialized by namespace_sem, but we need the spinlock to
68 * serialize with freeing.
69 */
b105e270 70static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
71{
72 int res;
73
74retry:
75 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 76 spin_lock(&mnt_id_lock);
15169fe7 77 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
f21f6220 78 if (!res)
15169fe7 79 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 80 spin_unlock(&mnt_id_lock);
73cd49ec
MS
81 if (res == -EAGAIN)
82 goto retry;
83
84 return res;
85}
86
b105e270 87static void mnt_free_id(struct mount *mnt)
73cd49ec 88{
15169fe7 89 int id = mnt->mnt_id;
99b7db7b 90 spin_lock(&mnt_id_lock);
f21f6220
AV
91 ida_remove(&mnt_id_ida, id);
92 if (mnt_id_start > id)
93 mnt_id_start = id;
99b7db7b 94 spin_unlock(&mnt_id_lock);
73cd49ec
MS
95}
96
719f5d7f
MS
97/*
98 * Allocate a new peer group ID
99 *
100 * mnt_group_ida is protected by namespace_sem
101 */
4b8b21f4 102static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 103{
f21f6220
AV
104 int res;
105
719f5d7f
MS
106 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
107 return -ENOMEM;
108
f21f6220
AV
109 res = ida_get_new_above(&mnt_group_ida,
110 mnt_group_start,
15169fe7 111 &mnt->mnt_group_id);
f21f6220 112 if (!res)
15169fe7 113 mnt_group_start = mnt->mnt_group_id + 1;
f21f6220
AV
114
115 return res;
719f5d7f
MS
116}
117
118/*
119 * Release a peer group ID
120 */
4b8b21f4 121void mnt_release_group_id(struct mount *mnt)
719f5d7f 122{
15169fe7 123 int id = mnt->mnt_group_id;
f21f6220
AV
124 ida_remove(&mnt_group_ida, id);
125 if (mnt_group_start > id)
126 mnt_group_start = id;
15169fe7 127 mnt->mnt_group_id = 0;
719f5d7f
MS
128}
129
b3e19d92
NP
130/*
131 * vfsmount lock must be held for read
132 */
83adc753 133static inline void mnt_add_count(struct mount *mnt, int n)
b3e19d92
NP
134{
135#ifdef CONFIG_SMP
68e8a9fe 136 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
b3e19d92
NP
137#else
138 preempt_disable();
68e8a9fe 139 mnt->mnt_count += n;
b3e19d92
NP
140 preempt_enable();
141#endif
142}
143
b3e19d92
NP
144/*
145 * vfsmount lock must be held for write
146 */
83adc753 147unsigned int mnt_get_count(struct mount *mnt)
b3e19d92
NP
148{
149#ifdef CONFIG_SMP
f03c6599 150 unsigned int count = 0;
b3e19d92
NP
151 int cpu;
152
153 for_each_possible_cpu(cpu) {
68e8a9fe 154 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
b3e19d92
NP
155 }
156
157 return count;
158#else
68e8a9fe 159 return mnt->mnt_count;
b3e19d92
NP
160#endif
161}
162
b105e270 163static struct mount *alloc_vfsmnt(const char *name)
1da177e4 164{
c63181e6
AV
165 struct mount *mnt = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
166 if (mnt) {
73cd49ec
MS
167 int err;
168
c63181e6 169 err = mnt_alloc_id(mnt);
88b38782
LZ
170 if (err)
171 goto out_free_cache;
172
173 if (name) {
c63181e6
AV
174 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
175 if (!mnt->mnt_devname)
88b38782 176 goto out_free_id;
73cd49ec
MS
177 }
178
b3e19d92 179#ifdef CONFIG_SMP
c63181e6
AV
180 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
181 if (!mnt->mnt_pcp)
b3e19d92
NP
182 goto out_free_devname;
183
c63181e6 184 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92 185#else
c63181e6
AV
186 mnt->mnt_count = 1;
187 mnt->mnt_writers = 0;
b3e19d92
NP
188#endif
189
c63181e6
AV
190 INIT_LIST_HEAD(&mnt->mnt_hash);
191 INIT_LIST_HEAD(&mnt->mnt_child);
192 INIT_LIST_HEAD(&mnt->mnt_mounts);
193 INIT_LIST_HEAD(&mnt->mnt_list);
194 INIT_LIST_HEAD(&mnt->mnt_expire);
195 INIT_LIST_HEAD(&mnt->mnt_share);
196 INIT_LIST_HEAD(&mnt->mnt_slave_list);
197 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
198#ifdef CONFIG_FSNOTIFY
199 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 200#endif
1da177e4 201 }
c63181e6 202 return mnt;
88b38782 203
d3ef3d73 204#ifdef CONFIG_SMP
205out_free_devname:
c63181e6 206 kfree(mnt->mnt_devname);
d3ef3d73 207#endif
88b38782 208out_free_id:
c63181e6 209 mnt_free_id(mnt);
88b38782 210out_free_cache:
c63181e6 211 kmem_cache_free(mnt_cache, mnt);
88b38782 212 return NULL;
1da177e4
LT
213}
214
3d733633
DH
215/*
216 * Most r/o checks on a fs are for operations that take
217 * discrete amounts of time, like a write() or unlink().
218 * We must keep track of when those operations start
219 * (for permission checks) and when they end, so that
220 * we can determine when writes are able to occur to
221 * a filesystem.
222 */
223/*
224 * __mnt_is_readonly: check whether a mount is read-only
225 * @mnt: the mount to check for its write status
226 *
227 * This shouldn't be used directly ouside of the VFS.
228 * It does not guarantee that the filesystem will stay
229 * r/w, just that it is right *now*. This can not and
230 * should not be used in place of IS_RDONLY(inode).
231 * mnt_want/drop_write() will _keep_ the filesystem
232 * r/w.
233 */
234int __mnt_is_readonly(struct vfsmount *mnt)
235{
2e4b7fcd
DH
236 if (mnt->mnt_flags & MNT_READONLY)
237 return 1;
238 if (mnt->mnt_sb->s_flags & MS_RDONLY)
239 return 1;
240 return 0;
3d733633
DH
241}
242EXPORT_SYMBOL_GPL(__mnt_is_readonly);
243
83adc753 244static inline void mnt_inc_writers(struct mount *mnt)
d3ef3d73 245{
246#ifdef CONFIG_SMP
68e8a9fe 247 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 248#else
68e8a9fe 249 mnt->mnt_writers++;
d3ef3d73 250#endif
251}
3d733633 252
83adc753 253static inline void mnt_dec_writers(struct mount *mnt)
3d733633 254{
d3ef3d73 255#ifdef CONFIG_SMP
68e8a9fe 256 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 257#else
68e8a9fe 258 mnt->mnt_writers--;
d3ef3d73 259#endif
3d733633 260}
3d733633 261
83adc753 262static unsigned int mnt_get_writers(struct mount *mnt)
3d733633 263{
d3ef3d73 264#ifdef CONFIG_SMP
265 unsigned int count = 0;
3d733633 266 int cpu;
3d733633
DH
267
268 for_each_possible_cpu(cpu) {
68e8a9fe 269 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 270 }
3d733633 271
d3ef3d73 272 return count;
273#else
274 return mnt->mnt_writers;
275#endif
3d733633
DH
276}
277
4ed5e82f
MS
278static int mnt_is_readonly(struct vfsmount *mnt)
279{
280 if (mnt->mnt_sb->s_readonly_remount)
281 return 1;
282 /* Order wrt setting s_flags/s_readonly_remount in do_remount() */
283 smp_rmb();
284 return __mnt_is_readonly(mnt);
285}
286
8366025e 287/*
eb04c282
JK
288 * Most r/o & frozen checks on a fs are for operations that take discrete
289 * amounts of time, like a write() or unlink(). We must keep track of when
290 * those operations start (for permission checks) and when they end, so that we
291 * can determine when writes are able to occur to a filesystem.
8366025e
DH
292 */
293/**
eb04c282 294 * __mnt_want_write - get write access to a mount without freeze protection
83adc753 295 * @m: the mount on which to take a write
8366025e 296 *
eb04c282
JK
297 * This tells the low-level filesystem that a write is about to be performed to
298 * it, and makes sure that writes are allowed (mnt it read-write) before
299 * returning success. This operation does not protect against filesystem being
300 * frozen. When the write operation is finished, __mnt_drop_write() must be
301 * called. This is effectively a refcount.
8366025e 302 */
eb04c282 303int __mnt_want_write(struct vfsmount *m)
8366025e 304{
83adc753 305 struct mount *mnt = real_mount(m);
3d733633 306 int ret = 0;
3d733633 307
d3ef3d73 308 preempt_disable();
c6653a83 309 mnt_inc_writers(mnt);
d3ef3d73 310 /*
c6653a83 311 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 312 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
313 * incremented count after it has set MNT_WRITE_HOLD.
314 */
315 smp_mb();
1e75529e 316 while (ACCESS_ONCE(mnt->mnt.mnt_flags) & MNT_WRITE_HOLD)
d3ef3d73 317 cpu_relax();
318 /*
319 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
320 * be set to match its requirements. So we must not load that until
321 * MNT_WRITE_HOLD is cleared.
322 */
323 smp_rmb();
4ed5e82f 324 if (mnt_is_readonly(m)) {
c6653a83 325 mnt_dec_writers(mnt);
3d733633 326 ret = -EROFS;
3d733633 327 }
d3ef3d73 328 preempt_enable();
eb04c282
JK
329
330 return ret;
331}
332
333/**
334 * mnt_want_write - get write access to a mount
335 * @m: the mount on which to take a write
336 *
337 * This tells the low-level filesystem that a write is about to be performed to
338 * it, and makes sure that writes are allowed (mount is read-write, filesystem
339 * is not frozen) before returning success. When the write operation is
340 * finished, mnt_drop_write() must be called. This is effectively a refcount.
341 */
342int mnt_want_write(struct vfsmount *m)
343{
344 int ret;
345
346 sb_start_write(m->mnt_sb);
347 ret = __mnt_want_write(m);
348 if (ret)
349 sb_end_write(m->mnt_sb);
3d733633 350 return ret;
8366025e
DH
351}
352EXPORT_SYMBOL_GPL(mnt_want_write);
353
96029c4e 354/**
355 * mnt_clone_write - get write access to a mount
356 * @mnt: the mount on which to take a write
357 *
358 * This is effectively like mnt_want_write, except
359 * it must only be used to take an extra write reference
360 * on a mountpoint that we already know has a write reference
361 * on it. This allows some optimisation.
362 *
363 * After finished, mnt_drop_write must be called as usual to
364 * drop the reference.
365 */
366int mnt_clone_write(struct vfsmount *mnt)
367{
368 /* superblock may be r/o */
369 if (__mnt_is_readonly(mnt))
370 return -EROFS;
371 preempt_disable();
83adc753 372 mnt_inc_writers(real_mount(mnt));
96029c4e 373 preempt_enable();
374 return 0;
375}
376EXPORT_SYMBOL_GPL(mnt_clone_write);
377
378/**
eb04c282 379 * __mnt_want_write_file - get write access to a file's mount
96029c4e 380 * @file: the file who's mount on which to take a write
381 *
eb04c282 382 * This is like __mnt_want_write, but it takes a file and can
96029c4e 383 * do some optimisations if the file is open for write already
384 */
eb04c282 385int __mnt_want_write_file(struct file *file)
96029c4e 386{
496ad9aa 387 struct inode *inode = file_inode(file);
eb04c282 388
2d8dd38a 389 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
eb04c282 390 return __mnt_want_write(file->f_path.mnt);
96029c4e 391 else
392 return mnt_clone_write(file->f_path.mnt);
393}
eb04c282
JK
394
395/**
396 * mnt_want_write_file - get write access to a file's mount
397 * @file: the file who's mount on which to take a write
398 *
399 * This is like mnt_want_write, but it takes a file and can
400 * do some optimisations if the file is open for write already
401 */
402int mnt_want_write_file(struct file *file)
403{
404 int ret;
405
406 sb_start_write(file->f_path.mnt->mnt_sb);
407 ret = __mnt_want_write_file(file);
408 if (ret)
409 sb_end_write(file->f_path.mnt->mnt_sb);
410 return ret;
411}
96029c4e 412EXPORT_SYMBOL_GPL(mnt_want_write_file);
413
8366025e 414/**
eb04c282 415 * __mnt_drop_write - give up write access to a mount
8366025e
DH
416 * @mnt: the mount on which to give up write access
417 *
418 * Tells the low-level filesystem that we are done
419 * performing writes to it. Must be matched with
eb04c282 420 * __mnt_want_write() call above.
8366025e 421 */
eb04c282 422void __mnt_drop_write(struct vfsmount *mnt)
8366025e 423{
d3ef3d73 424 preempt_disable();
83adc753 425 mnt_dec_writers(real_mount(mnt));
d3ef3d73 426 preempt_enable();
8366025e 427}
eb04c282
JK
428
429/**
430 * mnt_drop_write - give up write access to a mount
431 * @mnt: the mount on which to give up write access
432 *
433 * Tells the low-level filesystem that we are done performing writes to it and
434 * also allows filesystem to be frozen again. Must be matched with
435 * mnt_want_write() call above.
436 */
437void mnt_drop_write(struct vfsmount *mnt)
438{
439 __mnt_drop_write(mnt);
440 sb_end_write(mnt->mnt_sb);
441}
8366025e
DH
442EXPORT_SYMBOL_GPL(mnt_drop_write);
443
eb04c282
JK
444void __mnt_drop_write_file(struct file *file)
445{
446 __mnt_drop_write(file->f_path.mnt);
447}
448
2a79f17e
AV
449void mnt_drop_write_file(struct file *file)
450{
451 mnt_drop_write(file->f_path.mnt);
452}
453EXPORT_SYMBOL(mnt_drop_write_file);
454
83adc753 455static int mnt_make_readonly(struct mount *mnt)
8366025e 456{
3d733633
DH
457 int ret = 0;
458
962830df 459 br_write_lock(&vfsmount_lock);
83adc753 460 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
3d733633 461 /*
d3ef3d73 462 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
463 * should be visible before we do.
3d733633 464 */
d3ef3d73 465 smp_mb();
466
3d733633 467 /*
d3ef3d73 468 * With writers on hold, if this value is zero, then there are
469 * definitely no active writers (although held writers may subsequently
470 * increment the count, they'll have to wait, and decrement it after
471 * seeing MNT_READONLY).
472 *
473 * It is OK to have counter incremented on one CPU and decremented on
474 * another: the sum will add up correctly. The danger would be when we
475 * sum up each counter, if we read a counter before it is incremented,
476 * but then read another CPU's count which it has been subsequently
477 * decremented from -- we would see more decrements than we should.
478 * MNT_WRITE_HOLD protects against this scenario, because
479 * mnt_want_write first increments count, then smp_mb, then spins on
480 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
481 * we're counting up here.
3d733633 482 */
c6653a83 483 if (mnt_get_writers(mnt) > 0)
d3ef3d73 484 ret = -EBUSY;
485 else
83adc753 486 mnt->mnt.mnt_flags |= MNT_READONLY;
d3ef3d73 487 /*
488 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
489 * that become unheld will see MNT_READONLY.
490 */
491 smp_wmb();
83adc753 492 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
962830df 493 br_write_unlock(&vfsmount_lock);
3d733633 494 return ret;
8366025e 495}
8366025e 496
83adc753 497static void __mnt_unmake_readonly(struct mount *mnt)
2e4b7fcd 498{
962830df 499 br_write_lock(&vfsmount_lock);
83adc753 500 mnt->mnt.mnt_flags &= ~MNT_READONLY;
962830df 501 br_write_unlock(&vfsmount_lock);
2e4b7fcd
DH
502}
503
4ed5e82f
MS
504int sb_prepare_remount_readonly(struct super_block *sb)
505{
506 struct mount *mnt;
507 int err = 0;
508
8e8b8796
MS
509 /* Racy optimization. Recheck the counter under MNT_WRITE_HOLD */
510 if (atomic_long_read(&sb->s_remove_count))
511 return -EBUSY;
512
962830df 513 br_write_lock(&vfsmount_lock);
4ed5e82f
MS
514 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
515 if (!(mnt->mnt.mnt_flags & MNT_READONLY)) {
516 mnt->mnt.mnt_flags |= MNT_WRITE_HOLD;
517 smp_mb();
518 if (mnt_get_writers(mnt) > 0) {
519 err = -EBUSY;
520 break;
521 }
522 }
523 }
8e8b8796
MS
524 if (!err && atomic_long_read(&sb->s_remove_count))
525 err = -EBUSY;
526
4ed5e82f
MS
527 if (!err) {
528 sb->s_readonly_remount = 1;
529 smp_wmb();
530 }
531 list_for_each_entry(mnt, &sb->s_mounts, mnt_instance) {
532 if (mnt->mnt.mnt_flags & MNT_WRITE_HOLD)
533 mnt->mnt.mnt_flags &= ~MNT_WRITE_HOLD;
534 }
962830df 535 br_write_unlock(&vfsmount_lock);
4ed5e82f
MS
536
537 return err;
538}
539
b105e270 540static void free_vfsmnt(struct mount *mnt)
1da177e4 541{
52ba1621 542 kfree(mnt->mnt_devname);
73cd49ec 543 mnt_free_id(mnt);
d3ef3d73 544#ifdef CONFIG_SMP
68e8a9fe 545 free_percpu(mnt->mnt_pcp);
d3ef3d73 546#endif
b105e270 547 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
548}
549
550/*
a05964f3
RP
551 * find the first or last mount at @dentry on vfsmount @mnt depending on
552 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 553 * vfsmount_lock must be held for read or write.
1da177e4 554 */
c7105365 555struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 556 int dir)
1da177e4 557{
b58fed8b
RP
558 struct list_head *head = mount_hashtable + hash(mnt, dentry);
559 struct list_head *tmp = head;
c7105365 560 struct mount *p, *found = NULL;
1da177e4 561
1da177e4 562 for (;;) {
a05964f3 563 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
564 p = NULL;
565 if (tmp == head)
566 break;
1b8e5564 567 p = list_entry(tmp, struct mount, mnt_hash);
a73324da 568 if (&p->mnt_parent->mnt == mnt && p->mnt_mountpoint == dentry) {
a05964f3 569 found = p;
1da177e4
LT
570 break;
571 }
572 }
1da177e4
LT
573 return found;
574}
575
a05964f3 576/*
f015f126
DH
577 * lookup_mnt - Return the first child mount mounted at path
578 *
579 * "First" means first mounted chronologically. If you create the
580 * following mounts:
581 *
582 * mount /dev/sda1 /mnt
583 * mount /dev/sda2 /mnt
584 * mount /dev/sda3 /mnt
585 *
586 * Then lookup_mnt() on the base /mnt dentry in the root mount will
587 * return successively the root dentry and vfsmount of /dev/sda1, then
588 * /dev/sda2, then /dev/sda3, then NULL.
589 *
590 * lookup_mnt takes a reference to the found vfsmount.
a05964f3 591 */
1c755af4 592struct vfsmount *lookup_mnt(struct path *path)
a05964f3 593{
c7105365 594 struct mount *child_mnt;
99b7db7b 595
962830df 596 br_read_lock(&vfsmount_lock);
c7105365
AV
597 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
598 if (child_mnt) {
599 mnt_add_count(child_mnt, 1);
962830df 600 br_read_unlock(&vfsmount_lock);
c7105365
AV
601 return &child_mnt->mnt;
602 } else {
962830df 603 br_read_unlock(&vfsmount_lock);
c7105365
AV
604 return NULL;
605 }
a05964f3
RP
606}
607
143c8c91 608static inline int check_mnt(struct mount *mnt)
1da177e4 609{
6b3286ed 610 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
611}
612
99b7db7b
NP
613/*
614 * vfsmount lock must be held for write
615 */
6b3286ed 616static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
617{
618 if (ns) {
619 ns->event = ++event;
620 wake_up_interruptible(&ns->poll);
621 }
622}
623
99b7db7b
NP
624/*
625 * vfsmount lock must be held for write
626 */
6b3286ed 627static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
628{
629 if (ns && ns->event != event) {
630 ns->event = event;
631 wake_up_interruptible(&ns->poll);
632 }
633}
634
5f57cbcc
NP
635/*
636 * Clear dentry's mounted state if it has no remaining mounts.
637 * vfsmount_lock must be held for write.
638 */
aa0a4cf0 639static void dentry_reset_mounted(struct dentry *dentry)
5f57cbcc
NP
640{
641 unsigned u;
642
643 for (u = 0; u < HASH_SIZE; u++) {
d5e50f74 644 struct mount *p;
5f57cbcc 645
1b8e5564 646 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
a73324da 647 if (p->mnt_mountpoint == dentry)
5f57cbcc
NP
648 return;
649 }
650 }
651 spin_lock(&dentry->d_lock);
652 dentry->d_flags &= ~DCACHE_MOUNTED;
653 spin_unlock(&dentry->d_lock);
654}
655
99b7db7b
NP
656/*
657 * vfsmount lock must be held for write
658 */
419148da
AV
659static void detach_mnt(struct mount *mnt, struct path *old_path)
660{
a73324da 661 old_path->dentry = mnt->mnt_mountpoint;
0714a533
AV
662 old_path->mnt = &mnt->mnt_parent->mnt;
663 mnt->mnt_parent = mnt;
a73324da 664 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
6b41d536 665 list_del_init(&mnt->mnt_child);
1b8e5564 666 list_del_init(&mnt->mnt_hash);
aa0a4cf0 667 dentry_reset_mounted(old_path->dentry);
1da177e4
LT
668}
669
99b7db7b
NP
670/*
671 * vfsmount lock must be held for write
672 */
14cf1fa8 673void mnt_set_mountpoint(struct mount *mnt, struct dentry *dentry,
44d964d6 674 struct mount *child_mnt)
b90fa9ae 675{
3a2393d7 676 mnt_add_count(mnt, 1); /* essentially, that's mntget */
a73324da 677 child_mnt->mnt_mountpoint = dget(dentry);
3a2393d7 678 child_mnt->mnt_parent = mnt;
5f57cbcc
NP
679 spin_lock(&dentry->d_lock);
680 dentry->d_flags |= DCACHE_MOUNTED;
681 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
682}
683
99b7db7b
NP
684/*
685 * vfsmount lock must be held for write
686 */
419148da 687static void attach_mnt(struct mount *mnt, struct path *path)
1da177e4 688{
14cf1fa8 689 mnt_set_mountpoint(real_mount(path->mnt), path->dentry, mnt);
1b8e5564 690 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689 691 hash(path->mnt, path->dentry));
6b41d536 692 list_add_tail(&mnt->mnt_child, &real_mount(path->mnt)->mnt_mounts);
b90fa9ae
RP
693}
694
695/*
99b7db7b 696 * vfsmount lock must be held for write
b90fa9ae 697 */
4b2619a5 698static void commit_tree(struct mount *mnt)
b90fa9ae 699{
0714a533 700 struct mount *parent = mnt->mnt_parent;
83adc753 701 struct mount *m;
b90fa9ae 702 LIST_HEAD(head);
143c8c91 703 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 704
0714a533 705 BUG_ON(parent == mnt);
b90fa9ae 706
1a4eeaf2 707 list_add_tail(&head, &mnt->mnt_list);
f7a99c5b 708 list_for_each_entry(m, &head, mnt_list)
143c8c91 709 m->mnt_ns = n;
f03c6599 710
b90fa9ae
RP
711 list_splice(&head, n->list.prev);
712
1b8e5564 713 list_add_tail(&mnt->mnt_hash, mount_hashtable +
a73324da 714 hash(&parent->mnt, mnt->mnt_mountpoint));
6b41d536 715 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 716 touch_mnt_namespace(n);
1da177e4
LT
717}
718
909b0a88 719static struct mount *next_mnt(struct mount *p, struct mount *root)
1da177e4 720{
6b41d536
AV
721 struct list_head *next = p->mnt_mounts.next;
722 if (next == &p->mnt_mounts) {
1da177e4 723 while (1) {
909b0a88 724 if (p == root)
1da177e4 725 return NULL;
6b41d536
AV
726 next = p->mnt_child.next;
727 if (next != &p->mnt_parent->mnt_mounts)
1da177e4 728 break;
0714a533 729 p = p->mnt_parent;
1da177e4
LT
730 }
731 }
6b41d536 732 return list_entry(next, struct mount, mnt_child);
1da177e4
LT
733}
734
315fc83e 735static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 736{
6b41d536
AV
737 struct list_head *prev = p->mnt_mounts.prev;
738 while (prev != &p->mnt_mounts) {
739 p = list_entry(prev, struct mount, mnt_child);
740 prev = p->mnt_mounts.prev;
9676f0c6
RP
741 }
742 return p;
743}
744
9d412a43
AV
745struct vfsmount *
746vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
747{
b105e270 748 struct mount *mnt;
9d412a43
AV
749 struct dentry *root;
750
751 if (!type)
752 return ERR_PTR(-ENODEV);
753
754 mnt = alloc_vfsmnt(name);
755 if (!mnt)
756 return ERR_PTR(-ENOMEM);
757
758 if (flags & MS_KERNMOUNT)
b105e270 759 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
760
761 root = mount_fs(type, flags, name, data);
762 if (IS_ERR(root)) {
763 free_vfsmnt(mnt);
764 return ERR_CAST(root);
765 }
766
b105e270
AV
767 mnt->mnt.mnt_root = root;
768 mnt->mnt.mnt_sb = root->d_sb;
a73324da 769 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 770 mnt->mnt_parent = mnt;
962830df 771 br_write_lock(&vfsmount_lock);
39f7c4db 772 list_add_tail(&mnt->mnt_instance, &root->d_sb->s_mounts);
962830df 773 br_write_unlock(&vfsmount_lock);
b105e270 774 return &mnt->mnt;
9d412a43
AV
775}
776EXPORT_SYMBOL_GPL(vfs_kern_mount);
777
87129cc0 778static struct mount *clone_mnt(struct mount *old, struct dentry *root,
36341f64 779 int flag)
1da177e4 780{
87129cc0 781 struct super_block *sb = old->mnt.mnt_sb;
be34d1a3
DH
782 struct mount *mnt;
783 int err;
1da177e4 784
be34d1a3
DH
785 mnt = alloc_vfsmnt(old->mnt_devname);
786 if (!mnt)
787 return ERR_PTR(-ENOMEM);
719f5d7f 788
7a472ef4 789 if (flag & (CL_SLAVE | CL_PRIVATE | CL_SHARED_TO_SLAVE))
be34d1a3
DH
790 mnt->mnt_group_id = 0; /* not a peer of original */
791 else
792 mnt->mnt_group_id = old->mnt_group_id;
b90fa9ae 793
be34d1a3
DH
794 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
795 err = mnt_alloc_group_id(mnt);
796 if (err)
797 goto out_free;
1da177e4 798 }
be34d1a3
DH
799
800 mnt->mnt.mnt_flags = old->mnt.mnt_flags & ~MNT_WRITE_HOLD;
801 atomic_inc(&sb->s_active);
802 mnt->mnt.mnt_sb = sb;
803 mnt->mnt.mnt_root = dget(root);
804 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
805 mnt->mnt_parent = mnt;
806 br_write_lock(&vfsmount_lock);
807 list_add_tail(&mnt->mnt_instance, &sb->s_mounts);
808 br_write_unlock(&vfsmount_lock);
809
7a472ef4
EB
810 if ((flag & CL_SLAVE) ||
811 ((flag & CL_SHARED_TO_SLAVE) && IS_MNT_SHARED(old))) {
be34d1a3
DH
812 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
813 mnt->mnt_master = old;
814 CLEAR_MNT_SHARED(mnt);
815 } else if (!(flag & CL_PRIVATE)) {
816 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
817 list_add(&mnt->mnt_share, &old->mnt_share);
818 if (IS_MNT_SLAVE(old))
819 list_add(&mnt->mnt_slave, &old->mnt_slave);
820 mnt->mnt_master = old->mnt_master;
821 }
822 if (flag & CL_MAKE_SHARED)
823 set_mnt_shared(mnt);
824
825 /* stick the duplicate mount on the same expiry list
826 * as the original if that was on one */
827 if (flag & CL_EXPIRE) {
828 if (!list_empty(&old->mnt_expire))
829 list_add(&mnt->mnt_expire, &old->mnt_expire);
830 }
831
cb338d06 832 return mnt;
719f5d7f
MS
833
834 out_free:
835 free_vfsmnt(mnt);
be34d1a3 836 return ERR_PTR(err);
1da177e4
LT
837}
838
83adc753 839static inline void mntfree(struct mount *mnt)
1da177e4 840{
83adc753
AV
841 struct vfsmount *m = &mnt->mnt;
842 struct super_block *sb = m->mnt_sb;
b3e19d92 843
3d733633
DH
844 /*
845 * This probably indicates that somebody messed
846 * up a mnt_want/drop_write() pair. If this
847 * happens, the filesystem was probably unable
848 * to make r/w->r/o transitions.
849 */
d3ef3d73 850 /*
b3e19d92
NP
851 * The locking used to deal with mnt_count decrement provides barriers,
852 * so mnt_get_writers() below is safe.
d3ef3d73 853 */
c6653a83 854 WARN_ON(mnt_get_writers(mnt));
83adc753
AV
855 fsnotify_vfsmount_delete(m);
856 dput(m->mnt_root);
857 free_vfsmnt(mnt);
1da177e4
LT
858 deactivate_super(sb);
859}
860
900148dc 861static void mntput_no_expire(struct mount *mnt)
b3e19d92 862{
b3e19d92 863put_again:
f03c6599 864#ifdef CONFIG_SMP
962830df 865 br_read_lock(&vfsmount_lock);
f7a99c5b
AV
866 if (likely(mnt->mnt_ns)) {
867 /* shouldn't be the last one */
aa9c0e07 868 mnt_add_count(mnt, -1);
962830df 869 br_read_unlock(&vfsmount_lock);
f03c6599 870 return;
b3e19d92 871 }
962830df 872 br_read_unlock(&vfsmount_lock);
b3e19d92 873
962830df 874 br_write_lock(&vfsmount_lock);
aa9c0e07 875 mnt_add_count(mnt, -1);
b3e19d92 876 if (mnt_get_count(mnt)) {
962830df 877 br_write_unlock(&vfsmount_lock);
99b7db7b
NP
878 return;
879 }
b3e19d92 880#else
aa9c0e07 881 mnt_add_count(mnt, -1);
b3e19d92 882 if (likely(mnt_get_count(mnt)))
99b7db7b 883 return;
962830df 884 br_write_lock(&vfsmount_lock);
f03c6599 885#endif
863d684f
AV
886 if (unlikely(mnt->mnt_pinned)) {
887 mnt_add_count(mnt, mnt->mnt_pinned + 1);
888 mnt->mnt_pinned = 0;
962830df 889 br_write_unlock(&vfsmount_lock);
900148dc 890 acct_auto_close_mnt(&mnt->mnt);
b3e19d92 891 goto put_again;
7b7b1ace 892 }
962830df 893
39f7c4db 894 list_del(&mnt->mnt_instance);
962830df 895 br_write_unlock(&vfsmount_lock);
b3e19d92
NP
896 mntfree(mnt);
897}
b3e19d92
NP
898
899void mntput(struct vfsmount *mnt)
900{
901 if (mnt) {
863d684f 902 struct mount *m = real_mount(mnt);
b3e19d92 903 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
863d684f
AV
904 if (unlikely(m->mnt_expiry_mark))
905 m->mnt_expiry_mark = 0;
906 mntput_no_expire(m);
b3e19d92
NP
907 }
908}
909EXPORT_SYMBOL(mntput);
910
911struct vfsmount *mntget(struct vfsmount *mnt)
912{
913 if (mnt)
83adc753 914 mnt_add_count(real_mount(mnt), 1);
b3e19d92
NP
915 return mnt;
916}
917EXPORT_SYMBOL(mntget);
918
7b7b1ace
AV
919void mnt_pin(struct vfsmount *mnt)
920{
962830df 921 br_write_lock(&vfsmount_lock);
863d684f 922 real_mount(mnt)->mnt_pinned++;
962830df 923 br_write_unlock(&vfsmount_lock);
7b7b1ace 924}
7b7b1ace
AV
925EXPORT_SYMBOL(mnt_pin);
926
863d684f 927void mnt_unpin(struct vfsmount *m)
7b7b1ace 928{
863d684f 929 struct mount *mnt = real_mount(m);
962830df 930 br_write_lock(&vfsmount_lock);
7b7b1ace 931 if (mnt->mnt_pinned) {
863d684f 932 mnt_add_count(mnt, 1);
7b7b1ace
AV
933 mnt->mnt_pinned--;
934 }
962830df 935 br_write_unlock(&vfsmount_lock);
7b7b1ace 936}
7b7b1ace 937EXPORT_SYMBOL(mnt_unpin);
1da177e4 938
b3b304a2
MS
939static inline void mangle(struct seq_file *m, const char *s)
940{
941 seq_escape(m, s, " \t\n\\");
942}
943
944/*
945 * Simple .show_options callback for filesystems which don't want to
946 * implement more complex mount option showing.
947 *
948 * See also save_mount_options().
949 */
34c80b1d 950int generic_show_options(struct seq_file *m, struct dentry *root)
b3b304a2 951{
2a32cebd
AV
952 const char *options;
953
954 rcu_read_lock();
34c80b1d 955 options = rcu_dereference(root->d_sb->s_options);
b3b304a2
MS
956
957 if (options != NULL && options[0]) {
958 seq_putc(m, ',');
959 mangle(m, options);
960 }
2a32cebd 961 rcu_read_unlock();
b3b304a2
MS
962
963 return 0;
964}
965EXPORT_SYMBOL(generic_show_options);
966
967/*
968 * If filesystem uses generic_show_options(), this function should be
969 * called from the fill_super() callback.
970 *
971 * The .remount_fs callback usually needs to be handled in a special
972 * way, to make sure, that previous options are not overwritten if the
973 * remount fails.
974 *
975 * Also note, that if the filesystem's .remount_fs function doesn't
976 * reset all options to their default value, but changes only newly
977 * given options, then the displayed options will not reflect reality
978 * any more.
979 */
980void save_mount_options(struct super_block *sb, char *options)
981{
2a32cebd
AV
982 BUG_ON(sb->s_options);
983 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
984}
985EXPORT_SYMBOL(save_mount_options);
986
2a32cebd
AV
987void replace_mount_options(struct super_block *sb, char *options)
988{
989 char *old = sb->s_options;
990 rcu_assign_pointer(sb->s_options, options);
991 if (old) {
992 synchronize_rcu();
993 kfree(old);
994 }
995}
996EXPORT_SYMBOL(replace_mount_options);
997
a1a2c409 998#ifdef CONFIG_PROC_FS
0226f492 999/* iterator; we want it to have access to namespace_sem, thus here... */
1da177e4
LT
1000static void *m_start(struct seq_file *m, loff_t *pos)
1001{
6ce6e24e 1002 struct proc_mounts *p = proc_mounts(m);
1da177e4 1003
390c6843 1004 down_read(&namespace_sem);
a1a2c409 1005 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
1006}
1007
1008static void *m_next(struct seq_file *m, void *v, loff_t *pos)
1009{
6ce6e24e 1010 struct proc_mounts *p = proc_mounts(m);
b0765fb8 1011
a1a2c409 1012 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
1013}
1014
1015static void m_stop(struct seq_file *m, void *v)
1016{
390c6843 1017 up_read(&namespace_sem);
1da177e4
LT
1018}
1019
0226f492 1020static int m_show(struct seq_file *m, void *v)
2d4d4864 1021{
6ce6e24e 1022 struct proc_mounts *p = proc_mounts(m);
1a4eeaf2 1023 struct mount *r = list_entry(v, struct mount, mnt_list);
0226f492 1024 return p->show(m, &r->mnt);
1da177e4
LT
1025}
1026
a1a2c409 1027const struct seq_operations mounts_op = {
1da177e4
LT
1028 .start = m_start,
1029 .next = m_next,
1030 .stop = m_stop,
0226f492 1031 .show = m_show,
b4629fe2 1032};
a1a2c409 1033#endif /* CONFIG_PROC_FS */
b4629fe2 1034
1da177e4
LT
1035/**
1036 * may_umount_tree - check if a mount tree is busy
1037 * @mnt: root of mount tree
1038 *
1039 * This is called to check if a tree of mounts has any
1040 * open files, pwds, chroots or sub mounts that are
1041 * busy.
1042 */
909b0a88 1043int may_umount_tree(struct vfsmount *m)
1da177e4 1044{
909b0a88 1045 struct mount *mnt = real_mount(m);
36341f64
RP
1046 int actual_refs = 0;
1047 int minimum_refs = 0;
315fc83e 1048 struct mount *p;
909b0a88 1049 BUG_ON(!m);
1da177e4 1050
b3e19d92 1051 /* write lock needed for mnt_get_count */
962830df 1052 br_write_lock(&vfsmount_lock);
909b0a88 1053 for (p = mnt; p; p = next_mnt(p, mnt)) {
83adc753 1054 actual_refs += mnt_get_count(p);
1da177e4 1055 minimum_refs += 2;
1da177e4 1056 }
962830df 1057 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1058
1059 if (actual_refs > minimum_refs)
e3474a8e 1060 return 0;
1da177e4 1061
e3474a8e 1062 return 1;
1da177e4
LT
1063}
1064
1065EXPORT_SYMBOL(may_umount_tree);
1066
1067/**
1068 * may_umount - check if a mount point is busy
1069 * @mnt: root of mount
1070 *
1071 * This is called to check if a mount point has any
1072 * open files, pwds, chroots or sub mounts. If the
1073 * mount has sub mounts this will return busy
1074 * regardless of whether the sub mounts are busy.
1075 *
1076 * Doesn't take quota and stuff into account. IOW, in some cases it will
1077 * give false negatives. The main reason why it's here is that we need
1078 * a non-destructive way to look for easily umountable filesystems.
1079 */
1080int may_umount(struct vfsmount *mnt)
1081{
e3474a8e 1082 int ret = 1;
8ad08d8a 1083 down_read(&namespace_sem);
962830df 1084 br_write_lock(&vfsmount_lock);
1ab59738 1085 if (propagate_mount_busy(real_mount(mnt), 2))
e3474a8e 1086 ret = 0;
962830df 1087 br_write_unlock(&vfsmount_lock);
8ad08d8a 1088 up_read(&namespace_sem);
a05964f3 1089 return ret;
1da177e4
LT
1090}
1091
1092EXPORT_SYMBOL(may_umount);
1093
b90fa9ae 1094void release_mounts(struct list_head *head)
70fbcdf4 1095{
d5e50f74 1096 struct mount *mnt;
bf066c7d 1097 while (!list_empty(head)) {
1b8e5564
AV
1098 mnt = list_first_entry(head, struct mount, mnt_hash);
1099 list_del_init(&mnt->mnt_hash);
676da58d 1100 if (mnt_has_parent(mnt)) {
70fbcdf4 1101 struct dentry *dentry;
863d684f 1102 struct mount *m;
99b7db7b 1103
962830df 1104 br_write_lock(&vfsmount_lock);
a73324da 1105 dentry = mnt->mnt_mountpoint;
863d684f 1106 m = mnt->mnt_parent;
a73324da 1107 mnt->mnt_mountpoint = mnt->mnt.mnt_root;
0714a533 1108 mnt->mnt_parent = mnt;
7c4b93d8 1109 m->mnt_ghosts--;
962830df 1110 br_write_unlock(&vfsmount_lock);
70fbcdf4 1111 dput(dentry);
863d684f 1112 mntput(&m->mnt);
70fbcdf4 1113 }
d5e50f74 1114 mntput(&mnt->mnt);
70fbcdf4
RP
1115 }
1116}
1117
99b7db7b
NP
1118/*
1119 * vfsmount lock must be held for write
1120 * namespace_sem must be held for write
1121 */
761d5c38 1122void umount_tree(struct mount *mnt, int propagate, struct list_head *kill)
1da177e4 1123{
7b8a53fd 1124 LIST_HEAD(tmp_list);
315fc83e 1125 struct mount *p;
1da177e4 1126
909b0a88 1127 for (p = mnt; p; p = next_mnt(p, mnt))
1b8e5564 1128 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1129
a05964f3 1130 if (propagate)
7b8a53fd 1131 propagate_umount(&tmp_list);
a05964f3 1132
1b8e5564 1133 list_for_each_entry(p, &tmp_list, mnt_hash) {
6776db3d 1134 list_del_init(&p->mnt_expire);
1a4eeaf2 1135 list_del_init(&p->mnt_list);
143c8c91
AV
1136 __touch_mnt_namespace(p->mnt_ns);
1137 p->mnt_ns = NULL;
6b41d536 1138 list_del_init(&p->mnt_child);
676da58d 1139 if (mnt_has_parent(p)) {
863d684f 1140 p->mnt_parent->mnt_ghosts++;
a73324da 1141 dentry_reset_mounted(p->mnt_mountpoint);
7c4b93d8 1142 }
0f0afb1d 1143 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1144 }
7b8a53fd 1145 list_splice(&tmp_list, kill);
1da177e4
LT
1146}
1147
692afc31 1148static void shrink_submounts(struct mount *mnt, struct list_head *umounts);
c35038be 1149
1ab59738 1150static int do_umount(struct mount *mnt, int flags)
1da177e4 1151{
1ab59738 1152 struct super_block *sb = mnt->mnt.mnt_sb;
1da177e4 1153 int retval;
70fbcdf4 1154 LIST_HEAD(umount_list);
1da177e4 1155
1ab59738 1156 retval = security_sb_umount(&mnt->mnt, flags);
1da177e4
LT
1157 if (retval)
1158 return retval;
1159
1160 /*
1161 * Allow userspace to request a mountpoint be expired rather than
1162 * unmounting unconditionally. Unmount only happens if:
1163 * (1) the mark is already set (the mark is cleared by mntput())
1164 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1165 */
1166 if (flags & MNT_EXPIRE) {
1ab59738 1167 if (&mnt->mnt == current->fs->root.mnt ||
1da177e4
LT
1168 flags & (MNT_FORCE | MNT_DETACH))
1169 return -EINVAL;
1170
b3e19d92
NP
1171 /*
1172 * probably don't strictly need the lock here if we examined
1173 * all race cases, but it's a slowpath.
1174 */
962830df 1175 br_write_lock(&vfsmount_lock);
83adc753 1176 if (mnt_get_count(mnt) != 2) {
962830df 1177 br_write_unlock(&vfsmount_lock);
1da177e4 1178 return -EBUSY;
b3e19d92 1179 }
962830df 1180 br_write_unlock(&vfsmount_lock);
1da177e4 1181
863d684f 1182 if (!xchg(&mnt->mnt_expiry_mark, 1))
1da177e4
LT
1183 return -EAGAIN;
1184 }
1185
1186 /*
1187 * If we may have to abort operations to get out of this
1188 * mount, and they will themselves hold resources we must
1189 * allow the fs to do things. In the Unix tradition of
1190 * 'Gee thats tricky lets do it in userspace' the umount_begin
1191 * might fail to complete on the first run through as other tasks
1192 * must return, and the like. Thats for the mount program to worry
1193 * about for the moment.
1194 */
1195
42faad99 1196 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1197 sb->s_op->umount_begin(sb);
42faad99 1198 }
1da177e4
LT
1199
1200 /*
1201 * No sense to grab the lock for this test, but test itself looks
1202 * somewhat bogus. Suggestions for better replacement?
1203 * Ho-hum... In principle, we might treat that as umount + switch
1204 * to rootfs. GC would eventually take care of the old vfsmount.
1205 * Actually it makes sense, especially if rootfs would contain a
1206 * /reboot - static binary that would close all descriptors and
1207 * call reboot(9). Then init(8) could umount root and exec /reboot.
1208 */
1ab59738 1209 if (&mnt->mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1210 /*
1211 * Special case for "unmounting" root ...
1212 * we just try to remount it readonly.
1213 */
1214 down_write(&sb->s_umount);
4aa98cf7 1215 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1216 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1217 up_write(&sb->s_umount);
1218 return retval;
1219 }
1220
390c6843 1221 down_write(&namespace_sem);
962830df 1222 br_write_lock(&vfsmount_lock);
5addc5dd 1223 event++;
1da177e4 1224
c35038be 1225 if (!(flags & MNT_DETACH))
1ab59738 1226 shrink_submounts(mnt, &umount_list);
c35038be 1227
1da177e4 1228 retval = -EBUSY;
a05964f3 1229 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1a4eeaf2 1230 if (!list_empty(&mnt->mnt_list))
1ab59738 1231 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1232 retval = 0;
1233 }
962830df 1234 br_write_unlock(&vfsmount_lock);
390c6843 1235 up_write(&namespace_sem);
70fbcdf4 1236 release_mounts(&umount_list);
1da177e4
LT
1237 return retval;
1238}
1239
9b40bc90
AV
1240/*
1241 * Is the caller allowed to modify his namespace?
1242 */
1243static inline bool may_mount(void)
1244{
1245 return ns_capable(current->nsproxy->mnt_ns->user_ns, CAP_SYS_ADMIN);
1246}
1247
1da177e4
LT
1248/*
1249 * Now umount can handle mount points as well as block devices.
1250 * This is important for filesystems which use unnamed block devices.
1251 *
1252 * We now support a flag for forced unmount like the other 'big iron'
1253 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1254 */
1255
bdc480e3 1256SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1257{
2d8f3038 1258 struct path path;
900148dc 1259 struct mount *mnt;
1da177e4 1260 int retval;
db1f05bb 1261 int lookup_flags = 0;
1da177e4 1262
db1f05bb
MS
1263 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1264 return -EINVAL;
1265
9b40bc90
AV
1266 if (!may_mount())
1267 return -EPERM;
1268
db1f05bb
MS
1269 if (!(flags & UMOUNT_NOFOLLOW))
1270 lookup_flags |= LOOKUP_FOLLOW;
1271
1272 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1273 if (retval)
1274 goto out;
900148dc 1275 mnt = real_mount(path.mnt);
1da177e4 1276 retval = -EINVAL;
2d8f3038 1277 if (path.dentry != path.mnt->mnt_root)
1da177e4 1278 goto dput_and_out;
143c8c91 1279 if (!check_mnt(mnt))
1da177e4
LT
1280 goto dput_and_out;
1281
900148dc 1282 retval = do_umount(mnt, flags);
1da177e4 1283dput_and_out:
429731b1 1284 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038 1285 dput(path.dentry);
900148dc 1286 mntput_no_expire(mnt);
1da177e4
LT
1287out:
1288 return retval;
1289}
1290
1291#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1292
1293/*
b58fed8b 1294 * The 2.0 compatible umount. No flags.
1da177e4 1295 */
bdc480e3 1296SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1297{
b58fed8b 1298 return sys_umount(name, 0);
1da177e4
LT
1299}
1300
1301#endif
1302
8823c079
EB
1303static bool mnt_ns_loop(struct path *path)
1304{
1305 /* Could bind mounting the mount namespace inode cause a
1306 * mount namespace loop?
1307 */
1308 struct inode *inode = path->dentry->d_inode;
1309 struct proc_inode *ei;
1310 struct mnt_namespace *mnt_ns;
1311
1312 if (!proc_ns_inode(inode))
1313 return false;
1314
1315 ei = PROC_I(inode);
1316 if (ei->ns_ops != &mntns_operations)
1317 return false;
1318
1319 mnt_ns = ei->ns;
1320 return current->nsproxy->mnt_ns->seq >= mnt_ns->seq;
1321}
1322
87129cc0 1323struct mount *copy_tree(struct mount *mnt, struct dentry *dentry,
36341f64 1324 int flag)
1da177e4 1325{
a73324da 1326 struct mount *res, *p, *q, *r;
1a390689 1327 struct path path;
1da177e4 1328
fc7be130 1329 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
be34d1a3 1330 return ERR_PTR(-EINVAL);
9676f0c6 1331
36341f64 1332 res = q = clone_mnt(mnt, dentry, flag);
be34d1a3
DH
1333 if (IS_ERR(q))
1334 return q;
1335
a73324da 1336 q->mnt_mountpoint = mnt->mnt_mountpoint;
1da177e4
LT
1337
1338 p = mnt;
6b41d536 1339 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1340 struct mount *s;
7ec02ef1 1341 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1342 continue;
1343
909b0a88 1344 for (s = r; s; s = next_mnt(s, r)) {
fc7be130 1345 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
9676f0c6
RP
1346 s = skip_mnt_tree(s);
1347 continue;
1348 }
0714a533
AV
1349 while (p != s->mnt_parent) {
1350 p = p->mnt_parent;
1351 q = q->mnt_parent;
1da177e4 1352 }
87129cc0 1353 p = s;
cb338d06 1354 path.mnt = &q->mnt;
a73324da 1355 path.dentry = p->mnt_mountpoint;
87129cc0 1356 q = clone_mnt(p, p->mnt.mnt_root, flag);
be34d1a3
DH
1357 if (IS_ERR(q))
1358 goto out;
962830df 1359 br_write_lock(&vfsmount_lock);
1a4eeaf2 1360 list_add_tail(&q->mnt_list, &res->mnt_list);
cb338d06 1361 attach_mnt(q, &path);
962830df 1362 br_write_unlock(&vfsmount_lock);
1da177e4
LT
1363 }
1364 }
1365 return res;
be34d1a3 1366out:
1da177e4 1367 if (res) {
70fbcdf4 1368 LIST_HEAD(umount_list);
962830df 1369 br_write_lock(&vfsmount_lock);
761d5c38 1370 umount_tree(res, 0, &umount_list);
962830df 1371 br_write_unlock(&vfsmount_lock);
70fbcdf4 1372 release_mounts(&umount_list);
1da177e4 1373 }
be34d1a3 1374 return q;
1da177e4
LT
1375}
1376
be34d1a3
DH
1377/* Caller should check returned pointer for errors */
1378
589ff870 1379struct vfsmount *collect_mounts(struct path *path)
8aec0809 1380{
cb338d06 1381 struct mount *tree;
1a60a280 1382 down_write(&namespace_sem);
87129cc0
AV
1383 tree = copy_tree(real_mount(path->mnt), path->dentry,
1384 CL_COPY_ALL | CL_PRIVATE);
1a60a280 1385 up_write(&namespace_sem);
be34d1a3
DH
1386 if (IS_ERR(tree))
1387 return NULL;
1388 return &tree->mnt;
8aec0809
AV
1389}
1390
1391void drop_collected_mounts(struct vfsmount *mnt)
1392{
1393 LIST_HEAD(umount_list);
1a60a280 1394 down_write(&namespace_sem);
962830df 1395 br_write_lock(&vfsmount_lock);
761d5c38 1396 umount_tree(real_mount(mnt), 0, &umount_list);
962830df 1397 br_write_unlock(&vfsmount_lock);
1a60a280 1398 up_write(&namespace_sem);
8aec0809
AV
1399 release_mounts(&umount_list);
1400}
1401
1f707137
AV
1402int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1403 struct vfsmount *root)
1404{
1a4eeaf2 1405 struct mount *mnt;
1f707137
AV
1406 int res = f(root, arg);
1407 if (res)
1408 return res;
1a4eeaf2
AV
1409 list_for_each_entry(mnt, &real_mount(root)->mnt_list, mnt_list) {
1410 res = f(&mnt->mnt, arg);
1f707137
AV
1411 if (res)
1412 return res;
1413 }
1414 return 0;
1415}
1416
4b8b21f4 1417static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1418{
315fc83e 1419 struct mount *p;
719f5d7f 1420
909b0a88 1421 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
fc7be130 1422 if (p->mnt_group_id && !IS_MNT_SHARED(p))
4b8b21f4 1423 mnt_release_group_id(p);
719f5d7f
MS
1424 }
1425}
1426
4b8b21f4 1427static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1428{
315fc83e 1429 struct mount *p;
719f5d7f 1430
909b0a88 1431 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
fc7be130 1432 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
4b8b21f4 1433 int err = mnt_alloc_group_id(p);
719f5d7f 1434 if (err) {
4b8b21f4 1435 cleanup_group_ids(mnt, p);
719f5d7f
MS
1436 return err;
1437 }
1438 }
1439 }
1440
1441 return 0;
1442}
1443
b90fa9ae
RP
1444/*
1445 * @source_mnt : mount tree to be attached
21444403
RP
1446 * @nd : place the mount tree @source_mnt is attached
1447 * @parent_nd : if non-null, detach the source_mnt from its parent and
1448 * store the parent mount and mountpoint dentry.
1449 * (done when source_mnt is moved)
b90fa9ae
RP
1450 *
1451 * NOTE: in the table below explains the semantics when a source mount
1452 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1453 * ---------------------------------------------------------------------------
1454 * | BIND MOUNT OPERATION |
1455 * |**************************************************************************
1456 * | source-->| shared | private | slave | unbindable |
1457 * | dest | | | | |
1458 * | | | | | | |
1459 * | v | | | | |
1460 * |**************************************************************************
1461 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1462 * | | | | | |
1463 * |non-shared| shared (+) | private | slave (*) | invalid |
1464 * ***************************************************************************
b90fa9ae
RP
1465 * A bind operation clones the source mount and mounts the clone on the
1466 * destination mount.
1467 *
1468 * (++) the cloned mount is propagated to all the mounts in the propagation
1469 * tree of the destination mount and the cloned mount is added to
1470 * the peer group of the source mount.
1471 * (+) the cloned mount is created under the destination mount and is marked
1472 * as shared. The cloned mount is added to the peer group of the source
1473 * mount.
5afe0022
RP
1474 * (+++) the mount is propagated to all the mounts in the propagation tree
1475 * of the destination mount and the cloned mount is made slave
1476 * of the same master as that of the source mount. The cloned mount
1477 * is marked as 'shared and slave'.
1478 * (*) the cloned mount is made a slave of the same master as that of the
1479 * source mount.
1480 *
9676f0c6
RP
1481 * ---------------------------------------------------------------------------
1482 * | MOVE MOUNT OPERATION |
1483 * |**************************************************************************
1484 * | source-->| shared | private | slave | unbindable |
1485 * | dest | | | | |
1486 * | | | | | | |
1487 * | v | | | | |
1488 * |**************************************************************************
1489 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1490 * | | | | | |
1491 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1492 * ***************************************************************************
5afe0022
RP
1493 *
1494 * (+) the mount is moved to the destination. And is then propagated to
1495 * all the mounts in the propagation tree of the destination mount.
21444403 1496 * (+*) the mount is moved to the destination.
5afe0022
RP
1497 * (+++) the mount is moved to the destination and is then propagated to
1498 * all the mounts belonging to the destination mount's propagation tree.
1499 * the mount is marked as 'shared and slave'.
1500 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1501 *
1502 * if the source mount is a tree, the operations explained above is
1503 * applied to each mount in the tree.
1504 * Must be called without spinlocks held, since this function can sleep
1505 * in allocations.
1506 */
0fb54e50 1507static int attach_recursive_mnt(struct mount *source_mnt,
1a390689 1508 struct path *path, struct path *parent_path)
b90fa9ae
RP
1509{
1510 LIST_HEAD(tree_list);
a8d56d8e 1511 struct mount *dest_mnt = real_mount(path->mnt);
1a390689 1512 struct dentry *dest_dentry = path->dentry;
315fc83e 1513 struct mount *child, *p;
719f5d7f 1514 int err;
b90fa9ae 1515
fc7be130 1516 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1517 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1518 if (err)
1519 goto out;
1520 }
a8d56d8e 1521 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
719f5d7f
MS
1522 if (err)
1523 goto out_cleanup_ids;
b90fa9ae 1524
962830df 1525 br_write_lock(&vfsmount_lock);
df1a1ad2 1526
fc7be130 1527 if (IS_MNT_SHARED(dest_mnt)) {
909b0a88 1528 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
0f0afb1d 1529 set_mnt_shared(p);
b90fa9ae 1530 }
1a390689 1531 if (parent_path) {
0fb54e50
AV
1532 detach_mnt(source_mnt, parent_path);
1533 attach_mnt(source_mnt, path);
143c8c91 1534 touch_mnt_namespace(source_mnt->mnt_ns);
21444403 1535 } else {
14cf1fa8 1536 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
0fb54e50 1537 commit_tree(source_mnt);
21444403 1538 }
b90fa9ae 1539
1b8e5564
AV
1540 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1541 list_del_init(&child->mnt_hash);
4b2619a5 1542 commit_tree(child);
b90fa9ae 1543 }
962830df 1544 br_write_unlock(&vfsmount_lock);
99b7db7b 1545
b90fa9ae 1546 return 0;
719f5d7f
MS
1547
1548 out_cleanup_ids:
fc7be130 1549 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1550 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1551 out:
1552 return err;
b90fa9ae
RP
1553}
1554
b12cea91
AV
1555static int lock_mount(struct path *path)
1556{
1557 struct vfsmount *mnt;
1558retry:
1559 mutex_lock(&path->dentry->d_inode->i_mutex);
1560 if (unlikely(cant_mount(path->dentry))) {
1561 mutex_unlock(&path->dentry->d_inode->i_mutex);
1562 return -ENOENT;
1563 }
1564 down_write(&namespace_sem);
1565 mnt = lookup_mnt(path);
1566 if (likely(!mnt))
1567 return 0;
1568 up_write(&namespace_sem);
1569 mutex_unlock(&path->dentry->d_inode->i_mutex);
1570 path_put(path);
1571 path->mnt = mnt;
1572 path->dentry = dget(mnt->mnt_root);
1573 goto retry;
1574}
1575
1576static void unlock_mount(struct path *path)
1577{
1578 up_write(&namespace_sem);
1579 mutex_unlock(&path->dentry->d_inode->i_mutex);
1580}
1581
95bc5f25 1582static int graft_tree(struct mount *mnt, struct path *path)
1da177e4 1583{
95bc5f25 1584 if (mnt->mnt.mnt_sb->s_flags & MS_NOUSER)
1da177e4
LT
1585 return -EINVAL;
1586
8c3ee42e 1587 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
95bc5f25 1588 S_ISDIR(mnt->mnt.mnt_root->d_inode->i_mode))
1da177e4
LT
1589 return -ENOTDIR;
1590
b12cea91
AV
1591 if (d_unlinked(path->dentry))
1592 return -ENOENT;
1da177e4 1593
95bc5f25 1594 return attach_recursive_mnt(mnt, path, NULL);
1da177e4
LT
1595}
1596
7a2e8a8f
VA
1597/*
1598 * Sanity check the flags to change_mnt_propagation.
1599 */
1600
1601static int flags_to_propagation_type(int flags)
1602{
7c6e984d 1603 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1604
1605 /* Fail if any non-propagation flags are set */
1606 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1607 return 0;
1608 /* Only one propagation flag should be set */
1609 if (!is_power_of_2(type))
1610 return 0;
1611 return type;
1612}
1613
07b20889
RP
1614/*
1615 * recursively change the type of the mountpoint.
1616 */
0a0d8a46 1617static int do_change_type(struct path *path, int flag)
07b20889 1618{
315fc83e 1619 struct mount *m;
4b8b21f4 1620 struct mount *mnt = real_mount(path->mnt);
07b20889 1621 int recurse = flag & MS_REC;
7a2e8a8f 1622 int type;
719f5d7f 1623 int err = 0;
07b20889 1624
2d92ab3c 1625 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1626 return -EINVAL;
1627
7a2e8a8f
VA
1628 type = flags_to_propagation_type(flag);
1629 if (!type)
1630 return -EINVAL;
1631
07b20889 1632 down_write(&namespace_sem);
719f5d7f
MS
1633 if (type == MS_SHARED) {
1634 err = invent_group_ids(mnt, recurse);
1635 if (err)
1636 goto out_unlock;
1637 }
1638
962830df 1639 br_write_lock(&vfsmount_lock);
909b0a88 1640 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
0f0afb1d 1641 change_mnt_propagation(m, type);
962830df 1642 br_write_unlock(&vfsmount_lock);
719f5d7f
MS
1643
1644 out_unlock:
07b20889 1645 up_write(&namespace_sem);
719f5d7f 1646 return err;
07b20889
RP
1647}
1648
1da177e4
LT
1649/*
1650 * do loopback mount.
1651 */
808d4e3c 1652static int do_loopback(struct path *path, const char *old_name,
2dafe1c4 1653 int recurse)
1da177e4 1654{
b12cea91 1655 LIST_HEAD(umount_list);
2d92ab3c 1656 struct path old_path;
87129cc0 1657 struct mount *mnt = NULL, *old;
57eccb83 1658 int err;
1da177e4
LT
1659 if (!old_name || !*old_name)
1660 return -EINVAL;
815d405c 1661 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1662 if (err)
1663 return err;
1664
8823c079
EB
1665 err = -EINVAL;
1666 if (mnt_ns_loop(&old_path))
1667 goto out;
1668
b12cea91
AV
1669 err = lock_mount(path);
1670 if (err)
1671 goto out;
1672
87129cc0
AV
1673 old = real_mount(old_path.mnt);
1674
1da177e4 1675 err = -EINVAL;
fc7be130 1676 if (IS_MNT_UNBINDABLE(old))
b12cea91 1677 goto out2;
9676f0c6 1678
143c8c91 1679 if (!check_mnt(real_mount(path->mnt)) || !check_mnt(old))
b12cea91 1680 goto out2;
1da177e4 1681
ccd48bc7 1682 if (recurse)
87129cc0 1683 mnt = copy_tree(old, old_path.dentry, 0);
ccd48bc7 1684 else
87129cc0 1685 mnt = clone_mnt(old, old_path.dentry, 0);
ccd48bc7 1686
be34d1a3
DH
1687 if (IS_ERR(mnt)) {
1688 err = PTR_ERR(mnt);
1689 goto out;
1690 }
ccd48bc7 1691
95bc5f25 1692 err = graft_tree(mnt, path);
ccd48bc7 1693 if (err) {
962830df 1694 br_write_lock(&vfsmount_lock);
761d5c38 1695 umount_tree(mnt, 0, &umount_list);
962830df 1696 br_write_unlock(&vfsmount_lock);
5b83d2c5 1697 }
b12cea91
AV
1698out2:
1699 unlock_mount(path);
1700 release_mounts(&umount_list);
ccd48bc7 1701out:
2d92ab3c 1702 path_put(&old_path);
1da177e4
LT
1703 return err;
1704}
1705
2e4b7fcd
DH
1706static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1707{
1708 int error = 0;
1709 int readonly_request = 0;
1710
1711 if (ms_flags & MS_RDONLY)
1712 readonly_request = 1;
1713 if (readonly_request == __mnt_is_readonly(mnt))
1714 return 0;
1715
1716 if (readonly_request)
83adc753 1717 error = mnt_make_readonly(real_mount(mnt));
2e4b7fcd 1718 else
83adc753 1719 __mnt_unmake_readonly(real_mount(mnt));
2e4b7fcd
DH
1720 return error;
1721}
1722
1da177e4
LT
1723/*
1724 * change filesystem flags. dir should be a physical root of filesystem.
1725 * If you've mounted a non-root directory somewhere and want to do remount
1726 * on it - tough luck.
1727 */
0a0d8a46 1728static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1729 void *data)
1730{
1731 int err;
2d92ab3c 1732 struct super_block *sb = path->mnt->mnt_sb;
143c8c91 1733 struct mount *mnt = real_mount(path->mnt);
1da177e4 1734
143c8c91 1735 if (!check_mnt(mnt))
1da177e4
LT
1736 return -EINVAL;
1737
2d92ab3c 1738 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1739 return -EINVAL;
1740
ff36fe2c
EP
1741 err = security_sb_remount(sb, data);
1742 if (err)
1743 return err;
1744
1da177e4 1745 down_write(&sb->s_umount);
2e4b7fcd 1746 if (flags & MS_BIND)
2d92ab3c 1747 err = change_mount_flags(path->mnt, flags);
57eccb83
AV
1748 else if (!capable(CAP_SYS_ADMIN))
1749 err = -EPERM;
4aa98cf7 1750 else
2e4b7fcd 1751 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1752 if (!err) {
962830df 1753 br_write_lock(&vfsmount_lock);
143c8c91
AV
1754 mnt_flags |= mnt->mnt.mnt_flags & MNT_PROPAGATION_MASK;
1755 mnt->mnt.mnt_flags = mnt_flags;
962830df 1756 br_write_unlock(&vfsmount_lock);
7b43a79f 1757 }
1da177e4 1758 up_write(&sb->s_umount);
0e55a7cc 1759 if (!err) {
962830df 1760 br_write_lock(&vfsmount_lock);
143c8c91 1761 touch_mnt_namespace(mnt->mnt_ns);
962830df 1762 br_write_unlock(&vfsmount_lock);
0e55a7cc 1763 }
1da177e4
LT
1764 return err;
1765}
1766
cbbe362c 1767static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1768{
315fc83e 1769 struct mount *p;
909b0a88 1770 for (p = mnt; p; p = next_mnt(p, mnt)) {
fc7be130 1771 if (IS_MNT_UNBINDABLE(p))
9676f0c6
RP
1772 return 1;
1773 }
1774 return 0;
1775}
1776
808d4e3c 1777static int do_move_mount(struct path *path, const char *old_name)
1da177e4 1778{
2d92ab3c 1779 struct path old_path, parent_path;
676da58d 1780 struct mount *p;
0fb54e50 1781 struct mount *old;
57eccb83 1782 int err;
1da177e4
LT
1783 if (!old_name || !*old_name)
1784 return -EINVAL;
2d92ab3c 1785 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1786 if (err)
1787 return err;
1788
b12cea91 1789 err = lock_mount(path);
cc53ce53
DH
1790 if (err < 0)
1791 goto out;
1792
143c8c91 1793 old = real_mount(old_path.mnt);
fc7be130 1794 p = real_mount(path->mnt);
143c8c91 1795
1da177e4 1796 err = -EINVAL;
fc7be130 1797 if (!check_mnt(p) || !check_mnt(old))
1da177e4
LT
1798 goto out1;
1799
f3da392e 1800 if (d_unlinked(path->dentry))
21444403 1801 goto out1;
1da177e4
LT
1802
1803 err = -EINVAL;
2d92ab3c 1804 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1805 goto out1;
1da177e4 1806
676da58d 1807 if (!mnt_has_parent(old))
21444403 1808 goto out1;
1da177e4 1809
2d92ab3c
AV
1810 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1811 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1812 goto out1;
1813 /*
1814 * Don't move a mount residing in a shared parent.
1815 */
fc7be130 1816 if (IS_MNT_SHARED(old->mnt_parent))
21444403 1817 goto out1;
9676f0c6
RP
1818 /*
1819 * Don't move a mount tree containing unbindable mounts to a destination
1820 * mount which is shared.
1821 */
fc7be130 1822 if (IS_MNT_SHARED(p) && tree_contains_unbindable(old))
9676f0c6 1823 goto out1;
1da177e4 1824 err = -ELOOP;
fc7be130 1825 for (; mnt_has_parent(p); p = p->mnt_parent)
676da58d 1826 if (p == old)
21444403 1827 goto out1;
1da177e4 1828
0fb54e50 1829 err = attach_recursive_mnt(old, path, &parent_path);
4ac91378 1830 if (err)
21444403 1831 goto out1;
1da177e4
LT
1832
1833 /* if the mount is moved, it should no longer be expire
1834 * automatically */
6776db3d 1835 list_del_init(&old->mnt_expire);
1da177e4 1836out1:
b12cea91 1837 unlock_mount(path);
1da177e4 1838out:
1da177e4 1839 if (!err)
1a390689 1840 path_put(&parent_path);
2d92ab3c 1841 path_put(&old_path);
1da177e4
LT
1842 return err;
1843}
1844
9d412a43
AV
1845static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1846{
1847 int err;
1848 const char *subtype = strchr(fstype, '.');
1849 if (subtype) {
1850 subtype++;
1851 err = -EINVAL;
1852 if (!subtype[0])
1853 goto err;
1854 } else
1855 subtype = "";
1856
1857 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1858 err = -ENOMEM;
1859 if (!mnt->mnt_sb->s_subtype)
1860 goto err;
1861 return mnt;
1862
1863 err:
1864 mntput(mnt);
1865 return ERR_PTR(err);
1866}
1867
9d412a43
AV
1868/*
1869 * add a mount into a namespace's mount tree
1870 */
95bc5f25 1871static int do_add_mount(struct mount *newmnt, struct path *path, int mnt_flags)
9d412a43
AV
1872{
1873 int err;
1874
1875 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1876
b12cea91
AV
1877 err = lock_mount(path);
1878 if (err)
1879 return err;
9d412a43
AV
1880
1881 err = -EINVAL;
156cacb1
AV
1882 if (unlikely(!check_mnt(real_mount(path->mnt)))) {
1883 /* that's acceptable only for automounts done in private ns */
1884 if (!(mnt_flags & MNT_SHRINKABLE))
1885 goto unlock;
1886 /* ... and for those we'd better have mountpoint still alive */
1887 if (!real_mount(path->mnt)->mnt_ns)
1888 goto unlock;
1889 }
9d412a43
AV
1890
1891 /* Refuse the same filesystem on the same mount point */
1892 err = -EBUSY;
95bc5f25 1893 if (path->mnt->mnt_sb == newmnt->mnt.mnt_sb &&
9d412a43
AV
1894 path->mnt->mnt_root == path->dentry)
1895 goto unlock;
1896
1897 err = -EINVAL;
95bc5f25 1898 if (S_ISLNK(newmnt->mnt.mnt_root->d_inode->i_mode))
9d412a43
AV
1899 goto unlock;
1900
95bc5f25 1901 newmnt->mnt.mnt_flags = mnt_flags;
9d412a43
AV
1902 err = graft_tree(newmnt, path);
1903
1904unlock:
b12cea91 1905 unlock_mount(path);
9d412a43
AV
1906 return err;
1907}
b1e75df4 1908
1da177e4
LT
1909/*
1910 * create a new mount for userspace and request it to be added into the
1911 * namespace's tree
1912 */
0c55cfc4 1913static int do_new_mount(struct path *path, const char *fstype, int flags,
808d4e3c 1914 int mnt_flags, const char *name, void *data)
1da177e4 1915{
0c55cfc4 1916 struct file_system_type *type;
9b40bc90 1917 struct user_namespace *user_ns = current->nsproxy->mnt_ns->user_ns;
1da177e4 1918 struct vfsmount *mnt;
15f9a3f3 1919 int err;
1da177e4 1920
0c55cfc4 1921 if (!fstype)
1da177e4
LT
1922 return -EINVAL;
1923
0c55cfc4
EB
1924 type = get_fs_type(fstype);
1925 if (!type)
1926 return -ENODEV;
1927
1928 if (user_ns != &init_user_ns) {
1929 if (!(type->fs_flags & FS_USERNS_MOUNT)) {
1930 put_filesystem(type);
1931 return -EPERM;
1932 }
1933 /* Only in special cases allow devices from mounts
1934 * created outside the initial user namespace.
1935 */
1936 if (!(type->fs_flags & FS_USERNS_DEV_MOUNT)) {
1937 flags |= MS_NODEV;
1938 mnt_flags |= MNT_NODEV;
1939 }
1940 }
1941
1942 mnt = vfs_kern_mount(type, flags, name, data);
1943 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1944 !mnt->mnt_sb->s_subtype)
1945 mnt = fs_set_subtype(mnt, fstype);
1946
1947 put_filesystem(type);
1da177e4
LT
1948 if (IS_ERR(mnt))
1949 return PTR_ERR(mnt);
1950
95bc5f25 1951 err = do_add_mount(real_mount(mnt), path, mnt_flags);
15f9a3f3
AV
1952 if (err)
1953 mntput(mnt);
1954 return err;
1da177e4
LT
1955}
1956
19a167af
AV
1957int finish_automount(struct vfsmount *m, struct path *path)
1958{
6776db3d 1959 struct mount *mnt = real_mount(m);
19a167af
AV
1960 int err;
1961 /* The new mount record should have at least 2 refs to prevent it being
1962 * expired before we get a chance to add it
1963 */
6776db3d 1964 BUG_ON(mnt_get_count(mnt) < 2);
19a167af
AV
1965
1966 if (m->mnt_sb == path->mnt->mnt_sb &&
1967 m->mnt_root == path->dentry) {
b1e75df4
AV
1968 err = -ELOOP;
1969 goto fail;
19a167af
AV
1970 }
1971
95bc5f25 1972 err = do_add_mount(mnt, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
1973 if (!err)
1974 return 0;
1975fail:
1976 /* remove m from any expiration list it may be on */
6776db3d 1977 if (!list_empty(&mnt->mnt_expire)) {
b1e75df4 1978 down_write(&namespace_sem);
962830df 1979 br_write_lock(&vfsmount_lock);
6776db3d 1980 list_del_init(&mnt->mnt_expire);
962830df 1981 br_write_unlock(&vfsmount_lock);
b1e75df4 1982 up_write(&namespace_sem);
19a167af 1983 }
b1e75df4
AV
1984 mntput(m);
1985 mntput(m);
19a167af
AV
1986 return err;
1987}
1988
ea5b778a
DH
1989/**
1990 * mnt_set_expiry - Put a mount on an expiration list
1991 * @mnt: The mount to list.
1992 * @expiry_list: The list to add the mount to.
1993 */
1994void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
1995{
1996 down_write(&namespace_sem);
962830df 1997 br_write_lock(&vfsmount_lock);
ea5b778a 1998
6776db3d 1999 list_add_tail(&real_mount(mnt)->mnt_expire, expiry_list);
ea5b778a 2000
962830df 2001 br_write_unlock(&vfsmount_lock);
ea5b778a
DH
2002 up_write(&namespace_sem);
2003}
2004EXPORT_SYMBOL(mnt_set_expiry);
2005
1da177e4
LT
2006/*
2007 * process a list of expirable mountpoints with the intent of discarding any
2008 * mountpoints that aren't in use and haven't been touched since last we came
2009 * here
2010 */
2011void mark_mounts_for_expiry(struct list_head *mounts)
2012{
761d5c38 2013 struct mount *mnt, *next;
1da177e4 2014 LIST_HEAD(graveyard);
bcc5c7d2 2015 LIST_HEAD(umounts);
1da177e4
LT
2016
2017 if (list_empty(mounts))
2018 return;
2019
bcc5c7d2 2020 down_write(&namespace_sem);
962830df 2021 br_write_lock(&vfsmount_lock);
1da177e4
LT
2022
2023 /* extract from the expiration list every vfsmount that matches the
2024 * following criteria:
2025 * - only referenced by its parent vfsmount
2026 * - still marked for expiry (marked on the last call here; marks are
2027 * cleared by mntput())
2028 */
6776db3d 2029 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
863d684f 2030 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
1ab59738 2031 propagate_mount_busy(mnt, 1))
1da177e4 2032 continue;
6776db3d 2033 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2034 }
bcc5c7d2 2035 while (!list_empty(&graveyard)) {
6776db3d 2036 mnt = list_first_entry(&graveyard, struct mount, mnt_expire);
143c8c91 2037 touch_mnt_namespace(mnt->mnt_ns);
bcc5c7d2
AV
2038 umount_tree(mnt, 1, &umounts);
2039 }
962830df 2040 br_write_unlock(&vfsmount_lock);
bcc5c7d2
AV
2041 up_write(&namespace_sem);
2042
2043 release_mounts(&umounts);
5528f911
TM
2044}
2045
2046EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2047
2048/*
2049 * Ripoff of 'select_parent()'
2050 *
2051 * search the list of submounts for a given mountpoint, and move any
2052 * shrinkable submounts to the 'graveyard' list.
2053 */
692afc31 2054static int select_submounts(struct mount *parent, struct list_head *graveyard)
5528f911 2055{
692afc31 2056 struct mount *this_parent = parent;
5528f911
TM
2057 struct list_head *next;
2058 int found = 0;
2059
2060repeat:
6b41d536 2061 next = this_parent->mnt_mounts.next;
5528f911 2062resume:
6b41d536 2063 while (next != &this_parent->mnt_mounts) {
5528f911 2064 struct list_head *tmp = next;
6b41d536 2065 struct mount *mnt = list_entry(tmp, struct mount, mnt_child);
5528f911
TM
2066
2067 next = tmp->next;
692afc31 2068 if (!(mnt->mnt.mnt_flags & MNT_SHRINKABLE))
1da177e4 2069 continue;
5528f911
TM
2070 /*
2071 * Descend a level if the d_mounts list is non-empty.
2072 */
6b41d536 2073 if (!list_empty(&mnt->mnt_mounts)) {
5528f911
TM
2074 this_parent = mnt;
2075 goto repeat;
2076 }
1da177e4 2077
1ab59738 2078 if (!propagate_mount_busy(mnt, 1)) {
6776db3d 2079 list_move_tail(&mnt->mnt_expire, graveyard);
5528f911
TM
2080 found++;
2081 }
1da177e4 2082 }
5528f911
TM
2083 /*
2084 * All done at this level ... ascend and resume the search
2085 */
2086 if (this_parent != parent) {
6b41d536 2087 next = this_parent->mnt_child.next;
0714a533 2088 this_parent = this_parent->mnt_parent;
5528f911
TM
2089 goto resume;
2090 }
2091 return found;
2092}
2093
2094/*
2095 * process a list of expirable mountpoints with the intent of discarding any
2096 * submounts of a specific parent mountpoint
99b7db7b
NP
2097 *
2098 * vfsmount_lock must be held for write
5528f911 2099 */
692afc31 2100static void shrink_submounts(struct mount *mnt, struct list_head *umounts)
5528f911
TM
2101{
2102 LIST_HEAD(graveyard);
761d5c38 2103 struct mount *m;
5528f911 2104
5528f911 2105 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2106 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2107 while (!list_empty(&graveyard)) {
761d5c38 2108 m = list_first_entry(&graveyard, struct mount,
6776db3d 2109 mnt_expire);
143c8c91 2110 touch_mnt_namespace(m->mnt_ns);
afef80b3 2111 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2112 }
2113 }
1da177e4
LT
2114}
2115
1da177e4
LT
2116/*
2117 * Some copy_from_user() implementations do not return the exact number of
2118 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2119 * Note that this function differs from copy_from_user() in that it will oops
2120 * on bad values of `to', rather than returning a short copy.
2121 */
b58fed8b
RP
2122static long exact_copy_from_user(void *to, const void __user * from,
2123 unsigned long n)
1da177e4
LT
2124{
2125 char *t = to;
2126 const char __user *f = from;
2127 char c;
2128
2129 if (!access_ok(VERIFY_READ, from, n))
2130 return n;
2131
2132 while (n) {
2133 if (__get_user(c, f)) {
2134 memset(t, 0, n);
2135 break;
2136 }
2137 *t++ = c;
2138 f++;
2139 n--;
2140 }
2141 return n;
2142}
2143
b58fed8b 2144int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2145{
2146 int i;
2147 unsigned long page;
2148 unsigned long size;
b58fed8b 2149
1da177e4
LT
2150 *where = 0;
2151 if (!data)
2152 return 0;
2153
2154 if (!(page = __get_free_page(GFP_KERNEL)))
2155 return -ENOMEM;
2156
2157 /* We only care that *some* data at the address the user
2158 * gave us is valid. Just in case, we'll zero
2159 * the remainder of the page.
2160 */
2161 /* copy_from_user cannot cross TASK_SIZE ! */
2162 size = TASK_SIZE - (unsigned long)data;
2163 if (size > PAGE_SIZE)
2164 size = PAGE_SIZE;
2165
2166 i = size - exact_copy_from_user((void *)page, data, size);
2167 if (!i) {
b58fed8b 2168 free_page(page);
1da177e4
LT
2169 return -EFAULT;
2170 }
2171 if (i != PAGE_SIZE)
2172 memset((char *)page + i, 0, PAGE_SIZE - i);
2173 *where = page;
2174 return 0;
2175}
2176
eca6f534
VN
2177int copy_mount_string(const void __user *data, char **where)
2178{
2179 char *tmp;
2180
2181 if (!data) {
2182 *where = NULL;
2183 return 0;
2184 }
2185
2186 tmp = strndup_user(data, PAGE_SIZE);
2187 if (IS_ERR(tmp))
2188 return PTR_ERR(tmp);
2189
2190 *where = tmp;
2191 return 0;
2192}
2193
1da177e4
LT
2194/*
2195 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2196 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2197 *
2198 * data is a (void *) that can point to any structure up to
2199 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2200 * information (or be NULL).
2201 *
2202 * Pre-0.97 versions of mount() didn't have a flags word.
2203 * When the flags word was introduced its top half was required
2204 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2205 * Therefore, if this magic number is present, it carries no information
2206 * and must be discarded.
2207 */
808d4e3c
AV
2208long do_mount(const char *dev_name, const char *dir_name,
2209 const char *type_page, unsigned long flags, void *data_page)
1da177e4 2210{
2d92ab3c 2211 struct path path;
1da177e4
LT
2212 int retval = 0;
2213 int mnt_flags = 0;
2214
2215 /* Discard magic */
2216 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2217 flags &= ~MS_MGC_MSK;
2218
2219 /* Basic sanity checks */
2220
2221 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2222 return -EINVAL;
1da177e4
LT
2223
2224 if (data_page)
2225 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2226
a27ab9f2
TH
2227 /* ... and get the mountpoint */
2228 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2229 if (retval)
2230 return retval;
2231
2232 retval = security_sb_mount(dev_name, &path,
2233 type_page, flags, data_page);
2234 if (retval)
2235 goto dput_out;
2236
57eccb83
AV
2237 if (!may_mount())
2238 return -EPERM;
2239
613cbe3d
AK
2240 /* Default to relatime unless overriden */
2241 if (!(flags & MS_NOATIME))
2242 mnt_flags |= MNT_RELATIME;
0a1c01c9 2243
1da177e4
LT
2244 /* Separate the per-mountpoint flags */
2245 if (flags & MS_NOSUID)
2246 mnt_flags |= MNT_NOSUID;
2247 if (flags & MS_NODEV)
2248 mnt_flags |= MNT_NODEV;
2249 if (flags & MS_NOEXEC)
2250 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2251 if (flags & MS_NOATIME)
2252 mnt_flags |= MNT_NOATIME;
2253 if (flags & MS_NODIRATIME)
2254 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2255 if (flags & MS_STRICTATIME)
2256 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2257 if (flags & MS_RDONLY)
2258 mnt_flags |= MNT_READONLY;
fc33a7bb 2259
7a4dec53 2260 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2261 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2262 MS_STRICTATIME);
1da177e4 2263
1da177e4 2264 if (flags & MS_REMOUNT)
2d92ab3c 2265 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2266 data_page);
2267 else if (flags & MS_BIND)
2d92ab3c 2268 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2269 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2270 retval = do_change_type(&path, flags);
1da177e4 2271 else if (flags & MS_MOVE)
2d92ab3c 2272 retval = do_move_mount(&path, dev_name);
1da177e4 2273 else
2d92ab3c 2274 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2275 dev_name, data_page);
2276dput_out:
2d92ab3c 2277 path_put(&path);
1da177e4
LT
2278 return retval;
2279}
2280
771b1371
EB
2281static void free_mnt_ns(struct mnt_namespace *ns)
2282{
98f842e6 2283 proc_free_inum(ns->proc_inum);
771b1371
EB
2284 put_user_ns(ns->user_ns);
2285 kfree(ns);
2286}
2287
8823c079
EB
2288/*
2289 * Assign a sequence number so we can detect when we attempt to bind
2290 * mount a reference to an older mount namespace into the current
2291 * mount namespace, preventing reference counting loops. A 64bit
2292 * number incrementing at 10Ghz will take 12,427 years to wrap which
2293 * is effectively never, so we can ignore the possibility.
2294 */
2295static atomic64_t mnt_ns_seq = ATOMIC64_INIT(1);
2296
771b1371 2297static struct mnt_namespace *alloc_mnt_ns(struct user_namespace *user_ns)
cf8d2c11
TM
2298{
2299 struct mnt_namespace *new_ns;
98f842e6 2300 int ret;
cf8d2c11
TM
2301
2302 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2303 if (!new_ns)
2304 return ERR_PTR(-ENOMEM);
98f842e6
EB
2305 ret = proc_alloc_inum(&new_ns->proc_inum);
2306 if (ret) {
2307 kfree(new_ns);
2308 return ERR_PTR(ret);
2309 }
8823c079 2310 new_ns->seq = atomic64_add_return(1, &mnt_ns_seq);
cf8d2c11
TM
2311 atomic_set(&new_ns->count, 1);
2312 new_ns->root = NULL;
2313 INIT_LIST_HEAD(&new_ns->list);
2314 init_waitqueue_head(&new_ns->poll);
2315 new_ns->event = 0;
771b1371 2316 new_ns->user_ns = get_user_ns(user_ns);
cf8d2c11
TM
2317 return new_ns;
2318}
2319
741a2951
JD
2320/*
2321 * Allocate a new namespace structure and populate it with contents
2322 * copied from the namespace of the passed in task structure.
2323 */
e3222c4e 2324static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
771b1371 2325 struct user_namespace *user_ns, struct fs_struct *fs)
1da177e4 2326{
6b3286ed 2327 struct mnt_namespace *new_ns;
7f2da1e7 2328 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2329 struct mount *p, *q;
be08d6d2 2330 struct mount *old = mnt_ns->root;
cb338d06 2331 struct mount *new;
7a472ef4 2332 int copy_flags;
1da177e4 2333
771b1371 2334 new_ns = alloc_mnt_ns(user_ns);
cf8d2c11
TM
2335 if (IS_ERR(new_ns))
2336 return new_ns;
1da177e4 2337
390c6843 2338 down_write(&namespace_sem);
1da177e4 2339 /* First pass: copy the tree topology */
7a472ef4
EB
2340 copy_flags = CL_COPY_ALL | CL_EXPIRE;
2341 if (user_ns != mnt_ns->user_ns)
2342 copy_flags |= CL_SHARED_TO_SLAVE;
2343 new = copy_tree(old, old->mnt.mnt_root, copy_flags);
be34d1a3 2344 if (IS_ERR(new)) {
390c6843 2345 up_write(&namespace_sem);
771b1371 2346 free_mnt_ns(new_ns);
be34d1a3 2347 return ERR_CAST(new);
1da177e4 2348 }
be08d6d2 2349 new_ns->root = new;
962830df 2350 br_write_lock(&vfsmount_lock);
1a4eeaf2 2351 list_add_tail(&new_ns->list, &new->mnt_list);
962830df 2352 br_write_unlock(&vfsmount_lock);
1da177e4
LT
2353
2354 /*
2355 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2356 * as belonging to new namespace. We have already acquired a private
2357 * fs_struct, so tsk->fs->lock is not needed.
2358 */
909b0a88 2359 p = old;
cb338d06 2360 q = new;
1da177e4 2361 while (p) {
143c8c91 2362 q->mnt_ns = new_ns;
1da177e4 2363 if (fs) {
315fc83e
AV
2364 if (&p->mnt == fs->root.mnt) {
2365 fs->root.mnt = mntget(&q->mnt);
315fc83e 2366 rootmnt = &p->mnt;
1da177e4 2367 }
315fc83e
AV
2368 if (&p->mnt == fs->pwd.mnt) {
2369 fs->pwd.mnt = mntget(&q->mnt);
315fc83e 2370 pwdmnt = &p->mnt;
1da177e4 2371 }
1da177e4 2372 }
909b0a88
AV
2373 p = next_mnt(p, old);
2374 q = next_mnt(q, new);
1da177e4 2375 }
390c6843 2376 up_write(&namespace_sem);
1da177e4 2377
1da177e4 2378 if (rootmnt)
f03c6599 2379 mntput(rootmnt);
1da177e4 2380 if (pwdmnt)
f03c6599 2381 mntput(pwdmnt);
1da177e4 2382
741a2951
JD
2383 return new_ns;
2384}
2385
213dd266 2386struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
771b1371 2387 struct user_namespace *user_ns, struct fs_struct *new_fs)
741a2951 2388{
6b3286ed 2389 struct mnt_namespace *new_ns;
741a2951 2390
e3222c4e 2391 BUG_ON(!ns);
6b3286ed 2392 get_mnt_ns(ns);
741a2951
JD
2393
2394 if (!(flags & CLONE_NEWNS))
e3222c4e 2395 return ns;
741a2951 2396
771b1371 2397 new_ns = dup_mnt_ns(ns, user_ns, new_fs);
741a2951 2398
6b3286ed 2399 put_mnt_ns(ns);
e3222c4e 2400 return new_ns;
1da177e4
LT
2401}
2402
cf8d2c11
TM
2403/**
2404 * create_mnt_ns - creates a private namespace and adds a root filesystem
2405 * @mnt: pointer to the new root filesystem mountpoint
2406 */
1a4eeaf2 2407static struct mnt_namespace *create_mnt_ns(struct vfsmount *m)
cf8d2c11 2408{
771b1371 2409 struct mnt_namespace *new_ns = alloc_mnt_ns(&init_user_ns);
cf8d2c11 2410 if (!IS_ERR(new_ns)) {
1a4eeaf2
AV
2411 struct mount *mnt = real_mount(m);
2412 mnt->mnt_ns = new_ns;
be08d6d2 2413 new_ns->root = mnt;
1a4eeaf2 2414 list_add(&new_ns->list, &mnt->mnt_list);
c1334495 2415 } else {
1a4eeaf2 2416 mntput(m);
cf8d2c11
TM
2417 }
2418 return new_ns;
2419}
cf8d2c11 2420
ea441d11
AV
2421struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2422{
2423 struct mnt_namespace *ns;
d31da0f0 2424 struct super_block *s;
ea441d11
AV
2425 struct path path;
2426 int err;
2427
2428 ns = create_mnt_ns(mnt);
2429 if (IS_ERR(ns))
2430 return ERR_CAST(ns);
2431
2432 err = vfs_path_lookup(mnt->mnt_root, mnt,
2433 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2434
2435 put_mnt_ns(ns);
2436
2437 if (err)
2438 return ERR_PTR(err);
2439
2440 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2441 s = path.mnt->mnt_sb;
2442 atomic_inc(&s->s_active);
ea441d11
AV
2443 mntput(path.mnt);
2444 /* lock the sucker */
d31da0f0 2445 down_write(&s->s_umount);
ea441d11
AV
2446 /* ... and return the root of (sub)tree on it */
2447 return path.dentry;
2448}
2449EXPORT_SYMBOL(mount_subtree);
2450
bdc480e3
HC
2451SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2452 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2453{
eca6f534
VN
2454 int ret;
2455 char *kernel_type;
91a27b2a 2456 struct filename *kernel_dir;
eca6f534 2457 char *kernel_dev;
1da177e4 2458 unsigned long data_page;
1da177e4 2459
eca6f534
VN
2460 ret = copy_mount_string(type, &kernel_type);
2461 if (ret < 0)
2462 goto out_type;
1da177e4 2463
eca6f534
VN
2464 kernel_dir = getname(dir_name);
2465 if (IS_ERR(kernel_dir)) {
2466 ret = PTR_ERR(kernel_dir);
2467 goto out_dir;
2468 }
1da177e4 2469
eca6f534
VN
2470 ret = copy_mount_string(dev_name, &kernel_dev);
2471 if (ret < 0)
2472 goto out_dev;
1da177e4 2473
eca6f534
VN
2474 ret = copy_mount_options(data, &data_page);
2475 if (ret < 0)
2476 goto out_data;
1da177e4 2477
91a27b2a 2478 ret = do_mount(kernel_dev, kernel_dir->name, kernel_type, flags,
eca6f534 2479 (void *) data_page);
1da177e4 2480
eca6f534
VN
2481 free_page(data_page);
2482out_data:
2483 kfree(kernel_dev);
2484out_dev:
2485 putname(kernel_dir);
2486out_dir:
2487 kfree(kernel_type);
2488out_type:
2489 return ret;
1da177e4
LT
2490}
2491
afac7cba
AV
2492/*
2493 * Return true if path is reachable from root
2494 *
2495 * namespace_sem or vfsmount_lock is held
2496 */
643822b4 2497bool is_path_reachable(struct mount *mnt, struct dentry *dentry,
afac7cba
AV
2498 const struct path *root)
2499{
643822b4 2500 while (&mnt->mnt != root->mnt && mnt_has_parent(mnt)) {
a73324da 2501 dentry = mnt->mnt_mountpoint;
0714a533 2502 mnt = mnt->mnt_parent;
afac7cba 2503 }
643822b4 2504 return &mnt->mnt == root->mnt && is_subdir(dentry, root->dentry);
afac7cba
AV
2505}
2506
2507int path_is_under(struct path *path1, struct path *path2)
2508{
2509 int res;
962830df 2510 br_read_lock(&vfsmount_lock);
643822b4 2511 res = is_path_reachable(real_mount(path1->mnt), path1->dentry, path2);
962830df 2512 br_read_unlock(&vfsmount_lock);
afac7cba
AV
2513 return res;
2514}
2515EXPORT_SYMBOL(path_is_under);
2516
1da177e4
LT
2517/*
2518 * pivot_root Semantics:
2519 * Moves the root file system of the current process to the directory put_old,
2520 * makes new_root as the new root file system of the current process, and sets
2521 * root/cwd of all processes which had them on the current root to new_root.
2522 *
2523 * Restrictions:
2524 * The new_root and put_old must be directories, and must not be on the
2525 * same file system as the current process root. The put_old must be
2526 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2527 * pointed to by put_old must yield the same directory as new_root. No other
2528 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2529 *
4a0d11fa
NB
2530 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2531 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2532 * in this situation.
2533 *
1da177e4
LT
2534 * Notes:
2535 * - we don't move root/cwd if they are not at the root (reason: if something
2536 * cared enough to change them, it's probably wrong to force them elsewhere)
2537 * - it's okay to pick a root that isn't the root of a file system, e.g.
2538 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2539 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2540 * first.
2541 */
3480b257
HC
2542SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2543 const char __user *, put_old)
1da177e4 2544{
2d8f3038 2545 struct path new, old, parent_path, root_parent, root;
419148da 2546 struct mount *new_mnt, *root_mnt;
1da177e4
LT
2547 int error;
2548
9b40bc90 2549 if (!may_mount())
1da177e4
LT
2550 return -EPERM;
2551
2d8f3038 2552 error = user_path_dir(new_root, &new);
1da177e4
LT
2553 if (error)
2554 goto out0;
1da177e4 2555
2d8f3038 2556 error = user_path_dir(put_old, &old);
1da177e4
LT
2557 if (error)
2558 goto out1;
2559
2d8f3038 2560 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2561 if (error)
2562 goto out2;
1da177e4 2563
f7ad3c6b 2564 get_fs_root(current->fs, &root);
b12cea91
AV
2565 error = lock_mount(&old);
2566 if (error)
2567 goto out3;
2568
1da177e4 2569 error = -EINVAL;
419148da
AV
2570 new_mnt = real_mount(new.mnt);
2571 root_mnt = real_mount(root.mnt);
fc7be130
AV
2572 if (IS_MNT_SHARED(real_mount(old.mnt)) ||
2573 IS_MNT_SHARED(new_mnt->mnt_parent) ||
2574 IS_MNT_SHARED(root_mnt->mnt_parent))
b12cea91 2575 goto out4;
143c8c91 2576 if (!check_mnt(root_mnt) || !check_mnt(new_mnt))
b12cea91 2577 goto out4;
1da177e4 2578 error = -ENOENT;
f3da392e 2579 if (d_unlinked(new.dentry))
b12cea91 2580 goto out4;
f3da392e 2581 if (d_unlinked(old.dentry))
b12cea91 2582 goto out4;
1da177e4 2583 error = -EBUSY;
2d8f3038
AV
2584 if (new.mnt == root.mnt ||
2585 old.mnt == root.mnt)
b12cea91 2586 goto out4; /* loop, on the same file system */
1da177e4 2587 error = -EINVAL;
8c3ee42e 2588 if (root.mnt->mnt_root != root.dentry)
b12cea91 2589 goto out4; /* not a mountpoint */
676da58d 2590 if (!mnt_has_parent(root_mnt))
b12cea91 2591 goto out4; /* not attached */
2d8f3038 2592 if (new.mnt->mnt_root != new.dentry)
b12cea91 2593 goto out4; /* not a mountpoint */
676da58d 2594 if (!mnt_has_parent(new_mnt))
b12cea91 2595 goto out4; /* not attached */
4ac91378 2596 /* make sure we can reach put_old from new_root */
643822b4 2597 if (!is_path_reachable(real_mount(old.mnt), old.dentry, &new))
b12cea91 2598 goto out4;
962830df 2599 br_write_lock(&vfsmount_lock);
419148da
AV
2600 detach_mnt(new_mnt, &parent_path);
2601 detach_mnt(root_mnt, &root_parent);
4ac91378 2602 /* mount old root on put_old */
419148da 2603 attach_mnt(root_mnt, &old);
4ac91378 2604 /* mount new_root on / */
419148da 2605 attach_mnt(new_mnt, &root_parent);
6b3286ed 2606 touch_mnt_namespace(current->nsproxy->mnt_ns);
962830df 2607 br_write_unlock(&vfsmount_lock);
2d8f3038 2608 chroot_fs_refs(&root, &new);
1da177e4 2609 error = 0;
b12cea91
AV
2610out4:
2611 unlock_mount(&old);
2612 if (!error) {
2613 path_put(&root_parent);
2614 path_put(&parent_path);
2615 }
2616out3:
8c3ee42e 2617 path_put(&root);
b12cea91 2618out2:
2d8f3038 2619 path_put(&old);
1da177e4 2620out1:
2d8f3038 2621 path_put(&new);
1da177e4 2622out0:
1da177e4 2623 return error;
1da177e4
LT
2624}
2625
2626static void __init init_mount_tree(void)
2627{
2628 struct vfsmount *mnt;
6b3286ed 2629 struct mnt_namespace *ns;
ac748a09 2630 struct path root;
0c55cfc4 2631 struct file_system_type *type;
1da177e4 2632
0c55cfc4
EB
2633 type = get_fs_type("rootfs");
2634 if (!type)
2635 panic("Can't find rootfs type");
2636 mnt = vfs_kern_mount(type, 0, "rootfs", NULL);
2637 put_filesystem(type);
1da177e4
LT
2638 if (IS_ERR(mnt))
2639 panic("Can't create rootfs");
b3e19d92 2640
3b22edc5
TM
2641 ns = create_mnt_ns(mnt);
2642 if (IS_ERR(ns))
1da177e4 2643 panic("Can't allocate initial namespace");
6b3286ed
KK
2644
2645 init_task.nsproxy->mnt_ns = ns;
2646 get_mnt_ns(ns);
2647
be08d6d2
AV
2648 root.mnt = mnt;
2649 root.dentry = mnt->mnt_root;
ac748a09
JB
2650
2651 set_fs_pwd(current->fs, &root);
2652 set_fs_root(current->fs, &root);
1da177e4
LT
2653}
2654
74bf17cf 2655void __init mnt_init(void)
1da177e4 2656{
13f14b4d 2657 unsigned u;
15a67dd8 2658 int err;
1da177e4 2659
390c6843
RP
2660 init_rwsem(&namespace_sem);
2661
7d6fec45 2662 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2663 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2664
b58fed8b 2665 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2666
2667 if (!mount_hashtable)
2668 panic("Failed to allocate mount hash table\n");
2669
80cdc6da 2670 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2671
2672 for (u = 0; u < HASH_SIZE; u++)
2673 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2674
962830df 2675 br_lock_init(&vfsmount_lock);
99b7db7b 2676
15a67dd8
RD
2677 err = sysfs_init();
2678 if (err)
2679 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2680 __func__, err);
00d26666
GKH
2681 fs_kobj = kobject_create_and_add("fs", NULL);
2682 if (!fs_kobj)
8e24eea7 2683 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2684 init_rootfs();
2685 init_mount_tree();
2686}
2687
616511d0 2688void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2689{
70fbcdf4 2690 LIST_HEAD(umount_list);
616511d0 2691
d498b25a 2692 if (!atomic_dec_and_test(&ns->count))
616511d0 2693 return;
390c6843 2694 down_write(&namespace_sem);
962830df 2695 br_write_lock(&vfsmount_lock);
be08d6d2 2696 umount_tree(ns->root, 0, &umount_list);
962830df 2697 br_write_unlock(&vfsmount_lock);
390c6843 2698 up_write(&namespace_sem);
70fbcdf4 2699 release_mounts(&umount_list);
771b1371 2700 free_mnt_ns(ns);
1da177e4 2701}
9d412a43
AV
2702
2703struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2704{
423e0ab0
TC
2705 struct vfsmount *mnt;
2706 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2707 if (!IS_ERR(mnt)) {
2708 /*
2709 * it is a longterm mount, don't release mnt until
2710 * we unmount before file sys is unregistered
2711 */
f7a99c5b 2712 real_mount(mnt)->mnt_ns = MNT_NS_INTERNAL;
423e0ab0
TC
2713 }
2714 return mnt;
9d412a43
AV
2715}
2716EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2717
2718void kern_unmount(struct vfsmount *mnt)
2719{
2720 /* release long term mount so mount point can be released */
2721 if (!IS_ERR_OR_NULL(mnt)) {
f7a99c5b
AV
2722 br_write_lock(&vfsmount_lock);
2723 real_mount(mnt)->mnt_ns = NULL;
2724 br_write_unlock(&vfsmount_lock);
423e0ab0
TC
2725 mntput(mnt);
2726 }
2727}
2728EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2729
2730bool our_mnt(struct vfsmount *mnt)
2731{
143c8c91 2732 return check_mnt(real_mount(mnt));
02125a82 2733}
8823c079 2734
3151527e
EB
2735bool current_chrooted(void)
2736{
2737 /* Does the current process have a non-standard root */
2738 struct path ns_root;
2739 struct path fs_root;
2740 bool chrooted;
2741
2742 /* Find the namespace root */
2743 ns_root.mnt = &current->nsproxy->mnt_ns->root->mnt;
2744 ns_root.dentry = ns_root.mnt->mnt_root;
2745 path_get(&ns_root);
2746 while (d_mountpoint(ns_root.dentry) && follow_down_one(&ns_root))
2747 ;
2748
2749 get_fs_root(current->fs, &fs_root);
2750
2751 chrooted = !path_equal(&fs_root, &ns_root);
2752
2753 path_put(&fs_root);
2754 path_put(&ns_root);
2755
2756 return chrooted;
2757}
2758
8823c079
EB
2759static void *mntns_get(struct task_struct *task)
2760{
2761 struct mnt_namespace *ns = NULL;
2762 struct nsproxy *nsproxy;
2763
2764 rcu_read_lock();
2765 nsproxy = task_nsproxy(task);
2766 if (nsproxy) {
2767 ns = nsproxy->mnt_ns;
2768 get_mnt_ns(ns);
2769 }
2770 rcu_read_unlock();
2771
2772 return ns;
2773}
2774
2775static void mntns_put(void *ns)
2776{
2777 put_mnt_ns(ns);
2778}
2779
2780static int mntns_install(struct nsproxy *nsproxy, void *ns)
2781{
2782 struct fs_struct *fs = current->fs;
2783 struct mnt_namespace *mnt_ns = ns;
2784 struct path root;
2785
0c55cfc4 2786 if (!ns_capable(mnt_ns->user_ns, CAP_SYS_ADMIN) ||
5e4a0847
EB
2787 !nsown_capable(CAP_SYS_CHROOT) ||
2788 !nsown_capable(CAP_SYS_ADMIN))
ae11e0f1 2789 return -EPERM;
8823c079
EB
2790
2791 if (fs->users != 1)
2792 return -EINVAL;
2793
2794 get_mnt_ns(mnt_ns);
2795 put_mnt_ns(nsproxy->mnt_ns);
2796 nsproxy->mnt_ns = mnt_ns;
2797
2798 /* Find the root */
2799 root.mnt = &mnt_ns->root->mnt;
2800 root.dentry = mnt_ns->root->mnt.mnt_root;
2801 path_get(&root);
2802 while(d_mountpoint(root.dentry) && follow_down_one(&root))
2803 ;
2804
2805 /* Update the pwd and root */
2806 set_fs_pwd(fs, &root);
2807 set_fs_root(fs, &root);
2808
2809 path_put(&root);
2810 return 0;
2811}
2812
98f842e6
EB
2813static unsigned int mntns_inum(void *ns)
2814{
2815 struct mnt_namespace *mnt_ns = ns;
2816 return mnt_ns->proc_inum;
2817}
2818
8823c079
EB
2819const struct proc_ns_operations mntns_operations = {
2820 .name = "mnt",
2821 .type = CLONE_NEWNS,
2822 .get = mntns_get,
2823 .put = mntns_put,
2824 .install = mntns_install,
98f842e6 2825 .inum = mntns_inum,
8823c079 2826};