mm: make expand_downwards() symmetrical with expand_upwards()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / exec.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * #!-checking implemented by tytso.
9 */
10/*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
1da177e4
LT
25#include <linux/slab.h>
26#include <linux/file.h>
9f3acc31 27#include <linux/fdtable.h>
ba92a43d 28#include <linux/mm.h>
1da177e4
LT
29#include <linux/stat.h>
30#include <linux/fcntl.h>
ba92a43d 31#include <linux/swap.h>
74aadce9 32#include <linux/string.h>
1da177e4 33#include <linux/init.h>
ca5b172b 34#include <linux/pagemap.h>
cdd6c482 35#include <linux/perf_event.h>
1da177e4
LT
36#include <linux/highmem.h>
37#include <linux/spinlock.h>
38#include <linux/key.h>
39#include <linux/personality.h>
40#include <linux/binfmts.h>
1da177e4 41#include <linux/utsname.h>
84d73786 42#include <linux/pid_namespace.h>
1da177e4
LT
43#include <linux/module.h>
44#include <linux/namei.h>
45#include <linux/proc_fs.h>
1da177e4
LT
46#include <linux/mount.h>
47#include <linux/security.h>
48#include <linux/syscalls.h>
8f0ab514 49#include <linux/tsacct_kern.h>
9f46080c 50#include <linux/cn_proc.h>
473ae30b 51#include <linux/audit.h>
6341c393 52#include <linux/tracehook.h>
5f4123be 53#include <linux/kmod.h>
6110e3ab 54#include <linux/fsnotify.h>
5ad4e53b 55#include <linux/fs_struct.h>
61be228a 56#include <linux/pipe_fs_i.h>
3d5992d2 57#include <linux/oom.h>
0e028465 58#include <linux/compat.h>
1da177e4
LT
59
60#include <asm/uaccess.h>
61#include <asm/mmu_context.h>
b6a2fea3 62#include <asm/tlb.h>
a6f76f23 63#include "internal.h"
1da177e4 64
1da177e4 65int core_uses_pid;
71ce92f3 66char core_pattern[CORENAME_MAX_SIZE] = "core";
a293980c 67unsigned int core_pipe_limit;
d6e71144
AC
68int suid_dumpable = 0;
69
1b0d300b
XF
70struct core_name {
71 char *corename;
72 int used, size;
73};
74static atomic_t call_count = ATOMIC_INIT(1);
75
1da177e4
LT
76/* The maximal length of core_pattern is also specified in sysctl.c */
77
e4dc1b14 78static LIST_HEAD(formats);
1da177e4
LT
79static DEFINE_RWLOCK(binfmt_lock);
80
74641f58 81int __register_binfmt(struct linux_binfmt * fmt, int insert)
1da177e4 82{
1da177e4
LT
83 if (!fmt)
84 return -EINVAL;
1da177e4 85 write_lock(&binfmt_lock);
74641f58
IK
86 insert ? list_add(&fmt->lh, &formats) :
87 list_add_tail(&fmt->lh, &formats);
1da177e4
LT
88 write_unlock(&binfmt_lock);
89 return 0;
90}
91
74641f58 92EXPORT_SYMBOL(__register_binfmt);
1da177e4 93
f6b450d4 94void unregister_binfmt(struct linux_binfmt * fmt)
1da177e4 95{
1da177e4 96 write_lock(&binfmt_lock);
e4dc1b14 97 list_del(&fmt->lh);
1da177e4 98 write_unlock(&binfmt_lock);
1da177e4
LT
99}
100
101EXPORT_SYMBOL(unregister_binfmt);
102
103static inline void put_binfmt(struct linux_binfmt * fmt)
104{
105 module_put(fmt->module);
106}
107
108/*
109 * Note that a shared library must be both readable and executable due to
110 * security reasons.
111 *
112 * Also note that we take the address to load from from the file itself.
113 */
1e7bfb21 114SYSCALL_DEFINE1(uselib, const char __user *, library)
1da177e4 115{
964bd183 116 struct file *file;
964bd183
AV
117 char *tmp = getname(library);
118 int error = PTR_ERR(tmp);
47c805dc
AV
119 static const struct open_flags uselib_flags = {
120 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
121 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
122 .intent = LOOKUP_OPEN
123 };
964bd183 124
6e8341a1
AV
125 if (IS_ERR(tmp))
126 goto out;
127
47c805dc 128 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
6e8341a1
AV
129 putname(tmp);
130 error = PTR_ERR(file);
131 if (IS_ERR(file))
1da177e4
LT
132 goto out;
133
134 error = -EINVAL;
6e8341a1 135 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
1da177e4
LT
136 goto exit;
137
30524472 138 error = -EACCES;
6e8341a1 139 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1da177e4
LT
140 goto exit;
141
2a12a9d7 142 fsnotify_open(file);
6110e3ab 143
1da177e4
LT
144 error = -ENOEXEC;
145 if(file->f_op) {
146 struct linux_binfmt * fmt;
147
148 read_lock(&binfmt_lock);
e4dc1b14 149 list_for_each_entry(fmt, &formats, lh) {
1da177e4
LT
150 if (!fmt->load_shlib)
151 continue;
152 if (!try_module_get(fmt->module))
153 continue;
154 read_unlock(&binfmt_lock);
155 error = fmt->load_shlib(file);
156 read_lock(&binfmt_lock);
157 put_binfmt(fmt);
158 if (error != -ENOEXEC)
159 break;
160 }
161 read_unlock(&binfmt_lock);
162 }
6e8341a1 163exit:
1da177e4
LT
164 fput(file);
165out:
166 return error;
1da177e4
LT
167}
168
b6a2fea3 169#ifdef CONFIG_MMU
ae6b585e
ON
170/*
171 * The nascent bprm->mm is not visible until exec_mmap() but it can
172 * use a lot of memory, account these pages in current->mm temporary
173 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
174 * change the counter back via acct_arg_size(0).
175 */
0e028465 176static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
3c77f845
ON
177{
178 struct mm_struct *mm = current->mm;
179 long diff = (long)(pages - bprm->vma_pages);
180
181 if (!mm || !diff)
182 return;
183
184 bprm->vma_pages = pages;
185
186#ifdef SPLIT_RSS_COUNTING
187 add_mm_counter(mm, MM_ANONPAGES, diff);
188#else
189 spin_lock(&mm->page_table_lock);
190 add_mm_counter(mm, MM_ANONPAGES, diff);
191 spin_unlock(&mm->page_table_lock);
192#endif
193}
194
0e028465 195static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
b6a2fea3
OW
196 int write)
197{
198 struct page *page;
199 int ret;
200
201#ifdef CONFIG_STACK_GROWSUP
202 if (write) {
d05f3169 203 ret = expand_downwards(bprm->vma, pos);
b6a2fea3
OW
204 if (ret < 0)
205 return NULL;
206 }
207#endif
208 ret = get_user_pages(current, bprm->mm, pos,
209 1, write, 1, &page, NULL);
210 if (ret <= 0)
211 return NULL;
212
213 if (write) {
b6a2fea3 214 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
a64e715f
LT
215 struct rlimit *rlim;
216
3c77f845
ON
217 acct_arg_size(bprm, size / PAGE_SIZE);
218
a64e715f
LT
219 /*
220 * We've historically supported up to 32 pages (ARG_MAX)
221 * of argument strings even with small stacks
222 */
223 if (size <= ARG_MAX)
224 return page;
b6a2fea3
OW
225
226 /*
227 * Limit to 1/4-th the stack size for the argv+env strings.
228 * This ensures that:
229 * - the remaining binfmt code will not run out of stack space,
230 * - the program will have a reasonable amount of stack left
231 * to work from.
232 */
a64e715f 233 rlim = current->signal->rlim;
d554ed89 234 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
b6a2fea3
OW
235 put_page(page);
236 return NULL;
237 }
238 }
239
240 return page;
241}
242
243static void put_arg_page(struct page *page)
244{
245 put_page(page);
246}
247
248static void free_arg_page(struct linux_binprm *bprm, int i)
249{
250}
251
252static void free_arg_pages(struct linux_binprm *bprm)
253{
254}
255
256static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
257 struct page *page)
258{
259 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
260}
261
262static int __bprm_mm_init(struct linux_binprm *bprm)
263{
eaccbfa5 264 int err;
b6a2fea3
OW
265 struct vm_area_struct *vma = NULL;
266 struct mm_struct *mm = bprm->mm;
267
268 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
269 if (!vma)
eaccbfa5 270 return -ENOMEM;
b6a2fea3
OW
271
272 down_write(&mm->mmap_sem);
273 vma->vm_mm = mm;
274
275 /*
276 * Place the stack at the largest stack address the architecture
277 * supports. Later, we'll move this to an appropriate place. We don't
278 * use STACK_TOP because that can depend on attributes which aren't
279 * configured yet.
280 */
a8bef8ff 281 BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
b6a2fea3
OW
282 vma->vm_end = STACK_TOP_MAX;
283 vma->vm_start = vma->vm_end - PAGE_SIZE;
a8bef8ff 284 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
3ed75eb8 285 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
5beb4930 286 INIT_LIST_HEAD(&vma->anon_vma_chain);
462e635e
TO
287
288 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
289 if (err)
290 goto err;
291
b6a2fea3 292 err = insert_vm_struct(mm, vma);
eaccbfa5 293 if (err)
b6a2fea3 294 goto err;
b6a2fea3
OW
295
296 mm->stack_vm = mm->total_vm = 1;
297 up_write(&mm->mmap_sem);
b6a2fea3 298 bprm->p = vma->vm_end - sizeof(void *);
b6a2fea3 299 return 0;
b6a2fea3 300err:
eaccbfa5
LFC
301 up_write(&mm->mmap_sem);
302 bprm->vma = NULL;
303 kmem_cache_free(vm_area_cachep, vma);
b6a2fea3
OW
304 return err;
305}
306
307static bool valid_arg_len(struct linux_binprm *bprm, long len)
308{
309 return len <= MAX_ARG_STRLEN;
310}
311
312#else
313
0e028465 314static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
3c77f845
ON
315{
316}
317
0e028465 318static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
b6a2fea3
OW
319 int write)
320{
321 struct page *page;
322
323 page = bprm->page[pos / PAGE_SIZE];
324 if (!page && write) {
325 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
326 if (!page)
327 return NULL;
328 bprm->page[pos / PAGE_SIZE] = page;
329 }
330
331 return page;
332}
333
334static void put_arg_page(struct page *page)
335{
336}
337
338static void free_arg_page(struct linux_binprm *bprm, int i)
339{
340 if (bprm->page[i]) {
341 __free_page(bprm->page[i]);
342 bprm->page[i] = NULL;
343 }
344}
345
346static void free_arg_pages(struct linux_binprm *bprm)
347{
348 int i;
349
350 for (i = 0; i < MAX_ARG_PAGES; i++)
351 free_arg_page(bprm, i);
352}
353
354static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
355 struct page *page)
356{
357}
358
359static int __bprm_mm_init(struct linux_binprm *bprm)
360{
361 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
362 return 0;
363}
364
365static bool valid_arg_len(struct linux_binprm *bprm, long len)
366{
367 return len <= bprm->p;
368}
369
370#endif /* CONFIG_MMU */
371
372/*
373 * Create a new mm_struct and populate it with a temporary stack
374 * vm_area_struct. We don't have enough context at this point to set the stack
375 * flags, permissions, and offset, so we use temporary values. We'll update
376 * them later in setup_arg_pages().
377 */
378int bprm_mm_init(struct linux_binprm *bprm)
379{
380 int err;
381 struct mm_struct *mm = NULL;
382
383 bprm->mm = mm = mm_alloc();
384 err = -ENOMEM;
385 if (!mm)
386 goto err;
387
388 err = init_new_context(current, mm);
389 if (err)
390 goto err;
391
392 err = __bprm_mm_init(bprm);
393 if (err)
394 goto err;
395
396 return 0;
397
398err:
399 if (mm) {
400 bprm->mm = NULL;
401 mmdrop(mm);
402 }
403
404 return err;
405}
406
ba2d0162 407struct user_arg_ptr {
0e028465
ON
408#ifdef CONFIG_COMPAT
409 bool is_compat;
410#endif
411 union {
412 const char __user *const __user *native;
413#ifdef CONFIG_COMPAT
414 compat_uptr_t __user *compat;
415#endif
416 } ptr;
ba2d0162
ON
417};
418
419static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
1d1dbf81 420{
0e028465
ON
421 const char __user *native;
422
423#ifdef CONFIG_COMPAT
424 if (unlikely(argv.is_compat)) {
425 compat_uptr_t compat;
426
427 if (get_user(compat, argv.ptr.compat + nr))
428 return ERR_PTR(-EFAULT);
1d1dbf81 429
0e028465
ON
430 return compat_ptr(compat);
431 }
432#endif
433
434 if (get_user(native, argv.ptr.native + nr))
1d1dbf81
ON
435 return ERR_PTR(-EFAULT);
436
0e028465 437 return native;
1d1dbf81
ON
438}
439
1da177e4
LT
440/*
441 * count() counts the number of strings in array ARGV.
442 */
ba2d0162 443static int count(struct user_arg_ptr argv, int max)
1da177e4
LT
444{
445 int i = 0;
446
0e028465 447 if (argv.ptr.native != NULL) {
1da177e4 448 for (;;) {
1d1dbf81 449 const char __user *p = get_user_arg_ptr(argv, i);
1da177e4 450
1da177e4
LT
451 if (!p)
452 break;
1d1dbf81
ON
453
454 if (IS_ERR(p))
455 return -EFAULT;
456
362e6663 457 if (i++ >= max)
1da177e4 458 return -E2BIG;
9aea5a65
RM
459
460 if (fatal_signal_pending(current))
461 return -ERESTARTNOHAND;
1da177e4
LT
462 cond_resched();
463 }
464 }
465 return i;
466}
467
468/*
b6a2fea3
OW
469 * 'copy_strings()' copies argument/environment strings from the old
470 * processes's memory to the new process's stack. The call to get_user_pages()
471 * ensures the destination page is created and not swapped out.
1da177e4 472 */
ba2d0162 473static int copy_strings(int argc, struct user_arg_ptr argv,
75c96f85 474 struct linux_binprm *bprm)
1da177e4
LT
475{
476 struct page *kmapped_page = NULL;
477 char *kaddr = NULL;
b6a2fea3 478 unsigned long kpos = 0;
1da177e4
LT
479 int ret;
480
481 while (argc-- > 0) {
d7627467 482 const char __user *str;
1da177e4
LT
483 int len;
484 unsigned long pos;
485
1d1dbf81
ON
486 ret = -EFAULT;
487 str = get_user_arg_ptr(argv, argc);
488 if (IS_ERR(str))
1da177e4 489 goto out;
1da177e4 490
1d1dbf81
ON
491 len = strnlen_user(str, MAX_ARG_STRLEN);
492 if (!len)
493 goto out;
494
495 ret = -E2BIG;
496 if (!valid_arg_len(bprm, len))
1da177e4 497 goto out;
1da177e4 498
b6a2fea3 499 /* We're going to work our way backwords. */
1da177e4 500 pos = bprm->p;
b6a2fea3
OW
501 str += len;
502 bprm->p -= len;
1da177e4
LT
503
504 while (len > 0) {
1da177e4 505 int offset, bytes_to_copy;
1da177e4 506
9aea5a65
RM
507 if (fatal_signal_pending(current)) {
508 ret = -ERESTARTNOHAND;
509 goto out;
510 }
7993bc1f
RM
511 cond_resched();
512
1da177e4 513 offset = pos % PAGE_SIZE;
b6a2fea3
OW
514 if (offset == 0)
515 offset = PAGE_SIZE;
516
517 bytes_to_copy = offset;
518 if (bytes_to_copy > len)
519 bytes_to_copy = len;
520
521 offset -= bytes_to_copy;
522 pos -= bytes_to_copy;
523 str -= bytes_to_copy;
524 len -= bytes_to_copy;
525
526 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
527 struct page *page;
528
529 page = get_arg_page(bprm, pos, 1);
1da177e4 530 if (!page) {
b6a2fea3 531 ret = -E2BIG;
1da177e4
LT
532 goto out;
533 }
1da177e4 534
b6a2fea3
OW
535 if (kmapped_page) {
536 flush_kernel_dcache_page(kmapped_page);
1da177e4 537 kunmap(kmapped_page);
b6a2fea3
OW
538 put_arg_page(kmapped_page);
539 }
1da177e4
LT
540 kmapped_page = page;
541 kaddr = kmap(kmapped_page);
b6a2fea3
OW
542 kpos = pos & PAGE_MASK;
543 flush_arg_page(bprm, kpos, kmapped_page);
1da177e4 544 }
b6a2fea3 545 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
1da177e4
LT
546 ret = -EFAULT;
547 goto out;
548 }
1da177e4
LT
549 }
550 }
551 ret = 0;
552out:
b6a2fea3
OW
553 if (kmapped_page) {
554 flush_kernel_dcache_page(kmapped_page);
1da177e4 555 kunmap(kmapped_page);
b6a2fea3
OW
556 put_arg_page(kmapped_page);
557 }
1da177e4
LT
558 return ret;
559}
560
561/*
562 * Like copy_strings, but get argv and its values from kernel memory.
563 */
ba2d0162 564int copy_strings_kernel(int argc, const char *const *__argv,
d7627467 565 struct linux_binprm *bprm)
1da177e4
LT
566{
567 int r;
568 mm_segment_t oldfs = get_fs();
ba2d0162 569 struct user_arg_ptr argv = {
0e028465 570 .ptr.native = (const char __user *const __user *)__argv,
ba2d0162
ON
571 };
572
1da177e4 573 set_fs(KERNEL_DS);
ba2d0162 574 r = copy_strings(argc, argv, bprm);
1da177e4 575 set_fs(oldfs);
ba2d0162 576
1da177e4
LT
577 return r;
578}
1da177e4
LT
579EXPORT_SYMBOL(copy_strings_kernel);
580
581#ifdef CONFIG_MMU
b6a2fea3 582
1da177e4 583/*
b6a2fea3
OW
584 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
585 * the binfmt code determines where the new stack should reside, we shift it to
586 * its final location. The process proceeds as follows:
1da177e4 587 *
b6a2fea3
OW
588 * 1) Use shift to calculate the new vma endpoints.
589 * 2) Extend vma to cover both the old and new ranges. This ensures the
590 * arguments passed to subsequent functions are consistent.
591 * 3) Move vma's page tables to the new range.
592 * 4) Free up any cleared pgd range.
593 * 5) Shrink the vma to cover only the new range.
1da177e4 594 */
b6a2fea3 595static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
1da177e4
LT
596{
597 struct mm_struct *mm = vma->vm_mm;
b6a2fea3
OW
598 unsigned long old_start = vma->vm_start;
599 unsigned long old_end = vma->vm_end;
600 unsigned long length = old_end - old_start;
601 unsigned long new_start = old_start - shift;
602 unsigned long new_end = old_end - shift;
603 struct mmu_gather *tlb;
1da177e4 604
b6a2fea3 605 BUG_ON(new_start > new_end);
1da177e4 606
b6a2fea3
OW
607 /*
608 * ensure there are no vmas between where we want to go
609 * and where we are
610 */
611 if (vma != find_vma(mm, new_start))
612 return -EFAULT;
613
614 /*
615 * cover the whole range: [new_start, old_end)
616 */
5beb4930
RR
617 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
618 return -ENOMEM;
b6a2fea3
OW
619
620 /*
621 * move the page tables downwards, on failure we rely on
622 * process cleanup to remove whatever mess we made.
623 */
624 if (length != move_page_tables(vma, old_start,
625 vma, new_start, length))
626 return -ENOMEM;
627
628 lru_add_drain();
629 tlb = tlb_gather_mmu(mm, 0);
630 if (new_end > old_start) {
631 /*
632 * when the old and new regions overlap clear from new_end.
633 */
42b77728 634 free_pgd_range(tlb, new_end, old_end, new_end,
b6a2fea3
OW
635 vma->vm_next ? vma->vm_next->vm_start : 0);
636 } else {
637 /*
638 * otherwise, clean from old_start; this is done to not touch
639 * the address space in [new_end, old_start) some architectures
640 * have constraints on va-space that make this illegal (IA64) -
641 * for the others its just a little faster.
642 */
42b77728 643 free_pgd_range(tlb, old_start, old_end, new_end,
b6a2fea3 644 vma->vm_next ? vma->vm_next->vm_start : 0);
1da177e4 645 }
b6a2fea3
OW
646 tlb_finish_mmu(tlb, new_end, old_end);
647
648 /*
5beb4930 649 * Shrink the vma to just the new range. Always succeeds.
b6a2fea3
OW
650 */
651 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
652
653 return 0;
1da177e4
LT
654}
655
b6a2fea3
OW
656/*
657 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
658 * the stack is optionally relocated, and some extra space is added.
659 */
1da177e4
LT
660int setup_arg_pages(struct linux_binprm *bprm,
661 unsigned long stack_top,
662 int executable_stack)
663{
b6a2fea3
OW
664 unsigned long ret;
665 unsigned long stack_shift;
1da177e4 666 struct mm_struct *mm = current->mm;
b6a2fea3
OW
667 struct vm_area_struct *vma = bprm->vma;
668 struct vm_area_struct *prev = NULL;
669 unsigned long vm_flags;
670 unsigned long stack_base;
803bf5ec
MN
671 unsigned long stack_size;
672 unsigned long stack_expand;
673 unsigned long rlim_stack;
1da177e4
LT
674
675#ifdef CONFIG_STACK_GROWSUP
1da177e4 676 /* Limit stack size to 1GB */
d554ed89 677 stack_base = rlimit_max(RLIMIT_STACK);
1da177e4
LT
678 if (stack_base > (1 << 30))
679 stack_base = 1 << 30;
1da177e4 680
b6a2fea3
OW
681 /* Make sure we didn't let the argument array grow too large. */
682 if (vma->vm_end - vma->vm_start > stack_base)
683 return -ENOMEM;
1da177e4 684
b6a2fea3 685 stack_base = PAGE_ALIGN(stack_top - stack_base);
1da177e4 686
b6a2fea3
OW
687 stack_shift = vma->vm_start - stack_base;
688 mm->arg_start = bprm->p - stack_shift;
689 bprm->p = vma->vm_end - stack_shift;
1da177e4 690#else
b6a2fea3
OW
691 stack_top = arch_align_stack(stack_top);
692 stack_top = PAGE_ALIGN(stack_top);
1b528181
RM
693
694 if (unlikely(stack_top < mmap_min_addr) ||
695 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
696 return -ENOMEM;
697
b6a2fea3
OW
698 stack_shift = vma->vm_end - stack_top;
699
700 bprm->p -= stack_shift;
1da177e4 701 mm->arg_start = bprm->p;
1da177e4
LT
702#endif
703
1da177e4 704 if (bprm->loader)
b6a2fea3
OW
705 bprm->loader -= stack_shift;
706 bprm->exec -= stack_shift;
1da177e4 707
1da177e4 708 down_write(&mm->mmap_sem);
96a8e13e 709 vm_flags = VM_STACK_FLAGS;
b6a2fea3
OW
710
711 /*
712 * Adjust stack execute permissions; explicitly enable for
713 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
714 * (arch default) otherwise.
715 */
716 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
717 vm_flags |= VM_EXEC;
718 else if (executable_stack == EXSTACK_DISABLE_X)
719 vm_flags &= ~VM_EXEC;
720 vm_flags |= mm->def_flags;
a8bef8ff 721 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
b6a2fea3
OW
722
723 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
724 vm_flags);
725 if (ret)
726 goto out_unlock;
727 BUG_ON(prev != vma);
728
729 /* Move stack pages down in memory. */
730 if (stack_shift) {
731 ret = shift_arg_pages(vma, stack_shift);
fc63cf23
AB
732 if (ret)
733 goto out_unlock;
1da177e4
LT
734 }
735
a8bef8ff
MG
736 /* mprotect_fixup is overkill to remove the temporary stack flags */
737 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
738
5ef097dd 739 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
803bf5ec
MN
740 stack_size = vma->vm_end - vma->vm_start;
741 /*
742 * Align this down to a page boundary as expand_stack
743 * will align it up.
744 */
745 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
b6a2fea3 746#ifdef CONFIG_STACK_GROWSUP
803bf5ec
MN
747 if (stack_size + stack_expand > rlim_stack)
748 stack_base = vma->vm_start + rlim_stack;
749 else
750 stack_base = vma->vm_end + stack_expand;
b6a2fea3 751#else
803bf5ec
MN
752 if (stack_size + stack_expand > rlim_stack)
753 stack_base = vma->vm_end - rlim_stack;
754 else
755 stack_base = vma->vm_start - stack_expand;
b6a2fea3 756#endif
3af9e859 757 current->mm->start_stack = bprm->p;
b6a2fea3
OW
758 ret = expand_stack(vma, stack_base);
759 if (ret)
760 ret = -EFAULT;
761
762out_unlock:
1da177e4 763 up_write(&mm->mmap_sem);
fc63cf23 764 return ret;
1da177e4 765}
1da177e4
LT
766EXPORT_SYMBOL(setup_arg_pages);
767
1da177e4
LT
768#endif /* CONFIG_MMU */
769
770struct file *open_exec(const char *name)
771{
1da177e4 772 struct file *file;
e56b6a5d 773 int err;
47c805dc
AV
774 static const struct open_flags open_exec_flags = {
775 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
776 .acc_mode = MAY_EXEC | MAY_OPEN,
777 .intent = LOOKUP_OPEN
778 };
1da177e4 779
47c805dc 780 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
6e8341a1 781 if (IS_ERR(file))
e56b6a5d
CH
782 goto out;
783
784 err = -EACCES;
6e8341a1
AV
785 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
786 goto exit;
e56b6a5d 787
6e8341a1
AV
788 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
789 goto exit;
e56b6a5d 790
2a12a9d7 791 fsnotify_open(file);
6110e3ab 792
e56b6a5d 793 err = deny_write_access(file);
6e8341a1
AV
794 if (err)
795 goto exit;
1da177e4 796
6e8341a1 797out:
e56b6a5d
CH
798 return file;
799
6e8341a1
AV
800exit:
801 fput(file);
e56b6a5d
CH
802 return ERR_PTR(err);
803}
1da177e4
LT
804EXPORT_SYMBOL(open_exec);
805
6777d773
MZ
806int kernel_read(struct file *file, loff_t offset,
807 char *addr, unsigned long count)
1da177e4
LT
808{
809 mm_segment_t old_fs;
810 loff_t pos = offset;
811 int result;
812
813 old_fs = get_fs();
814 set_fs(get_ds());
815 /* The cast to a user pointer is valid due to the set_fs() */
816 result = vfs_read(file, (void __user *)addr, count, &pos);
817 set_fs(old_fs);
818 return result;
819}
820
821EXPORT_SYMBOL(kernel_read);
822
823static int exec_mmap(struct mm_struct *mm)
824{
825 struct task_struct *tsk;
826 struct mm_struct * old_mm, *active_mm;
827
828 /* Notify parent that we're no longer interested in the old VM */
829 tsk = current;
830 old_mm = current->mm;
34e55232 831 sync_mm_rss(tsk, old_mm);
1da177e4
LT
832 mm_release(tsk, old_mm);
833
834 if (old_mm) {
835 /*
836 * Make sure that if there is a core dump in progress
837 * for the old mm, we get out and die instead of going
838 * through with the exec. We must hold mmap_sem around
999d9fc1 839 * checking core_state and changing tsk->mm.
1da177e4
LT
840 */
841 down_read(&old_mm->mmap_sem);
999d9fc1 842 if (unlikely(old_mm->core_state)) {
1da177e4
LT
843 up_read(&old_mm->mmap_sem);
844 return -EINTR;
845 }
846 }
847 task_lock(tsk);
848 active_mm = tsk->active_mm;
849 tsk->mm = mm;
850 tsk->active_mm = mm;
851 activate_mm(active_mm, mm);
3d5992d2
YH
852 if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
853 atomic_dec(&old_mm->oom_disable_count);
854 atomic_inc(&tsk->mm->oom_disable_count);
855 }
1da177e4
LT
856 task_unlock(tsk);
857 arch_pick_mmap_layout(mm);
858 if (old_mm) {
859 up_read(&old_mm->mmap_sem);
7dddb12c 860 BUG_ON(active_mm != old_mm);
31a78f23 861 mm_update_next_owner(old_mm);
1da177e4
LT
862 mmput(old_mm);
863 return 0;
864 }
865 mmdrop(active_mm);
866 return 0;
867}
868
869/*
870 * This function makes sure the current process has its own signal table,
871 * so that flush_signal_handlers can later reset the handlers without
872 * disturbing other processes. (Other processes might share the signal
873 * table via the CLONE_SIGHAND option to clone().)
874 */
858119e1 875static int de_thread(struct task_struct *tsk)
1da177e4
LT
876{
877 struct signal_struct *sig = tsk->signal;
b2c903b8 878 struct sighand_struct *oldsighand = tsk->sighand;
1da177e4 879 spinlock_t *lock = &oldsighand->siglock;
1da177e4 880
aafe6c2a 881 if (thread_group_empty(tsk))
1da177e4
LT
882 goto no_thread_group;
883
884 /*
885 * Kill all other threads in the thread group.
1da177e4 886 */
1da177e4 887 spin_lock_irq(lock);
ed5d2cac 888 if (signal_group_exit(sig)) {
1da177e4
LT
889 /*
890 * Another group action in progress, just
891 * return so that the signal is processed.
892 */
893 spin_unlock_irq(lock);
1da177e4
LT
894 return -EAGAIN;
895 }
d344193a 896
ed5d2cac 897 sig->group_exit_task = tsk;
d344193a
ON
898 sig->notify_count = zap_other_threads(tsk);
899 if (!thread_group_leader(tsk))
900 sig->notify_count--;
1da177e4 901
d344193a 902 while (sig->notify_count) {
1da177e4
LT
903 __set_current_state(TASK_UNINTERRUPTIBLE);
904 spin_unlock_irq(lock);
905 schedule();
906 spin_lock_irq(lock);
907 }
1da177e4
LT
908 spin_unlock_irq(lock);
909
910 /*
911 * At this point all other threads have exited, all we have to
912 * do is to wait for the thread group leader to become inactive,
913 * and to assume its PID:
914 */
aafe6c2a 915 if (!thread_group_leader(tsk)) {
8187926b 916 struct task_struct *leader = tsk->group_leader;
6db840fa 917
2800d8d1 918 sig->notify_count = -1; /* for exit_notify() */
6db840fa
ON
919 for (;;) {
920 write_lock_irq(&tasklist_lock);
921 if (likely(leader->exit_state))
922 break;
923 __set_current_state(TASK_UNINTERRUPTIBLE);
924 write_unlock_irq(&tasklist_lock);
925 schedule();
926 }
1da177e4 927
f5e90281
RM
928 /*
929 * The only record we have of the real-time age of a
930 * process, regardless of execs it's done, is start_time.
931 * All the past CPU time is accumulated in signal_struct
932 * from sister threads now dead. But in this non-leader
933 * exec, nothing survives from the original leader thread,
934 * whose birth marks the true age of this process now.
935 * When we take on its identity by switching to its PID, we
936 * also take its birthdate (always earlier than our own).
937 */
aafe6c2a 938 tsk->start_time = leader->start_time;
f5e90281 939
bac0abd6
PE
940 BUG_ON(!same_thread_group(leader, tsk));
941 BUG_ON(has_group_leader_pid(tsk));
1da177e4
LT
942 /*
943 * An exec() starts a new thread group with the
944 * TGID of the previous thread group. Rehash the
945 * two threads with a switched PID, and release
946 * the former thread group leader:
947 */
d73d6529
EB
948
949 /* Become a process group leader with the old leader's pid.
c18258c6
EB
950 * The old leader becomes a thread of the this thread group.
951 * Note: The old leader also uses this pid until release_task
d73d6529
EB
952 * is called. Odd but simple and correct.
953 */
aafe6c2a
EB
954 detach_pid(tsk, PIDTYPE_PID);
955 tsk->pid = leader->pid;
3743ca05 956 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
aafe6c2a
EB
957 transfer_pid(leader, tsk, PIDTYPE_PGID);
958 transfer_pid(leader, tsk, PIDTYPE_SID);
9cd80bbb 959
aafe6c2a 960 list_replace_rcu(&leader->tasks, &tsk->tasks);
9cd80bbb 961 list_replace_init(&leader->sibling, &tsk->sibling);
1da177e4 962
aafe6c2a
EB
963 tsk->group_leader = tsk;
964 leader->group_leader = tsk;
de12a787 965
aafe6c2a 966 tsk->exit_signal = SIGCHLD;
962b564c
ON
967
968 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
969 leader->exit_state = EXIT_DEAD;
1da177e4 970 write_unlock_irq(&tasklist_lock);
8187926b
ON
971
972 release_task(leader);
ed5d2cac 973 }
1da177e4 974
6db840fa
ON
975 sig->group_exit_task = NULL;
976 sig->notify_count = 0;
1da177e4
LT
977
978no_thread_group:
1f10206c
JP
979 if (current->mm)
980 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
981
1da177e4 982 exit_itimers(sig);
cbaffba1 983 flush_itimer_signals();
329f7dba 984
b2c903b8
ON
985 if (atomic_read(&oldsighand->count) != 1) {
986 struct sighand_struct *newsighand;
1da177e4 987 /*
b2c903b8
ON
988 * This ->sighand is shared with the CLONE_SIGHAND
989 * but not CLONE_THREAD task, switch to the new one.
1da177e4 990 */
b2c903b8
ON
991 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
992 if (!newsighand)
993 return -ENOMEM;
994
1da177e4
LT
995 atomic_set(&newsighand->count, 1);
996 memcpy(newsighand->action, oldsighand->action,
997 sizeof(newsighand->action));
998
999 write_lock_irq(&tasklist_lock);
1000 spin_lock(&oldsighand->siglock);
aafe6c2a 1001 rcu_assign_pointer(tsk->sighand, newsighand);
1da177e4
LT
1002 spin_unlock(&oldsighand->siglock);
1003 write_unlock_irq(&tasklist_lock);
1004
fba2afaa 1005 __cleanup_sighand(oldsighand);
1da177e4
LT
1006 }
1007
aafe6c2a 1008 BUG_ON(!thread_group_leader(tsk));
1da177e4
LT
1009 return 0;
1010}
0840a90d 1011
1da177e4
LT
1012/*
1013 * These functions flushes out all traces of the currently running executable
1014 * so that a new one can be started
1015 */
858119e1 1016static void flush_old_files(struct files_struct * files)
1da177e4
LT
1017{
1018 long j = -1;
badf1662 1019 struct fdtable *fdt;
1da177e4
LT
1020
1021 spin_lock(&files->file_lock);
1022 for (;;) {
1023 unsigned long set, i;
1024
1025 j++;
1026 i = j * __NFDBITS;
badf1662 1027 fdt = files_fdtable(files);
bbea9f69 1028 if (i >= fdt->max_fds)
1da177e4 1029 break;
badf1662 1030 set = fdt->close_on_exec->fds_bits[j];
1da177e4
LT
1031 if (!set)
1032 continue;
badf1662 1033 fdt->close_on_exec->fds_bits[j] = 0;
1da177e4
LT
1034 spin_unlock(&files->file_lock);
1035 for ( ; set ; i++,set >>= 1) {
1036 if (set & 1) {
1037 sys_close(i);
1038 }
1039 }
1040 spin_lock(&files->file_lock);
1041
1042 }
1043 spin_unlock(&files->file_lock);
1044}
1045
59714d65 1046char *get_task_comm(char *buf, struct task_struct *tsk)
1da177e4
LT
1047{
1048 /* buf must be at least sizeof(tsk->comm) in size */
1049 task_lock(tsk);
1050 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1051 task_unlock(tsk);
59714d65 1052 return buf;
1da177e4 1053}
7d74f492 1054EXPORT_SYMBOL_GPL(get_task_comm);
1da177e4
LT
1055
1056void set_task_comm(struct task_struct *tsk, char *buf)
1057{
1058 task_lock(tsk);
4614a696
JS
1059
1060 /*
1061 * Threads may access current->comm without holding
1062 * the task lock, so write the string carefully.
1063 * Readers without a lock may see incomplete new
1064 * names but are safe from non-terminating string reads.
1065 */
1066 memset(tsk->comm, 0, TASK_COMM_LEN);
1067 wmb();
1da177e4
LT
1068 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1069 task_unlock(tsk);
cdd6c482 1070 perf_event_comm(tsk);
1da177e4
LT
1071}
1072
1073int flush_old_exec(struct linux_binprm * bprm)
1074{
221af7f8 1075 int retval;
1da177e4
LT
1076
1077 /*
1078 * Make sure we have a private signal table and that
1079 * we are unassociated from the previous thread group.
1080 */
1081 retval = de_thread(current);
1082 if (retval)
1083 goto out;
1084
925d1c40
MH
1085 set_mm_exe_file(bprm->mm, bprm->file);
1086
1da177e4
LT
1087 /*
1088 * Release all of the old mmap stuff
1089 */
3c77f845 1090 acct_arg_size(bprm, 0);
1da177e4
LT
1091 retval = exec_mmap(bprm->mm);
1092 if (retval)
fd8328be 1093 goto out;
1da177e4
LT
1094
1095 bprm->mm = NULL; /* We're using it now */
7ab02af4 1096
98391cf4 1097 current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
7ab02af4
LT
1098 flush_thread();
1099 current->personality &= ~bprm->per_clear;
1100
221af7f8
LT
1101 return 0;
1102
1103out:
1104 return retval;
1105}
1106EXPORT_SYMBOL(flush_old_exec);
1107
1108void setup_new_exec(struct linux_binprm * bprm)
1109{
1110 int i, ch;
d7627467 1111 const char *name;
221af7f8
LT
1112 char tcomm[sizeof(current->comm)];
1113
1114 arch_pick_mmap_layout(current->mm);
1da177e4
LT
1115
1116 /* This is the point of no return */
1da177e4
LT
1117 current->sas_ss_sp = current->sas_ss_size = 0;
1118
da9592ed 1119 if (current_euid() == current_uid() && current_egid() == current_gid())
6c5d5238 1120 set_dumpable(current->mm, 1);
d6e71144 1121 else
6c5d5238 1122 set_dumpable(current->mm, suid_dumpable);
d6e71144 1123
1da177e4 1124 name = bprm->filename;
36772092
PBG
1125
1126 /* Copies the binary name from after last slash */
1da177e4
LT
1127 for (i=0; (ch = *(name++)) != '\0';) {
1128 if (ch == '/')
36772092 1129 i = 0; /* overwrite what we wrote */
1da177e4
LT
1130 else
1131 if (i < (sizeof(tcomm) - 1))
1132 tcomm[i++] = ch;
1133 }
1134 tcomm[i] = '\0';
1135 set_task_comm(current, tcomm);
1136
0551fbd2
BH
1137 /* Set the new mm task size. We have to do that late because it may
1138 * depend on TIF_32BIT which is only updated in flush_thread() on
1139 * some architectures like powerpc
1140 */
1141 current->mm->task_size = TASK_SIZE;
1142
a6f76f23
DH
1143 /* install the new credentials */
1144 if (bprm->cred->uid != current_euid() ||
1145 bprm->cred->gid != current_egid()) {
d2d56c5f
MH
1146 current->pdeath_signal = 0;
1147 } else if (file_permission(bprm->file, MAY_READ) ||
a6f76f23 1148 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
6c5d5238 1149 set_dumpable(current->mm, suid_dumpable);
1da177e4
LT
1150 }
1151
f65cb45c
IM
1152 /*
1153 * Flush performance counters when crossing a
1154 * security domain:
1155 */
1156 if (!get_dumpable(current->mm))
cdd6c482 1157 perf_event_exit_task(current);
f65cb45c 1158
1da177e4
LT
1159 /* An exec changes our domain. We are no longer part of the thread
1160 group */
1161
1162 current->self_exec_id++;
1163
1164 flush_signal_handlers(current, 0);
1165 flush_old_files(current->files);
1da177e4 1166}
221af7f8 1167EXPORT_SYMBOL(setup_new_exec);
1da177e4 1168
a2a8474c
ON
1169/*
1170 * Prepare credentials and lock ->cred_guard_mutex.
1171 * install_exec_creds() commits the new creds and drops the lock.
1172 * Or, if exec fails before, free_bprm() should release ->cred and
1173 * and unlock.
1174 */
1175int prepare_bprm_creds(struct linux_binprm *bprm)
1176{
9b1bf12d 1177 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
a2a8474c
ON
1178 return -ERESTARTNOINTR;
1179
1180 bprm->cred = prepare_exec_creds();
1181 if (likely(bprm->cred))
1182 return 0;
1183
9b1bf12d 1184 mutex_unlock(&current->signal->cred_guard_mutex);
a2a8474c
ON
1185 return -ENOMEM;
1186}
1187
1188void free_bprm(struct linux_binprm *bprm)
1189{
1190 free_arg_pages(bprm);
1191 if (bprm->cred) {
9b1bf12d 1192 mutex_unlock(&current->signal->cred_guard_mutex);
a2a8474c
ON
1193 abort_creds(bprm->cred);
1194 }
1195 kfree(bprm);
1196}
1197
a6f76f23
DH
1198/*
1199 * install the new credentials for this executable
1200 */
1201void install_exec_creds(struct linux_binprm *bprm)
1202{
1203 security_bprm_committing_creds(bprm);
1204
1205 commit_creds(bprm->cred);
1206 bprm->cred = NULL;
a2a8474c
ON
1207 /*
1208 * cred_guard_mutex must be held at least to this point to prevent
a6f76f23 1209 * ptrace_attach() from altering our determination of the task's
a2a8474c
ON
1210 * credentials; any time after this it may be unlocked.
1211 */
a6f76f23 1212 security_bprm_committed_creds(bprm);
9b1bf12d 1213 mutex_unlock(&current->signal->cred_guard_mutex);
a6f76f23
DH
1214}
1215EXPORT_SYMBOL(install_exec_creds);
1216
1217/*
1218 * determine how safe it is to execute the proposed program
9b1bf12d 1219 * - the caller must hold ->cred_guard_mutex to protect against
a6f76f23
DH
1220 * PTRACE_ATTACH
1221 */
498052bb 1222int check_unsafe_exec(struct linux_binprm *bprm)
a6f76f23 1223{
0bf2f3ae 1224 struct task_struct *p = current, *t;
f1191b50 1225 unsigned n_fs;
498052bb 1226 int res = 0;
a6f76f23
DH
1227
1228 bprm->unsafe = tracehook_unsafe_exec(p);
1229
0bf2f3ae 1230 n_fs = 1;
2a4419b5 1231 spin_lock(&p->fs->lock);
437f7fdb 1232 rcu_read_lock();
0bf2f3ae
DH
1233 for (t = next_thread(p); t != p; t = next_thread(t)) {
1234 if (t->fs == p->fs)
1235 n_fs++;
0bf2f3ae 1236 }
437f7fdb 1237 rcu_read_unlock();
0bf2f3ae 1238
f1191b50 1239 if (p->fs->users > n_fs) {
a6f76f23 1240 bprm->unsafe |= LSM_UNSAFE_SHARE;
498052bb 1241 } else {
8c652f96
ON
1242 res = -EAGAIN;
1243 if (!p->fs->in_exec) {
1244 p->fs->in_exec = 1;
1245 res = 1;
1246 }
498052bb 1247 }
2a4419b5 1248 spin_unlock(&p->fs->lock);
498052bb
AV
1249
1250 return res;
a6f76f23
DH
1251}
1252
1da177e4
LT
1253/*
1254 * Fill the binprm structure from the inode.
1255 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
a6f76f23
DH
1256 *
1257 * This may be called multiple times for binary chains (scripts for example).
1da177e4
LT
1258 */
1259int prepare_binprm(struct linux_binprm *bprm)
1260{
a6f76f23 1261 umode_t mode;
0f7fc9e4 1262 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1da177e4
LT
1263 int retval;
1264
1265 mode = inode->i_mode;
1da177e4
LT
1266 if (bprm->file->f_op == NULL)
1267 return -EACCES;
1268
a6f76f23
DH
1269 /* clear any previous set[ug]id data from a previous binary */
1270 bprm->cred->euid = current_euid();
1271 bprm->cred->egid = current_egid();
1da177e4 1272
a6f76f23 1273 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1da177e4
LT
1274 /* Set-uid? */
1275 if (mode & S_ISUID) {
a6f76f23
DH
1276 bprm->per_clear |= PER_CLEAR_ON_SETID;
1277 bprm->cred->euid = inode->i_uid;
1da177e4
LT
1278 }
1279
1280 /* Set-gid? */
1281 /*
1282 * If setgid is set but no group execute bit then this
1283 * is a candidate for mandatory locking, not a setgid
1284 * executable.
1285 */
1286 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
a6f76f23
DH
1287 bprm->per_clear |= PER_CLEAR_ON_SETID;
1288 bprm->cred->egid = inode->i_gid;
1da177e4
LT
1289 }
1290 }
1291
1292 /* fill in binprm security blob */
a6f76f23 1293 retval = security_bprm_set_creds(bprm);
1da177e4
LT
1294 if (retval)
1295 return retval;
a6f76f23 1296 bprm->cred_prepared = 1;
1da177e4 1297
a6f76f23
DH
1298 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1299 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1da177e4
LT
1300}
1301
1302EXPORT_SYMBOL(prepare_binprm);
1303
4fc75ff4
NP
1304/*
1305 * Arguments are '\0' separated strings found at the location bprm->p
1306 * points to; chop off the first by relocating brpm->p to right after
1307 * the first '\0' encountered.
1308 */
b6a2fea3 1309int remove_arg_zero(struct linux_binprm *bprm)
1da177e4 1310{
b6a2fea3
OW
1311 int ret = 0;
1312 unsigned long offset;
1313 char *kaddr;
1314 struct page *page;
4fc75ff4 1315
b6a2fea3
OW
1316 if (!bprm->argc)
1317 return 0;
1da177e4 1318
b6a2fea3
OW
1319 do {
1320 offset = bprm->p & ~PAGE_MASK;
1321 page = get_arg_page(bprm, bprm->p, 0);
1322 if (!page) {
1323 ret = -EFAULT;
1324 goto out;
1325 }
1326 kaddr = kmap_atomic(page, KM_USER0);
4fc75ff4 1327
b6a2fea3
OW
1328 for (; offset < PAGE_SIZE && kaddr[offset];
1329 offset++, bprm->p++)
1330 ;
4fc75ff4 1331
b6a2fea3
OW
1332 kunmap_atomic(kaddr, KM_USER0);
1333 put_arg_page(page);
4fc75ff4 1334
b6a2fea3
OW
1335 if (offset == PAGE_SIZE)
1336 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1337 } while (offset == PAGE_SIZE);
4fc75ff4 1338
b6a2fea3
OW
1339 bprm->p++;
1340 bprm->argc--;
1341 ret = 0;
4fc75ff4 1342
b6a2fea3
OW
1343out:
1344 return ret;
1da177e4 1345}
1da177e4
LT
1346EXPORT_SYMBOL(remove_arg_zero);
1347
1348/*
1349 * cycle the list of binary formats handler, until one recognizes the image
1350 */
1351int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1352{
85f33466 1353 unsigned int depth = bprm->recursion_depth;
1da177e4
LT
1354 int try,retval;
1355 struct linux_binfmt *fmt;
1da177e4 1356
1da177e4
LT
1357 retval = security_bprm_check(bprm);
1358 if (retval)
1359 return retval;
1360
1361 /* kernel module loader fixup */
1362 /* so we don't try to load run modprobe in kernel space. */
1363 set_fs(USER_DS);
473ae30b
AV
1364
1365 retval = audit_bprm(bprm);
1366 if (retval)
1367 return retval;
1368
1da177e4
LT
1369 retval = -ENOENT;
1370 for (try=0; try<2; try++) {
1371 read_lock(&binfmt_lock);
e4dc1b14 1372 list_for_each_entry(fmt, &formats, lh) {
1da177e4
LT
1373 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1374 if (!fn)
1375 continue;
1376 if (!try_module_get(fmt->module))
1377 continue;
1378 read_unlock(&binfmt_lock);
1379 retval = fn(bprm, regs);
85f33466
RM
1380 /*
1381 * Restore the depth counter to its starting value
1382 * in this call, so we don't have to rely on every
1383 * load_binary function to restore it on return.
1384 */
1385 bprm->recursion_depth = depth;
1da177e4 1386 if (retval >= 0) {
85f33466
RM
1387 if (depth == 0)
1388 tracehook_report_exec(fmt, bprm, regs);
1da177e4
LT
1389 put_binfmt(fmt);
1390 allow_write_access(bprm->file);
1391 if (bprm->file)
1392 fput(bprm->file);
1393 bprm->file = NULL;
1394 current->did_exec = 1;
9f46080c 1395 proc_exec_connector(current);
1da177e4
LT
1396 return retval;
1397 }
1398 read_lock(&binfmt_lock);
1399 put_binfmt(fmt);
1400 if (retval != -ENOEXEC || bprm->mm == NULL)
1401 break;
1402 if (!bprm->file) {
1403 read_unlock(&binfmt_lock);
1404 return retval;
1405 }
1406 }
1407 read_unlock(&binfmt_lock);
1408 if (retval != -ENOEXEC || bprm->mm == NULL) {
1409 break;
5f4123be
JB
1410#ifdef CONFIG_MODULES
1411 } else {
1da177e4
LT
1412#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1413 if (printable(bprm->buf[0]) &&
1414 printable(bprm->buf[1]) &&
1415 printable(bprm->buf[2]) &&
1416 printable(bprm->buf[3]))
1417 break; /* -ENOEXEC */
1418 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1419#endif
1420 }
1421 }
1422 return retval;
1423}
1424
1425EXPORT_SYMBOL(search_binary_handler);
1426
1427/*
1428 * sys_execve() executes a new program.
1429 */
ba2d0162
ON
1430static int do_execve_common(const char *filename,
1431 struct user_arg_ptr argv,
1432 struct user_arg_ptr envp,
1433 struct pt_regs *regs)
1da177e4
LT
1434{
1435 struct linux_binprm *bprm;
1436 struct file *file;
3b125388 1437 struct files_struct *displaced;
8c652f96 1438 bool clear_in_exec;
1da177e4 1439 int retval;
1da177e4 1440
3b125388 1441 retval = unshare_files(&displaced);
fd8328be
AV
1442 if (retval)
1443 goto out_ret;
1444
1da177e4 1445 retval = -ENOMEM;
11b0b5ab 1446 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1da177e4 1447 if (!bprm)
fd8328be 1448 goto out_files;
1da177e4 1449
a2a8474c
ON
1450 retval = prepare_bprm_creds(bprm);
1451 if (retval)
a6f76f23 1452 goto out_free;
498052bb
AV
1453
1454 retval = check_unsafe_exec(bprm);
8c652f96 1455 if (retval < 0)
a2a8474c 1456 goto out_free;
8c652f96 1457 clear_in_exec = retval;
a2a8474c 1458 current->in_execve = 1;
a6f76f23 1459
1da177e4
LT
1460 file = open_exec(filename);
1461 retval = PTR_ERR(file);
1462 if (IS_ERR(file))
498052bb 1463 goto out_unmark;
1da177e4
LT
1464
1465 sched_exec();
1466
1da177e4
LT
1467 bprm->file = file;
1468 bprm->filename = filename;
1469 bprm->interp = filename;
1da177e4 1470
b6a2fea3
OW
1471 retval = bprm_mm_init(bprm);
1472 if (retval)
1473 goto out_file;
1da177e4 1474
b6a2fea3 1475 bprm->argc = count(argv, MAX_ARG_STRINGS);
1da177e4 1476 if ((retval = bprm->argc) < 0)
a6f76f23 1477 goto out;
1da177e4 1478
b6a2fea3 1479 bprm->envc = count(envp, MAX_ARG_STRINGS);
1da177e4 1480 if ((retval = bprm->envc) < 0)
1da177e4
LT
1481 goto out;
1482
1483 retval = prepare_binprm(bprm);
1484 if (retval < 0)
1485 goto out;
1486
1487 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1488 if (retval < 0)
1489 goto out;
1490
1491 bprm->exec = bprm->p;
1492 retval = copy_strings(bprm->envc, envp, bprm);
1493 if (retval < 0)
1494 goto out;
1495
1496 retval = copy_strings(bprm->argc, argv, bprm);
1497 if (retval < 0)
1498 goto out;
1499
1500 retval = search_binary_handler(bprm,regs);
a6f76f23
DH
1501 if (retval < 0)
1502 goto out;
1da177e4 1503
a6f76f23 1504 /* execve succeeded */
498052bb 1505 current->fs->in_exec = 0;
f9ce1f1c 1506 current->in_execve = 0;
a6f76f23
DH
1507 acct_update_integrals(current);
1508 free_bprm(bprm);
1509 if (displaced)
1510 put_files_struct(displaced);
1511 return retval;
1da177e4 1512
a6f76f23 1513out:
3c77f845
ON
1514 if (bprm->mm) {
1515 acct_arg_size(bprm, 0);
1516 mmput(bprm->mm);
1517 }
1da177e4
LT
1518
1519out_file:
1520 if (bprm->file) {
1521 allow_write_access(bprm->file);
1522 fput(bprm->file);
1523 }
a6f76f23 1524
498052bb 1525out_unmark:
8c652f96
ON
1526 if (clear_in_exec)
1527 current->fs->in_exec = 0;
f9ce1f1c 1528 current->in_execve = 0;
a6f76f23
DH
1529
1530out_free:
08a6fac1 1531 free_bprm(bprm);
1da177e4 1532
fd8328be 1533out_files:
3b125388
AV
1534 if (displaced)
1535 reset_files_struct(displaced);
1da177e4
LT
1536out_ret:
1537 return retval;
1538}
1539
ba2d0162
ON
1540int do_execve(const char *filename,
1541 const char __user *const __user *__argv,
1542 const char __user *const __user *__envp,
1543 struct pt_regs *regs)
1544{
0e028465
ON
1545 struct user_arg_ptr argv = { .ptr.native = __argv };
1546 struct user_arg_ptr envp = { .ptr.native = __envp };
1547 return do_execve_common(filename, argv, envp, regs);
1548}
1549
1550#ifdef CONFIG_COMPAT
1551int compat_do_execve(char *filename,
1552 compat_uptr_t __user *__argv,
1553 compat_uptr_t __user *__envp,
1554 struct pt_regs *regs)
1555{
1556 struct user_arg_ptr argv = {
1557 .is_compat = true,
1558 .ptr.compat = __argv,
1559 };
1560 struct user_arg_ptr envp = {
1561 .is_compat = true,
1562 .ptr.compat = __envp,
1563 };
ba2d0162
ON
1564 return do_execve_common(filename, argv, envp, regs);
1565}
0e028465 1566#endif
ba2d0162 1567
964ee7df 1568void set_binfmt(struct linux_binfmt *new)
1da177e4 1569{
801460d0
HS
1570 struct mm_struct *mm = current->mm;
1571
1572 if (mm->binfmt)
1573 module_put(mm->binfmt->module);
1da177e4 1574
801460d0 1575 mm->binfmt = new;
964ee7df
ON
1576 if (new)
1577 __module_get(new->module);
1da177e4
LT
1578}
1579
1580EXPORT_SYMBOL(set_binfmt);
1581
1b0d300b
XF
1582static int expand_corename(struct core_name *cn)
1583{
1584 char *old_corename = cn->corename;
1585
1586 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1587 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1588
1589 if (!cn->corename) {
1590 kfree(old_corename);
1591 return -ENOMEM;
1592 }
1593
1594 return 0;
1595}
1596
1597static int cn_printf(struct core_name *cn, const char *fmt, ...)
1598{
1599 char *cur;
1600 int need;
1601 int ret;
1602 va_list arg;
1603
1604 va_start(arg, fmt);
1605 need = vsnprintf(NULL, 0, fmt, arg);
1606 va_end(arg);
1607
1608 if (likely(need < cn->size - cn->used - 1))
1609 goto out_printf;
1610
1611 ret = expand_corename(cn);
1612 if (ret)
1613 goto expand_fail;
1614
1615out_printf:
1616 cur = cn->corename + cn->used;
1617 va_start(arg, fmt);
1618 vsnprintf(cur, need + 1, fmt, arg);
1619 va_end(arg);
1620 cn->used += need;
1621 return 0;
1622
1623expand_fail:
1624 return ret;
1625}
1626
1da177e4
LT
1627/* format_corename will inspect the pattern parameter, and output a
1628 * name into corename, which must have space for at least
1629 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1630 */
1b0d300b 1631static int format_corename(struct core_name *cn, long signr)
1da177e4 1632{
86a264ab 1633 const struct cred *cred = current_cred();
565b9b14
ON
1634 const char *pat_ptr = core_pattern;
1635 int ispipe = (*pat_ptr == '|');
1da177e4 1636 int pid_in_pattern = 0;
1b0d300b
XF
1637 int err = 0;
1638
1639 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1640 cn->corename = kmalloc(cn->size, GFP_KERNEL);
1641 cn->used = 0;
1642
1643 if (!cn->corename)
1644 return -ENOMEM;
1da177e4
LT
1645
1646 /* Repeat as long as we have more pattern to process and more output
1647 space */
1648 while (*pat_ptr) {
1649 if (*pat_ptr != '%') {
1b0d300b 1650 if (*pat_ptr == 0)
1da177e4 1651 goto out;
1b0d300b 1652 err = cn_printf(cn, "%c", *pat_ptr++);
1da177e4
LT
1653 } else {
1654 switch (*++pat_ptr) {
1b0d300b 1655 /* single % at the end, drop that */
1da177e4
LT
1656 case 0:
1657 goto out;
1658 /* Double percent, output one percent */
1659 case '%':
1b0d300b 1660 err = cn_printf(cn, "%c", '%');
1da177e4
LT
1661 break;
1662 /* pid */
1663 case 'p':
1664 pid_in_pattern = 1;
1b0d300b
XF
1665 err = cn_printf(cn, "%d",
1666 task_tgid_vnr(current));
1da177e4
LT
1667 break;
1668 /* uid */
1669 case 'u':
1b0d300b 1670 err = cn_printf(cn, "%d", cred->uid);
1da177e4
LT
1671 break;
1672 /* gid */
1673 case 'g':
1b0d300b 1674 err = cn_printf(cn, "%d", cred->gid);
1da177e4
LT
1675 break;
1676 /* signal that caused the coredump */
1677 case 's':
1b0d300b 1678 err = cn_printf(cn, "%ld", signr);
1da177e4
LT
1679 break;
1680 /* UNIX time of coredump */
1681 case 't': {
1682 struct timeval tv;
1683 do_gettimeofday(&tv);
1b0d300b 1684 err = cn_printf(cn, "%lu", tv.tv_sec);
1da177e4
LT
1685 break;
1686 }
1687 /* hostname */
1688 case 'h':
1689 down_read(&uts_sem);
1b0d300b
XF
1690 err = cn_printf(cn, "%s",
1691 utsname()->nodename);
1da177e4 1692 up_read(&uts_sem);
1da177e4
LT
1693 break;
1694 /* executable */
1695 case 'e':
1b0d300b 1696 err = cn_printf(cn, "%s", current->comm);
1da177e4 1697 break;
74aadce9
NH
1698 /* core limit size */
1699 case 'c':
1b0d300b
XF
1700 err = cn_printf(cn, "%lu",
1701 rlimit(RLIMIT_CORE));
74aadce9 1702 break;
1da177e4
LT
1703 default:
1704 break;
1705 }
1706 ++pat_ptr;
1707 }
1b0d300b
XF
1708
1709 if (err)
1710 return err;
1da177e4 1711 }
1b0d300b 1712
1da177e4
LT
1713 /* Backward compatibility with core_uses_pid:
1714 *
1715 * If core_pattern does not include a %p (as is the default)
1716 * and core_uses_pid is set, then .%pid will be appended to
c4bbafda 1717 * the filename. Do not do this for piped commands. */
6409324b 1718 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1b0d300b
XF
1719 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1720 if (err)
1721 return err;
1da177e4 1722 }
c4bbafda 1723out:
c4bbafda 1724 return ispipe;
1da177e4
LT
1725}
1726
5c99cbf4 1727static int zap_process(struct task_struct *start, int exit_code)
aceecc04
ON
1728{
1729 struct task_struct *t;
8cd9c249 1730 int nr = 0;
281de339 1731
d5f70c00 1732 start->signal->flags = SIGNAL_GROUP_EXIT;
5c99cbf4 1733 start->signal->group_exit_code = exit_code;
d5f70c00 1734 start->signal->group_stop_count = 0;
aceecc04
ON
1735
1736 t = start;
1737 do {
39efa3ef 1738 task_clear_group_stop_pending(t);
aceecc04 1739 if (t != current && t->mm) {
281de339
ON
1740 sigaddset(&t->pending.signal, SIGKILL);
1741 signal_wake_up(t, 1);
8cd9c249 1742 nr++;
aceecc04 1743 }
e4901f92 1744 } while_each_thread(start, t);
8cd9c249
ON
1745
1746 return nr;
aceecc04
ON
1747}
1748
dcf560c5 1749static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
8cd9c249 1750 struct core_state *core_state, int exit_code)
1da177e4
LT
1751{
1752 struct task_struct *g, *p;
5debfa6d 1753 unsigned long flags;
8cd9c249 1754 int nr = -EAGAIN;
dcf560c5
ON
1755
1756 spin_lock_irq(&tsk->sighand->siglock);
ed5d2cac 1757 if (!signal_group_exit(tsk->signal)) {
8cd9c249 1758 mm->core_state = core_state;
5c99cbf4 1759 nr = zap_process(tsk, exit_code);
1da177e4 1760 }
dcf560c5 1761 spin_unlock_irq(&tsk->sighand->siglock);
8cd9c249
ON
1762 if (unlikely(nr < 0))
1763 return nr;
1da177e4 1764
8cd9c249 1765 if (atomic_read(&mm->mm_users) == nr + 1)
5debfa6d 1766 goto done;
e4901f92
ON
1767 /*
1768 * We should find and kill all tasks which use this mm, and we should
999d9fc1 1769 * count them correctly into ->nr_threads. We don't take tasklist
e4901f92
ON
1770 * lock, but this is safe wrt:
1771 *
1772 * fork:
1773 * None of sub-threads can fork after zap_process(leader). All
1774 * processes which were created before this point should be
1775 * visible to zap_threads() because copy_process() adds the new
1776 * process to the tail of init_task.tasks list, and lock/unlock
1777 * of ->siglock provides a memory barrier.
1778 *
1779 * do_exit:
1780 * The caller holds mm->mmap_sem. This means that the task which
1781 * uses this mm can't pass exit_mm(), so it can't exit or clear
1782 * its ->mm.
1783 *
1784 * de_thread:
1785 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1786 * we must see either old or new leader, this does not matter.
1787 * However, it can change p->sighand, so lock_task_sighand(p)
1788 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1789 * it can't fail.
1790 *
1791 * Note also that "g" can be the old leader with ->mm == NULL
1792 * and already unhashed and thus removed from ->thread_group.
1793 * This is OK, __unhash_process()->list_del_rcu() does not
1794 * clear the ->next pointer, we will find the new leader via
1795 * next_thread().
1796 */
7b1c6154 1797 rcu_read_lock();
aceecc04 1798 for_each_process(g) {
5debfa6d
ON
1799 if (g == tsk->group_leader)
1800 continue;
15b9f360
ON
1801 if (g->flags & PF_KTHREAD)
1802 continue;
aceecc04
ON
1803 p = g;
1804 do {
1805 if (p->mm) {
15b9f360 1806 if (unlikely(p->mm == mm)) {
5debfa6d 1807 lock_task_sighand(p, &flags);
5c99cbf4 1808 nr += zap_process(p, exit_code);
5debfa6d
ON
1809 unlock_task_sighand(p, &flags);
1810 }
aceecc04
ON
1811 break;
1812 }
e4901f92 1813 } while_each_thread(g, p);
aceecc04 1814 }
7b1c6154 1815 rcu_read_unlock();
5debfa6d 1816done:
c5f1cc8c 1817 atomic_set(&core_state->nr_threads, nr);
8cd9c249 1818 return nr;
1da177e4
LT
1819}
1820
9d5b327b 1821static int coredump_wait(int exit_code, struct core_state *core_state)
1da177e4 1822{
dcf560c5
ON
1823 struct task_struct *tsk = current;
1824 struct mm_struct *mm = tsk->mm;
dcf560c5 1825 struct completion *vfork_done;
269b005a 1826 int core_waiters = -EBUSY;
1da177e4 1827
9d5b327b 1828 init_completion(&core_state->startup);
b564daf8
ON
1829 core_state->dumper.task = tsk;
1830 core_state->dumper.next = NULL;
269b005a
ON
1831
1832 down_write(&mm->mmap_sem);
1833 if (!mm->core_state)
1834 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
2384f55f
ON
1835 up_write(&mm->mmap_sem);
1836
dcf560c5
ON
1837 if (unlikely(core_waiters < 0))
1838 goto fail;
1839
1840 /*
1841 * Make sure nobody is waiting for us to release the VM,
1842 * otherwise we can deadlock when we wait on each other
1843 */
1844 vfork_done = tsk->vfork_done;
1845 if (vfork_done) {
1846 tsk->vfork_done = NULL;
1847 complete(vfork_done);
1848 }
1849
2384f55f 1850 if (core_waiters)
9d5b327b 1851 wait_for_completion(&core_state->startup);
dcf560c5 1852fail:
dcf560c5 1853 return core_waiters;
1da177e4
LT
1854}
1855
a94e2d40
ON
1856static void coredump_finish(struct mm_struct *mm)
1857{
1858 struct core_thread *curr, *next;
1859 struct task_struct *task;
1860
1861 next = mm->core_state->dumper.next;
1862 while ((curr = next) != NULL) {
1863 next = curr->next;
1864 task = curr->task;
1865 /*
1866 * see exit_mm(), curr->task must not see
1867 * ->task == NULL before we read ->next.
1868 */
1869 smp_mb();
1870 curr->task = NULL;
1871 wake_up_process(task);
1872 }
1873
1874 mm->core_state = NULL;
1875}
1876
6c5d5238
KH
1877/*
1878 * set_dumpable converts traditional three-value dumpable to two flags and
1879 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1880 * these bits are not changed atomically. So get_dumpable can observe the
1881 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1882 * return either old dumpable or new one by paying attention to the order of
1883 * modifying the bits.
1884 *
1885 * dumpable | mm->flags (binary)
1886 * old new | initial interim final
1887 * ---------+-----------------------
1888 * 0 1 | 00 01 01
1889 * 0 2 | 00 10(*) 11
1890 * 1 0 | 01 00 00
1891 * 1 2 | 01 11 11
1892 * 2 0 | 11 10(*) 00
1893 * 2 1 | 11 11 01
1894 *
1895 * (*) get_dumpable regards interim value of 10 as 11.
1896 */
1897void set_dumpable(struct mm_struct *mm, int value)
1898{
1899 switch (value) {
1900 case 0:
1901 clear_bit(MMF_DUMPABLE, &mm->flags);
1902 smp_wmb();
1903 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1904 break;
1905 case 1:
1906 set_bit(MMF_DUMPABLE, &mm->flags);
1907 smp_wmb();
1908 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1909 break;
1910 case 2:
1911 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1912 smp_wmb();
1913 set_bit(MMF_DUMPABLE, &mm->flags);
1914 break;
1915 }
1916}
6c5d5238 1917
30736a4d 1918static int __get_dumpable(unsigned long mm_flags)
6c5d5238
KH
1919{
1920 int ret;
1921
30736a4d 1922 ret = mm_flags & MMF_DUMPABLE_MASK;
6c5d5238
KH
1923 return (ret >= 2) ? 2 : ret;
1924}
1925
30736a4d
MH
1926int get_dumpable(struct mm_struct *mm)
1927{
1928 return __get_dumpable(mm->flags);
1929}
1930
61be228a
NH
1931static void wait_for_dump_helpers(struct file *file)
1932{
1933 struct pipe_inode_info *pipe;
1934
1935 pipe = file->f_path.dentry->d_inode->i_pipe;
1936
1937 pipe_lock(pipe);
1938 pipe->readers++;
1939 pipe->writers--;
1940
1941 while ((pipe->readers > 1) && (!signal_pending(current))) {
1942 wake_up_interruptible_sync(&pipe->wait);
1943 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1944 pipe_wait(pipe);
1945 }
1946
1947 pipe->readers--;
1948 pipe->writers++;
1949 pipe_unlock(pipe);
1950
1951}
1952
1953
898b374a 1954/*
1bef8291 1955 * umh_pipe_setup
898b374a
NH
1956 * helper function to customize the process used
1957 * to collect the core in userspace. Specifically
1958 * it sets up a pipe and installs it as fd 0 (stdin)
1959 * for the process. Returns 0 on success, or
1960 * PTR_ERR on failure.
1961 * Note that it also sets the core limit to 1. This
1962 * is a special value that we use to trap recursive
1963 * core dumps
1964 */
1965static int umh_pipe_setup(struct subprocess_info *info)
1966{
1967 struct file *rp, *wp;
1968 struct fdtable *fdt;
1969 struct coredump_params *cp = (struct coredump_params *)info->data;
1970 struct files_struct *cf = current->files;
1971
1972 wp = create_write_pipe(0);
1973 if (IS_ERR(wp))
1974 return PTR_ERR(wp);
1975
1976 rp = create_read_pipe(wp, 0);
1977 if (IS_ERR(rp)) {
1978 free_write_pipe(wp);
1979 return PTR_ERR(rp);
1980 }
1981
1982 cp->file = wp;
1983
1984 sys_close(0);
1985 fd_install(0, rp);
1986 spin_lock(&cf->file_lock);
1987 fdt = files_fdtable(cf);
1988 FD_SET(0, fdt->open_fds);
1989 FD_CLR(0, fdt->close_on_exec);
1990 spin_unlock(&cf->file_lock);
1991
1992 /* and disallow core files too */
1993 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
1994
1995 return 0;
1996}
1997
8cd3ac3a 1998void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1da177e4 1999{
9d5b327b 2000 struct core_state core_state;
1b0d300b 2001 struct core_name cn;
1da177e4
LT
2002 struct mm_struct *mm = current->mm;
2003 struct linux_binfmt * binfmt;
d84f4f99
DH
2004 const struct cred *old_cred;
2005 struct cred *cred;
1da177e4 2006 int retval = 0;
d6e71144 2007 int flag = 0;
d5bf4c4f 2008 int ispipe;
a293980c 2009 static atomic_t core_dump_count = ATOMIC_INIT(0);
f6151dfe
MH
2010 struct coredump_params cprm = {
2011 .signr = signr,
2012 .regs = regs,
d554ed89 2013 .limit = rlimit(RLIMIT_CORE),
30736a4d
MH
2014 /*
2015 * We must use the same mm->flags while dumping core to avoid
2016 * inconsistency of bit flags, since this flag is not protected
2017 * by any locks.
2018 */
2019 .mm_flags = mm->flags,
f6151dfe 2020 };
1da177e4 2021
0a4ff8c2
SG
2022 audit_core_dumps(signr);
2023
801460d0 2024 binfmt = mm->binfmt;
1da177e4
LT
2025 if (!binfmt || !binfmt->core_dump)
2026 goto fail;
269b005a
ON
2027 if (!__get_dumpable(cprm.mm_flags))
2028 goto fail;
d84f4f99
DH
2029
2030 cred = prepare_creds();
5e43aef5 2031 if (!cred)
d84f4f99 2032 goto fail;
d6e71144
AC
2033 /*
2034 * We cannot trust fsuid as being the "true" uid of the
2035 * process nor do we know its entire history. We only know it
2036 * was tainted so we dump it as root in mode 2.
2037 */
30736a4d
MH
2038 if (__get_dumpable(cprm.mm_flags) == 2) {
2039 /* Setuid core dump mode */
d6e71144 2040 flag = O_EXCL; /* Stop rewrite attacks */
d84f4f99 2041 cred->fsuid = 0; /* Dump root private */
d6e71144 2042 }
1291cf41 2043
9d5b327b 2044 retval = coredump_wait(exit_code, &core_state);
5e43aef5
ON
2045 if (retval < 0)
2046 goto fail_creds;
d84f4f99
DH
2047
2048 old_cred = override_creds(cred);
1da177e4
LT
2049
2050 /*
2051 * Clear any false indication of pending signals that might
2052 * be seen by the filesystem code called to write the core file.
2053 */
1da177e4
LT
2054 clear_thread_flag(TIF_SIGPENDING);
2055
1b0d300b
XF
2056 ispipe = format_corename(&cn, signr);
2057
2058 if (ispipe == -ENOMEM) {
2059 printk(KERN_WARNING "format_corename failed\n");
2060 printk(KERN_WARNING "Aborting core\n");
2061 goto fail_corename;
2062 }
725eae32 2063
c4bbafda 2064 if (ispipe) {
d5bf4c4f
ON
2065 int dump_count;
2066 char **helper_argv;
2067
898b374a 2068 if (cprm.limit == 1) {
725eae32
NH
2069 /*
2070 * Normally core limits are irrelevant to pipes, since
2071 * we're not writing to the file system, but we use
898b374a
NH
2072 * cprm.limit of 1 here as a speacial value. Any
2073 * non-1 limit gets set to RLIM_INFINITY below, but
725eae32
NH
2074 * a limit of 0 skips the dump. This is a consistent
2075 * way to catch recursive crashes. We can still crash
898b374a 2076 * if the core_pattern binary sets RLIM_CORE = !1
725eae32
NH
2077 * but it runs as root, and can do lots of stupid things
2078 * Note that we use task_tgid_vnr here to grab the pid
2079 * of the process group leader. That way we get the
2080 * right pid if a thread in a multi-threaded
2081 * core_pattern process dies.
2082 */
2083 printk(KERN_WARNING
898b374a 2084 "Process %d(%s) has RLIMIT_CORE set to 1\n",
725eae32
NH
2085 task_tgid_vnr(current), current->comm);
2086 printk(KERN_WARNING "Aborting core\n");
2087 goto fail_unlock;
2088 }
d5bf4c4f 2089 cprm.limit = RLIM_INFINITY;
725eae32 2090
a293980c
NH
2091 dump_count = atomic_inc_return(&core_dump_count);
2092 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2093 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2094 task_tgid_vnr(current), current->comm);
2095 printk(KERN_WARNING "Skipping core dump\n");
2096 goto fail_dropcount;
2097 }
2098
1b0d300b 2099 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
350eaf79
TH
2100 if (!helper_argv) {
2101 printk(KERN_WARNING "%s failed to allocate memory\n",
2102 __func__);
a293980c 2103 goto fail_dropcount;
350eaf79 2104 }
32321137 2105
d5bf4c4f
ON
2106 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2107 NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2108 NULL, &cprm);
2109 argv_free(helper_argv);
2110 if (retval) {
d025c9db 2111 printk(KERN_INFO "Core dump to %s pipe failed\n",
1b0d300b 2112 cn.corename);
d5bf4c4f 2113 goto close_fail;
d025c9db 2114 }
c7135411
ON
2115 } else {
2116 struct inode *inode;
2117
2118 if (cprm.limit < binfmt->min_coredump)
2119 goto fail_unlock;
2120
1b0d300b 2121 cprm.file = filp_open(cn.corename,
6d4df677
AD
2122 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2123 0600);
c7135411
ON
2124 if (IS_ERR(cprm.file))
2125 goto fail_unlock;
1da177e4 2126
c7135411
ON
2127 inode = cprm.file->f_path.dentry->d_inode;
2128 if (inode->i_nlink > 1)
2129 goto close_fail;
2130 if (d_unhashed(cprm.file->f_path.dentry))
2131 goto close_fail;
2132 /*
2133 * AK: actually i see no reason to not allow this for named
2134 * pipes etc, but keep the previous behaviour for now.
2135 */
2136 if (!S_ISREG(inode->i_mode))
2137 goto close_fail;
2138 /*
2139 * Dont allow local users get cute and trick others to coredump
2140 * into their pre-created files.
2141 */
2142 if (inode->i_uid != current_fsuid())
2143 goto close_fail;
2144 if (!cprm.file->f_op || !cprm.file->f_op->write)
2145 goto close_fail;
2146 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2147 goto close_fail;
2148 }
1da177e4 2149
c7135411 2150 retval = binfmt->core_dump(&cprm);
1da177e4
LT
2151 if (retval)
2152 current->signal->group_exit_code |= 0x80;
d5bf4c4f 2153
61be228a 2154 if (ispipe && core_pipe_limit)
f6151dfe 2155 wait_for_dump_helpers(cprm.file);
d5bf4c4f
ON
2156close_fail:
2157 if (cprm.file)
2158 filp_close(cprm.file, NULL);
a293980c 2159fail_dropcount:
d5bf4c4f 2160 if (ispipe)
a293980c 2161 atomic_dec(&core_dump_count);
1da177e4 2162fail_unlock:
1b0d300b
XF
2163 kfree(cn.corename);
2164fail_corename:
5e43aef5 2165 coredump_finish(mm);
d84f4f99 2166 revert_creds(old_cred);
5e43aef5 2167fail_creds:
d84f4f99 2168 put_cred(cred);
1da177e4 2169fail:
8cd3ac3a 2170 return;
1da177e4 2171}
3aa0ce82
LT
2172
2173/*
2174 * Core dumping helper functions. These are the only things you should
2175 * do on a core-file: use only these functions to write out all the
2176 * necessary info.
2177 */
2178int dump_write(struct file *file, const void *addr, int nr)
2179{
2180 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2181}
8fd01d6c 2182EXPORT_SYMBOL(dump_write);
3aa0ce82
LT
2183
2184int dump_seek(struct file *file, loff_t off)
2185{
2186 int ret = 1;
2187
2188 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2189 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2190 return 0;
2191 } else {
2192 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2193
2194 if (!buf)
2195 return 0;
2196 while (off > 0) {
2197 unsigned long n = off;
2198
2199 if (n > PAGE_SIZE)
2200 n = PAGE_SIZE;
2201 if (!dump_write(file, buf, n)) {
2202 ret = 0;
2203 break;
2204 }
2205 off -= n;
2206 }
2207 free_page((unsigned long)buf);
2208 }
2209 return ret;
2210}
8fd01d6c 2211EXPORT_SYMBOL(dump_seek);