Merge tag 'v3.10.55' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0
NP
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
23044507
NP
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
b23fb0a6 61 * - d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6
NP
65 * dentry->d_lock
66 * dcache_lru_lock
ceb5bdc2
NP
67 * dcache_hash_bucket lock
68 * s_anon lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
23044507 84static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
1da177e4 99
fa3536cc
ED
100static unsigned int d_hash_mask __read_mostly;
101static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 102
b07ad996 103static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 104
8966be90 105static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 106 unsigned int hash)
ceb5bdc2 107{
6d7d1a0d 108 hash += (unsigned long) parent / L1_CACHE_BYTES;
d4c96061 109 return dentry_hashtable + hash_32(hash, d_hash_shift);
ceb5bdc2
NP
110}
111
1da177e4
LT
112/* Statistics gathering. */
113struct dentry_stat_t dentry_stat = {
114 .age_limit = 45,
115};
116
3e880fb5 117static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
118
119#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
120static int get_nr_dentry(void)
121{
122 int i;
123 int sum = 0;
124 for_each_possible_cpu(i)
125 sum += per_cpu(nr_dentry, i);
126 return sum < 0 ? 0 : sum;
127}
128
312d3ca8
CH
129int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
130 size_t *lenp, loff_t *ppos)
131{
3e880fb5 132 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
133 return proc_dointvec(table, write, buffer, lenp, ppos);
134}
135#endif
136
5483f18e
LT
137/*
138 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
139 * The strings are both count bytes long, and count is non-zero.
140 */
e419b4cc
LT
141#ifdef CONFIG_DCACHE_WORD_ACCESS
142
143#include <asm/word-at-a-time.h>
144/*
145 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
146 * aligned allocation for this particular component. We don't
147 * strictly need the load_unaligned_zeropad() safety, but it
148 * doesn't hurt either.
149 *
150 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
151 * need the careful unaligned handling.
152 */
94753db5 153static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 154{
bfcfaa77 155 unsigned long a,b,mask;
bfcfaa77
LT
156
157 for (;;) {
12f8ad4b 158 a = *(unsigned long *)cs;
e419b4cc 159 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
160 if (tcount < sizeof(unsigned long))
161 break;
162 if (unlikely(a != b))
163 return 1;
164 cs += sizeof(unsigned long);
165 ct += sizeof(unsigned long);
166 tcount -= sizeof(unsigned long);
167 if (!tcount)
168 return 0;
169 }
170 mask = ~(~0ul << tcount*8);
171 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
172}
173
bfcfaa77 174#else
e419b4cc 175
94753db5 176static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 177{
5483f18e
LT
178 do {
179 if (*cs != *ct)
180 return 1;
181 cs++;
182 ct++;
183 tcount--;
184 } while (tcount);
185 return 0;
186}
187
e419b4cc
LT
188#endif
189
94753db5
LT
190static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
191{
6326c71f 192 const unsigned char *cs;
94753db5
LT
193 /*
194 * Be careful about RCU walk racing with rename:
195 * use ACCESS_ONCE to fetch the name pointer.
196 *
197 * NOTE! Even if a rename will mean that the length
198 * was not loaded atomically, we don't care. The
199 * RCU walk will check the sequence count eventually,
200 * and catch it. And we won't overrun the buffer,
201 * because we're reading the name pointer atomically,
202 * and a dentry name is guaranteed to be properly
203 * terminated with a NUL byte.
204 *
205 * End result: even if 'len' is wrong, we'll exit
206 * early because the data cannot match (there can
207 * be no NUL in the ct/tcount data)
208 */
6326c71f
LT
209 cs = ACCESS_ONCE(dentry->d_name.name);
210 smp_read_barrier_depends();
211 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
212}
213
9c82ab9c 214static void __d_free(struct rcu_head *head)
1da177e4 215{
9c82ab9c
CH
216 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
217
b3d9b7a3 218 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
219 if (dname_external(dentry))
220 kfree(dentry->d_name.name);
221 kmem_cache_free(dentry_cache, dentry);
222}
223
224/*
b5c84bf6 225 * no locks, please.
1da177e4
LT
226 */
227static void d_free(struct dentry *dentry)
228{
b7ab39f6 229 BUG_ON(dentry->d_count);
3e880fb5 230 this_cpu_dec(nr_dentry);
1da177e4
LT
231 if (dentry->d_op && dentry->d_op->d_release)
232 dentry->d_op->d_release(dentry);
312d3ca8 233
dea3667b
LT
234 /* if dentry was never visible to RCU, immediate free is OK */
235 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 236 __d_free(&dentry->d_u.d_rcu);
b3423415 237 else
9c82ab9c 238 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
239}
240
31e6b01f
NP
241/**
242 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 243 * @dentry: the target dentry
31e6b01f
NP
244 * After this call, in-progress rcu-walk path lookup will fail. This
245 * should be called after unhashing, and after changing d_inode (if
246 * the dentry has not already been unhashed).
247 */
248static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
249{
250 assert_spin_locked(&dentry->d_lock);
251 /* Go through a barrier */
252 write_seqcount_barrier(&dentry->d_seq);
253}
254
1da177e4
LT
255/*
256 * Release the dentry's inode, using the filesystem
31e6b01f
NP
257 * d_iput() operation if defined. Dentry has no refcount
258 * and is unhashed.
1da177e4 259 */
858119e1 260static void dentry_iput(struct dentry * dentry)
31f3e0b3 261 __releases(dentry->d_lock)
873feea0 262 __releases(dentry->d_inode->i_lock)
1da177e4
LT
263{
264 struct inode *inode = dentry->d_inode;
265 if (inode) {
266 dentry->d_inode = NULL;
b3d9b7a3 267 hlist_del_init(&dentry->d_alias);
1da177e4 268 spin_unlock(&dentry->d_lock);
873feea0 269 spin_unlock(&inode->i_lock);
f805fbda
LT
270 if (!inode->i_nlink)
271 fsnotify_inoderemove(inode);
1da177e4
LT
272 if (dentry->d_op && dentry->d_op->d_iput)
273 dentry->d_op->d_iput(dentry, inode);
274 else
275 iput(inode);
276 } else {
277 spin_unlock(&dentry->d_lock);
1da177e4
LT
278 }
279}
280
31e6b01f
NP
281/*
282 * Release the dentry's inode, using the filesystem
283 * d_iput() operation if defined. dentry remains in-use.
284 */
285static void dentry_unlink_inode(struct dentry * dentry)
286 __releases(dentry->d_lock)
873feea0 287 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
288{
289 struct inode *inode = dentry->d_inode;
290 dentry->d_inode = NULL;
b3d9b7a3 291 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
292 dentry_rcuwalk_barrier(dentry);
293 spin_unlock(&dentry->d_lock);
873feea0 294 spin_unlock(&inode->i_lock);
31e6b01f
NP
295 if (!inode->i_nlink)
296 fsnotify_inoderemove(inode);
297 if (dentry->d_op && dentry->d_op->d_iput)
298 dentry->d_op->d_iput(dentry, inode);
299 else
300 iput(inode);
301}
302
da3bbdd4 303/*
f0023bc6 304 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
da3bbdd4
KM
305 */
306static void dentry_lru_add(struct dentry *dentry)
307{
a4633357 308 if (list_empty(&dentry->d_lru)) {
23044507 309 spin_lock(&dcache_lru_lock);
a4633357
CH
310 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
311 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 312 dentry_stat.nr_unused++;
23044507 313 spin_unlock(&dcache_lru_lock);
a4633357 314 }
da3bbdd4
KM
315}
316
23044507
NP
317static void __dentry_lru_del(struct dentry *dentry)
318{
319 list_del_init(&dentry->d_lru);
eaf5f907 320 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
23044507
NP
321 dentry->d_sb->s_nr_dentry_unused--;
322 dentry_stat.nr_unused--;
323}
324
f0023bc6
SW
325/*
326 * Remove a dentry with references from the LRU.
327 */
da3bbdd4
KM
328static void dentry_lru_del(struct dentry *dentry)
329{
330 if (!list_empty(&dentry->d_lru)) {
23044507
NP
331 spin_lock(&dcache_lru_lock);
332 __dentry_lru_del(dentry);
333 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
334 }
335}
336
b48f03b3 337static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
da3bbdd4 338{
23044507 339 spin_lock(&dcache_lru_lock);
a4633357 340 if (list_empty(&dentry->d_lru)) {
b48f03b3 341 list_add_tail(&dentry->d_lru, list);
a4633357 342 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 343 dentry_stat.nr_unused++;
a4633357 344 } else {
b48f03b3 345 list_move_tail(&dentry->d_lru, list);
da3bbdd4 346 }
23044507 347 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
348}
349
d52b9086
MS
350/**
351 * d_kill - kill dentry and return parent
352 * @dentry: dentry to kill
ff5fdb61 353 * @parent: parent dentry
d52b9086 354 *
31f3e0b3 355 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
356 *
357 * If this is the root of the dentry tree, return NULL.
23044507 358 *
b5c84bf6
NP
359 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
360 * d_kill.
d52b9086 361 */
2fd6b7f5 362static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 363 __releases(dentry->d_lock)
2fd6b7f5 364 __releases(parent->d_lock)
873feea0 365 __releases(dentry->d_inode->i_lock)
d52b9086 366{
d52b9086 367 list_del(&dentry->d_u.d_child);
c83ce989
TM
368 /*
369 * Inform try_to_ascend() that we are no longer attached to the
370 * dentry tree
371 */
b161dfa6 372 dentry->d_flags |= DCACHE_DENTRY_KILLED;
2fd6b7f5
NP
373 if (parent)
374 spin_unlock(&parent->d_lock);
d52b9086 375 dentry_iput(dentry);
b7ab39f6
NP
376 /*
377 * dentry_iput drops the locks, at which point nobody (except
378 * transient RCU lookups) can reach this dentry.
379 */
d52b9086 380 d_free(dentry);
871c0067 381 return parent;
d52b9086
MS
382}
383
c6627c60
DH
384/*
385 * Unhash a dentry without inserting an RCU walk barrier or checking that
386 * dentry->d_lock is locked. The caller must take care of that, if
387 * appropriate.
388 */
389static void __d_shrink(struct dentry *dentry)
390{
391 if (!d_unhashed(dentry)) {
392 struct hlist_bl_head *b;
393 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
394 b = &dentry->d_sb->s_anon;
395 else
396 b = d_hash(dentry->d_parent, dentry->d_name.hash);
397
398 hlist_bl_lock(b);
399 __hlist_bl_del(&dentry->d_hash);
400 dentry->d_hash.pprev = NULL;
401 hlist_bl_unlock(b);
402 }
403}
404
789680d1
NP
405/**
406 * d_drop - drop a dentry
407 * @dentry: dentry to drop
408 *
409 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
410 * be found through a VFS lookup any more. Note that this is different from
411 * deleting the dentry - d_delete will try to mark the dentry negative if
412 * possible, giving a successful _negative_ lookup, while d_drop will
413 * just make the cache lookup fail.
414 *
415 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
416 * reason (NFS timeouts or autofs deletes).
417 *
418 * __d_drop requires dentry->d_lock.
419 */
420void __d_drop(struct dentry *dentry)
421{
dea3667b 422 if (!d_unhashed(dentry)) {
c6627c60 423 __d_shrink(dentry);
dea3667b 424 dentry_rcuwalk_barrier(dentry);
789680d1
NP
425 }
426}
427EXPORT_SYMBOL(__d_drop);
428
429void d_drop(struct dentry *dentry)
430{
789680d1
NP
431 spin_lock(&dentry->d_lock);
432 __d_drop(dentry);
433 spin_unlock(&dentry->d_lock);
789680d1
NP
434}
435EXPORT_SYMBOL(d_drop);
436
77812a1e
NP
437/*
438 * Finish off a dentry we've decided to kill.
439 * dentry->d_lock must be held, returns with it unlocked.
440 * If ref is non-zero, then decrement the refcount too.
441 * Returns dentry requiring refcount drop, or NULL if we're done.
442 */
443static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
444 __releases(dentry->d_lock)
445{
873feea0 446 struct inode *inode;
77812a1e
NP
447 struct dentry *parent;
448
873feea0
NP
449 inode = dentry->d_inode;
450 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
451relock:
452 spin_unlock(&dentry->d_lock);
453 cpu_relax();
454 return dentry; /* try again with same dentry */
455 }
456 if (IS_ROOT(dentry))
457 parent = NULL;
458 else
459 parent = dentry->d_parent;
460 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
461 if (inode)
462 spin_unlock(&inode->i_lock);
77812a1e
NP
463 goto relock;
464 }
31e6b01f 465
77812a1e
NP
466 if (ref)
467 dentry->d_count--;
f0023bc6 468 /*
f0023bc6
SW
469 * inform the fs via d_prune that this dentry is about to be
470 * unhashed and destroyed.
471 */
61572bb1
YZ
472 if (dentry->d_flags & DCACHE_OP_PRUNE)
473 dentry->d_op->d_prune(dentry);
474
475 dentry_lru_del(dentry);
77812a1e
NP
476 /* if it was on the hash then remove it */
477 __d_drop(dentry);
478 return d_kill(dentry, parent);
479}
480
1da177e4
LT
481/*
482 * This is dput
483 *
484 * This is complicated by the fact that we do not want to put
485 * dentries that are no longer on any hash chain on the unused
486 * list: we'd much rather just get rid of them immediately.
487 *
488 * However, that implies that we have to traverse the dentry
489 * tree upwards to the parents which might _also_ now be
490 * scheduled for deletion (it may have been only waiting for
491 * its last child to go away).
492 *
493 * This tail recursion is done by hand as we don't want to depend
494 * on the compiler to always get this right (gcc generally doesn't).
495 * Real recursion would eat up our stack space.
496 */
497
498/*
499 * dput - release a dentry
500 * @dentry: dentry to release
501 *
502 * Release a dentry. This will drop the usage count and if appropriate
503 * call the dentry unlink method as well as removing it from the queues and
504 * releasing its resources. If the parent dentries were scheduled for release
505 * they too may now get deleted.
1da177e4 506 */
1da177e4
LT
507void dput(struct dentry *dentry)
508{
509 if (!dentry)
510 return;
511
512repeat:
b7ab39f6 513 if (dentry->d_count == 1)
1da177e4 514 might_sleep();
1da177e4 515 spin_lock(&dentry->d_lock);
61f3dee4
NP
516 BUG_ON(!dentry->d_count);
517 if (dentry->d_count > 1) {
518 dentry->d_count--;
1da177e4 519 spin_unlock(&dentry->d_lock);
1da177e4
LT
520 return;
521 }
522
fb045adb 523 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 524 if (dentry->d_op->d_delete(dentry))
61f3dee4 525 goto kill_it;
1da177e4 526 }
265ac902 527
1da177e4
LT
528 /* Unreachable? Get rid of it */
529 if (d_unhashed(dentry))
530 goto kill_it;
265ac902 531
39e3c955 532 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 533 dentry_lru_add(dentry);
265ac902 534
61f3dee4
NP
535 dentry->d_count--;
536 spin_unlock(&dentry->d_lock);
1da177e4
LT
537 return;
538
d52b9086 539kill_it:
77812a1e 540 dentry = dentry_kill(dentry, 1);
d52b9086
MS
541 if (dentry)
542 goto repeat;
1da177e4 543}
ec4f8605 544EXPORT_SYMBOL(dput);
1da177e4
LT
545
546/**
547 * d_invalidate - invalidate a dentry
548 * @dentry: dentry to invalidate
549 *
550 * Try to invalidate the dentry if it turns out to be
551 * possible. If there are other dentries that can be
552 * reached through this one we can't delete it and we
553 * return -EBUSY. On success we return 0.
554 *
555 * no dcache lock.
556 */
557
558int d_invalidate(struct dentry * dentry)
559{
560 /*
561 * If it's already been dropped, return OK.
562 */
da502956 563 spin_lock(&dentry->d_lock);
1da177e4 564 if (d_unhashed(dentry)) {
da502956 565 spin_unlock(&dentry->d_lock);
1da177e4
LT
566 return 0;
567 }
568 /*
569 * Check whether to do a partial shrink_dcache
570 * to get rid of unused child entries.
571 */
572 if (!list_empty(&dentry->d_subdirs)) {
da502956 573 spin_unlock(&dentry->d_lock);
1da177e4 574 shrink_dcache_parent(dentry);
da502956 575 spin_lock(&dentry->d_lock);
1da177e4
LT
576 }
577
578 /*
579 * Somebody else still using it?
580 *
581 * If it's a directory, we can't drop it
582 * for fear of somebody re-populating it
583 * with children (even though dropping it
584 * would make it unreachable from the root,
585 * we might still populate it if it was a
586 * working directory or similar).
50e69630
AV
587 * We also need to leave mountpoints alone,
588 * directory or not.
1da177e4 589 */
50e69630
AV
590 if (dentry->d_count > 1 && dentry->d_inode) {
591 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 592 spin_unlock(&dentry->d_lock);
1da177e4
LT
593 return -EBUSY;
594 }
595 }
596
597 __d_drop(dentry);
598 spin_unlock(&dentry->d_lock);
1da177e4
LT
599 return 0;
600}
ec4f8605 601EXPORT_SYMBOL(d_invalidate);
1da177e4 602
b5c84bf6 603/* This must be called with d_lock held */
dc0474be 604static inline void __dget_dlock(struct dentry *dentry)
23044507 605{
b7ab39f6 606 dentry->d_count++;
23044507
NP
607}
608
dc0474be 609static inline void __dget(struct dentry *dentry)
1da177e4 610{
23044507 611 spin_lock(&dentry->d_lock);
dc0474be 612 __dget_dlock(dentry);
23044507 613 spin_unlock(&dentry->d_lock);
1da177e4
LT
614}
615
b7ab39f6
NP
616struct dentry *dget_parent(struct dentry *dentry)
617{
618 struct dentry *ret;
619
620repeat:
a734eb45
NP
621 /*
622 * Don't need rcu_dereference because we re-check it was correct under
623 * the lock.
624 */
625 rcu_read_lock();
b7ab39f6 626 ret = dentry->d_parent;
a734eb45
NP
627 spin_lock(&ret->d_lock);
628 if (unlikely(ret != dentry->d_parent)) {
629 spin_unlock(&ret->d_lock);
630 rcu_read_unlock();
b7ab39f6
NP
631 goto repeat;
632 }
a734eb45 633 rcu_read_unlock();
b7ab39f6
NP
634 BUG_ON(!ret->d_count);
635 ret->d_count++;
636 spin_unlock(&ret->d_lock);
b7ab39f6
NP
637 return ret;
638}
639EXPORT_SYMBOL(dget_parent);
640
1da177e4
LT
641/**
642 * d_find_alias - grab a hashed alias of inode
643 * @inode: inode in question
32ba9c3f
LT
644 * @want_discon: flag, used by d_splice_alias, to request
645 * that only a DISCONNECTED alias be returned.
1da177e4
LT
646 *
647 * If inode has a hashed alias, or is a directory and has any alias,
648 * acquire the reference to alias and return it. Otherwise return NULL.
649 * Notice that if inode is a directory there can be only one alias and
650 * it can be unhashed only if it has no children, or if it is the root
651 * of a filesystem.
652 *
21c0d8fd 653 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
654 * any other hashed alias over that one unless @want_discon is set,
655 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 656 */
32ba9c3f 657static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 658{
da502956 659 struct dentry *alias, *discon_alias;
1da177e4 660
da502956
NP
661again:
662 discon_alias = NULL;
b67bfe0d 663 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 664 spin_lock(&alias->d_lock);
1da177e4 665 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 666 if (IS_ROOT(alias) &&
da502956 667 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 668 discon_alias = alias;
32ba9c3f 669 } else if (!want_discon) {
dc0474be 670 __dget_dlock(alias);
da502956
NP
671 spin_unlock(&alias->d_lock);
672 return alias;
673 }
674 }
675 spin_unlock(&alias->d_lock);
676 }
677 if (discon_alias) {
678 alias = discon_alias;
679 spin_lock(&alias->d_lock);
680 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
681 if (IS_ROOT(alias) &&
682 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 683 __dget_dlock(alias);
da502956 684 spin_unlock(&alias->d_lock);
1da177e4
LT
685 return alias;
686 }
687 }
da502956
NP
688 spin_unlock(&alias->d_lock);
689 goto again;
1da177e4 690 }
da502956 691 return NULL;
1da177e4
LT
692}
693
da502956 694struct dentry *d_find_alias(struct inode *inode)
1da177e4 695{
214fda1f
DH
696 struct dentry *de = NULL;
697
b3d9b7a3 698 if (!hlist_empty(&inode->i_dentry)) {
873feea0 699 spin_lock(&inode->i_lock);
32ba9c3f 700 de = __d_find_alias(inode, 0);
873feea0 701 spin_unlock(&inode->i_lock);
214fda1f 702 }
1da177e4
LT
703 return de;
704}
ec4f8605 705EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
706
707/*
708 * Try to kill dentries associated with this inode.
709 * WARNING: you must own a reference to inode.
710 */
711void d_prune_aliases(struct inode *inode)
712{
0cdca3f9 713 struct dentry *dentry;
1da177e4 714restart:
873feea0 715 spin_lock(&inode->i_lock);
b67bfe0d 716 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 717 spin_lock(&dentry->d_lock);
b7ab39f6 718 if (!dentry->d_count) {
dc0474be 719 __dget_dlock(dentry);
1da177e4
LT
720 __d_drop(dentry);
721 spin_unlock(&dentry->d_lock);
873feea0 722 spin_unlock(&inode->i_lock);
1da177e4
LT
723 dput(dentry);
724 goto restart;
725 }
726 spin_unlock(&dentry->d_lock);
727 }
873feea0 728 spin_unlock(&inode->i_lock);
1da177e4 729}
ec4f8605 730EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
731
732/*
77812a1e
NP
733 * Try to throw away a dentry - free the inode, dput the parent.
734 * Requires dentry->d_lock is held, and dentry->d_count == 0.
735 * Releases dentry->d_lock.
d702ccb3 736 *
77812a1e 737 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 738 */
77812a1e 739static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 740 __releases(dentry->d_lock)
1da177e4 741{
77812a1e 742 struct dentry *parent;
d52b9086 743
77812a1e 744 parent = dentry_kill(dentry, 0);
d52b9086 745 /*
77812a1e
NP
746 * If dentry_kill returns NULL, we have nothing more to do.
747 * if it returns the same dentry, trylocks failed. In either
748 * case, just loop again.
749 *
750 * Otherwise, we need to prune ancestors too. This is necessary
751 * to prevent quadratic behavior of shrink_dcache_parent(), but
752 * is also expected to be beneficial in reducing dentry cache
753 * fragmentation.
d52b9086 754 */
77812a1e
NP
755 if (!parent)
756 return;
757 if (parent == dentry)
758 return;
759
760 /* Prune ancestors. */
761 dentry = parent;
d52b9086 762 while (dentry) {
b7ab39f6 763 spin_lock(&dentry->d_lock);
89e60548
NP
764 if (dentry->d_count > 1) {
765 dentry->d_count--;
766 spin_unlock(&dentry->d_lock);
767 return;
768 }
77812a1e 769 dentry = dentry_kill(dentry, 1);
d52b9086 770 }
1da177e4
LT
771}
772
3049cfe2 773static void shrink_dentry_list(struct list_head *list)
1da177e4 774{
da3bbdd4 775 struct dentry *dentry;
da3bbdd4 776
ec33679d
NP
777 rcu_read_lock();
778 for (;;) {
ec33679d
NP
779 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
780 if (&dentry->d_lru == list)
781 break; /* empty */
782 spin_lock(&dentry->d_lock);
783 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
784 spin_unlock(&dentry->d_lock);
23044507
NP
785 continue;
786 }
787
1da177e4
LT
788 /*
789 * We found an inuse dentry which was not removed from
da3bbdd4
KM
790 * the LRU because of laziness during lookup. Do not free
791 * it - just keep it off the LRU list.
1da177e4 792 */
b7ab39f6 793 if (dentry->d_count) {
ec33679d 794 dentry_lru_del(dentry);
da3bbdd4 795 spin_unlock(&dentry->d_lock);
1da177e4
LT
796 continue;
797 }
ec33679d 798
ec33679d 799 rcu_read_unlock();
77812a1e
NP
800
801 try_prune_one_dentry(dentry);
802
ec33679d 803 rcu_read_lock();
da3bbdd4 804 }
ec33679d 805 rcu_read_unlock();
3049cfe2
CH
806}
807
808/**
b48f03b3
DC
809 * prune_dcache_sb - shrink the dcache
810 * @sb: superblock
811 * @count: number of entries to try to free
812 *
813 * Attempt to shrink the superblock dcache LRU by @count entries. This is
814 * done when we need more memory an called from the superblock shrinker
815 * function.
3049cfe2 816 *
b48f03b3
DC
817 * This function may fail to free any resources if all the dentries are in
818 * use.
3049cfe2 819 */
b48f03b3 820void prune_dcache_sb(struct super_block *sb, int count)
3049cfe2 821{
3049cfe2
CH
822 struct dentry *dentry;
823 LIST_HEAD(referenced);
824 LIST_HEAD(tmp);
3049cfe2 825
23044507
NP
826relock:
827 spin_lock(&dcache_lru_lock);
3049cfe2
CH
828 while (!list_empty(&sb->s_dentry_lru)) {
829 dentry = list_entry(sb->s_dentry_lru.prev,
830 struct dentry, d_lru);
831 BUG_ON(dentry->d_sb != sb);
832
23044507
NP
833 if (!spin_trylock(&dentry->d_lock)) {
834 spin_unlock(&dcache_lru_lock);
835 cpu_relax();
836 goto relock;
837 }
838
b48f03b3 839 if (dentry->d_flags & DCACHE_REFERENCED) {
23044507
NP
840 dentry->d_flags &= ~DCACHE_REFERENCED;
841 list_move(&dentry->d_lru, &referenced);
3049cfe2 842 spin_unlock(&dentry->d_lock);
23044507
NP
843 } else {
844 list_move_tail(&dentry->d_lru, &tmp);
eaf5f907 845 dentry->d_flags |= DCACHE_SHRINK_LIST;
23044507 846 spin_unlock(&dentry->d_lock);
b0d40c92 847 if (!--count)
23044507 848 break;
3049cfe2 849 }
ec33679d 850 cond_resched_lock(&dcache_lru_lock);
3049cfe2 851 }
da3bbdd4
KM
852 if (!list_empty(&referenced))
853 list_splice(&referenced, &sb->s_dentry_lru);
23044507 854 spin_unlock(&dcache_lru_lock);
ec33679d
NP
855
856 shrink_dentry_list(&tmp);
da3bbdd4
KM
857}
858
1da177e4
LT
859/**
860 * shrink_dcache_sb - shrink dcache for a superblock
861 * @sb: superblock
862 *
3049cfe2
CH
863 * Shrink the dcache for the specified super block. This is used to free
864 * the dcache before unmounting a file system.
1da177e4 865 */
3049cfe2 866void shrink_dcache_sb(struct super_block *sb)
1da177e4 867{
3049cfe2
CH
868 LIST_HEAD(tmp);
869
23044507 870 spin_lock(&dcache_lru_lock);
3049cfe2
CH
871 while (!list_empty(&sb->s_dentry_lru)) {
872 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 873 spin_unlock(&dcache_lru_lock);
3049cfe2 874 shrink_dentry_list(&tmp);
ec33679d 875 spin_lock(&dcache_lru_lock);
3049cfe2 876 }
23044507 877 spin_unlock(&dcache_lru_lock);
1da177e4 878}
ec4f8605 879EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 880
c636ebdb
DH
881/*
882 * destroy a single subtree of dentries for unmount
883 * - see the comments on shrink_dcache_for_umount() for a description of the
884 * locking
885 */
886static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
887{
888 struct dentry *parent;
889
890 BUG_ON(!IS_ROOT(dentry));
891
c636ebdb
DH
892 for (;;) {
893 /* descend to the first leaf in the current subtree */
43c1c9cd 894 while (!list_empty(&dentry->d_subdirs))
c636ebdb
DH
895 dentry = list_entry(dentry->d_subdirs.next,
896 struct dentry, d_u.d_child);
c636ebdb
DH
897
898 /* consume the dentries from this leaf up through its parents
899 * until we find one with children or run out altogether */
900 do {
901 struct inode *inode;
902
f0023bc6 903 /*
61572bb1 904 * inform the fs that this dentry is about to be
f0023bc6
SW
905 * unhashed and destroyed.
906 */
61572bb1
YZ
907 if (dentry->d_flags & DCACHE_OP_PRUNE)
908 dentry->d_op->d_prune(dentry);
909
910 dentry_lru_del(dentry);
43c1c9cd
DH
911 __d_shrink(dentry);
912
b7ab39f6 913 if (dentry->d_count != 0) {
c636ebdb
DH
914 printk(KERN_ERR
915 "BUG: Dentry %p{i=%lx,n=%s}"
916 " still in use (%d)"
917 " [unmount of %s %s]\n",
918 dentry,
919 dentry->d_inode ?
920 dentry->d_inode->i_ino : 0UL,
921 dentry->d_name.name,
b7ab39f6 922 dentry->d_count,
c636ebdb
DH
923 dentry->d_sb->s_type->name,
924 dentry->d_sb->s_id);
925 BUG();
926 }
927
2fd6b7f5 928 if (IS_ROOT(dentry)) {
c636ebdb 929 parent = NULL;
2fd6b7f5
NP
930 list_del(&dentry->d_u.d_child);
931 } else {
871c0067 932 parent = dentry->d_parent;
b7ab39f6 933 parent->d_count--;
2fd6b7f5 934 list_del(&dentry->d_u.d_child);
871c0067 935 }
c636ebdb 936
c636ebdb
DH
937 inode = dentry->d_inode;
938 if (inode) {
939 dentry->d_inode = NULL;
b3d9b7a3 940 hlist_del_init(&dentry->d_alias);
c636ebdb
DH
941 if (dentry->d_op && dentry->d_op->d_iput)
942 dentry->d_op->d_iput(dentry, inode);
943 else
944 iput(inode);
945 }
946
947 d_free(dentry);
948
949 /* finished when we fall off the top of the tree,
950 * otherwise we ascend to the parent and move to the
951 * next sibling if there is one */
952 if (!parent)
312d3ca8 953 return;
c636ebdb 954 dentry = parent;
c636ebdb
DH
955 } while (list_empty(&dentry->d_subdirs));
956
957 dentry = list_entry(dentry->d_subdirs.next,
958 struct dentry, d_u.d_child);
959 }
960}
961
962/*
963 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 964 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
965 * - the superblock is detached from all mountings and open files, so the
966 * dentry trees will not be rearranged by the VFS
967 * - s_umount is write-locked, so the memory pressure shrinker will ignore
968 * any dentries belonging to this superblock that it comes across
969 * - the filesystem itself is no longer permitted to rearrange the dentries
970 * in this superblock
971 */
972void shrink_dcache_for_umount(struct super_block *sb)
973{
974 struct dentry *dentry;
975
976 if (down_read_trylock(&sb->s_umount))
977 BUG();
978
979 dentry = sb->s_root;
980 sb->s_root = NULL;
b7ab39f6 981 dentry->d_count--;
c636ebdb
DH
982 shrink_dcache_for_umount_subtree(dentry);
983
ceb5bdc2
NP
984 while (!hlist_bl_empty(&sb->s_anon)) {
985 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
986 shrink_dcache_for_umount_subtree(dentry);
987 }
988}
989
c826cb7d
LT
990/*
991 * This tries to ascend one level of parenthood, but
992 * we can race with renaming, so we need to re-check
993 * the parenthood after dropping the lock and check
994 * that the sequence number still matches.
995 */
996static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
997{
998 struct dentry *new = old->d_parent;
999
1000 rcu_read_lock();
1001 spin_unlock(&old->d_lock);
1002 spin_lock(&new->d_lock);
1003
1004 /*
1005 * might go back up the wrong parent if we have had a rename
1006 * or deletion
1007 */
1008 if (new != old->d_parent ||
b161dfa6 1009 (old->d_flags & DCACHE_DENTRY_KILLED) ||
c826cb7d
LT
1010 (!locked && read_seqretry(&rename_lock, seq))) {
1011 spin_unlock(&new->d_lock);
1012 new = NULL;
1013 }
1014 rcu_read_unlock();
1015 return new;
1016}
1017
1018
1da177e4
LT
1019/*
1020 * Search for at least 1 mount point in the dentry's subdirs.
1021 * We descend to the next level whenever the d_subdirs
1022 * list is non-empty and continue searching.
1023 */
1024
1025/**
1026 * have_submounts - check for mounts over a dentry
1027 * @parent: dentry to check.
1028 *
1029 * Return true if the parent or its subdirectories contain
1030 * a mount point
1031 */
1da177e4
LT
1032int have_submounts(struct dentry *parent)
1033{
949854d0 1034 struct dentry *this_parent;
1da177e4 1035 struct list_head *next;
949854d0 1036 unsigned seq;
58db63d0 1037 int locked = 0;
949854d0 1038
949854d0 1039 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1040again:
1041 this_parent = parent;
1da177e4 1042
1da177e4
LT
1043 if (d_mountpoint(parent))
1044 goto positive;
2fd6b7f5 1045 spin_lock(&this_parent->d_lock);
1da177e4
LT
1046repeat:
1047 next = this_parent->d_subdirs.next;
1048resume:
1049 while (next != &this_parent->d_subdirs) {
1050 struct list_head *tmp = next;
5160ee6f 1051 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1052 next = tmp->next;
2fd6b7f5
NP
1053
1054 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1055 /* Have we found a mount point ? */
2fd6b7f5
NP
1056 if (d_mountpoint(dentry)) {
1057 spin_unlock(&dentry->d_lock);
1058 spin_unlock(&this_parent->d_lock);
1da177e4 1059 goto positive;
2fd6b7f5 1060 }
1da177e4 1061 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1062 spin_unlock(&this_parent->d_lock);
1063 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1064 this_parent = dentry;
2fd6b7f5 1065 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1066 goto repeat;
1067 }
2fd6b7f5 1068 spin_unlock(&dentry->d_lock);
1da177e4
LT
1069 }
1070 /*
1071 * All done at this level ... ascend and resume the search.
1072 */
1073 if (this_parent != parent) {
c826cb7d
LT
1074 struct dentry *child = this_parent;
1075 this_parent = try_to_ascend(this_parent, locked, seq);
1076 if (!this_parent)
949854d0 1077 goto rename_retry;
949854d0 1078 next = child->d_u.d_child.next;
1da177e4
LT
1079 goto resume;
1080 }
2fd6b7f5 1081 spin_unlock(&this_parent->d_lock);
58db63d0 1082 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1083 goto rename_retry;
58db63d0
NP
1084 if (locked)
1085 write_sequnlock(&rename_lock);
1da177e4
LT
1086 return 0; /* No mount points found in tree */
1087positive:
58db63d0 1088 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1089 goto rename_retry;
58db63d0
NP
1090 if (locked)
1091 write_sequnlock(&rename_lock);
1da177e4 1092 return 1;
58db63d0
NP
1093
1094rename_retry:
8110e16d
MS
1095 if (locked)
1096 goto again;
58db63d0
NP
1097 locked = 1;
1098 write_seqlock(&rename_lock);
1099 goto again;
1da177e4 1100}
ec4f8605 1101EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1102
1103/*
fd517909 1104 * Search the dentry child list of the specified parent,
1da177e4
LT
1105 * and move any unused dentries to the end of the unused
1106 * list for prune_dcache(). We descend to the next level
1107 * whenever the d_subdirs list is non-empty and continue
1108 * searching.
1109 *
1110 * It returns zero iff there are no unused children,
1111 * otherwise it returns the number of children moved to
1112 * the end of the unused list. This may not be the total
1113 * number of unused children, because select_parent can
1114 * drop the lock and return early due to latency
1115 * constraints.
1116 */
b48f03b3 1117static int select_parent(struct dentry *parent, struct list_head *dispose)
1da177e4 1118{
949854d0 1119 struct dentry *this_parent;
1da177e4 1120 struct list_head *next;
949854d0 1121 unsigned seq;
1da177e4 1122 int found = 0;
58db63d0 1123 int locked = 0;
1da177e4 1124
949854d0 1125 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1126again:
1127 this_parent = parent;
2fd6b7f5 1128 spin_lock(&this_parent->d_lock);
1da177e4
LT
1129repeat:
1130 next = this_parent->d_subdirs.next;
1131resume:
1132 while (next != &this_parent->d_subdirs) {
1133 struct list_head *tmp = next;
5160ee6f 1134 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1135 next = tmp->next;
1136
2fd6b7f5 1137 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1138
b48f03b3
DC
1139 /*
1140 * move only zero ref count dentries to the dispose list.
eaf5f907
MS
1141 *
1142 * Those which are presently on the shrink list, being processed
1143 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1144 * loop in shrink_dcache_parent() might not make any progress
1145 * and loop forever.
1da177e4 1146 */
eaf5f907
MS
1147 if (dentry->d_count) {
1148 dentry_lru_del(dentry);
1149 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
b48f03b3 1150 dentry_lru_move_list(dentry, dispose);
eaf5f907 1151 dentry->d_flags |= DCACHE_SHRINK_LIST;
1da177e4
LT
1152 found++;
1153 }
1da177e4
LT
1154 /*
1155 * We can return to the caller if we have found some (this
1156 * ensures forward progress). We'll be coming back to find
1157 * the rest.
1158 */
2fd6b7f5
NP
1159 if (found && need_resched()) {
1160 spin_unlock(&dentry->d_lock);
1da177e4 1161 goto out;
2fd6b7f5 1162 }
1da177e4
LT
1163
1164 /*
1165 * Descend a level if the d_subdirs list is non-empty.
1166 */
1167 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1168 spin_unlock(&this_parent->d_lock);
1169 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1170 this_parent = dentry;
2fd6b7f5 1171 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1172 goto repeat;
1173 }
2fd6b7f5
NP
1174
1175 spin_unlock(&dentry->d_lock);
1da177e4
LT
1176 }
1177 /*
1178 * All done at this level ... ascend and resume the search.
1179 */
1180 if (this_parent != parent) {
c826cb7d
LT
1181 struct dentry *child = this_parent;
1182 this_parent = try_to_ascend(this_parent, locked, seq);
1183 if (!this_parent)
949854d0 1184 goto rename_retry;
949854d0 1185 next = child->d_u.d_child.next;
1da177e4
LT
1186 goto resume;
1187 }
1188out:
2fd6b7f5 1189 spin_unlock(&this_parent->d_lock);
58db63d0 1190 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1191 goto rename_retry;
58db63d0
NP
1192 if (locked)
1193 write_sequnlock(&rename_lock);
1da177e4 1194 return found;
58db63d0
NP
1195
1196rename_retry:
1197 if (found)
1198 return found;
8110e16d
MS
1199 if (locked)
1200 goto again;
58db63d0
NP
1201 locked = 1;
1202 write_seqlock(&rename_lock);
1203 goto again;
1da177e4
LT
1204}
1205
1206/**
1207 * shrink_dcache_parent - prune dcache
1208 * @parent: parent of entries to prune
1209 *
1210 * Prune the dcache to remove unused children of the parent dentry.
1211 */
1da177e4
LT
1212void shrink_dcache_parent(struct dentry * parent)
1213{
b48f03b3 1214 LIST_HEAD(dispose);
1da177e4
LT
1215 int found;
1216
421348f1 1217 while ((found = select_parent(parent, &dispose)) != 0) {
b48f03b3 1218 shrink_dentry_list(&dispose);
421348f1
GT
1219 cond_resched();
1220 }
1da177e4 1221}
ec4f8605 1222EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1223
1da177e4 1224/**
a4464dbc
AV
1225 * __d_alloc - allocate a dcache entry
1226 * @sb: filesystem it will belong to
1da177e4
LT
1227 * @name: qstr of the name
1228 *
1229 * Allocates a dentry. It returns %NULL if there is insufficient memory
1230 * available. On a success the dentry is returned. The name passed in is
1231 * copied and the copy passed in may be reused after this call.
1232 */
1233
a4464dbc 1234struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1235{
1236 struct dentry *dentry;
1237 char *dname;
1238
e12ba74d 1239 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1240 if (!dentry)
1241 return NULL;
1242
6326c71f
LT
1243 /*
1244 * We guarantee that the inline name is always NUL-terminated.
1245 * This way the memcpy() done by the name switching in rename
1246 * will still always have a NUL at the end, even if we might
1247 * be overwriting an internal NUL character
1248 */
1249 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1250 if (name->len > DNAME_INLINE_LEN-1) {
1251 dname = kmalloc(name->len + 1, GFP_KERNEL);
1252 if (!dname) {
1253 kmem_cache_free(dentry_cache, dentry);
1254 return NULL;
1255 }
1256 } else {
1257 dname = dentry->d_iname;
1258 }
1da177e4
LT
1259
1260 dentry->d_name.len = name->len;
1261 dentry->d_name.hash = name->hash;
1262 memcpy(dname, name->name, name->len);
1263 dname[name->len] = 0;
1264
6326c71f
LT
1265 /* Make sure we always see the terminating NUL character */
1266 smp_wmb();
1267 dentry->d_name.name = dname;
1268
b7ab39f6 1269 dentry->d_count = 1;
dea3667b 1270 dentry->d_flags = 0;
1da177e4 1271 spin_lock_init(&dentry->d_lock);
31e6b01f 1272 seqcount_init(&dentry->d_seq);
1da177e4 1273 dentry->d_inode = NULL;
a4464dbc
AV
1274 dentry->d_parent = dentry;
1275 dentry->d_sb = sb;
1da177e4
LT
1276 dentry->d_op = NULL;
1277 dentry->d_fsdata = NULL;
ceb5bdc2 1278 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1279 INIT_LIST_HEAD(&dentry->d_lru);
1280 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1281 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1282 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1283 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1284
3e880fb5 1285 this_cpu_inc(nr_dentry);
312d3ca8 1286
1da177e4
LT
1287 return dentry;
1288}
a4464dbc
AV
1289
1290/**
1291 * d_alloc - allocate a dcache entry
1292 * @parent: parent of entry to allocate
1293 * @name: qstr of the name
1294 *
1295 * Allocates a dentry. It returns %NULL if there is insufficient memory
1296 * available. On a success the dentry is returned. The name passed in is
1297 * copied and the copy passed in may be reused after this call.
1298 */
1299struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1300{
1301 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1302 if (!dentry)
1303 return NULL;
1304
1305 spin_lock(&parent->d_lock);
1306 /*
1307 * don't need child lock because it is not subject
1308 * to concurrency here
1309 */
1310 __dget_dlock(parent);
1311 dentry->d_parent = parent;
1312 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1313 spin_unlock(&parent->d_lock);
1314
1315 return dentry;
1316}
ec4f8605 1317EXPORT_SYMBOL(d_alloc);
1da177e4 1318
4b936885
NP
1319struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1320{
a4464dbc
AV
1321 struct dentry *dentry = __d_alloc(sb, name);
1322 if (dentry)
4b936885 1323 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1324 return dentry;
1325}
1326EXPORT_SYMBOL(d_alloc_pseudo);
1327
1da177e4
LT
1328struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1329{
1330 struct qstr q;
1331
1332 q.name = name;
1333 q.len = strlen(name);
1334 q.hash = full_name_hash(q.name, q.len);
1335 return d_alloc(parent, &q);
1336}
ef26ca97 1337EXPORT_SYMBOL(d_alloc_name);
1da177e4 1338
fb045adb
NP
1339void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1340{
6f7f7caa
LT
1341 WARN_ON_ONCE(dentry->d_op);
1342 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1343 DCACHE_OP_COMPARE |
1344 DCACHE_OP_REVALIDATE |
ecf3d1f1 1345 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1346 DCACHE_OP_DELETE ));
1347 dentry->d_op = op;
1348 if (!op)
1349 return;
1350 if (op->d_hash)
1351 dentry->d_flags |= DCACHE_OP_HASH;
1352 if (op->d_compare)
1353 dentry->d_flags |= DCACHE_OP_COMPARE;
1354 if (op->d_revalidate)
1355 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1356 if (op->d_weak_revalidate)
1357 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1358 if (op->d_delete)
1359 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1360 if (op->d_prune)
1361 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1362
1363}
1364EXPORT_SYMBOL(d_set_d_op);
1365
360da900
OH
1366static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1367{
b23fb0a6 1368 spin_lock(&dentry->d_lock);
9875cf80
DH
1369 if (inode) {
1370 if (unlikely(IS_AUTOMOUNT(inode)))
1371 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
b3d9b7a3 1372 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
9875cf80 1373 }
360da900 1374 dentry->d_inode = inode;
31e6b01f 1375 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1376 spin_unlock(&dentry->d_lock);
360da900
OH
1377 fsnotify_d_instantiate(dentry, inode);
1378}
1379
1da177e4
LT
1380/**
1381 * d_instantiate - fill in inode information for a dentry
1382 * @entry: dentry to complete
1383 * @inode: inode to attach to this dentry
1384 *
1385 * Fill in inode information in the entry.
1386 *
1387 * This turns negative dentries into productive full members
1388 * of society.
1389 *
1390 * NOTE! This assumes that the inode count has been incremented
1391 * (or otherwise set) by the caller to indicate that it is now
1392 * in use by the dcache.
1393 */
1394
1395void d_instantiate(struct dentry *entry, struct inode * inode)
1396{
b3d9b7a3 1397 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1398 if (inode)
1399 spin_lock(&inode->i_lock);
360da900 1400 __d_instantiate(entry, inode);
873feea0
NP
1401 if (inode)
1402 spin_unlock(&inode->i_lock);
1da177e4
LT
1403 security_d_instantiate(entry, inode);
1404}
ec4f8605 1405EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1406
1407/**
1408 * d_instantiate_unique - instantiate a non-aliased dentry
1409 * @entry: dentry to instantiate
1410 * @inode: inode to attach to this dentry
1411 *
1412 * Fill in inode information in the entry. On success, it returns NULL.
1413 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1414 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1415 *
1416 * Note that in order to avoid conflicts with rename() etc, the caller
1417 * had better be holding the parent directory semaphore.
e866cfa9
OD
1418 *
1419 * This also assumes that the inode count has been incremented
1420 * (or otherwise set) by the caller to indicate that it is now
1421 * in use by the dcache.
1da177e4 1422 */
770bfad8
DH
1423static struct dentry *__d_instantiate_unique(struct dentry *entry,
1424 struct inode *inode)
1da177e4
LT
1425{
1426 struct dentry *alias;
1427 int len = entry->d_name.len;
1428 const char *name = entry->d_name.name;
1429 unsigned int hash = entry->d_name.hash;
1430
770bfad8 1431 if (!inode) {
360da900 1432 __d_instantiate(entry, NULL);
770bfad8
DH
1433 return NULL;
1434 }
1435
b67bfe0d 1436 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1437 /*
1438 * Don't need alias->d_lock here, because aliases with
1439 * d_parent == entry->d_parent are not subject to name or
1440 * parent changes, because the parent inode i_mutex is held.
1441 */
12f8ad4b 1442 if (alias->d_name.hash != hash)
1da177e4
LT
1443 continue;
1444 if (alias->d_parent != entry->d_parent)
1445 continue;
ee983e89
LT
1446 if (alias->d_name.len != len)
1447 continue;
12f8ad4b 1448 if (dentry_cmp(alias, name, len))
1da177e4 1449 continue;
dc0474be 1450 __dget(alias);
1da177e4
LT
1451 return alias;
1452 }
770bfad8 1453
360da900 1454 __d_instantiate(entry, inode);
1da177e4
LT
1455 return NULL;
1456}
770bfad8
DH
1457
1458struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1459{
1460 struct dentry *result;
1461
b3d9b7a3 1462 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1463
873feea0
NP
1464 if (inode)
1465 spin_lock(&inode->i_lock);
770bfad8 1466 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1467 if (inode)
1468 spin_unlock(&inode->i_lock);
770bfad8
DH
1469
1470 if (!result) {
1471 security_d_instantiate(entry, inode);
1472 return NULL;
1473 }
1474
1475 BUG_ON(!d_unhashed(result));
1476 iput(inode);
1477 return result;
1478}
1479
1da177e4
LT
1480EXPORT_SYMBOL(d_instantiate_unique);
1481
adc0e91a
AV
1482struct dentry *d_make_root(struct inode *root_inode)
1483{
1484 struct dentry *res = NULL;
1485
1486 if (root_inode) {
26fe5750 1487 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1488
1489 res = __d_alloc(root_inode->i_sb, &name);
1490 if (res)
1491 d_instantiate(res, root_inode);
1492 else
1493 iput(root_inode);
1494 }
1495 return res;
1496}
1497EXPORT_SYMBOL(d_make_root);
1498
d891eedb
BF
1499static struct dentry * __d_find_any_alias(struct inode *inode)
1500{
1501 struct dentry *alias;
1502
b3d9b7a3 1503 if (hlist_empty(&inode->i_dentry))
d891eedb 1504 return NULL;
b3d9b7a3 1505 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1506 __dget(alias);
1507 return alias;
1508}
1509
46f72b34
SW
1510/**
1511 * d_find_any_alias - find any alias for a given inode
1512 * @inode: inode to find an alias for
1513 *
1514 * If any aliases exist for the given inode, take and return a
1515 * reference for one of them. If no aliases exist, return %NULL.
1516 */
1517struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1518{
1519 struct dentry *de;
1520
1521 spin_lock(&inode->i_lock);
1522 de = __d_find_any_alias(inode);
1523 spin_unlock(&inode->i_lock);
1524 return de;
1525}
46f72b34 1526EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1527
4ea3ada2
CH
1528/**
1529 * d_obtain_alias - find or allocate a dentry for a given inode
1530 * @inode: inode to allocate the dentry for
1531 *
1532 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1533 * similar open by handle operations. The returned dentry may be anonymous,
1534 * or may have a full name (if the inode was already in the cache).
1535 *
1536 * When called on a directory inode, we must ensure that the inode only ever
1537 * has one dentry. If a dentry is found, that is returned instead of
1538 * allocating a new one.
1539 *
1540 * On successful return, the reference to the inode has been transferred
44003728
CH
1541 * to the dentry. In case of an error the reference on the inode is released.
1542 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1543 * be passed in and will be the error will be propagate to the return value,
1544 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1545 */
1546struct dentry *d_obtain_alias(struct inode *inode)
1547{
b911a6bd 1548 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1549 struct dentry *tmp;
1550 struct dentry *res;
4ea3ada2
CH
1551
1552 if (!inode)
44003728 1553 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1554 if (IS_ERR(inode))
1555 return ERR_CAST(inode);
1556
d891eedb 1557 res = d_find_any_alias(inode);
9308a612
CH
1558 if (res)
1559 goto out_iput;
1560
a4464dbc 1561 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1562 if (!tmp) {
1563 res = ERR_PTR(-ENOMEM);
1564 goto out_iput;
4ea3ada2 1565 }
b5c84bf6 1566
873feea0 1567 spin_lock(&inode->i_lock);
d891eedb 1568 res = __d_find_any_alias(inode);
9308a612 1569 if (res) {
873feea0 1570 spin_unlock(&inode->i_lock);
9308a612
CH
1571 dput(tmp);
1572 goto out_iput;
1573 }
1574
1575 /* attach a disconnected dentry */
1576 spin_lock(&tmp->d_lock);
9308a612
CH
1577 tmp->d_inode = inode;
1578 tmp->d_flags |= DCACHE_DISCONNECTED;
b3d9b7a3 1579 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1580 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1581 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1582 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1583 spin_unlock(&tmp->d_lock);
873feea0 1584 spin_unlock(&inode->i_lock);
24ff6663 1585 security_d_instantiate(tmp, inode);
9308a612 1586
9308a612
CH
1587 return tmp;
1588
1589 out_iput:
24ff6663
JB
1590 if (res && !IS_ERR(res))
1591 security_d_instantiate(res, inode);
9308a612
CH
1592 iput(inode);
1593 return res;
4ea3ada2 1594}
adc48720 1595EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1596
1597/**
1598 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1599 * @inode: the inode which may have a disconnected dentry
1600 * @dentry: a negative dentry which we want to point to the inode.
1601 *
1602 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1603 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1604 * and return it, else simply d_add the inode to the dentry and return NULL.
1605 *
1606 * This is needed in the lookup routine of any filesystem that is exportable
1607 * (via knfsd) so that we can build dcache paths to directories effectively.
1608 *
1609 * If a dentry was found and moved, then it is returned. Otherwise NULL
1610 * is returned. This matches the expected return value of ->lookup.
1611 *
1612 */
1613struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1614{
1615 struct dentry *new = NULL;
1616
a9049376
AV
1617 if (IS_ERR(inode))
1618 return ERR_CAST(inode);
1619
21c0d8fd 1620 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1621 spin_lock(&inode->i_lock);
32ba9c3f 1622 new = __d_find_alias(inode, 1);
1da177e4 1623 if (new) {
32ba9c3f 1624 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1625 spin_unlock(&inode->i_lock);
1da177e4 1626 security_d_instantiate(new, inode);
1da177e4
LT
1627 d_move(new, dentry);
1628 iput(inode);
1629 } else {
873feea0 1630 /* already taking inode->i_lock, so d_add() by hand */
360da900 1631 __d_instantiate(dentry, inode);
873feea0 1632 spin_unlock(&inode->i_lock);
1da177e4
LT
1633 security_d_instantiate(dentry, inode);
1634 d_rehash(dentry);
1635 }
1636 } else
1637 d_add(dentry, inode);
1638 return new;
1639}
ec4f8605 1640EXPORT_SYMBOL(d_splice_alias);
1da177e4 1641
9403540c
BN
1642/**
1643 * d_add_ci - lookup or allocate new dentry with case-exact name
1644 * @inode: the inode case-insensitive lookup has found
1645 * @dentry: the negative dentry that was passed to the parent's lookup func
1646 * @name: the case-exact name to be associated with the returned dentry
1647 *
1648 * This is to avoid filling the dcache with case-insensitive names to the
1649 * same inode, only the actual correct case is stored in the dcache for
1650 * case-insensitive filesystems.
1651 *
1652 * For a case-insensitive lookup match and if the the case-exact dentry
1653 * already exists in in the dcache, use it and return it.
1654 *
1655 * If no entry exists with the exact case name, allocate new dentry with
1656 * the exact case, and return the spliced entry.
1657 */
e45b590b 1658struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1659 struct qstr *name)
1660{
9403540c
BN
1661 struct dentry *found;
1662 struct dentry *new;
1663
b6520c81
CH
1664 /*
1665 * First check if a dentry matching the name already exists,
1666 * if not go ahead and create it now.
1667 */
9403540c 1668 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1669 if (unlikely(IS_ERR(found)))
1670 goto err_out;
9403540c
BN
1671 if (!found) {
1672 new = d_alloc(dentry->d_parent, name);
1673 if (!new) {
4f522a24 1674 found = ERR_PTR(-ENOMEM);
9403540c
BN
1675 goto err_out;
1676 }
b6520c81 1677
9403540c
BN
1678 found = d_splice_alias(inode, new);
1679 if (found) {
1680 dput(new);
1681 return found;
1682 }
1683 return new;
1684 }
b6520c81
CH
1685
1686 /*
1687 * If a matching dentry exists, and it's not negative use it.
1688 *
1689 * Decrement the reference count to balance the iget() done
1690 * earlier on.
1691 */
9403540c
BN
1692 if (found->d_inode) {
1693 if (unlikely(found->d_inode != inode)) {
1694 /* This can't happen because bad inodes are unhashed. */
1695 BUG_ON(!is_bad_inode(inode));
1696 BUG_ON(!is_bad_inode(found->d_inode));
1697 }
9403540c
BN
1698 iput(inode);
1699 return found;
1700 }
b6520c81 1701
9403540c 1702 /*
9403540c 1703 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1704 * already has a dentry.
9403540c 1705 */
4513d899
AV
1706 new = d_splice_alias(inode, found);
1707 if (new) {
1708 dput(found);
1709 found = new;
9403540c 1710 }
4513d899 1711 return found;
9403540c
BN
1712
1713err_out:
1714 iput(inode);
4f522a24 1715 return found;
9403540c 1716}
ec4f8605 1717EXPORT_SYMBOL(d_add_ci);
1da177e4 1718
12f8ad4b
LT
1719/*
1720 * Do the slow-case of the dentry name compare.
1721 *
1722 * Unlike the dentry_cmp() function, we need to atomically
1723 * load the name, length and inode information, so that the
1724 * filesystem can rely on them, and can use the 'name' and
1725 * 'len' information without worrying about walking off the
1726 * end of memory etc.
1727 *
1728 * Thus the read_seqcount_retry() and the "duplicate" info
1729 * in arguments (the low-level filesystem should not look
1730 * at the dentry inode or name contents directly, since
1731 * rename can change them while we're in RCU mode).
1732 */
1733enum slow_d_compare {
1734 D_COMP_OK,
1735 D_COMP_NOMATCH,
1736 D_COMP_SEQRETRY,
1737};
1738
1739static noinline enum slow_d_compare slow_dentry_cmp(
1740 const struct dentry *parent,
1741 struct inode *inode,
1742 struct dentry *dentry,
1743 unsigned int seq,
1744 const struct qstr *name)
1745{
1746 int tlen = dentry->d_name.len;
1747 const char *tname = dentry->d_name.name;
1748 struct inode *i = dentry->d_inode;
1749
1750 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1751 cpu_relax();
1752 return D_COMP_SEQRETRY;
1753 }
1754 if (parent->d_op->d_compare(parent, inode,
1755 dentry, i,
1756 tlen, tname, name))
1757 return D_COMP_NOMATCH;
1758 return D_COMP_OK;
1759}
1760
31e6b01f
NP
1761/**
1762 * __d_lookup_rcu - search for a dentry (racy, store-free)
1763 * @parent: parent dentry
1764 * @name: qstr of name we wish to find
1f1e6e52 1765 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
1766 * @inode: returns dentry->d_inode when the inode was found valid.
1767 * Returns: dentry, or NULL
1768 *
1769 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1770 * resolution (store-free path walking) design described in
1771 * Documentation/filesystems/path-lookup.txt.
1772 *
1773 * This is not to be used outside core vfs.
1774 *
1775 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1776 * held, and rcu_read_lock held. The returned dentry must not be stored into
1777 * without taking d_lock and checking d_seq sequence count against @seq
1778 * returned here.
1779 *
1780 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1781 * function.
1782 *
1783 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1784 * the returned dentry, so long as its parent's seqlock is checked after the
1785 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1786 * is formed, giving integrity down the path walk.
12f8ad4b
LT
1787 *
1788 * NOTE! The caller *has* to check the resulting dentry against the sequence
1789 * number we've returned before using any of the resulting dentry state!
31e6b01f 1790 */
8966be90
LT
1791struct dentry *__d_lookup_rcu(const struct dentry *parent,
1792 const struct qstr *name,
12f8ad4b 1793 unsigned *seqp, struct inode *inode)
31e6b01f 1794{
26fe5750 1795 u64 hashlen = name->hash_len;
31e6b01f 1796 const unsigned char *str = name->name;
26fe5750 1797 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 1798 struct hlist_bl_node *node;
31e6b01f
NP
1799 struct dentry *dentry;
1800
1801 /*
1802 * Note: There is significant duplication with __d_lookup_rcu which is
1803 * required to prevent single threaded performance regressions
1804 * especially on architectures where smp_rmb (in seqcounts) are costly.
1805 * Keep the two functions in sync.
1806 */
1807
1808 /*
1809 * The hash list is protected using RCU.
1810 *
1811 * Carefully use d_seq when comparing a candidate dentry, to avoid
1812 * races with d_move().
1813 *
1814 * It is possible that concurrent renames can mess up our list
1815 * walk here and result in missing our dentry, resulting in the
1816 * false-negative result. d_lookup() protects against concurrent
1817 * renames using rename_lock seqlock.
1818 *
b0a4bb83 1819 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 1820 */
b07ad996 1821 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 1822 unsigned seq;
31e6b01f 1823
31e6b01f 1824seqretry:
12f8ad4b
LT
1825 /*
1826 * The dentry sequence count protects us from concurrent
1827 * renames, and thus protects inode, parent and name fields.
1828 *
1829 * The caller must perform a seqcount check in order
1830 * to do anything useful with the returned dentry,
1831 * including using the 'd_inode' pointer.
1832 *
1833 * NOTE! We do a "raw" seqcount_begin here. That means that
1834 * we don't wait for the sequence count to stabilize if it
1835 * is in the middle of a sequence change. If we do the slow
1836 * dentry compare, we will do seqretries until it is stable,
1837 * and if we end up with a successful lookup, we actually
1838 * want to exit RCU lookup anyway.
1839 */
1840 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
1841 if (dentry->d_parent != parent)
1842 continue;
2e321806
LT
1843 if (d_unhashed(dentry))
1844 continue;
12f8ad4b
LT
1845 *seqp = seq;
1846
830c0f0e 1847 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
1848 if (dentry->d_name.hash != hashlen_hash(hashlen))
1849 continue;
12f8ad4b
LT
1850 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1851 case D_COMP_OK:
1852 return dentry;
1853 case D_COMP_NOMATCH:
31e6b01f 1854 continue;
12f8ad4b
LT
1855 default:
1856 goto seqretry;
1857 }
31e6b01f 1858 }
12f8ad4b 1859
26fe5750 1860 if (dentry->d_name.hash_len != hashlen)
ee983e89 1861 continue;
26fe5750 1862 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 1863 return dentry;
31e6b01f
NP
1864 }
1865 return NULL;
1866}
1867
1da177e4
LT
1868/**
1869 * d_lookup - search for a dentry
1870 * @parent: parent dentry
1871 * @name: qstr of name we wish to find
b04f784e 1872 * Returns: dentry, or NULL
1da177e4 1873 *
b04f784e
NP
1874 * d_lookup searches the children of the parent dentry for the name in
1875 * question. If the dentry is found its reference count is incremented and the
1876 * dentry is returned. The caller must use dput to free the entry when it has
1877 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1878 */
da2d8455 1879struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 1880{
31e6b01f 1881 struct dentry *dentry;
949854d0 1882 unsigned seq;
1da177e4
LT
1883
1884 do {
1885 seq = read_seqbegin(&rename_lock);
1886 dentry = __d_lookup(parent, name);
1887 if (dentry)
1888 break;
1889 } while (read_seqretry(&rename_lock, seq));
1890 return dentry;
1891}
ec4f8605 1892EXPORT_SYMBOL(d_lookup);
1da177e4 1893
31e6b01f 1894/**
b04f784e
NP
1895 * __d_lookup - search for a dentry (racy)
1896 * @parent: parent dentry
1897 * @name: qstr of name we wish to find
1898 * Returns: dentry, or NULL
1899 *
1900 * __d_lookup is like d_lookup, however it may (rarely) return a
1901 * false-negative result due to unrelated rename activity.
1902 *
1903 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1904 * however it must be used carefully, eg. with a following d_lookup in
1905 * the case of failure.
1906 *
1907 * __d_lookup callers must be commented.
1908 */
a713ca2a 1909struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
1910{
1911 unsigned int len = name->len;
1912 unsigned int hash = name->hash;
1913 const unsigned char *str = name->name;
b07ad996 1914 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1915 struct hlist_bl_node *node;
31e6b01f 1916 struct dentry *found = NULL;
665a7583 1917 struct dentry *dentry;
1da177e4 1918
31e6b01f
NP
1919 /*
1920 * Note: There is significant duplication with __d_lookup_rcu which is
1921 * required to prevent single threaded performance regressions
1922 * especially on architectures where smp_rmb (in seqcounts) are costly.
1923 * Keep the two functions in sync.
1924 */
1925
b04f784e
NP
1926 /*
1927 * The hash list is protected using RCU.
1928 *
1929 * Take d_lock when comparing a candidate dentry, to avoid races
1930 * with d_move().
1931 *
1932 * It is possible that concurrent renames can mess up our list
1933 * walk here and result in missing our dentry, resulting in the
1934 * false-negative result. d_lookup() protects against concurrent
1935 * renames using rename_lock seqlock.
1936 *
b0a4bb83 1937 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 1938 */
1da177e4
LT
1939 rcu_read_lock();
1940
b07ad996 1941 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 1942
1da177e4
LT
1943 if (dentry->d_name.hash != hash)
1944 continue;
1da177e4
LT
1945
1946 spin_lock(&dentry->d_lock);
1da177e4
LT
1947 if (dentry->d_parent != parent)
1948 goto next;
d0185c08
LT
1949 if (d_unhashed(dentry))
1950 goto next;
1951
1da177e4
LT
1952 /*
1953 * It is safe to compare names since d_move() cannot
1954 * change the qstr (protected by d_lock).
1955 */
fb045adb 1956 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
1957 int tlen = dentry->d_name.len;
1958 const char *tname = dentry->d_name.name;
621e155a
NP
1959 if (parent->d_op->d_compare(parent, parent->d_inode,
1960 dentry, dentry->d_inode,
31e6b01f 1961 tlen, tname, name))
1da177e4
LT
1962 goto next;
1963 } else {
ee983e89
LT
1964 if (dentry->d_name.len != len)
1965 goto next;
12f8ad4b 1966 if (dentry_cmp(dentry, str, len))
1da177e4
LT
1967 goto next;
1968 }
1969
b7ab39f6 1970 dentry->d_count++;
d0185c08 1971 found = dentry;
1da177e4
LT
1972 spin_unlock(&dentry->d_lock);
1973 break;
1974next:
1975 spin_unlock(&dentry->d_lock);
1976 }
1977 rcu_read_unlock();
1978
1979 return found;
1980}
1981
3e7e241f
EB
1982/**
1983 * d_hash_and_lookup - hash the qstr then search for a dentry
1984 * @dir: Directory to search in
1985 * @name: qstr of name we wish to find
1986 *
4f522a24 1987 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
1988 */
1989struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1990{
3e7e241f
EB
1991 /*
1992 * Check for a fs-specific hash function. Note that we must
1993 * calculate the standard hash first, as the d_op->d_hash()
1994 * routine may choose to leave the hash value unchanged.
1995 */
1996 name->hash = full_name_hash(name->name, name->len);
fb045adb 1997 if (dir->d_flags & DCACHE_OP_HASH) {
4f522a24
AV
1998 int err = dir->d_op->d_hash(dir, dir->d_inode, name);
1999 if (unlikely(err < 0))
2000 return ERR_PTR(err);
3e7e241f 2001 }
4f522a24 2002 return d_lookup(dir, name);
3e7e241f 2003}
4f522a24 2004EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2005
1da177e4 2006/**
786a5e15 2007 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2008 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2009 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2010 *
2011 * An insecure source has sent us a dentry, here we verify it and dget() it.
2012 * This is used by ncpfs in its readdir implementation.
2013 * Zero is returned in the dentry is invalid.
786a5e15
NP
2014 *
2015 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2016 */
d3a23e16 2017int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2018{
786a5e15 2019 struct dentry *child;
d3a23e16 2020
2fd6b7f5 2021 spin_lock(&dparent->d_lock);
786a5e15
NP
2022 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2023 if (dentry == child) {
2fd6b7f5 2024 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2025 __dget_dlock(dentry);
2fd6b7f5
NP
2026 spin_unlock(&dentry->d_lock);
2027 spin_unlock(&dparent->d_lock);
1da177e4
LT
2028 return 1;
2029 }
2030 }
2fd6b7f5 2031 spin_unlock(&dparent->d_lock);
786a5e15 2032
1da177e4
LT
2033 return 0;
2034}
ec4f8605 2035EXPORT_SYMBOL(d_validate);
1da177e4
LT
2036
2037/*
2038 * When a file is deleted, we have two options:
2039 * - turn this dentry into a negative dentry
2040 * - unhash this dentry and free it.
2041 *
2042 * Usually, we want to just turn this into
2043 * a negative dentry, but if anybody else is
2044 * currently using the dentry or the inode
2045 * we can't do that and we fall back on removing
2046 * it from the hash queues and waiting for
2047 * it to be deleted later when it has no users
2048 */
2049
2050/**
2051 * d_delete - delete a dentry
2052 * @dentry: The dentry to delete
2053 *
2054 * Turn the dentry into a negative dentry if possible, otherwise
2055 * remove it from the hash queues so it can be deleted later
2056 */
2057
2058void d_delete(struct dentry * dentry)
2059{
873feea0 2060 struct inode *inode;
7a91bf7f 2061 int isdir = 0;
1da177e4
LT
2062 /*
2063 * Are we the only user?
2064 */
357f8e65 2065again:
1da177e4 2066 spin_lock(&dentry->d_lock);
873feea0
NP
2067 inode = dentry->d_inode;
2068 isdir = S_ISDIR(inode->i_mode);
b7ab39f6 2069 if (dentry->d_count == 1) {
1fe0c023 2070 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2071 spin_unlock(&dentry->d_lock);
2072 cpu_relax();
2073 goto again;
2074 }
13e3c5e5 2075 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2076 dentry_unlink_inode(dentry);
7a91bf7f 2077 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2078 return;
2079 }
2080
2081 if (!d_unhashed(dentry))
2082 __d_drop(dentry);
2083
2084 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2085
2086 fsnotify_nameremove(dentry, isdir);
1da177e4 2087}
ec4f8605 2088EXPORT_SYMBOL(d_delete);
1da177e4 2089
b07ad996 2090static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2091{
ceb5bdc2 2092 BUG_ON(!d_unhashed(entry));
1879fd6a 2093 hlist_bl_lock(b);
dea3667b 2094 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2095 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2096 hlist_bl_unlock(b);
1da177e4
LT
2097}
2098
770bfad8
DH
2099static void _d_rehash(struct dentry * entry)
2100{
2101 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2102}
2103
1da177e4
LT
2104/**
2105 * d_rehash - add an entry back to the hash
2106 * @entry: dentry to add to the hash
2107 *
2108 * Adds a dentry to the hash according to its name.
2109 */
2110
2111void d_rehash(struct dentry * entry)
2112{
1da177e4 2113 spin_lock(&entry->d_lock);
770bfad8 2114 _d_rehash(entry);
1da177e4 2115 spin_unlock(&entry->d_lock);
1da177e4 2116}
ec4f8605 2117EXPORT_SYMBOL(d_rehash);
1da177e4 2118
fb2d5b86
NP
2119/**
2120 * dentry_update_name_case - update case insensitive dentry with a new name
2121 * @dentry: dentry to be updated
2122 * @name: new name
2123 *
2124 * Update a case insensitive dentry with new case of name.
2125 *
2126 * dentry must have been returned by d_lookup with name @name. Old and new
2127 * name lengths must match (ie. no d_compare which allows mismatched name
2128 * lengths).
2129 *
2130 * Parent inode i_mutex must be held over d_lookup and into this call (to
2131 * keep renames and concurrent inserts, and readdir(2) away).
2132 */
2133void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2134{
7ebfa57f 2135 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2136 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2137
fb2d5b86 2138 spin_lock(&dentry->d_lock);
31e6b01f 2139 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2140 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2141 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2142 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2143}
2144EXPORT_SYMBOL(dentry_update_name_case);
2145
1da177e4
LT
2146static void switch_names(struct dentry *dentry, struct dentry *target)
2147{
2148 if (dname_external(target)) {
2149 if (dname_external(dentry)) {
2150 /*
2151 * Both external: swap the pointers
2152 */
9a8d5bb4 2153 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2154 } else {
2155 /*
2156 * dentry:internal, target:external. Steal target's
2157 * storage and make target internal.
2158 */
321bcf92
BF
2159 memcpy(target->d_iname, dentry->d_name.name,
2160 dentry->d_name.len + 1);
1da177e4
LT
2161 dentry->d_name.name = target->d_name.name;
2162 target->d_name.name = target->d_iname;
2163 }
2164 } else {
2165 if (dname_external(dentry)) {
2166 /*
2167 * dentry:external, target:internal. Give dentry's
2168 * storage to target and make dentry internal
2169 */
2170 memcpy(dentry->d_iname, target->d_name.name,
2171 target->d_name.len + 1);
2172 target->d_name.name = dentry->d_name.name;
2173 dentry->d_name.name = dentry->d_iname;
2174 } else {
2175 /*
2176 * Both are internal. Just copy target to dentry
2177 */
2178 memcpy(dentry->d_iname, target->d_name.name,
2179 target->d_name.len + 1);
dc711ca3
AV
2180 dentry->d_name.len = target->d_name.len;
2181 return;
1da177e4
LT
2182 }
2183 }
9a8d5bb4 2184 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2185}
2186
2fd6b7f5
NP
2187static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2188{
2189 /*
2190 * XXXX: do we really need to take target->d_lock?
2191 */
2192 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2193 spin_lock(&target->d_parent->d_lock);
2194 else {
2195 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2196 spin_lock(&dentry->d_parent->d_lock);
2197 spin_lock_nested(&target->d_parent->d_lock,
2198 DENTRY_D_LOCK_NESTED);
2199 } else {
2200 spin_lock(&target->d_parent->d_lock);
2201 spin_lock_nested(&dentry->d_parent->d_lock,
2202 DENTRY_D_LOCK_NESTED);
2203 }
2204 }
2205 if (target < dentry) {
2206 spin_lock_nested(&target->d_lock, 2);
2207 spin_lock_nested(&dentry->d_lock, 3);
2208 } else {
2209 spin_lock_nested(&dentry->d_lock, 2);
2210 spin_lock_nested(&target->d_lock, 3);
2211 }
2212}
2213
2214static void dentry_unlock_parents_for_move(struct dentry *dentry,
2215 struct dentry *target)
2216{
2217 if (target->d_parent != dentry->d_parent)
2218 spin_unlock(&dentry->d_parent->d_lock);
2219 if (target->d_parent != target)
2220 spin_unlock(&target->d_parent->d_lock);
2221}
2222
1da177e4 2223/*
2fd6b7f5
NP
2224 * When switching names, the actual string doesn't strictly have to
2225 * be preserved in the target - because we're dropping the target
2226 * anyway. As such, we can just do a simple memcpy() to copy over
2227 * the new name before we switch.
2228 *
2229 * Note that we have to be a lot more careful about getting the hash
2230 * switched - we have to switch the hash value properly even if it
2231 * then no longer matches the actual (corrupted) string of the target.
2232 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2233 */
9eaef27b 2234/*
18367501 2235 * __d_move - move a dentry
1da177e4
LT
2236 * @dentry: entry to move
2237 * @target: new dentry
2238 *
2239 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2240 * dcache entries should not be moved in this way. Caller must hold
2241 * rename_lock, the i_mutex of the source and target directories,
2242 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2243 */
18367501 2244static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2245{
1da177e4
LT
2246 if (!dentry->d_inode)
2247 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2248
2fd6b7f5
NP
2249 BUG_ON(d_ancestor(dentry, target));
2250 BUG_ON(d_ancestor(target, dentry));
2251
2fd6b7f5 2252 dentry_lock_for_move(dentry, target);
1da177e4 2253
31e6b01f
NP
2254 write_seqcount_begin(&dentry->d_seq);
2255 write_seqcount_begin(&target->d_seq);
2256
ceb5bdc2
NP
2257 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2258
2259 /*
2260 * Move the dentry to the target hash queue. Don't bother checking
2261 * for the same hash queue because of how unlikely it is.
2262 */
2263 __d_drop(dentry);
789680d1 2264 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2265
2266 /* Unhash the target: dput() will then get rid of it */
2267 __d_drop(target);
2268
5160ee6f
ED
2269 list_del(&dentry->d_u.d_child);
2270 list_del(&target->d_u.d_child);
1da177e4
LT
2271
2272 /* Switch the names.. */
2273 switch_names(dentry, target);
9a8d5bb4 2274 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2275
2276 /* ... and switch the parents */
2277 if (IS_ROOT(dentry)) {
2278 dentry->d_parent = target->d_parent;
2279 target->d_parent = target;
5160ee6f 2280 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2281 } else {
9a8d5bb4 2282 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2283
2284 /* And add them back to the (new) parent lists */
5160ee6f 2285 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2286 }
2287
5160ee6f 2288 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2289
31e6b01f
NP
2290 write_seqcount_end(&target->d_seq);
2291 write_seqcount_end(&dentry->d_seq);
2292
2fd6b7f5 2293 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2294 spin_unlock(&target->d_lock);
c32ccd87 2295 fsnotify_d_move(dentry);
1da177e4 2296 spin_unlock(&dentry->d_lock);
18367501
AV
2297}
2298
2299/*
2300 * d_move - move a dentry
2301 * @dentry: entry to move
2302 * @target: new dentry
2303 *
2304 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2305 * dcache entries should not be moved in this way. See the locking
2306 * requirements for __d_move.
18367501
AV
2307 */
2308void d_move(struct dentry *dentry, struct dentry *target)
2309{
2310 write_seqlock(&rename_lock);
2311 __d_move(dentry, target);
1da177e4 2312 write_sequnlock(&rename_lock);
9eaef27b 2313}
ec4f8605 2314EXPORT_SYMBOL(d_move);
1da177e4 2315
e2761a11
OH
2316/**
2317 * d_ancestor - search for an ancestor
2318 * @p1: ancestor dentry
2319 * @p2: child dentry
2320 *
2321 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2322 * an ancestor of p2, else NULL.
9eaef27b 2323 */
e2761a11 2324struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2325{
2326 struct dentry *p;
2327
871c0067 2328 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2329 if (p->d_parent == p1)
e2761a11 2330 return p;
9eaef27b 2331 }
e2761a11 2332 return NULL;
9eaef27b
TM
2333}
2334
2335/*
2336 * This helper attempts to cope with remotely renamed directories
2337 *
2338 * It assumes that the caller is already holding
18367501 2339 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2340 *
2341 * Note: If ever the locking in lock_rename() changes, then please
2342 * remember to update this too...
9eaef27b 2343 */
873feea0
NP
2344static struct dentry *__d_unalias(struct inode *inode,
2345 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2346{
2347 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2348 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2349
2350 /* If alias and dentry share a parent, then no extra locks required */
2351 if (alias->d_parent == dentry->d_parent)
2352 goto out_unalias;
2353
9eaef27b 2354 /* See lock_rename() */
9eaef27b
TM
2355 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2356 goto out_err;
2357 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2358 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2359 goto out_err;
2360 m2 = &alias->d_parent->d_inode->i_mutex;
2361out_unalias:
ee3efa91
AV
2362 if (likely(!d_mountpoint(alias))) {
2363 __d_move(alias, dentry);
2364 ret = alias;
2365 }
9eaef27b 2366out_err:
873feea0 2367 spin_unlock(&inode->i_lock);
9eaef27b
TM
2368 if (m2)
2369 mutex_unlock(m2);
2370 if (m1)
2371 mutex_unlock(m1);
2372 return ret;
2373}
2374
770bfad8
DH
2375/*
2376 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2377 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2378 * returns with anon->d_lock held!
770bfad8
DH
2379 */
2380static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2381{
740da42e 2382 struct dentry *dparent;
770bfad8 2383
2fd6b7f5 2384 dentry_lock_for_move(anon, dentry);
770bfad8 2385
31e6b01f
NP
2386 write_seqcount_begin(&dentry->d_seq);
2387 write_seqcount_begin(&anon->d_seq);
2388
770bfad8 2389 dparent = dentry->d_parent;
770bfad8 2390
2fd6b7f5
NP
2391 switch_names(dentry, anon);
2392 swap(dentry->d_name.hash, anon->d_name.hash);
2393
740da42e
AV
2394 dentry->d_parent = dentry;
2395 list_del_init(&dentry->d_u.d_child);
2396 anon->d_parent = dparent;
9ed53b12 2397 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
770bfad8 2398
31e6b01f
NP
2399 write_seqcount_end(&dentry->d_seq);
2400 write_seqcount_end(&anon->d_seq);
2401
2fd6b7f5
NP
2402 dentry_unlock_parents_for_move(anon, dentry);
2403 spin_unlock(&dentry->d_lock);
2404
2405 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2406 anon->d_flags &= ~DCACHE_DISCONNECTED;
2407}
2408
2409/**
2410 * d_materialise_unique - introduce an inode into the tree
2411 * @dentry: candidate dentry
2412 * @inode: inode to bind to the dentry, to which aliases may be attached
2413 *
2414 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2415 * root directory alias in its place if there is one. Caller must hold the
2416 * i_mutex of the parent directory.
770bfad8
DH
2417 */
2418struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2419{
9eaef27b 2420 struct dentry *actual;
770bfad8
DH
2421
2422 BUG_ON(!d_unhashed(dentry));
2423
770bfad8
DH
2424 if (!inode) {
2425 actual = dentry;
360da900 2426 __d_instantiate(dentry, NULL);
357f8e65
NP
2427 d_rehash(actual);
2428 goto out_nolock;
770bfad8
DH
2429 }
2430
873feea0 2431 spin_lock(&inode->i_lock);
357f8e65 2432
9eaef27b
TM
2433 if (S_ISDIR(inode->i_mode)) {
2434 struct dentry *alias;
2435
2436 /* Does an aliased dentry already exist? */
32ba9c3f 2437 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2438 if (alias) {
2439 actual = alias;
18367501
AV
2440 write_seqlock(&rename_lock);
2441
2442 if (d_ancestor(alias, dentry)) {
2443 /* Check for loops */
2444 actual = ERR_PTR(-ELOOP);
b18dafc8 2445 spin_unlock(&inode->i_lock);
18367501
AV
2446 } else if (IS_ROOT(alias)) {
2447 /* Is this an anonymous mountpoint that we
2448 * could splice into our tree? */
9eaef27b 2449 __d_materialise_dentry(dentry, alias);
18367501 2450 write_sequnlock(&rename_lock);
9eaef27b
TM
2451 __d_drop(alias);
2452 goto found;
18367501
AV
2453 } else {
2454 /* Nope, but we must(!) avoid directory
b18dafc8 2455 * aliasing. This drops inode->i_lock */
18367501 2456 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2457 }
18367501 2458 write_sequnlock(&rename_lock);
dd179946
DH
2459 if (IS_ERR(actual)) {
2460 if (PTR_ERR(actual) == -ELOOP)
2461 pr_warn_ratelimited(
2462 "VFS: Lookup of '%s' in %s %s"
2463 " would have caused loop\n",
2464 dentry->d_name.name,
2465 inode->i_sb->s_type->name,
2466 inode->i_sb->s_id);
9eaef27b 2467 dput(alias);
dd179946 2468 }
9eaef27b
TM
2469 goto out_nolock;
2470 }
770bfad8
DH
2471 }
2472
2473 /* Add a unique reference */
2474 actual = __d_instantiate_unique(dentry, inode);
2475 if (!actual)
2476 actual = dentry;
357f8e65
NP
2477 else
2478 BUG_ON(!d_unhashed(actual));
770bfad8 2479
770bfad8
DH
2480 spin_lock(&actual->d_lock);
2481found:
2482 _d_rehash(actual);
2483 spin_unlock(&actual->d_lock);
873feea0 2484 spin_unlock(&inode->i_lock);
9eaef27b 2485out_nolock:
770bfad8
DH
2486 if (actual == dentry) {
2487 security_d_instantiate(dentry, inode);
2488 return NULL;
2489 }
2490
2491 iput(inode);
2492 return actual;
770bfad8 2493}
ec4f8605 2494EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2495
cdd16d02 2496static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2497{
2498 *buflen -= namelen;
2499 if (*buflen < 0)
2500 return -ENAMETOOLONG;
2501 *buffer -= namelen;
2502 memcpy(*buffer, str, namelen);
2503 return 0;
2504}
2505
cdd16d02
MS
2506static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2507{
2508 return prepend(buffer, buflen, name->name, name->len);
2509}
2510
1da177e4 2511/**
208898c1 2512 * prepend_path - Prepend path string to a buffer
9d1bc601 2513 * @path: the dentry/vfsmount to report
02125a82 2514 * @root: root vfsmnt/dentry
f2eb6575
MS
2515 * @buffer: pointer to the end of the buffer
2516 * @buflen: pointer to buffer length
552ce544 2517 *
949854d0 2518 * Caller holds the rename_lock.
1da177e4 2519 */
02125a82
AV
2520static int prepend_path(const struct path *path,
2521 const struct path *root,
f2eb6575 2522 char **buffer, int *buflen)
1da177e4 2523{
9d1bc601
MS
2524 struct dentry *dentry = path->dentry;
2525 struct vfsmount *vfsmnt = path->mnt;
0714a533 2526 struct mount *mnt = real_mount(vfsmnt);
f2eb6575
MS
2527 bool slash = false;
2528 int error = 0;
6092d048 2529
f2eb6575 2530 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2531 struct dentry * parent;
2532
1da177e4 2533 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2534 /* Global root? */
676da58d 2535 if (!mnt_has_parent(mnt))
1da177e4 2536 goto global_root;
a73324da 2537 dentry = mnt->mnt_mountpoint;
0714a533
AV
2538 mnt = mnt->mnt_parent;
2539 vfsmnt = &mnt->mnt;
1da177e4
LT
2540 continue;
2541 }
2542 parent = dentry->d_parent;
2543 prefetch(parent);
9abca360 2544 spin_lock(&dentry->d_lock);
f2eb6575 2545 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2546 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2547 if (!error)
2548 error = prepend(buffer, buflen, "/", 1);
2549 if (error)
2550 break;
2551
2552 slash = true;
1da177e4
LT
2553 dentry = parent;
2554 }
2555
f2eb6575
MS
2556 if (!error && !slash)
2557 error = prepend(buffer, buflen, "/", 1);
2558
f2eb6575 2559 return error;
1da177e4
LT
2560
2561global_root:
98dc568b
MS
2562 /*
2563 * Filesystems needing to implement special "root names"
2564 * should do so with ->d_dname()
2565 */
2566 if (IS_ROOT(dentry) &&
2567 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2568 WARN(1, "Root dentry has weird name <%.*s>\n",
2569 (int) dentry->d_name.len, dentry->d_name.name);
2570 }
02125a82
AV
2571 if (!slash)
2572 error = prepend(buffer, buflen, "/", 1);
2573 if (!error)
f7a99c5b 2574 error = is_mounted(vfsmnt) ? 1 : 2;
7ea600b5 2575 return error;
f2eb6575 2576}
be285c71 2577
f2eb6575
MS
2578/**
2579 * __d_path - return the path of a dentry
2580 * @path: the dentry/vfsmount to report
02125a82 2581 * @root: root vfsmnt/dentry
cd956a1c 2582 * @buf: buffer to return value in
f2eb6575
MS
2583 * @buflen: buffer length
2584 *
ffd1f4ed 2585 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2586 *
2587 * Returns a pointer into the buffer or an error code if the
2588 * path was too long.
2589 *
be148247 2590 * "buflen" should be positive.
f2eb6575 2591 *
02125a82 2592 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2593 */
02125a82
AV
2594char *__d_path(const struct path *path,
2595 const struct path *root,
f2eb6575
MS
2596 char *buf, int buflen)
2597{
2598 char *res = buf + buflen;
2599 int error;
2600
2601 prepend(&res, &buflen, "\0", 1);
7ea600b5 2602 br_read_lock(&vfsmount_lock);
949854d0 2603 write_seqlock(&rename_lock);
f2eb6575 2604 error = prepend_path(path, root, &res, &buflen);
949854d0 2605 write_sequnlock(&rename_lock);
7ea600b5 2606 br_read_unlock(&vfsmount_lock);
be148247 2607
02125a82
AV
2608 if (error < 0)
2609 return ERR_PTR(error);
2610 if (error > 0)
2611 return NULL;
2612 return res;
2613}
2614
2615char *d_absolute_path(const struct path *path,
2616 char *buf, int buflen)
2617{
2618 struct path root = {};
2619 char *res = buf + buflen;
2620 int error;
2621
2622 prepend(&res, &buflen, "\0", 1);
7ea600b5 2623 br_read_lock(&vfsmount_lock);
02125a82
AV
2624 write_seqlock(&rename_lock);
2625 error = prepend_path(path, &root, &res, &buflen);
2626 write_sequnlock(&rename_lock);
7ea600b5 2627 br_read_unlock(&vfsmount_lock);
02125a82
AV
2628
2629 if (error > 1)
2630 error = -EINVAL;
2631 if (error < 0)
f2eb6575 2632 return ERR_PTR(error);
f2eb6575 2633 return res;
1da177e4
LT
2634}
2635
ffd1f4ed
MS
2636/*
2637 * same as __d_path but appends "(deleted)" for unlinked files.
2638 */
02125a82
AV
2639static int path_with_deleted(const struct path *path,
2640 const struct path *root,
2641 char **buf, int *buflen)
ffd1f4ed
MS
2642{
2643 prepend(buf, buflen, "\0", 1);
2644 if (d_unlinked(path->dentry)) {
2645 int error = prepend(buf, buflen, " (deleted)", 10);
2646 if (error)
2647 return error;
2648 }
2649
2650 return prepend_path(path, root, buf, buflen);
2651}
2652
8df9d1a4
MS
2653static int prepend_unreachable(char **buffer, int *buflen)
2654{
2655 return prepend(buffer, buflen, "(unreachable)", 13);
2656}
2657
a03a8a70
JB
2658/**
2659 * d_path - return the path of a dentry
cf28b486 2660 * @path: path to report
a03a8a70
JB
2661 * @buf: buffer to return value in
2662 * @buflen: buffer length
2663 *
2664 * Convert a dentry into an ASCII path name. If the entry has been deleted
2665 * the string " (deleted)" is appended. Note that this is ambiguous.
2666 *
52afeefb
AV
2667 * Returns a pointer into the buffer or an error code if the path was
2668 * too long. Note: Callers should use the returned pointer, not the passed
2669 * in buffer, to use the name! The implementation often starts at an offset
2670 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2671 *
31f3e0b3 2672 * "buflen" should be positive.
a03a8a70 2673 */
20d4fdc1 2674char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2675{
ffd1f4ed 2676 char *res = buf + buflen;
6ac08c39 2677 struct path root;
ffd1f4ed 2678 int error;
1da177e4 2679
c23fbb6b
ED
2680 /*
2681 * We have various synthetic filesystems that never get mounted. On
2682 * these filesystems dentries are never used for lookup purposes, and
2683 * thus don't need to be hashed. They also don't need a name until a
2684 * user wants to identify the object in /proc/pid/fd/. The little hack
2685 * below allows us to generate a name for these objects on demand:
3717eee3
EB
2686 *
2687 * Some pseudo inodes are mountable. When they are mounted
2688 * path->dentry == path->mnt->mnt_root. In that case don't call d_dname
2689 * and instead have d_path return the mounted path.
c23fbb6b 2690 */
3717eee3
EB
2691 if (path->dentry->d_op && path->dentry->d_op->d_dname &&
2692 (!IS_ROOT(path->dentry) || path->dentry != path->mnt->mnt_root))
cf28b486 2693 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2694
f7ad3c6b 2695 get_fs_root(current->fs, &root);
7ea600b5 2696 br_read_lock(&vfsmount_lock);
949854d0 2697 write_seqlock(&rename_lock);
02125a82 2698 error = path_with_deleted(path, &root, &res, &buflen);
7ea600b5
AV
2699 write_sequnlock(&rename_lock);
2700 br_read_unlock(&vfsmount_lock);
02125a82 2701 if (error < 0)
ffd1f4ed 2702 res = ERR_PTR(error);
6ac08c39 2703 path_put(&root);
1da177e4
LT
2704 return res;
2705}
ec4f8605 2706EXPORT_SYMBOL(d_path);
1da177e4 2707
c23fbb6b
ED
2708/*
2709 * Helper function for dentry_operations.d_dname() members
2710 */
2711char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2712 const char *fmt, ...)
2713{
2714 va_list args;
2715 char temp[64];
2716 int sz;
2717
2718 va_start(args, fmt);
2719 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2720 va_end(args);
2721
2722 if (sz > sizeof(temp) || sz > buflen)
2723 return ERR_PTR(-ENAMETOOLONG);
2724
2725 buffer += buflen - sz;
2726 return memcpy(buffer, temp, sz);
2727}
2728
ad4c3cc4
AV
2729char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
2730{
2731 char *end = buffer + buflen;
2732 /* these dentries are never renamed, so d_lock is not needed */
2733 if (prepend(&end, &buflen, " (deleted)", 11) ||
2734 prepend_name(&end, &buflen, &dentry->d_name) ||
2735 prepend(&end, &buflen, "/", 1))
2736 end = ERR_PTR(-ENAMETOOLONG);
2737 return end;
2738}
2739
6092d048
RP
2740/*
2741 * Write full pathname from the root of the filesystem into the buffer.
2742 */
ec2447c2 2743static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2744{
2745 char *end = buf + buflen;
2746 char *retval;
2747
6092d048 2748 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2749 if (buflen < 1)
2750 goto Elong;
2751 /* Get '/' right */
2752 retval = end-1;
2753 *retval = '/';
2754
cdd16d02
MS
2755 while (!IS_ROOT(dentry)) {
2756 struct dentry *parent = dentry->d_parent;
9abca360 2757 int error;
6092d048 2758
6092d048 2759 prefetch(parent);
9abca360
NP
2760 spin_lock(&dentry->d_lock);
2761 error = prepend_name(&end, &buflen, &dentry->d_name);
2762 spin_unlock(&dentry->d_lock);
2763 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2764 goto Elong;
2765
2766 retval = end;
2767 dentry = parent;
2768 }
c103135c
AV
2769 return retval;
2770Elong:
2771 return ERR_PTR(-ENAMETOOLONG);
2772}
ec2447c2
NP
2773
2774char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2775{
2776 char *retval;
2777
949854d0 2778 write_seqlock(&rename_lock);
ec2447c2 2779 retval = __dentry_path(dentry, buf, buflen);
949854d0 2780 write_sequnlock(&rename_lock);
ec2447c2
NP
2781
2782 return retval;
2783}
2784EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2785
2786char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2787{
2788 char *p = NULL;
2789 char *retval;
2790
949854d0 2791 write_seqlock(&rename_lock);
c103135c
AV
2792 if (d_unlinked(dentry)) {
2793 p = buf + buflen;
2794 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2795 goto Elong;
2796 buflen++;
2797 }
2798 retval = __dentry_path(dentry, buf, buflen);
949854d0 2799 write_sequnlock(&rename_lock);
c103135c
AV
2800 if (!IS_ERR(retval) && p)
2801 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2802 return retval;
2803Elong:
6092d048
RP
2804 return ERR_PTR(-ENAMETOOLONG);
2805}
2806
1da177e4
LT
2807/*
2808 * NOTE! The user-level library version returns a
2809 * character pointer. The kernel system call just
2810 * returns the length of the buffer filled (which
2811 * includes the ending '\0' character), or a negative
2812 * error value. So libc would do something like
2813 *
2814 * char *getcwd(char * buf, size_t size)
2815 * {
2816 * int retval;
2817 *
2818 * retval = sys_getcwd(buf, size);
2819 * if (retval >= 0)
2820 * return buf;
2821 * errno = -retval;
2822 * return NULL;
2823 * }
2824 */
3cdad428 2825SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2826{
552ce544 2827 int error;
6ac08c39 2828 struct path pwd, root;
552ce544 2829 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2830
2831 if (!page)
2832 return -ENOMEM;
2833
f7ad3c6b 2834 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2835
552ce544 2836 error = -ENOENT;
7ea600b5 2837 br_read_lock(&vfsmount_lock);
949854d0 2838 write_seqlock(&rename_lock);
f3da392e 2839 if (!d_unlinked(pwd.dentry)) {
552ce544 2840 unsigned long len;
8df9d1a4
MS
2841 char *cwd = page + PAGE_SIZE;
2842 int buflen = PAGE_SIZE;
1da177e4 2843
8df9d1a4 2844 prepend(&cwd, &buflen, "\0", 1);
02125a82 2845 error = prepend_path(&pwd, &root, &cwd, &buflen);
949854d0 2846 write_sequnlock(&rename_lock);
7ea600b5 2847 br_read_unlock(&vfsmount_lock);
552ce544 2848
02125a82 2849 if (error < 0)
552ce544
LT
2850 goto out;
2851
8df9d1a4 2852 /* Unreachable from current root */
02125a82 2853 if (error > 0) {
8df9d1a4
MS
2854 error = prepend_unreachable(&cwd, &buflen);
2855 if (error)
2856 goto out;
2857 }
2858
552ce544
LT
2859 error = -ERANGE;
2860 len = PAGE_SIZE + page - cwd;
2861 if (len <= size) {
2862 error = len;
2863 if (copy_to_user(buf, cwd, len))
2864 error = -EFAULT;
2865 }
949854d0
NP
2866 } else {
2867 write_sequnlock(&rename_lock);
7ea600b5 2868 br_read_unlock(&vfsmount_lock);
949854d0 2869 }
1da177e4
LT
2870
2871out:
6ac08c39
JB
2872 path_put(&pwd);
2873 path_put(&root);
1da177e4
LT
2874 free_page((unsigned long) page);
2875 return error;
2876}
2877
2878/*
2879 * Test whether new_dentry is a subdirectory of old_dentry.
2880 *
2881 * Trivially implemented using the dcache structure
2882 */
2883
2884/**
2885 * is_subdir - is new dentry a subdirectory of old_dentry
2886 * @new_dentry: new dentry
2887 * @old_dentry: old dentry
2888 *
2889 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2890 * Returns 0 otherwise.
2891 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2892 */
2893
e2761a11 2894int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2895{
2896 int result;
949854d0 2897 unsigned seq;
1da177e4 2898
e2761a11
OH
2899 if (new_dentry == old_dentry)
2900 return 1;
2901
e2761a11 2902 do {
1da177e4 2903 /* for restarting inner loop in case of seq retry */
1da177e4 2904 seq = read_seqbegin(&rename_lock);
949854d0
NP
2905 /*
2906 * Need rcu_readlock to protect against the d_parent trashing
2907 * due to d_move
2908 */
2909 rcu_read_lock();
e2761a11 2910 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2911 result = 1;
e2761a11
OH
2912 else
2913 result = 0;
949854d0 2914 rcu_read_unlock();
1da177e4 2915 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2916
2917 return result;
2918}
2919
2920void d_genocide(struct dentry *root)
2921{
949854d0 2922 struct dentry *this_parent;
1da177e4 2923 struct list_head *next;
949854d0 2924 unsigned seq;
58db63d0 2925 int locked = 0;
1da177e4 2926
949854d0 2927 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2928again:
2929 this_parent = root;
2fd6b7f5 2930 spin_lock(&this_parent->d_lock);
1da177e4
LT
2931repeat:
2932 next = this_parent->d_subdirs.next;
2933resume:
2934 while (next != &this_parent->d_subdirs) {
2935 struct list_head *tmp = next;
5160ee6f 2936 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2937 next = tmp->next;
949854d0 2938
da502956
NP
2939 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2940 if (d_unhashed(dentry) || !dentry->d_inode) {
2941 spin_unlock(&dentry->d_lock);
1da177e4 2942 continue;
da502956 2943 }
1da177e4 2944 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2945 spin_unlock(&this_parent->d_lock);
2946 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2947 this_parent = dentry;
2fd6b7f5 2948 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2949 goto repeat;
2950 }
949854d0
NP
2951 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2952 dentry->d_flags |= DCACHE_GENOCIDE;
2953 dentry->d_count--;
2954 }
b7ab39f6 2955 spin_unlock(&dentry->d_lock);
1da177e4
LT
2956 }
2957 if (this_parent != root) {
c826cb7d 2958 struct dentry *child = this_parent;
949854d0
NP
2959 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2960 this_parent->d_flags |= DCACHE_GENOCIDE;
2961 this_parent->d_count--;
2962 }
c826cb7d
LT
2963 this_parent = try_to_ascend(this_parent, locked, seq);
2964 if (!this_parent)
949854d0 2965 goto rename_retry;
949854d0 2966 next = child->d_u.d_child.next;
1da177e4
LT
2967 goto resume;
2968 }
2fd6b7f5 2969 spin_unlock(&this_parent->d_lock);
58db63d0 2970 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 2971 goto rename_retry;
58db63d0
NP
2972 if (locked)
2973 write_sequnlock(&rename_lock);
2974 return;
2975
2976rename_retry:
8110e16d
MS
2977 if (locked)
2978 goto again;
58db63d0
NP
2979 locked = 1;
2980 write_seqlock(&rename_lock);
2981 goto again;
1da177e4
LT
2982}
2983
2984/**
2985 * find_inode_number - check for dentry with name
2986 * @dir: directory to check
2987 * @name: Name to find.
2988 *
2989 * Check whether a dentry already exists for the given name,
2990 * and return the inode number if it has an inode. Otherwise
2991 * 0 is returned.
2992 *
2993 * This routine is used to post-process directory listings for
2994 * filesystems using synthetic inode numbers, and is necessary
2995 * to keep getcwd() working.
2996 */
2997
2998ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2999{
3000 struct dentry * dentry;
3001 ino_t ino = 0;
3002
3e7e241f 3003 dentry = d_hash_and_lookup(dir, name);
4f522a24 3004 if (!IS_ERR_OR_NULL(dentry)) {
1da177e4
LT
3005 if (dentry->d_inode)
3006 ino = dentry->d_inode->i_ino;
3007 dput(dentry);
3008 }
1da177e4
LT
3009 return ino;
3010}
ec4f8605 3011EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
3012
3013static __initdata unsigned long dhash_entries;
3014static int __init set_dhash_entries(char *str)
3015{
3016 if (!str)
3017 return 0;
3018 dhash_entries = simple_strtoul(str, &str, 0);
3019 return 1;
3020}
3021__setup("dhash_entries=", set_dhash_entries);
3022
3023static void __init dcache_init_early(void)
3024{
074b8517 3025 unsigned int loop;
1da177e4
LT
3026
3027 /* If hashes are distributed across NUMA nodes, defer
3028 * hash allocation until vmalloc space is available.
3029 */
3030 if (hashdist)
3031 return;
3032
3033 dentry_hashtable =
3034 alloc_large_system_hash("Dentry cache",
b07ad996 3035 sizeof(struct hlist_bl_head),
1da177e4
LT
3036 dhash_entries,
3037 13,
3038 HASH_EARLY,
3039 &d_hash_shift,
3040 &d_hash_mask,
31fe62b9 3041 0,
1da177e4
LT
3042 0);
3043
074b8517 3044 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3045 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3046}
3047
74bf17cf 3048static void __init dcache_init(void)
1da177e4 3049{
074b8517 3050 unsigned int loop;
1da177e4
LT
3051
3052 /*
3053 * A constructor could be added for stable state like the lists,
3054 * but it is probably not worth it because of the cache nature
3055 * of the dcache.
3056 */
0a31bd5f
CL
3057 dentry_cache = KMEM_CACHE(dentry,
3058 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3059
3060 /* Hash may have been set up in dcache_init_early */
3061 if (!hashdist)
3062 return;
3063
3064 dentry_hashtable =
3065 alloc_large_system_hash("Dentry cache",
b07ad996 3066 sizeof(struct hlist_bl_head),
1da177e4
LT
3067 dhash_entries,
3068 13,
3069 0,
3070 &d_hash_shift,
3071 &d_hash_mask,
31fe62b9 3072 0,
1da177e4
LT
3073 0);
3074
074b8517 3075 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3076 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3077}
3078
3079/* SLAB cache for __getname() consumers */
e18b890b 3080struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3081EXPORT_SYMBOL(names_cachep);
1da177e4 3082
1da177e4
LT
3083EXPORT_SYMBOL(d_genocide);
3084
1da177e4
LT
3085void __init vfs_caches_init_early(void)
3086{
3087 dcache_init_early();
3088 inode_init_early();
3089}
3090
3091void __init vfs_caches_init(unsigned long mempages)
3092{
3093 unsigned long reserve;
3094
3095 /* Base hash sizes on available memory, with a reserve equal to
3096 150% of current kernel size */
3097
3098 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3099 mempages -= reserve;
3100
3101 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3102 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3103
74bf17cf
DC
3104 dcache_init();
3105 inode_init();
1da177e4 3106 files_init(mempages);
74bf17cf 3107 mnt_init();
1da177e4
LT
3108 bdev_cache_init();
3109 chrdev_init();
3110}