lookup_slow: get rid of name argument
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0
NP
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
23044507
NP
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
b23fb0a6 61 * - d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6
NP
65 * dentry->d_lock
66 * dcache_lru_lock
ceb5bdc2
NP
67 * dcache_hash_bucket lock
68 * s_anon lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
23044507 84static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99#define D_HASHBITS d_hash_shift
100#define D_HASHMASK d_hash_mask
101
fa3536cc
ED
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 104
b07ad996 105static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 106
8966be90 107static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 108 unsigned int hash)
ceb5bdc2 109{
6d7d1a0d
LT
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
ceb5bdc2
NP
112 return dentry_hashtable + (hash & D_HASHMASK);
113}
114
1da177e4
LT
115/* Statistics gathering. */
116struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118};
119
3e880fb5 120static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
121
122#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
123static int get_nr_dentry(void)
124{
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130}
131
312d3ca8
CH
132int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134{
3e880fb5 135 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137}
138#endif
139
5483f18e
LT
140/*
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
143 */
e419b4cc
LT
144#ifdef CONFIG_DCACHE_WORD_ACCESS
145
146#include <asm/word-at-a-time.h>
147/*
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
152 *
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
155 */
94753db5 156static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 157{
bfcfaa77 158 unsigned long a,b,mask;
bfcfaa77
LT
159
160 for (;;) {
12f8ad4b 161 a = *(unsigned long *)cs;
e419b4cc 162 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
163 if (tcount < sizeof(unsigned long))
164 break;
165 if (unlikely(a != b))
166 return 1;
167 cs += sizeof(unsigned long);
168 ct += sizeof(unsigned long);
169 tcount -= sizeof(unsigned long);
170 if (!tcount)
171 return 0;
172 }
173 mask = ~(~0ul << tcount*8);
174 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
175}
176
bfcfaa77 177#else
e419b4cc 178
94753db5 179static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 180{
5483f18e
LT
181 do {
182 if (*cs != *ct)
183 return 1;
184 cs++;
185 ct++;
186 tcount--;
187 } while (tcount);
188 return 0;
189}
190
e419b4cc
LT
191#endif
192
94753db5
LT
193static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194{
6326c71f 195 const unsigned char *cs;
94753db5
LT
196 /*
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
199 *
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
207 *
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
211 */
6326c71f
LT
212 cs = ACCESS_ONCE(dentry->d_name.name);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
215}
216
9c82ab9c 217static void __d_free(struct rcu_head *head)
1da177e4 218{
9c82ab9c
CH
219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220
b3d9b7a3 221 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
222 if (dname_external(dentry))
223 kfree(dentry->d_name.name);
224 kmem_cache_free(dentry_cache, dentry);
225}
226
227/*
b5c84bf6 228 * no locks, please.
1da177e4
LT
229 */
230static void d_free(struct dentry *dentry)
231{
b7ab39f6 232 BUG_ON(dentry->d_count);
3e880fb5 233 this_cpu_dec(nr_dentry);
1da177e4
LT
234 if (dentry->d_op && dentry->d_op->d_release)
235 dentry->d_op->d_release(dentry);
312d3ca8 236
dea3667b
LT
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 239 __d_free(&dentry->d_u.d_rcu);
b3423415 240 else
9c82ab9c 241 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
242}
243
31e6b01f
NP
244/**
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 246 * @dentry: the target dentry
31e6b01f
NP
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
250 */
251static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252{
253 assert_spin_locked(&dentry->d_lock);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry->d_seq);
256}
257
1da177e4
LT
258/*
259 * Release the dentry's inode, using the filesystem
31e6b01f
NP
260 * d_iput() operation if defined. Dentry has no refcount
261 * and is unhashed.
1da177e4 262 */
858119e1 263static void dentry_iput(struct dentry * dentry)
31f3e0b3 264 __releases(dentry->d_lock)
873feea0 265 __releases(dentry->d_inode->i_lock)
1da177e4
LT
266{
267 struct inode *inode = dentry->d_inode;
268 if (inode) {
269 dentry->d_inode = NULL;
b3d9b7a3 270 hlist_del_init(&dentry->d_alias);
1da177e4 271 spin_unlock(&dentry->d_lock);
873feea0 272 spin_unlock(&inode->i_lock);
f805fbda
LT
273 if (!inode->i_nlink)
274 fsnotify_inoderemove(inode);
1da177e4
LT
275 if (dentry->d_op && dentry->d_op->d_iput)
276 dentry->d_op->d_iput(dentry, inode);
277 else
278 iput(inode);
279 } else {
280 spin_unlock(&dentry->d_lock);
1da177e4
LT
281 }
282}
283
31e6b01f
NP
284/*
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
287 */
288static void dentry_unlink_inode(struct dentry * dentry)
289 __releases(dentry->d_lock)
873feea0 290 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
291{
292 struct inode *inode = dentry->d_inode;
293 dentry->d_inode = NULL;
b3d9b7a3 294 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
295 dentry_rcuwalk_barrier(dentry);
296 spin_unlock(&dentry->d_lock);
873feea0 297 spin_unlock(&inode->i_lock);
31e6b01f
NP
298 if (!inode->i_nlink)
299 fsnotify_inoderemove(inode);
300 if (dentry->d_op && dentry->d_op->d_iput)
301 dentry->d_op->d_iput(dentry, inode);
302 else
303 iput(inode);
304}
305
da3bbdd4 306/*
f0023bc6 307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
da3bbdd4
KM
308 */
309static void dentry_lru_add(struct dentry *dentry)
310{
a4633357 311 if (list_empty(&dentry->d_lru)) {
23044507 312 spin_lock(&dcache_lru_lock);
a4633357
CH
313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 315 dentry_stat.nr_unused++;
23044507 316 spin_unlock(&dcache_lru_lock);
a4633357 317 }
da3bbdd4
KM
318}
319
23044507
NP
320static void __dentry_lru_del(struct dentry *dentry)
321{
322 list_del_init(&dentry->d_lru);
eaf5f907 323 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
23044507
NP
324 dentry->d_sb->s_nr_dentry_unused--;
325 dentry_stat.nr_unused--;
326}
327
f0023bc6
SW
328/*
329 * Remove a dentry with references from the LRU.
330 */
da3bbdd4
KM
331static void dentry_lru_del(struct dentry *dentry)
332{
333 if (!list_empty(&dentry->d_lru)) {
23044507
NP
334 spin_lock(&dcache_lru_lock);
335 __dentry_lru_del(dentry);
336 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
337 }
338}
339
f0023bc6
SW
340/*
341 * Remove a dentry that is unreferenced and about to be pruned
342 * (unhashed and destroyed) from the LRU, and inform the file system.
343 * This wrapper should be called _prior_ to unhashing a victim dentry.
344 */
345static void dentry_lru_prune(struct dentry *dentry)
346{
347 if (!list_empty(&dentry->d_lru)) {
348 if (dentry->d_flags & DCACHE_OP_PRUNE)
349 dentry->d_op->d_prune(dentry);
350
351 spin_lock(&dcache_lru_lock);
352 __dentry_lru_del(dentry);
353 spin_unlock(&dcache_lru_lock);
354 }
355}
356
b48f03b3 357static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
da3bbdd4 358{
23044507 359 spin_lock(&dcache_lru_lock);
a4633357 360 if (list_empty(&dentry->d_lru)) {
b48f03b3 361 list_add_tail(&dentry->d_lru, list);
a4633357 362 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 363 dentry_stat.nr_unused++;
a4633357 364 } else {
b48f03b3 365 list_move_tail(&dentry->d_lru, list);
da3bbdd4 366 }
23044507 367 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
368}
369
d52b9086
MS
370/**
371 * d_kill - kill dentry and return parent
372 * @dentry: dentry to kill
ff5fdb61 373 * @parent: parent dentry
d52b9086 374 *
31f3e0b3 375 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
376 *
377 * If this is the root of the dentry tree, return NULL.
23044507 378 *
b5c84bf6
NP
379 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
380 * d_kill.
d52b9086 381 */
2fd6b7f5 382static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 383 __releases(dentry->d_lock)
2fd6b7f5 384 __releases(parent->d_lock)
873feea0 385 __releases(dentry->d_inode->i_lock)
d52b9086 386{
d52b9086 387 list_del(&dentry->d_u.d_child);
c83ce989
TM
388 /*
389 * Inform try_to_ascend() that we are no longer attached to the
390 * dentry tree
391 */
b161dfa6 392 dentry->d_flags |= DCACHE_DENTRY_KILLED;
2fd6b7f5
NP
393 if (parent)
394 spin_unlock(&parent->d_lock);
d52b9086 395 dentry_iput(dentry);
b7ab39f6
NP
396 /*
397 * dentry_iput drops the locks, at which point nobody (except
398 * transient RCU lookups) can reach this dentry.
399 */
d52b9086 400 d_free(dentry);
871c0067 401 return parent;
d52b9086
MS
402}
403
c6627c60
DH
404/*
405 * Unhash a dentry without inserting an RCU walk barrier or checking that
406 * dentry->d_lock is locked. The caller must take care of that, if
407 * appropriate.
408 */
409static void __d_shrink(struct dentry *dentry)
410{
411 if (!d_unhashed(dentry)) {
412 struct hlist_bl_head *b;
413 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
414 b = &dentry->d_sb->s_anon;
415 else
416 b = d_hash(dentry->d_parent, dentry->d_name.hash);
417
418 hlist_bl_lock(b);
419 __hlist_bl_del(&dentry->d_hash);
420 dentry->d_hash.pprev = NULL;
421 hlist_bl_unlock(b);
422 }
423}
424
789680d1
NP
425/**
426 * d_drop - drop a dentry
427 * @dentry: dentry to drop
428 *
429 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
430 * be found through a VFS lookup any more. Note that this is different from
431 * deleting the dentry - d_delete will try to mark the dentry negative if
432 * possible, giving a successful _negative_ lookup, while d_drop will
433 * just make the cache lookup fail.
434 *
435 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
436 * reason (NFS timeouts or autofs deletes).
437 *
438 * __d_drop requires dentry->d_lock.
439 */
440void __d_drop(struct dentry *dentry)
441{
dea3667b 442 if (!d_unhashed(dentry)) {
c6627c60 443 __d_shrink(dentry);
dea3667b 444 dentry_rcuwalk_barrier(dentry);
789680d1
NP
445 }
446}
447EXPORT_SYMBOL(__d_drop);
448
449void d_drop(struct dentry *dentry)
450{
789680d1
NP
451 spin_lock(&dentry->d_lock);
452 __d_drop(dentry);
453 spin_unlock(&dentry->d_lock);
789680d1
NP
454}
455EXPORT_SYMBOL(d_drop);
456
77812a1e
NP
457/*
458 * Finish off a dentry we've decided to kill.
459 * dentry->d_lock must be held, returns with it unlocked.
460 * If ref is non-zero, then decrement the refcount too.
461 * Returns dentry requiring refcount drop, or NULL if we're done.
462 */
463static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
464 __releases(dentry->d_lock)
465{
873feea0 466 struct inode *inode;
77812a1e
NP
467 struct dentry *parent;
468
873feea0
NP
469 inode = dentry->d_inode;
470 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
471relock:
472 spin_unlock(&dentry->d_lock);
473 cpu_relax();
474 return dentry; /* try again with same dentry */
475 }
476 if (IS_ROOT(dentry))
477 parent = NULL;
478 else
479 parent = dentry->d_parent;
480 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
481 if (inode)
482 spin_unlock(&inode->i_lock);
77812a1e
NP
483 goto relock;
484 }
31e6b01f 485
77812a1e
NP
486 if (ref)
487 dentry->d_count--;
f0023bc6
SW
488 /*
489 * if dentry was on the d_lru list delete it from there.
490 * inform the fs via d_prune that this dentry is about to be
491 * unhashed and destroyed.
492 */
493 dentry_lru_prune(dentry);
77812a1e
NP
494 /* if it was on the hash then remove it */
495 __d_drop(dentry);
496 return d_kill(dentry, parent);
497}
498
1da177e4
LT
499/*
500 * This is dput
501 *
502 * This is complicated by the fact that we do not want to put
503 * dentries that are no longer on any hash chain on the unused
504 * list: we'd much rather just get rid of them immediately.
505 *
506 * However, that implies that we have to traverse the dentry
507 * tree upwards to the parents which might _also_ now be
508 * scheduled for deletion (it may have been only waiting for
509 * its last child to go away).
510 *
511 * This tail recursion is done by hand as we don't want to depend
512 * on the compiler to always get this right (gcc generally doesn't).
513 * Real recursion would eat up our stack space.
514 */
515
516/*
517 * dput - release a dentry
518 * @dentry: dentry to release
519 *
520 * Release a dentry. This will drop the usage count and if appropriate
521 * call the dentry unlink method as well as removing it from the queues and
522 * releasing its resources. If the parent dentries were scheduled for release
523 * they too may now get deleted.
1da177e4 524 */
1da177e4
LT
525void dput(struct dentry *dentry)
526{
527 if (!dentry)
528 return;
529
530repeat:
b7ab39f6 531 if (dentry->d_count == 1)
1da177e4 532 might_sleep();
1da177e4 533 spin_lock(&dentry->d_lock);
61f3dee4
NP
534 BUG_ON(!dentry->d_count);
535 if (dentry->d_count > 1) {
536 dentry->d_count--;
1da177e4 537 spin_unlock(&dentry->d_lock);
1da177e4
LT
538 return;
539 }
540
fb045adb 541 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 542 if (dentry->d_op->d_delete(dentry))
61f3dee4 543 goto kill_it;
1da177e4 544 }
265ac902 545
1da177e4
LT
546 /* Unreachable? Get rid of it */
547 if (d_unhashed(dentry))
548 goto kill_it;
265ac902 549
39e3c955 550 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 551 dentry_lru_add(dentry);
265ac902 552
61f3dee4
NP
553 dentry->d_count--;
554 spin_unlock(&dentry->d_lock);
1da177e4
LT
555 return;
556
d52b9086 557kill_it:
77812a1e 558 dentry = dentry_kill(dentry, 1);
d52b9086
MS
559 if (dentry)
560 goto repeat;
1da177e4 561}
ec4f8605 562EXPORT_SYMBOL(dput);
1da177e4
LT
563
564/**
565 * d_invalidate - invalidate a dentry
566 * @dentry: dentry to invalidate
567 *
568 * Try to invalidate the dentry if it turns out to be
569 * possible. If there are other dentries that can be
570 * reached through this one we can't delete it and we
571 * return -EBUSY. On success we return 0.
572 *
573 * no dcache lock.
574 */
575
576int d_invalidate(struct dentry * dentry)
577{
578 /*
579 * If it's already been dropped, return OK.
580 */
da502956 581 spin_lock(&dentry->d_lock);
1da177e4 582 if (d_unhashed(dentry)) {
da502956 583 spin_unlock(&dentry->d_lock);
1da177e4
LT
584 return 0;
585 }
586 /*
587 * Check whether to do a partial shrink_dcache
588 * to get rid of unused child entries.
589 */
590 if (!list_empty(&dentry->d_subdirs)) {
da502956 591 spin_unlock(&dentry->d_lock);
1da177e4 592 shrink_dcache_parent(dentry);
da502956 593 spin_lock(&dentry->d_lock);
1da177e4
LT
594 }
595
596 /*
597 * Somebody else still using it?
598 *
599 * If it's a directory, we can't drop it
600 * for fear of somebody re-populating it
601 * with children (even though dropping it
602 * would make it unreachable from the root,
603 * we might still populate it if it was a
604 * working directory or similar).
50e69630
AV
605 * We also need to leave mountpoints alone,
606 * directory or not.
1da177e4 607 */
50e69630
AV
608 if (dentry->d_count > 1 && dentry->d_inode) {
609 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 610 spin_unlock(&dentry->d_lock);
1da177e4
LT
611 return -EBUSY;
612 }
613 }
614
615 __d_drop(dentry);
616 spin_unlock(&dentry->d_lock);
1da177e4
LT
617 return 0;
618}
ec4f8605 619EXPORT_SYMBOL(d_invalidate);
1da177e4 620
b5c84bf6 621/* This must be called with d_lock held */
dc0474be 622static inline void __dget_dlock(struct dentry *dentry)
23044507 623{
b7ab39f6 624 dentry->d_count++;
23044507
NP
625}
626
dc0474be 627static inline void __dget(struct dentry *dentry)
1da177e4 628{
23044507 629 spin_lock(&dentry->d_lock);
dc0474be 630 __dget_dlock(dentry);
23044507 631 spin_unlock(&dentry->d_lock);
1da177e4
LT
632}
633
b7ab39f6
NP
634struct dentry *dget_parent(struct dentry *dentry)
635{
636 struct dentry *ret;
637
638repeat:
a734eb45
NP
639 /*
640 * Don't need rcu_dereference because we re-check it was correct under
641 * the lock.
642 */
643 rcu_read_lock();
b7ab39f6 644 ret = dentry->d_parent;
a734eb45
NP
645 spin_lock(&ret->d_lock);
646 if (unlikely(ret != dentry->d_parent)) {
647 spin_unlock(&ret->d_lock);
648 rcu_read_unlock();
b7ab39f6
NP
649 goto repeat;
650 }
a734eb45 651 rcu_read_unlock();
b7ab39f6
NP
652 BUG_ON(!ret->d_count);
653 ret->d_count++;
654 spin_unlock(&ret->d_lock);
b7ab39f6
NP
655 return ret;
656}
657EXPORT_SYMBOL(dget_parent);
658
1da177e4
LT
659/**
660 * d_find_alias - grab a hashed alias of inode
661 * @inode: inode in question
32ba9c3f
LT
662 * @want_discon: flag, used by d_splice_alias, to request
663 * that only a DISCONNECTED alias be returned.
1da177e4
LT
664 *
665 * If inode has a hashed alias, or is a directory and has any alias,
666 * acquire the reference to alias and return it. Otherwise return NULL.
667 * Notice that if inode is a directory there can be only one alias and
668 * it can be unhashed only if it has no children, or if it is the root
669 * of a filesystem.
670 *
21c0d8fd 671 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
672 * any other hashed alias over that one unless @want_discon is set,
673 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 674 */
32ba9c3f 675static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 676{
da502956 677 struct dentry *alias, *discon_alias;
b3d9b7a3 678 struct hlist_node *p;
1da177e4 679
da502956
NP
680again:
681 discon_alias = NULL;
b3d9b7a3 682 hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
da502956 683 spin_lock(&alias->d_lock);
1da177e4 684 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 685 if (IS_ROOT(alias) &&
da502956 686 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 687 discon_alias = alias;
32ba9c3f 688 } else if (!want_discon) {
dc0474be 689 __dget_dlock(alias);
da502956
NP
690 spin_unlock(&alias->d_lock);
691 return alias;
692 }
693 }
694 spin_unlock(&alias->d_lock);
695 }
696 if (discon_alias) {
697 alias = discon_alias;
698 spin_lock(&alias->d_lock);
699 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
700 if (IS_ROOT(alias) &&
701 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 702 __dget_dlock(alias);
da502956 703 spin_unlock(&alias->d_lock);
1da177e4
LT
704 return alias;
705 }
706 }
da502956
NP
707 spin_unlock(&alias->d_lock);
708 goto again;
1da177e4 709 }
da502956 710 return NULL;
1da177e4
LT
711}
712
da502956 713struct dentry *d_find_alias(struct inode *inode)
1da177e4 714{
214fda1f
DH
715 struct dentry *de = NULL;
716
b3d9b7a3 717 if (!hlist_empty(&inode->i_dentry)) {
873feea0 718 spin_lock(&inode->i_lock);
32ba9c3f 719 de = __d_find_alias(inode, 0);
873feea0 720 spin_unlock(&inode->i_lock);
214fda1f 721 }
1da177e4
LT
722 return de;
723}
ec4f8605 724EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
725
726/*
727 * Try to kill dentries associated with this inode.
728 * WARNING: you must own a reference to inode.
729 */
730void d_prune_aliases(struct inode *inode)
731{
0cdca3f9 732 struct dentry *dentry;
b3d9b7a3 733 struct hlist_node *p;
1da177e4 734restart:
873feea0 735 spin_lock(&inode->i_lock);
b3d9b7a3 736 hlist_for_each_entry(dentry, p, &inode->i_dentry, d_alias) {
1da177e4 737 spin_lock(&dentry->d_lock);
b7ab39f6 738 if (!dentry->d_count) {
dc0474be 739 __dget_dlock(dentry);
1da177e4
LT
740 __d_drop(dentry);
741 spin_unlock(&dentry->d_lock);
873feea0 742 spin_unlock(&inode->i_lock);
1da177e4
LT
743 dput(dentry);
744 goto restart;
745 }
746 spin_unlock(&dentry->d_lock);
747 }
873feea0 748 spin_unlock(&inode->i_lock);
1da177e4 749}
ec4f8605 750EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
751
752/*
77812a1e
NP
753 * Try to throw away a dentry - free the inode, dput the parent.
754 * Requires dentry->d_lock is held, and dentry->d_count == 0.
755 * Releases dentry->d_lock.
d702ccb3 756 *
77812a1e 757 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 758 */
77812a1e 759static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 760 __releases(dentry->d_lock)
1da177e4 761{
77812a1e 762 struct dentry *parent;
d52b9086 763
77812a1e 764 parent = dentry_kill(dentry, 0);
d52b9086 765 /*
77812a1e
NP
766 * If dentry_kill returns NULL, we have nothing more to do.
767 * if it returns the same dentry, trylocks failed. In either
768 * case, just loop again.
769 *
770 * Otherwise, we need to prune ancestors too. This is necessary
771 * to prevent quadratic behavior of shrink_dcache_parent(), but
772 * is also expected to be beneficial in reducing dentry cache
773 * fragmentation.
d52b9086 774 */
77812a1e
NP
775 if (!parent)
776 return;
777 if (parent == dentry)
778 return;
779
780 /* Prune ancestors. */
781 dentry = parent;
d52b9086 782 while (dentry) {
b7ab39f6 783 spin_lock(&dentry->d_lock);
89e60548
NP
784 if (dentry->d_count > 1) {
785 dentry->d_count--;
786 spin_unlock(&dentry->d_lock);
787 return;
788 }
77812a1e 789 dentry = dentry_kill(dentry, 1);
d52b9086 790 }
1da177e4
LT
791}
792
3049cfe2 793static void shrink_dentry_list(struct list_head *list)
1da177e4 794{
da3bbdd4 795 struct dentry *dentry;
da3bbdd4 796
ec33679d
NP
797 rcu_read_lock();
798 for (;;) {
ec33679d
NP
799 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
800 if (&dentry->d_lru == list)
801 break; /* empty */
802 spin_lock(&dentry->d_lock);
803 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
804 spin_unlock(&dentry->d_lock);
23044507
NP
805 continue;
806 }
807
1da177e4
LT
808 /*
809 * We found an inuse dentry which was not removed from
da3bbdd4
KM
810 * the LRU because of laziness during lookup. Do not free
811 * it - just keep it off the LRU list.
1da177e4 812 */
b7ab39f6 813 if (dentry->d_count) {
ec33679d 814 dentry_lru_del(dentry);
da3bbdd4 815 spin_unlock(&dentry->d_lock);
1da177e4
LT
816 continue;
817 }
ec33679d 818
ec33679d 819 rcu_read_unlock();
77812a1e
NP
820
821 try_prune_one_dentry(dentry);
822
ec33679d 823 rcu_read_lock();
da3bbdd4 824 }
ec33679d 825 rcu_read_unlock();
3049cfe2
CH
826}
827
828/**
b48f03b3
DC
829 * prune_dcache_sb - shrink the dcache
830 * @sb: superblock
831 * @count: number of entries to try to free
832 *
833 * Attempt to shrink the superblock dcache LRU by @count entries. This is
834 * done when we need more memory an called from the superblock shrinker
835 * function.
3049cfe2 836 *
b48f03b3
DC
837 * This function may fail to free any resources if all the dentries are in
838 * use.
3049cfe2 839 */
b48f03b3 840void prune_dcache_sb(struct super_block *sb, int count)
3049cfe2 841{
3049cfe2
CH
842 struct dentry *dentry;
843 LIST_HEAD(referenced);
844 LIST_HEAD(tmp);
3049cfe2 845
23044507
NP
846relock:
847 spin_lock(&dcache_lru_lock);
3049cfe2
CH
848 while (!list_empty(&sb->s_dentry_lru)) {
849 dentry = list_entry(sb->s_dentry_lru.prev,
850 struct dentry, d_lru);
851 BUG_ON(dentry->d_sb != sb);
852
23044507
NP
853 if (!spin_trylock(&dentry->d_lock)) {
854 spin_unlock(&dcache_lru_lock);
855 cpu_relax();
856 goto relock;
857 }
858
b48f03b3 859 if (dentry->d_flags & DCACHE_REFERENCED) {
23044507
NP
860 dentry->d_flags &= ~DCACHE_REFERENCED;
861 list_move(&dentry->d_lru, &referenced);
3049cfe2 862 spin_unlock(&dentry->d_lock);
23044507
NP
863 } else {
864 list_move_tail(&dentry->d_lru, &tmp);
eaf5f907 865 dentry->d_flags |= DCACHE_SHRINK_LIST;
23044507 866 spin_unlock(&dentry->d_lock);
b0d40c92 867 if (!--count)
23044507 868 break;
3049cfe2 869 }
ec33679d 870 cond_resched_lock(&dcache_lru_lock);
3049cfe2 871 }
da3bbdd4
KM
872 if (!list_empty(&referenced))
873 list_splice(&referenced, &sb->s_dentry_lru);
23044507 874 spin_unlock(&dcache_lru_lock);
ec33679d
NP
875
876 shrink_dentry_list(&tmp);
da3bbdd4
KM
877}
878
1da177e4
LT
879/**
880 * shrink_dcache_sb - shrink dcache for a superblock
881 * @sb: superblock
882 *
3049cfe2
CH
883 * Shrink the dcache for the specified super block. This is used to free
884 * the dcache before unmounting a file system.
1da177e4 885 */
3049cfe2 886void shrink_dcache_sb(struct super_block *sb)
1da177e4 887{
3049cfe2
CH
888 LIST_HEAD(tmp);
889
23044507 890 spin_lock(&dcache_lru_lock);
3049cfe2
CH
891 while (!list_empty(&sb->s_dentry_lru)) {
892 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 893 spin_unlock(&dcache_lru_lock);
3049cfe2 894 shrink_dentry_list(&tmp);
ec33679d 895 spin_lock(&dcache_lru_lock);
3049cfe2 896 }
23044507 897 spin_unlock(&dcache_lru_lock);
1da177e4 898}
ec4f8605 899EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 900
c636ebdb
DH
901/*
902 * destroy a single subtree of dentries for unmount
903 * - see the comments on shrink_dcache_for_umount() for a description of the
904 * locking
905 */
906static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
907{
908 struct dentry *parent;
909
910 BUG_ON(!IS_ROOT(dentry));
911
c636ebdb
DH
912 for (;;) {
913 /* descend to the first leaf in the current subtree */
43c1c9cd 914 while (!list_empty(&dentry->d_subdirs))
c636ebdb
DH
915 dentry = list_entry(dentry->d_subdirs.next,
916 struct dentry, d_u.d_child);
c636ebdb
DH
917
918 /* consume the dentries from this leaf up through its parents
919 * until we find one with children or run out altogether */
920 do {
921 struct inode *inode;
922
f0023bc6
SW
923 /*
924 * remove the dentry from the lru, and inform
925 * the fs that this dentry is about to be
926 * unhashed and destroyed.
927 */
928 dentry_lru_prune(dentry);
43c1c9cd
DH
929 __d_shrink(dentry);
930
b7ab39f6 931 if (dentry->d_count != 0) {
c636ebdb
DH
932 printk(KERN_ERR
933 "BUG: Dentry %p{i=%lx,n=%s}"
934 " still in use (%d)"
935 " [unmount of %s %s]\n",
936 dentry,
937 dentry->d_inode ?
938 dentry->d_inode->i_ino : 0UL,
939 dentry->d_name.name,
b7ab39f6 940 dentry->d_count,
c636ebdb
DH
941 dentry->d_sb->s_type->name,
942 dentry->d_sb->s_id);
943 BUG();
944 }
945
2fd6b7f5 946 if (IS_ROOT(dentry)) {
c636ebdb 947 parent = NULL;
2fd6b7f5
NP
948 list_del(&dentry->d_u.d_child);
949 } else {
871c0067 950 parent = dentry->d_parent;
b7ab39f6 951 parent->d_count--;
2fd6b7f5 952 list_del(&dentry->d_u.d_child);
871c0067 953 }
c636ebdb 954
c636ebdb
DH
955 inode = dentry->d_inode;
956 if (inode) {
957 dentry->d_inode = NULL;
b3d9b7a3 958 hlist_del_init(&dentry->d_alias);
c636ebdb
DH
959 if (dentry->d_op && dentry->d_op->d_iput)
960 dentry->d_op->d_iput(dentry, inode);
961 else
962 iput(inode);
963 }
964
965 d_free(dentry);
966
967 /* finished when we fall off the top of the tree,
968 * otherwise we ascend to the parent and move to the
969 * next sibling if there is one */
970 if (!parent)
312d3ca8 971 return;
c636ebdb 972 dentry = parent;
c636ebdb
DH
973 } while (list_empty(&dentry->d_subdirs));
974
975 dentry = list_entry(dentry->d_subdirs.next,
976 struct dentry, d_u.d_child);
977 }
978}
979
980/*
981 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 982 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
983 * - the superblock is detached from all mountings and open files, so the
984 * dentry trees will not be rearranged by the VFS
985 * - s_umount is write-locked, so the memory pressure shrinker will ignore
986 * any dentries belonging to this superblock that it comes across
987 * - the filesystem itself is no longer permitted to rearrange the dentries
988 * in this superblock
989 */
990void shrink_dcache_for_umount(struct super_block *sb)
991{
992 struct dentry *dentry;
993
994 if (down_read_trylock(&sb->s_umount))
995 BUG();
996
997 dentry = sb->s_root;
998 sb->s_root = NULL;
b7ab39f6 999 dentry->d_count--;
c636ebdb
DH
1000 shrink_dcache_for_umount_subtree(dentry);
1001
ceb5bdc2
NP
1002 while (!hlist_bl_empty(&sb->s_anon)) {
1003 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
1004 shrink_dcache_for_umount_subtree(dentry);
1005 }
1006}
1007
c826cb7d
LT
1008/*
1009 * This tries to ascend one level of parenthood, but
1010 * we can race with renaming, so we need to re-check
1011 * the parenthood after dropping the lock and check
1012 * that the sequence number still matches.
1013 */
1014static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1015{
1016 struct dentry *new = old->d_parent;
1017
1018 rcu_read_lock();
1019 spin_unlock(&old->d_lock);
1020 spin_lock(&new->d_lock);
1021
1022 /*
1023 * might go back up the wrong parent if we have had a rename
1024 * or deletion
1025 */
1026 if (new != old->d_parent ||
b161dfa6 1027 (old->d_flags & DCACHE_DENTRY_KILLED) ||
c826cb7d
LT
1028 (!locked && read_seqretry(&rename_lock, seq))) {
1029 spin_unlock(&new->d_lock);
1030 new = NULL;
1031 }
1032 rcu_read_unlock();
1033 return new;
1034}
1035
1036
1da177e4
LT
1037/*
1038 * Search for at least 1 mount point in the dentry's subdirs.
1039 * We descend to the next level whenever the d_subdirs
1040 * list is non-empty and continue searching.
1041 */
1042
1043/**
1044 * have_submounts - check for mounts over a dentry
1045 * @parent: dentry to check.
1046 *
1047 * Return true if the parent or its subdirectories contain
1048 * a mount point
1049 */
1da177e4
LT
1050int have_submounts(struct dentry *parent)
1051{
949854d0 1052 struct dentry *this_parent;
1da177e4 1053 struct list_head *next;
949854d0 1054 unsigned seq;
58db63d0 1055 int locked = 0;
949854d0 1056
949854d0 1057 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1058again:
1059 this_parent = parent;
1da177e4 1060
1da177e4
LT
1061 if (d_mountpoint(parent))
1062 goto positive;
2fd6b7f5 1063 spin_lock(&this_parent->d_lock);
1da177e4
LT
1064repeat:
1065 next = this_parent->d_subdirs.next;
1066resume:
1067 while (next != &this_parent->d_subdirs) {
1068 struct list_head *tmp = next;
5160ee6f 1069 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1070 next = tmp->next;
2fd6b7f5
NP
1071
1072 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1073 /* Have we found a mount point ? */
2fd6b7f5
NP
1074 if (d_mountpoint(dentry)) {
1075 spin_unlock(&dentry->d_lock);
1076 spin_unlock(&this_parent->d_lock);
1da177e4 1077 goto positive;
2fd6b7f5 1078 }
1da177e4 1079 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1080 spin_unlock(&this_parent->d_lock);
1081 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1082 this_parent = dentry;
2fd6b7f5 1083 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1084 goto repeat;
1085 }
2fd6b7f5 1086 spin_unlock(&dentry->d_lock);
1da177e4
LT
1087 }
1088 /*
1089 * All done at this level ... ascend and resume the search.
1090 */
1091 if (this_parent != parent) {
c826cb7d
LT
1092 struct dentry *child = this_parent;
1093 this_parent = try_to_ascend(this_parent, locked, seq);
1094 if (!this_parent)
949854d0 1095 goto rename_retry;
949854d0 1096 next = child->d_u.d_child.next;
1da177e4
LT
1097 goto resume;
1098 }
2fd6b7f5 1099 spin_unlock(&this_parent->d_lock);
58db63d0 1100 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1101 goto rename_retry;
58db63d0
NP
1102 if (locked)
1103 write_sequnlock(&rename_lock);
1da177e4
LT
1104 return 0; /* No mount points found in tree */
1105positive:
58db63d0 1106 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1107 goto rename_retry;
58db63d0
NP
1108 if (locked)
1109 write_sequnlock(&rename_lock);
1da177e4 1110 return 1;
58db63d0
NP
1111
1112rename_retry:
8110e16d
MS
1113 if (locked)
1114 goto again;
58db63d0
NP
1115 locked = 1;
1116 write_seqlock(&rename_lock);
1117 goto again;
1da177e4 1118}
ec4f8605 1119EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1120
1121/*
fd517909 1122 * Search the dentry child list of the specified parent,
1da177e4
LT
1123 * and move any unused dentries to the end of the unused
1124 * list for prune_dcache(). We descend to the next level
1125 * whenever the d_subdirs list is non-empty and continue
1126 * searching.
1127 *
1128 * It returns zero iff there are no unused children,
1129 * otherwise it returns the number of children moved to
1130 * the end of the unused list. This may not be the total
1131 * number of unused children, because select_parent can
1132 * drop the lock and return early due to latency
1133 * constraints.
1134 */
b48f03b3 1135static int select_parent(struct dentry *parent, struct list_head *dispose)
1da177e4 1136{
949854d0 1137 struct dentry *this_parent;
1da177e4 1138 struct list_head *next;
949854d0 1139 unsigned seq;
1da177e4 1140 int found = 0;
58db63d0 1141 int locked = 0;
1da177e4 1142
949854d0 1143 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1144again:
1145 this_parent = parent;
2fd6b7f5 1146 spin_lock(&this_parent->d_lock);
1da177e4
LT
1147repeat:
1148 next = this_parent->d_subdirs.next;
1149resume:
1150 while (next != &this_parent->d_subdirs) {
1151 struct list_head *tmp = next;
5160ee6f 1152 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1153 next = tmp->next;
1154
2fd6b7f5 1155 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1156
b48f03b3
DC
1157 /*
1158 * move only zero ref count dentries to the dispose list.
eaf5f907
MS
1159 *
1160 * Those which are presently on the shrink list, being processed
1161 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1162 * loop in shrink_dcache_parent() might not make any progress
1163 * and loop forever.
1da177e4 1164 */
eaf5f907
MS
1165 if (dentry->d_count) {
1166 dentry_lru_del(dentry);
1167 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
b48f03b3 1168 dentry_lru_move_list(dentry, dispose);
eaf5f907 1169 dentry->d_flags |= DCACHE_SHRINK_LIST;
1da177e4
LT
1170 found++;
1171 }
1da177e4
LT
1172 /*
1173 * We can return to the caller if we have found some (this
1174 * ensures forward progress). We'll be coming back to find
1175 * the rest.
1176 */
2fd6b7f5
NP
1177 if (found && need_resched()) {
1178 spin_unlock(&dentry->d_lock);
1da177e4 1179 goto out;
2fd6b7f5 1180 }
1da177e4
LT
1181
1182 /*
1183 * Descend a level if the d_subdirs list is non-empty.
1184 */
1185 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1186 spin_unlock(&this_parent->d_lock);
1187 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1188 this_parent = dentry;
2fd6b7f5 1189 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1190 goto repeat;
1191 }
2fd6b7f5
NP
1192
1193 spin_unlock(&dentry->d_lock);
1da177e4
LT
1194 }
1195 /*
1196 * All done at this level ... ascend and resume the search.
1197 */
1198 if (this_parent != parent) {
c826cb7d
LT
1199 struct dentry *child = this_parent;
1200 this_parent = try_to_ascend(this_parent, locked, seq);
1201 if (!this_parent)
949854d0 1202 goto rename_retry;
949854d0 1203 next = child->d_u.d_child.next;
1da177e4
LT
1204 goto resume;
1205 }
1206out:
2fd6b7f5 1207 spin_unlock(&this_parent->d_lock);
58db63d0 1208 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1209 goto rename_retry;
58db63d0
NP
1210 if (locked)
1211 write_sequnlock(&rename_lock);
1da177e4 1212 return found;
58db63d0
NP
1213
1214rename_retry:
1215 if (found)
1216 return found;
8110e16d
MS
1217 if (locked)
1218 goto again;
58db63d0
NP
1219 locked = 1;
1220 write_seqlock(&rename_lock);
1221 goto again;
1da177e4
LT
1222}
1223
1224/**
1225 * shrink_dcache_parent - prune dcache
1226 * @parent: parent of entries to prune
1227 *
1228 * Prune the dcache to remove unused children of the parent dentry.
1229 */
1da177e4
LT
1230void shrink_dcache_parent(struct dentry * parent)
1231{
b48f03b3 1232 LIST_HEAD(dispose);
1da177e4
LT
1233 int found;
1234
b48f03b3
DC
1235 while ((found = select_parent(parent, &dispose)) != 0)
1236 shrink_dentry_list(&dispose);
1da177e4 1237}
ec4f8605 1238EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1239
1da177e4 1240/**
a4464dbc
AV
1241 * __d_alloc - allocate a dcache entry
1242 * @sb: filesystem it will belong to
1da177e4
LT
1243 * @name: qstr of the name
1244 *
1245 * Allocates a dentry. It returns %NULL if there is insufficient memory
1246 * available. On a success the dentry is returned. The name passed in is
1247 * copied and the copy passed in may be reused after this call.
1248 */
1249
a4464dbc 1250struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1251{
1252 struct dentry *dentry;
1253 char *dname;
1254
e12ba74d 1255 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1256 if (!dentry)
1257 return NULL;
1258
6326c71f
LT
1259 /*
1260 * We guarantee that the inline name is always NUL-terminated.
1261 * This way the memcpy() done by the name switching in rename
1262 * will still always have a NUL at the end, even if we might
1263 * be overwriting an internal NUL character
1264 */
1265 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1266 if (name->len > DNAME_INLINE_LEN-1) {
1267 dname = kmalloc(name->len + 1, GFP_KERNEL);
1268 if (!dname) {
1269 kmem_cache_free(dentry_cache, dentry);
1270 return NULL;
1271 }
1272 } else {
1273 dname = dentry->d_iname;
1274 }
1da177e4
LT
1275
1276 dentry->d_name.len = name->len;
1277 dentry->d_name.hash = name->hash;
1278 memcpy(dname, name->name, name->len);
1279 dname[name->len] = 0;
1280
6326c71f
LT
1281 /* Make sure we always see the terminating NUL character */
1282 smp_wmb();
1283 dentry->d_name.name = dname;
1284
b7ab39f6 1285 dentry->d_count = 1;
dea3667b 1286 dentry->d_flags = 0;
1da177e4 1287 spin_lock_init(&dentry->d_lock);
31e6b01f 1288 seqcount_init(&dentry->d_seq);
1da177e4 1289 dentry->d_inode = NULL;
a4464dbc
AV
1290 dentry->d_parent = dentry;
1291 dentry->d_sb = sb;
1da177e4
LT
1292 dentry->d_op = NULL;
1293 dentry->d_fsdata = NULL;
ceb5bdc2 1294 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1295 INIT_LIST_HEAD(&dentry->d_lru);
1296 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1297 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1298 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1299 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1300
3e880fb5 1301 this_cpu_inc(nr_dentry);
312d3ca8 1302
1da177e4
LT
1303 return dentry;
1304}
a4464dbc
AV
1305
1306/**
1307 * d_alloc - allocate a dcache entry
1308 * @parent: parent of entry to allocate
1309 * @name: qstr of the name
1310 *
1311 * Allocates a dentry. It returns %NULL if there is insufficient memory
1312 * available. On a success the dentry is returned. The name passed in is
1313 * copied and the copy passed in may be reused after this call.
1314 */
1315struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1316{
1317 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1318 if (!dentry)
1319 return NULL;
1320
1321 spin_lock(&parent->d_lock);
1322 /*
1323 * don't need child lock because it is not subject
1324 * to concurrency here
1325 */
1326 __dget_dlock(parent);
1327 dentry->d_parent = parent;
1328 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1329 spin_unlock(&parent->d_lock);
1330
1331 return dentry;
1332}
ec4f8605 1333EXPORT_SYMBOL(d_alloc);
1da177e4 1334
4b936885
NP
1335struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1336{
a4464dbc
AV
1337 struct dentry *dentry = __d_alloc(sb, name);
1338 if (dentry)
4b936885 1339 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1340 return dentry;
1341}
1342EXPORT_SYMBOL(d_alloc_pseudo);
1343
1da177e4
LT
1344struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1345{
1346 struct qstr q;
1347
1348 q.name = name;
1349 q.len = strlen(name);
1350 q.hash = full_name_hash(q.name, q.len);
1351 return d_alloc(parent, &q);
1352}
ef26ca97 1353EXPORT_SYMBOL(d_alloc_name);
1da177e4 1354
fb045adb
NP
1355void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1356{
6f7f7caa
LT
1357 WARN_ON_ONCE(dentry->d_op);
1358 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1359 DCACHE_OP_COMPARE |
1360 DCACHE_OP_REVALIDATE |
1361 DCACHE_OP_DELETE ));
1362 dentry->d_op = op;
1363 if (!op)
1364 return;
1365 if (op->d_hash)
1366 dentry->d_flags |= DCACHE_OP_HASH;
1367 if (op->d_compare)
1368 dentry->d_flags |= DCACHE_OP_COMPARE;
1369 if (op->d_revalidate)
1370 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1371 if (op->d_delete)
1372 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1373 if (op->d_prune)
1374 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1375
1376}
1377EXPORT_SYMBOL(d_set_d_op);
1378
360da900
OH
1379static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1380{
b23fb0a6 1381 spin_lock(&dentry->d_lock);
9875cf80
DH
1382 if (inode) {
1383 if (unlikely(IS_AUTOMOUNT(inode)))
1384 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
b3d9b7a3 1385 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
9875cf80 1386 }
360da900 1387 dentry->d_inode = inode;
31e6b01f 1388 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1389 spin_unlock(&dentry->d_lock);
360da900
OH
1390 fsnotify_d_instantiate(dentry, inode);
1391}
1392
1da177e4
LT
1393/**
1394 * d_instantiate - fill in inode information for a dentry
1395 * @entry: dentry to complete
1396 * @inode: inode to attach to this dentry
1397 *
1398 * Fill in inode information in the entry.
1399 *
1400 * This turns negative dentries into productive full members
1401 * of society.
1402 *
1403 * NOTE! This assumes that the inode count has been incremented
1404 * (or otherwise set) by the caller to indicate that it is now
1405 * in use by the dcache.
1406 */
1407
1408void d_instantiate(struct dentry *entry, struct inode * inode)
1409{
b3d9b7a3 1410 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1411 if (inode)
1412 spin_lock(&inode->i_lock);
360da900 1413 __d_instantiate(entry, inode);
873feea0
NP
1414 if (inode)
1415 spin_unlock(&inode->i_lock);
1da177e4
LT
1416 security_d_instantiate(entry, inode);
1417}
ec4f8605 1418EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1419
1420/**
1421 * d_instantiate_unique - instantiate a non-aliased dentry
1422 * @entry: dentry to instantiate
1423 * @inode: inode to attach to this dentry
1424 *
1425 * Fill in inode information in the entry. On success, it returns NULL.
1426 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1427 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1428 *
1429 * Note that in order to avoid conflicts with rename() etc, the caller
1430 * had better be holding the parent directory semaphore.
e866cfa9
OD
1431 *
1432 * This also assumes that the inode count has been incremented
1433 * (or otherwise set) by the caller to indicate that it is now
1434 * in use by the dcache.
1da177e4 1435 */
770bfad8
DH
1436static struct dentry *__d_instantiate_unique(struct dentry *entry,
1437 struct inode *inode)
1da177e4
LT
1438{
1439 struct dentry *alias;
1440 int len = entry->d_name.len;
1441 const char *name = entry->d_name.name;
1442 unsigned int hash = entry->d_name.hash;
b3d9b7a3 1443 struct hlist_node *p;
1da177e4 1444
770bfad8 1445 if (!inode) {
360da900 1446 __d_instantiate(entry, NULL);
770bfad8
DH
1447 return NULL;
1448 }
1449
b3d9b7a3 1450 hlist_for_each_entry(alias, p, &inode->i_dentry, d_alias) {
9abca360
NP
1451 /*
1452 * Don't need alias->d_lock here, because aliases with
1453 * d_parent == entry->d_parent are not subject to name or
1454 * parent changes, because the parent inode i_mutex is held.
1455 */
12f8ad4b 1456 if (alias->d_name.hash != hash)
1da177e4
LT
1457 continue;
1458 if (alias->d_parent != entry->d_parent)
1459 continue;
ee983e89
LT
1460 if (alias->d_name.len != len)
1461 continue;
12f8ad4b 1462 if (dentry_cmp(alias, name, len))
1da177e4 1463 continue;
dc0474be 1464 __dget(alias);
1da177e4
LT
1465 return alias;
1466 }
770bfad8 1467
360da900 1468 __d_instantiate(entry, inode);
1da177e4
LT
1469 return NULL;
1470}
770bfad8
DH
1471
1472struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1473{
1474 struct dentry *result;
1475
b3d9b7a3 1476 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1477
873feea0
NP
1478 if (inode)
1479 spin_lock(&inode->i_lock);
770bfad8 1480 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1481 if (inode)
1482 spin_unlock(&inode->i_lock);
770bfad8
DH
1483
1484 if (!result) {
1485 security_d_instantiate(entry, inode);
1486 return NULL;
1487 }
1488
1489 BUG_ON(!d_unhashed(result));
1490 iput(inode);
1491 return result;
1492}
1493
1da177e4
LT
1494EXPORT_SYMBOL(d_instantiate_unique);
1495
adc0e91a
AV
1496struct dentry *d_make_root(struct inode *root_inode)
1497{
1498 struct dentry *res = NULL;
1499
1500 if (root_inode) {
26fe5750 1501 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1502
1503 res = __d_alloc(root_inode->i_sb, &name);
1504 if (res)
1505 d_instantiate(res, root_inode);
1506 else
1507 iput(root_inode);
1508 }
1509 return res;
1510}
1511EXPORT_SYMBOL(d_make_root);
1512
d891eedb
BF
1513static struct dentry * __d_find_any_alias(struct inode *inode)
1514{
1515 struct dentry *alias;
1516
b3d9b7a3 1517 if (hlist_empty(&inode->i_dentry))
d891eedb 1518 return NULL;
b3d9b7a3 1519 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1520 __dget(alias);
1521 return alias;
1522}
1523
46f72b34
SW
1524/**
1525 * d_find_any_alias - find any alias for a given inode
1526 * @inode: inode to find an alias for
1527 *
1528 * If any aliases exist for the given inode, take and return a
1529 * reference for one of them. If no aliases exist, return %NULL.
1530 */
1531struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1532{
1533 struct dentry *de;
1534
1535 spin_lock(&inode->i_lock);
1536 de = __d_find_any_alias(inode);
1537 spin_unlock(&inode->i_lock);
1538 return de;
1539}
46f72b34 1540EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1541
4ea3ada2
CH
1542/**
1543 * d_obtain_alias - find or allocate a dentry for a given inode
1544 * @inode: inode to allocate the dentry for
1545 *
1546 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1547 * similar open by handle operations. The returned dentry may be anonymous,
1548 * or may have a full name (if the inode was already in the cache).
1549 *
1550 * When called on a directory inode, we must ensure that the inode only ever
1551 * has one dentry. If a dentry is found, that is returned instead of
1552 * allocating a new one.
1553 *
1554 * On successful return, the reference to the inode has been transferred
44003728
CH
1555 * to the dentry. In case of an error the reference on the inode is released.
1556 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1557 * be passed in and will be the error will be propagate to the return value,
1558 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1559 */
1560struct dentry *d_obtain_alias(struct inode *inode)
1561{
b911a6bd 1562 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1563 struct dentry *tmp;
1564 struct dentry *res;
4ea3ada2
CH
1565
1566 if (!inode)
44003728 1567 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1568 if (IS_ERR(inode))
1569 return ERR_CAST(inode);
1570
d891eedb 1571 res = d_find_any_alias(inode);
9308a612
CH
1572 if (res)
1573 goto out_iput;
1574
a4464dbc 1575 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1576 if (!tmp) {
1577 res = ERR_PTR(-ENOMEM);
1578 goto out_iput;
4ea3ada2 1579 }
b5c84bf6 1580
873feea0 1581 spin_lock(&inode->i_lock);
d891eedb 1582 res = __d_find_any_alias(inode);
9308a612 1583 if (res) {
873feea0 1584 spin_unlock(&inode->i_lock);
9308a612
CH
1585 dput(tmp);
1586 goto out_iput;
1587 }
1588
1589 /* attach a disconnected dentry */
1590 spin_lock(&tmp->d_lock);
9308a612
CH
1591 tmp->d_inode = inode;
1592 tmp->d_flags |= DCACHE_DISCONNECTED;
b3d9b7a3 1593 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1594 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1595 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1596 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1597 spin_unlock(&tmp->d_lock);
873feea0 1598 spin_unlock(&inode->i_lock);
24ff6663 1599 security_d_instantiate(tmp, inode);
9308a612 1600
9308a612
CH
1601 return tmp;
1602
1603 out_iput:
24ff6663
JB
1604 if (res && !IS_ERR(res))
1605 security_d_instantiate(res, inode);
9308a612
CH
1606 iput(inode);
1607 return res;
4ea3ada2 1608}
adc48720 1609EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1610
1611/**
1612 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1613 * @inode: the inode which may have a disconnected dentry
1614 * @dentry: a negative dentry which we want to point to the inode.
1615 *
1616 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1617 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1618 * and return it, else simply d_add the inode to the dentry and return NULL.
1619 *
1620 * This is needed in the lookup routine of any filesystem that is exportable
1621 * (via knfsd) so that we can build dcache paths to directories effectively.
1622 *
1623 * If a dentry was found and moved, then it is returned. Otherwise NULL
1624 * is returned. This matches the expected return value of ->lookup.
1625 *
1626 */
1627struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1628{
1629 struct dentry *new = NULL;
1630
a9049376
AV
1631 if (IS_ERR(inode))
1632 return ERR_CAST(inode);
1633
21c0d8fd 1634 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1635 spin_lock(&inode->i_lock);
32ba9c3f 1636 new = __d_find_alias(inode, 1);
1da177e4 1637 if (new) {
32ba9c3f 1638 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1639 spin_unlock(&inode->i_lock);
1da177e4 1640 security_d_instantiate(new, inode);
1da177e4
LT
1641 d_move(new, dentry);
1642 iput(inode);
1643 } else {
873feea0 1644 /* already taking inode->i_lock, so d_add() by hand */
360da900 1645 __d_instantiate(dentry, inode);
873feea0 1646 spin_unlock(&inode->i_lock);
1da177e4
LT
1647 security_d_instantiate(dentry, inode);
1648 d_rehash(dentry);
1649 }
1650 } else
1651 d_add(dentry, inode);
1652 return new;
1653}
ec4f8605 1654EXPORT_SYMBOL(d_splice_alias);
1da177e4 1655
9403540c
BN
1656/**
1657 * d_add_ci - lookup or allocate new dentry with case-exact name
1658 * @inode: the inode case-insensitive lookup has found
1659 * @dentry: the negative dentry that was passed to the parent's lookup func
1660 * @name: the case-exact name to be associated with the returned dentry
1661 *
1662 * This is to avoid filling the dcache with case-insensitive names to the
1663 * same inode, only the actual correct case is stored in the dcache for
1664 * case-insensitive filesystems.
1665 *
1666 * For a case-insensitive lookup match and if the the case-exact dentry
1667 * already exists in in the dcache, use it and return it.
1668 *
1669 * If no entry exists with the exact case name, allocate new dentry with
1670 * the exact case, and return the spliced entry.
1671 */
e45b590b 1672struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1673 struct qstr *name)
1674{
1675 int error;
1676 struct dentry *found;
1677 struct dentry *new;
1678
b6520c81
CH
1679 /*
1680 * First check if a dentry matching the name already exists,
1681 * if not go ahead and create it now.
1682 */
9403540c 1683 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1684 if (!found) {
1685 new = d_alloc(dentry->d_parent, name);
1686 if (!new) {
1687 error = -ENOMEM;
1688 goto err_out;
1689 }
b6520c81 1690
9403540c
BN
1691 found = d_splice_alias(inode, new);
1692 if (found) {
1693 dput(new);
1694 return found;
1695 }
1696 return new;
1697 }
b6520c81
CH
1698
1699 /*
1700 * If a matching dentry exists, and it's not negative use it.
1701 *
1702 * Decrement the reference count to balance the iget() done
1703 * earlier on.
1704 */
9403540c
BN
1705 if (found->d_inode) {
1706 if (unlikely(found->d_inode != inode)) {
1707 /* This can't happen because bad inodes are unhashed. */
1708 BUG_ON(!is_bad_inode(inode));
1709 BUG_ON(!is_bad_inode(found->d_inode));
1710 }
9403540c
BN
1711 iput(inode);
1712 return found;
1713 }
b6520c81 1714
9403540c 1715 /*
9403540c 1716 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1717 * already has a dentry.
9403540c 1718 */
4513d899
AV
1719 new = d_splice_alias(inode, found);
1720 if (new) {
1721 dput(found);
1722 found = new;
9403540c 1723 }
4513d899 1724 return found;
9403540c
BN
1725
1726err_out:
1727 iput(inode);
1728 return ERR_PTR(error);
1729}
ec4f8605 1730EXPORT_SYMBOL(d_add_ci);
1da177e4 1731
12f8ad4b
LT
1732/*
1733 * Do the slow-case of the dentry name compare.
1734 *
1735 * Unlike the dentry_cmp() function, we need to atomically
1736 * load the name, length and inode information, so that the
1737 * filesystem can rely on them, and can use the 'name' and
1738 * 'len' information without worrying about walking off the
1739 * end of memory etc.
1740 *
1741 * Thus the read_seqcount_retry() and the "duplicate" info
1742 * in arguments (the low-level filesystem should not look
1743 * at the dentry inode or name contents directly, since
1744 * rename can change them while we're in RCU mode).
1745 */
1746enum slow_d_compare {
1747 D_COMP_OK,
1748 D_COMP_NOMATCH,
1749 D_COMP_SEQRETRY,
1750};
1751
1752static noinline enum slow_d_compare slow_dentry_cmp(
1753 const struct dentry *parent,
1754 struct inode *inode,
1755 struct dentry *dentry,
1756 unsigned int seq,
1757 const struct qstr *name)
1758{
1759 int tlen = dentry->d_name.len;
1760 const char *tname = dentry->d_name.name;
1761 struct inode *i = dentry->d_inode;
1762
1763 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1764 cpu_relax();
1765 return D_COMP_SEQRETRY;
1766 }
1767 if (parent->d_op->d_compare(parent, inode,
1768 dentry, i,
1769 tlen, tname, name))
1770 return D_COMP_NOMATCH;
1771 return D_COMP_OK;
1772}
1773
31e6b01f
NP
1774/**
1775 * __d_lookup_rcu - search for a dentry (racy, store-free)
1776 * @parent: parent dentry
1777 * @name: qstr of name we wish to find
1f1e6e52 1778 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
1779 * @inode: returns dentry->d_inode when the inode was found valid.
1780 * Returns: dentry, or NULL
1781 *
1782 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1783 * resolution (store-free path walking) design described in
1784 * Documentation/filesystems/path-lookup.txt.
1785 *
1786 * This is not to be used outside core vfs.
1787 *
1788 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1789 * held, and rcu_read_lock held. The returned dentry must not be stored into
1790 * without taking d_lock and checking d_seq sequence count against @seq
1791 * returned here.
1792 *
1793 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1794 * function.
1795 *
1796 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1797 * the returned dentry, so long as its parent's seqlock is checked after the
1798 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1799 * is formed, giving integrity down the path walk.
12f8ad4b
LT
1800 *
1801 * NOTE! The caller *has* to check the resulting dentry against the sequence
1802 * number we've returned before using any of the resulting dentry state!
31e6b01f 1803 */
8966be90
LT
1804struct dentry *__d_lookup_rcu(const struct dentry *parent,
1805 const struct qstr *name,
12f8ad4b 1806 unsigned *seqp, struct inode *inode)
31e6b01f 1807{
26fe5750 1808 u64 hashlen = name->hash_len;
31e6b01f 1809 const unsigned char *str = name->name;
26fe5750 1810 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 1811 struct hlist_bl_node *node;
31e6b01f
NP
1812 struct dentry *dentry;
1813
1814 /*
1815 * Note: There is significant duplication with __d_lookup_rcu which is
1816 * required to prevent single threaded performance regressions
1817 * especially on architectures where smp_rmb (in seqcounts) are costly.
1818 * Keep the two functions in sync.
1819 */
1820
1821 /*
1822 * The hash list is protected using RCU.
1823 *
1824 * Carefully use d_seq when comparing a candidate dentry, to avoid
1825 * races with d_move().
1826 *
1827 * It is possible that concurrent renames can mess up our list
1828 * walk here and result in missing our dentry, resulting in the
1829 * false-negative result. d_lookup() protects against concurrent
1830 * renames using rename_lock seqlock.
1831 *
b0a4bb83 1832 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 1833 */
b07ad996 1834 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 1835 unsigned seq;
31e6b01f 1836
31e6b01f 1837seqretry:
12f8ad4b
LT
1838 /*
1839 * The dentry sequence count protects us from concurrent
1840 * renames, and thus protects inode, parent and name fields.
1841 *
1842 * The caller must perform a seqcount check in order
1843 * to do anything useful with the returned dentry,
1844 * including using the 'd_inode' pointer.
1845 *
1846 * NOTE! We do a "raw" seqcount_begin here. That means that
1847 * we don't wait for the sequence count to stabilize if it
1848 * is in the middle of a sequence change. If we do the slow
1849 * dentry compare, we will do seqretries until it is stable,
1850 * and if we end up with a successful lookup, we actually
1851 * want to exit RCU lookup anyway.
1852 */
1853 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
1854 if (dentry->d_parent != parent)
1855 continue;
2e321806
LT
1856 if (d_unhashed(dentry))
1857 continue;
12f8ad4b
LT
1858 *seqp = seq;
1859
830c0f0e 1860 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
1861 if (dentry->d_name.hash != hashlen_hash(hashlen))
1862 continue;
12f8ad4b
LT
1863 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1864 case D_COMP_OK:
1865 return dentry;
1866 case D_COMP_NOMATCH:
31e6b01f 1867 continue;
12f8ad4b
LT
1868 default:
1869 goto seqretry;
1870 }
31e6b01f 1871 }
12f8ad4b 1872
26fe5750 1873 if (dentry->d_name.hash_len != hashlen)
ee983e89 1874 continue;
26fe5750 1875 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 1876 return dentry;
31e6b01f
NP
1877 }
1878 return NULL;
1879}
1880
1da177e4
LT
1881/**
1882 * d_lookup - search for a dentry
1883 * @parent: parent dentry
1884 * @name: qstr of name we wish to find
b04f784e 1885 * Returns: dentry, or NULL
1da177e4 1886 *
b04f784e
NP
1887 * d_lookup searches the children of the parent dentry for the name in
1888 * question. If the dentry is found its reference count is incremented and the
1889 * dentry is returned. The caller must use dput to free the entry when it has
1890 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1891 */
31e6b01f 1892struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1da177e4 1893{
31e6b01f 1894 struct dentry *dentry;
949854d0 1895 unsigned seq;
1da177e4
LT
1896
1897 do {
1898 seq = read_seqbegin(&rename_lock);
1899 dentry = __d_lookup(parent, name);
1900 if (dentry)
1901 break;
1902 } while (read_seqretry(&rename_lock, seq));
1903 return dentry;
1904}
ec4f8605 1905EXPORT_SYMBOL(d_lookup);
1da177e4 1906
31e6b01f 1907/**
b04f784e
NP
1908 * __d_lookup - search for a dentry (racy)
1909 * @parent: parent dentry
1910 * @name: qstr of name we wish to find
1911 * Returns: dentry, or NULL
1912 *
1913 * __d_lookup is like d_lookup, however it may (rarely) return a
1914 * false-negative result due to unrelated rename activity.
1915 *
1916 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1917 * however it must be used carefully, eg. with a following d_lookup in
1918 * the case of failure.
1919 *
1920 * __d_lookup callers must be commented.
1921 */
31e6b01f 1922struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1da177e4
LT
1923{
1924 unsigned int len = name->len;
1925 unsigned int hash = name->hash;
1926 const unsigned char *str = name->name;
b07ad996 1927 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1928 struct hlist_bl_node *node;
31e6b01f 1929 struct dentry *found = NULL;
665a7583 1930 struct dentry *dentry;
1da177e4 1931
31e6b01f
NP
1932 /*
1933 * Note: There is significant duplication with __d_lookup_rcu which is
1934 * required to prevent single threaded performance regressions
1935 * especially on architectures where smp_rmb (in seqcounts) are costly.
1936 * Keep the two functions in sync.
1937 */
1938
b04f784e
NP
1939 /*
1940 * The hash list is protected using RCU.
1941 *
1942 * Take d_lock when comparing a candidate dentry, to avoid races
1943 * with d_move().
1944 *
1945 * It is possible that concurrent renames can mess up our list
1946 * walk here and result in missing our dentry, resulting in the
1947 * false-negative result. d_lookup() protects against concurrent
1948 * renames using rename_lock seqlock.
1949 *
b0a4bb83 1950 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 1951 */
1da177e4
LT
1952 rcu_read_lock();
1953
b07ad996 1954 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 1955
1da177e4
LT
1956 if (dentry->d_name.hash != hash)
1957 continue;
1da177e4
LT
1958
1959 spin_lock(&dentry->d_lock);
1da177e4
LT
1960 if (dentry->d_parent != parent)
1961 goto next;
d0185c08
LT
1962 if (d_unhashed(dentry))
1963 goto next;
1964
1da177e4
LT
1965 /*
1966 * It is safe to compare names since d_move() cannot
1967 * change the qstr (protected by d_lock).
1968 */
fb045adb 1969 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
1970 int tlen = dentry->d_name.len;
1971 const char *tname = dentry->d_name.name;
621e155a
NP
1972 if (parent->d_op->d_compare(parent, parent->d_inode,
1973 dentry, dentry->d_inode,
31e6b01f 1974 tlen, tname, name))
1da177e4
LT
1975 goto next;
1976 } else {
ee983e89
LT
1977 if (dentry->d_name.len != len)
1978 goto next;
12f8ad4b 1979 if (dentry_cmp(dentry, str, len))
1da177e4
LT
1980 goto next;
1981 }
1982
b7ab39f6 1983 dentry->d_count++;
d0185c08 1984 found = dentry;
1da177e4
LT
1985 spin_unlock(&dentry->d_lock);
1986 break;
1987next:
1988 spin_unlock(&dentry->d_lock);
1989 }
1990 rcu_read_unlock();
1991
1992 return found;
1993}
1994
3e7e241f
EB
1995/**
1996 * d_hash_and_lookup - hash the qstr then search for a dentry
1997 * @dir: Directory to search in
1998 * @name: qstr of name we wish to find
1999 *
2000 * On hash failure or on lookup failure NULL is returned.
2001 */
2002struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
2003{
2004 struct dentry *dentry = NULL;
2005
2006 /*
2007 * Check for a fs-specific hash function. Note that we must
2008 * calculate the standard hash first, as the d_op->d_hash()
2009 * routine may choose to leave the hash value unchanged.
2010 */
2011 name->hash = full_name_hash(name->name, name->len);
fb045adb 2012 if (dir->d_flags & DCACHE_OP_HASH) {
b1e6a015 2013 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
2014 goto out;
2015 }
2016 dentry = d_lookup(dir, name);
2017out:
2018 return dentry;
2019}
2020
1da177e4 2021/**
786a5e15 2022 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2023 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2024 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2025 *
2026 * An insecure source has sent us a dentry, here we verify it and dget() it.
2027 * This is used by ncpfs in its readdir implementation.
2028 * Zero is returned in the dentry is invalid.
786a5e15
NP
2029 *
2030 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2031 */
d3a23e16 2032int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2033{
786a5e15 2034 struct dentry *child;
d3a23e16 2035
2fd6b7f5 2036 spin_lock(&dparent->d_lock);
786a5e15
NP
2037 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2038 if (dentry == child) {
2fd6b7f5 2039 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2040 __dget_dlock(dentry);
2fd6b7f5
NP
2041 spin_unlock(&dentry->d_lock);
2042 spin_unlock(&dparent->d_lock);
1da177e4
LT
2043 return 1;
2044 }
2045 }
2fd6b7f5 2046 spin_unlock(&dparent->d_lock);
786a5e15 2047
1da177e4
LT
2048 return 0;
2049}
ec4f8605 2050EXPORT_SYMBOL(d_validate);
1da177e4
LT
2051
2052/*
2053 * When a file is deleted, we have two options:
2054 * - turn this dentry into a negative dentry
2055 * - unhash this dentry and free it.
2056 *
2057 * Usually, we want to just turn this into
2058 * a negative dentry, but if anybody else is
2059 * currently using the dentry or the inode
2060 * we can't do that and we fall back on removing
2061 * it from the hash queues and waiting for
2062 * it to be deleted later when it has no users
2063 */
2064
2065/**
2066 * d_delete - delete a dentry
2067 * @dentry: The dentry to delete
2068 *
2069 * Turn the dentry into a negative dentry if possible, otherwise
2070 * remove it from the hash queues so it can be deleted later
2071 */
2072
2073void d_delete(struct dentry * dentry)
2074{
873feea0 2075 struct inode *inode;
7a91bf7f 2076 int isdir = 0;
1da177e4
LT
2077 /*
2078 * Are we the only user?
2079 */
357f8e65 2080again:
1da177e4 2081 spin_lock(&dentry->d_lock);
873feea0
NP
2082 inode = dentry->d_inode;
2083 isdir = S_ISDIR(inode->i_mode);
b7ab39f6 2084 if (dentry->d_count == 1) {
1fe0c023 2085 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2086 spin_unlock(&dentry->d_lock);
2087 cpu_relax();
2088 goto again;
2089 }
13e3c5e5 2090 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2091 dentry_unlink_inode(dentry);
7a91bf7f 2092 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2093 return;
2094 }
2095
2096 if (!d_unhashed(dentry))
2097 __d_drop(dentry);
2098
2099 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2100
2101 fsnotify_nameremove(dentry, isdir);
1da177e4 2102}
ec4f8605 2103EXPORT_SYMBOL(d_delete);
1da177e4 2104
b07ad996 2105static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2106{
ceb5bdc2 2107 BUG_ON(!d_unhashed(entry));
1879fd6a 2108 hlist_bl_lock(b);
dea3667b 2109 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2110 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2111 hlist_bl_unlock(b);
1da177e4
LT
2112}
2113
770bfad8
DH
2114static void _d_rehash(struct dentry * entry)
2115{
2116 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2117}
2118
1da177e4
LT
2119/**
2120 * d_rehash - add an entry back to the hash
2121 * @entry: dentry to add to the hash
2122 *
2123 * Adds a dentry to the hash according to its name.
2124 */
2125
2126void d_rehash(struct dentry * entry)
2127{
1da177e4 2128 spin_lock(&entry->d_lock);
770bfad8 2129 _d_rehash(entry);
1da177e4 2130 spin_unlock(&entry->d_lock);
1da177e4 2131}
ec4f8605 2132EXPORT_SYMBOL(d_rehash);
1da177e4 2133
fb2d5b86
NP
2134/**
2135 * dentry_update_name_case - update case insensitive dentry with a new name
2136 * @dentry: dentry to be updated
2137 * @name: new name
2138 *
2139 * Update a case insensitive dentry with new case of name.
2140 *
2141 * dentry must have been returned by d_lookup with name @name. Old and new
2142 * name lengths must match (ie. no d_compare which allows mismatched name
2143 * lengths).
2144 *
2145 * Parent inode i_mutex must be held over d_lookup and into this call (to
2146 * keep renames and concurrent inserts, and readdir(2) away).
2147 */
2148void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2149{
7ebfa57f 2150 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2151 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2152
fb2d5b86 2153 spin_lock(&dentry->d_lock);
31e6b01f 2154 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2155 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2156 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2157 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2158}
2159EXPORT_SYMBOL(dentry_update_name_case);
2160
1da177e4
LT
2161static void switch_names(struct dentry *dentry, struct dentry *target)
2162{
2163 if (dname_external(target)) {
2164 if (dname_external(dentry)) {
2165 /*
2166 * Both external: swap the pointers
2167 */
9a8d5bb4 2168 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2169 } else {
2170 /*
2171 * dentry:internal, target:external. Steal target's
2172 * storage and make target internal.
2173 */
321bcf92
BF
2174 memcpy(target->d_iname, dentry->d_name.name,
2175 dentry->d_name.len + 1);
1da177e4
LT
2176 dentry->d_name.name = target->d_name.name;
2177 target->d_name.name = target->d_iname;
2178 }
2179 } else {
2180 if (dname_external(dentry)) {
2181 /*
2182 * dentry:external, target:internal. Give dentry's
2183 * storage to target and make dentry internal
2184 */
2185 memcpy(dentry->d_iname, target->d_name.name,
2186 target->d_name.len + 1);
2187 target->d_name.name = dentry->d_name.name;
2188 dentry->d_name.name = dentry->d_iname;
2189 } else {
2190 /*
2191 * Both are internal. Just copy target to dentry
2192 */
2193 memcpy(dentry->d_iname, target->d_name.name,
2194 target->d_name.len + 1);
dc711ca3
AV
2195 dentry->d_name.len = target->d_name.len;
2196 return;
1da177e4
LT
2197 }
2198 }
9a8d5bb4 2199 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2200}
2201
2fd6b7f5
NP
2202static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2203{
2204 /*
2205 * XXXX: do we really need to take target->d_lock?
2206 */
2207 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2208 spin_lock(&target->d_parent->d_lock);
2209 else {
2210 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2211 spin_lock(&dentry->d_parent->d_lock);
2212 spin_lock_nested(&target->d_parent->d_lock,
2213 DENTRY_D_LOCK_NESTED);
2214 } else {
2215 spin_lock(&target->d_parent->d_lock);
2216 spin_lock_nested(&dentry->d_parent->d_lock,
2217 DENTRY_D_LOCK_NESTED);
2218 }
2219 }
2220 if (target < dentry) {
2221 spin_lock_nested(&target->d_lock, 2);
2222 spin_lock_nested(&dentry->d_lock, 3);
2223 } else {
2224 spin_lock_nested(&dentry->d_lock, 2);
2225 spin_lock_nested(&target->d_lock, 3);
2226 }
2227}
2228
2229static void dentry_unlock_parents_for_move(struct dentry *dentry,
2230 struct dentry *target)
2231{
2232 if (target->d_parent != dentry->d_parent)
2233 spin_unlock(&dentry->d_parent->d_lock);
2234 if (target->d_parent != target)
2235 spin_unlock(&target->d_parent->d_lock);
2236}
2237
1da177e4 2238/*
2fd6b7f5
NP
2239 * When switching names, the actual string doesn't strictly have to
2240 * be preserved in the target - because we're dropping the target
2241 * anyway. As such, we can just do a simple memcpy() to copy over
2242 * the new name before we switch.
2243 *
2244 * Note that we have to be a lot more careful about getting the hash
2245 * switched - we have to switch the hash value properly even if it
2246 * then no longer matches the actual (corrupted) string of the target.
2247 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2248 */
9eaef27b 2249/*
18367501 2250 * __d_move - move a dentry
1da177e4
LT
2251 * @dentry: entry to move
2252 * @target: new dentry
2253 *
2254 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2255 * dcache entries should not be moved in this way. Caller must hold
2256 * rename_lock, the i_mutex of the source and target directories,
2257 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2258 */
18367501 2259static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2260{
1da177e4
LT
2261 if (!dentry->d_inode)
2262 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2263
2fd6b7f5
NP
2264 BUG_ON(d_ancestor(dentry, target));
2265 BUG_ON(d_ancestor(target, dentry));
2266
2fd6b7f5 2267 dentry_lock_for_move(dentry, target);
1da177e4 2268
31e6b01f
NP
2269 write_seqcount_begin(&dentry->d_seq);
2270 write_seqcount_begin(&target->d_seq);
2271
ceb5bdc2
NP
2272 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2273
2274 /*
2275 * Move the dentry to the target hash queue. Don't bother checking
2276 * for the same hash queue because of how unlikely it is.
2277 */
2278 __d_drop(dentry);
789680d1 2279 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2280
2281 /* Unhash the target: dput() will then get rid of it */
2282 __d_drop(target);
2283
5160ee6f
ED
2284 list_del(&dentry->d_u.d_child);
2285 list_del(&target->d_u.d_child);
1da177e4
LT
2286
2287 /* Switch the names.. */
2288 switch_names(dentry, target);
9a8d5bb4 2289 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2290
2291 /* ... and switch the parents */
2292 if (IS_ROOT(dentry)) {
2293 dentry->d_parent = target->d_parent;
2294 target->d_parent = target;
5160ee6f 2295 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2296 } else {
9a8d5bb4 2297 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2298
2299 /* And add them back to the (new) parent lists */
5160ee6f 2300 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2301 }
2302
5160ee6f 2303 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2304
31e6b01f
NP
2305 write_seqcount_end(&target->d_seq);
2306 write_seqcount_end(&dentry->d_seq);
2307
2fd6b7f5 2308 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2309 spin_unlock(&target->d_lock);
c32ccd87 2310 fsnotify_d_move(dentry);
1da177e4 2311 spin_unlock(&dentry->d_lock);
18367501
AV
2312}
2313
2314/*
2315 * d_move - move a dentry
2316 * @dentry: entry to move
2317 * @target: new dentry
2318 *
2319 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2320 * dcache entries should not be moved in this way. See the locking
2321 * requirements for __d_move.
18367501
AV
2322 */
2323void d_move(struct dentry *dentry, struct dentry *target)
2324{
2325 write_seqlock(&rename_lock);
2326 __d_move(dentry, target);
1da177e4 2327 write_sequnlock(&rename_lock);
9eaef27b 2328}
ec4f8605 2329EXPORT_SYMBOL(d_move);
1da177e4 2330
e2761a11
OH
2331/**
2332 * d_ancestor - search for an ancestor
2333 * @p1: ancestor dentry
2334 * @p2: child dentry
2335 *
2336 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2337 * an ancestor of p2, else NULL.
9eaef27b 2338 */
e2761a11 2339struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2340{
2341 struct dentry *p;
2342
871c0067 2343 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2344 if (p->d_parent == p1)
e2761a11 2345 return p;
9eaef27b 2346 }
e2761a11 2347 return NULL;
9eaef27b
TM
2348}
2349
2350/*
2351 * This helper attempts to cope with remotely renamed directories
2352 *
2353 * It assumes that the caller is already holding
18367501 2354 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2355 *
2356 * Note: If ever the locking in lock_rename() changes, then please
2357 * remember to update this too...
9eaef27b 2358 */
873feea0
NP
2359static struct dentry *__d_unalias(struct inode *inode,
2360 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2361{
2362 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2363 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2364
2365 /* If alias and dentry share a parent, then no extra locks required */
2366 if (alias->d_parent == dentry->d_parent)
2367 goto out_unalias;
2368
9eaef27b 2369 /* See lock_rename() */
9eaef27b
TM
2370 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2371 goto out_err;
2372 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2373 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2374 goto out_err;
2375 m2 = &alias->d_parent->d_inode->i_mutex;
2376out_unalias:
ee3efa91
AV
2377 if (likely(!d_mountpoint(alias))) {
2378 __d_move(alias, dentry);
2379 ret = alias;
2380 }
9eaef27b 2381out_err:
873feea0 2382 spin_unlock(&inode->i_lock);
9eaef27b
TM
2383 if (m2)
2384 mutex_unlock(m2);
2385 if (m1)
2386 mutex_unlock(m1);
2387 return ret;
2388}
2389
770bfad8
DH
2390/*
2391 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2392 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2393 * returns with anon->d_lock held!
770bfad8
DH
2394 */
2395static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2396{
2397 struct dentry *dparent, *aparent;
2398
2fd6b7f5 2399 dentry_lock_for_move(anon, dentry);
770bfad8 2400
31e6b01f
NP
2401 write_seqcount_begin(&dentry->d_seq);
2402 write_seqcount_begin(&anon->d_seq);
2403
770bfad8
DH
2404 dparent = dentry->d_parent;
2405 aparent = anon->d_parent;
2406
2fd6b7f5
NP
2407 switch_names(dentry, anon);
2408 swap(dentry->d_name.hash, anon->d_name.hash);
2409
770bfad8
DH
2410 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2411 list_del(&dentry->d_u.d_child);
2412 if (!IS_ROOT(dentry))
2413 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2414 else
2415 INIT_LIST_HEAD(&dentry->d_u.d_child);
2416
2417 anon->d_parent = (dparent == dentry) ? anon : dparent;
2418 list_del(&anon->d_u.d_child);
2419 if (!IS_ROOT(anon))
2420 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2421 else
2422 INIT_LIST_HEAD(&anon->d_u.d_child);
2423
31e6b01f
NP
2424 write_seqcount_end(&dentry->d_seq);
2425 write_seqcount_end(&anon->d_seq);
2426
2fd6b7f5
NP
2427 dentry_unlock_parents_for_move(anon, dentry);
2428 spin_unlock(&dentry->d_lock);
2429
2430 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2431 anon->d_flags &= ~DCACHE_DISCONNECTED;
2432}
2433
2434/**
2435 * d_materialise_unique - introduce an inode into the tree
2436 * @dentry: candidate dentry
2437 * @inode: inode to bind to the dentry, to which aliases may be attached
2438 *
2439 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2440 * root directory alias in its place if there is one. Caller must hold the
2441 * i_mutex of the parent directory.
770bfad8
DH
2442 */
2443struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2444{
9eaef27b 2445 struct dentry *actual;
770bfad8
DH
2446
2447 BUG_ON(!d_unhashed(dentry));
2448
770bfad8
DH
2449 if (!inode) {
2450 actual = dentry;
360da900 2451 __d_instantiate(dentry, NULL);
357f8e65
NP
2452 d_rehash(actual);
2453 goto out_nolock;
770bfad8
DH
2454 }
2455
873feea0 2456 spin_lock(&inode->i_lock);
357f8e65 2457
9eaef27b
TM
2458 if (S_ISDIR(inode->i_mode)) {
2459 struct dentry *alias;
2460
2461 /* Does an aliased dentry already exist? */
32ba9c3f 2462 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2463 if (alias) {
2464 actual = alias;
18367501
AV
2465 write_seqlock(&rename_lock);
2466
2467 if (d_ancestor(alias, dentry)) {
2468 /* Check for loops */
2469 actual = ERR_PTR(-ELOOP);
b18dafc8 2470 spin_unlock(&inode->i_lock);
18367501
AV
2471 } else if (IS_ROOT(alias)) {
2472 /* Is this an anonymous mountpoint that we
2473 * could splice into our tree? */
9eaef27b 2474 __d_materialise_dentry(dentry, alias);
18367501 2475 write_sequnlock(&rename_lock);
9eaef27b
TM
2476 __d_drop(alias);
2477 goto found;
18367501
AV
2478 } else {
2479 /* Nope, but we must(!) avoid directory
b18dafc8 2480 * aliasing. This drops inode->i_lock */
18367501 2481 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2482 }
18367501 2483 write_sequnlock(&rename_lock);
dd179946
DH
2484 if (IS_ERR(actual)) {
2485 if (PTR_ERR(actual) == -ELOOP)
2486 pr_warn_ratelimited(
2487 "VFS: Lookup of '%s' in %s %s"
2488 " would have caused loop\n",
2489 dentry->d_name.name,
2490 inode->i_sb->s_type->name,
2491 inode->i_sb->s_id);
9eaef27b 2492 dput(alias);
dd179946 2493 }
9eaef27b
TM
2494 goto out_nolock;
2495 }
770bfad8
DH
2496 }
2497
2498 /* Add a unique reference */
2499 actual = __d_instantiate_unique(dentry, inode);
2500 if (!actual)
2501 actual = dentry;
357f8e65
NP
2502 else
2503 BUG_ON(!d_unhashed(actual));
770bfad8 2504
770bfad8
DH
2505 spin_lock(&actual->d_lock);
2506found:
2507 _d_rehash(actual);
2508 spin_unlock(&actual->d_lock);
873feea0 2509 spin_unlock(&inode->i_lock);
9eaef27b 2510out_nolock:
770bfad8
DH
2511 if (actual == dentry) {
2512 security_d_instantiate(dentry, inode);
2513 return NULL;
2514 }
2515
2516 iput(inode);
2517 return actual;
770bfad8 2518}
ec4f8605 2519EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2520
cdd16d02 2521static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2522{
2523 *buflen -= namelen;
2524 if (*buflen < 0)
2525 return -ENAMETOOLONG;
2526 *buffer -= namelen;
2527 memcpy(*buffer, str, namelen);
2528 return 0;
2529}
2530
cdd16d02
MS
2531static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2532{
2533 return prepend(buffer, buflen, name->name, name->len);
2534}
2535
1da177e4 2536/**
208898c1 2537 * prepend_path - Prepend path string to a buffer
9d1bc601 2538 * @path: the dentry/vfsmount to report
02125a82 2539 * @root: root vfsmnt/dentry
f2eb6575
MS
2540 * @buffer: pointer to the end of the buffer
2541 * @buflen: pointer to buffer length
552ce544 2542 *
949854d0 2543 * Caller holds the rename_lock.
1da177e4 2544 */
02125a82
AV
2545static int prepend_path(const struct path *path,
2546 const struct path *root,
f2eb6575 2547 char **buffer, int *buflen)
1da177e4 2548{
9d1bc601
MS
2549 struct dentry *dentry = path->dentry;
2550 struct vfsmount *vfsmnt = path->mnt;
0714a533 2551 struct mount *mnt = real_mount(vfsmnt);
f2eb6575
MS
2552 bool slash = false;
2553 int error = 0;
6092d048 2554
962830df 2555 br_read_lock(&vfsmount_lock);
f2eb6575 2556 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2557 struct dentry * parent;
2558
1da177e4 2559 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2560 /* Global root? */
676da58d 2561 if (!mnt_has_parent(mnt))
1da177e4 2562 goto global_root;
a73324da 2563 dentry = mnt->mnt_mountpoint;
0714a533
AV
2564 mnt = mnt->mnt_parent;
2565 vfsmnt = &mnt->mnt;
1da177e4
LT
2566 continue;
2567 }
2568 parent = dentry->d_parent;
2569 prefetch(parent);
9abca360 2570 spin_lock(&dentry->d_lock);
f2eb6575 2571 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2572 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2573 if (!error)
2574 error = prepend(buffer, buflen, "/", 1);
2575 if (error)
2576 break;
2577
2578 slash = true;
1da177e4
LT
2579 dentry = parent;
2580 }
2581
f2eb6575
MS
2582 if (!error && !slash)
2583 error = prepend(buffer, buflen, "/", 1);
2584
02125a82 2585out:
962830df 2586 br_read_unlock(&vfsmount_lock);
f2eb6575 2587 return error;
1da177e4
LT
2588
2589global_root:
98dc568b
MS
2590 /*
2591 * Filesystems needing to implement special "root names"
2592 * should do so with ->d_dname()
2593 */
2594 if (IS_ROOT(dentry) &&
2595 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2596 WARN(1, "Root dentry has weird name <%.*s>\n",
2597 (int) dentry->d_name.len, dentry->d_name.name);
2598 }
02125a82
AV
2599 if (!slash)
2600 error = prepend(buffer, buflen, "/", 1);
2601 if (!error)
f7a99c5b 2602 error = is_mounted(vfsmnt) ? 1 : 2;
be285c71 2603 goto out;
f2eb6575 2604}
be285c71 2605
f2eb6575
MS
2606/**
2607 * __d_path - return the path of a dentry
2608 * @path: the dentry/vfsmount to report
02125a82 2609 * @root: root vfsmnt/dentry
cd956a1c 2610 * @buf: buffer to return value in
f2eb6575
MS
2611 * @buflen: buffer length
2612 *
ffd1f4ed 2613 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2614 *
2615 * Returns a pointer into the buffer or an error code if the
2616 * path was too long.
2617 *
be148247 2618 * "buflen" should be positive.
f2eb6575 2619 *
02125a82 2620 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2621 */
02125a82
AV
2622char *__d_path(const struct path *path,
2623 const struct path *root,
f2eb6575
MS
2624 char *buf, int buflen)
2625{
2626 char *res = buf + buflen;
2627 int error;
2628
2629 prepend(&res, &buflen, "\0", 1);
949854d0 2630 write_seqlock(&rename_lock);
f2eb6575 2631 error = prepend_path(path, root, &res, &buflen);
949854d0 2632 write_sequnlock(&rename_lock);
be148247 2633
02125a82
AV
2634 if (error < 0)
2635 return ERR_PTR(error);
2636 if (error > 0)
2637 return NULL;
2638 return res;
2639}
2640
2641char *d_absolute_path(const struct path *path,
2642 char *buf, int buflen)
2643{
2644 struct path root = {};
2645 char *res = buf + buflen;
2646 int error;
2647
2648 prepend(&res, &buflen, "\0", 1);
2649 write_seqlock(&rename_lock);
2650 error = prepend_path(path, &root, &res, &buflen);
2651 write_sequnlock(&rename_lock);
2652
2653 if (error > 1)
2654 error = -EINVAL;
2655 if (error < 0)
f2eb6575 2656 return ERR_PTR(error);
f2eb6575 2657 return res;
1da177e4
LT
2658}
2659
ffd1f4ed
MS
2660/*
2661 * same as __d_path but appends "(deleted)" for unlinked files.
2662 */
02125a82
AV
2663static int path_with_deleted(const struct path *path,
2664 const struct path *root,
2665 char **buf, int *buflen)
ffd1f4ed
MS
2666{
2667 prepend(buf, buflen, "\0", 1);
2668 if (d_unlinked(path->dentry)) {
2669 int error = prepend(buf, buflen, " (deleted)", 10);
2670 if (error)
2671 return error;
2672 }
2673
2674 return prepend_path(path, root, buf, buflen);
2675}
2676
8df9d1a4
MS
2677static int prepend_unreachable(char **buffer, int *buflen)
2678{
2679 return prepend(buffer, buflen, "(unreachable)", 13);
2680}
2681
a03a8a70
JB
2682/**
2683 * d_path - return the path of a dentry
cf28b486 2684 * @path: path to report
a03a8a70
JB
2685 * @buf: buffer to return value in
2686 * @buflen: buffer length
2687 *
2688 * Convert a dentry into an ASCII path name. If the entry has been deleted
2689 * the string " (deleted)" is appended. Note that this is ambiguous.
2690 *
52afeefb
AV
2691 * Returns a pointer into the buffer or an error code if the path was
2692 * too long. Note: Callers should use the returned pointer, not the passed
2693 * in buffer, to use the name! The implementation often starts at an offset
2694 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2695 *
31f3e0b3 2696 * "buflen" should be positive.
a03a8a70 2697 */
20d4fdc1 2698char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2699{
ffd1f4ed 2700 char *res = buf + buflen;
6ac08c39 2701 struct path root;
ffd1f4ed 2702 int error;
1da177e4 2703
c23fbb6b
ED
2704 /*
2705 * We have various synthetic filesystems that never get mounted. On
2706 * these filesystems dentries are never used for lookup purposes, and
2707 * thus don't need to be hashed. They also don't need a name until a
2708 * user wants to identify the object in /proc/pid/fd/. The little hack
2709 * below allows us to generate a name for these objects on demand:
2710 */
cf28b486
JB
2711 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2712 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2713
f7ad3c6b 2714 get_fs_root(current->fs, &root);
949854d0 2715 write_seqlock(&rename_lock);
02125a82
AV
2716 error = path_with_deleted(path, &root, &res, &buflen);
2717 if (error < 0)
ffd1f4ed 2718 res = ERR_PTR(error);
949854d0 2719 write_sequnlock(&rename_lock);
6ac08c39 2720 path_put(&root);
1da177e4
LT
2721 return res;
2722}
ec4f8605 2723EXPORT_SYMBOL(d_path);
1da177e4 2724
c23fbb6b
ED
2725/*
2726 * Helper function for dentry_operations.d_dname() members
2727 */
2728char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2729 const char *fmt, ...)
2730{
2731 va_list args;
2732 char temp[64];
2733 int sz;
2734
2735 va_start(args, fmt);
2736 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2737 va_end(args);
2738
2739 if (sz > sizeof(temp) || sz > buflen)
2740 return ERR_PTR(-ENAMETOOLONG);
2741
2742 buffer += buflen - sz;
2743 return memcpy(buffer, temp, sz);
2744}
2745
6092d048
RP
2746/*
2747 * Write full pathname from the root of the filesystem into the buffer.
2748 */
ec2447c2 2749static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2750{
2751 char *end = buf + buflen;
2752 char *retval;
2753
6092d048 2754 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2755 if (buflen < 1)
2756 goto Elong;
2757 /* Get '/' right */
2758 retval = end-1;
2759 *retval = '/';
2760
cdd16d02
MS
2761 while (!IS_ROOT(dentry)) {
2762 struct dentry *parent = dentry->d_parent;
9abca360 2763 int error;
6092d048 2764
6092d048 2765 prefetch(parent);
9abca360
NP
2766 spin_lock(&dentry->d_lock);
2767 error = prepend_name(&end, &buflen, &dentry->d_name);
2768 spin_unlock(&dentry->d_lock);
2769 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2770 goto Elong;
2771
2772 retval = end;
2773 dentry = parent;
2774 }
c103135c
AV
2775 return retval;
2776Elong:
2777 return ERR_PTR(-ENAMETOOLONG);
2778}
ec2447c2
NP
2779
2780char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2781{
2782 char *retval;
2783
949854d0 2784 write_seqlock(&rename_lock);
ec2447c2 2785 retval = __dentry_path(dentry, buf, buflen);
949854d0 2786 write_sequnlock(&rename_lock);
ec2447c2
NP
2787
2788 return retval;
2789}
2790EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2791
2792char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2793{
2794 char *p = NULL;
2795 char *retval;
2796
949854d0 2797 write_seqlock(&rename_lock);
c103135c
AV
2798 if (d_unlinked(dentry)) {
2799 p = buf + buflen;
2800 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2801 goto Elong;
2802 buflen++;
2803 }
2804 retval = __dentry_path(dentry, buf, buflen);
949854d0 2805 write_sequnlock(&rename_lock);
c103135c
AV
2806 if (!IS_ERR(retval) && p)
2807 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2808 return retval;
2809Elong:
6092d048
RP
2810 return ERR_PTR(-ENAMETOOLONG);
2811}
2812
1da177e4
LT
2813/*
2814 * NOTE! The user-level library version returns a
2815 * character pointer. The kernel system call just
2816 * returns the length of the buffer filled (which
2817 * includes the ending '\0' character), or a negative
2818 * error value. So libc would do something like
2819 *
2820 * char *getcwd(char * buf, size_t size)
2821 * {
2822 * int retval;
2823 *
2824 * retval = sys_getcwd(buf, size);
2825 * if (retval >= 0)
2826 * return buf;
2827 * errno = -retval;
2828 * return NULL;
2829 * }
2830 */
3cdad428 2831SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2832{
552ce544 2833 int error;
6ac08c39 2834 struct path pwd, root;
552ce544 2835 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2836
2837 if (!page)
2838 return -ENOMEM;
2839
f7ad3c6b 2840 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2841
552ce544 2842 error = -ENOENT;
949854d0 2843 write_seqlock(&rename_lock);
f3da392e 2844 if (!d_unlinked(pwd.dentry)) {
552ce544 2845 unsigned long len;
8df9d1a4
MS
2846 char *cwd = page + PAGE_SIZE;
2847 int buflen = PAGE_SIZE;
1da177e4 2848
8df9d1a4 2849 prepend(&cwd, &buflen, "\0", 1);
02125a82 2850 error = prepend_path(&pwd, &root, &cwd, &buflen);
949854d0 2851 write_sequnlock(&rename_lock);
552ce544 2852
02125a82 2853 if (error < 0)
552ce544
LT
2854 goto out;
2855
8df9d1a4 2856 /* Unreachable from current root */
02125a82 2857 if (error > 0) {
8df9d1a4
MS
2858 error = prepend_unreachable(&cwd, &buflen);
2859 if (error)
2860 goto out;
2861 }
2862
552ce544
LT
2863 error = -ERANGE;
2864 len = PAGE_SIZE + page - cwd;
2865 if (len <= size) {
2866 error = len;
2867 if (copy_to_user(buf, cwd, len))
2868 error = -EFAULT;
2869 }
949854d0
NP
2870 } else {
2871 write_sequnlock(&rename_lock);
949854d0 2872 }
1da177e4
LT
2873
2874out:
6ac08c39
JB
2875 path_put(&pwd);
2876 path_put(&root);
1da177e4
LT
2877 free_page((unsigned long) page);
2878 return error;
2879}
2880
2881/*
2882 * Test whether new_dentry is a subdirectory of old_dentry.
2883 *
2884 * Trivially implemented using the dcache structure
2885 */
2886
2887/**
2888 * is_subdir - is new dentry a subdirectory of old_dentry
2889 * @new_dentry: new dentry
2890 * @old_dentry: old dentry
2891 *
2892 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2893 * Returns 0 otherwise.
2894 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2895 */
2896
e2761a11 2897int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2898{
2899 int result;
949854d0 2900 unsigned seq;
1da177e4 2901
e2761a11
OH
2902 if (new_dentry == old_dentry)
2903 return 1;
2904
e2761a11 2905 do {
1da177e4 2906 /* for restarting inner loop in case of seq retry */
1da177e4 2907 seq = read_seqbegin(&rename_lock);
949854d0
NP
2908 /*
2909 * Need rcu_readlock to protect against the d_parent trashing
2910 * due to d_move
2911 */
2912 rcu_read_lock();
e2761a11 2913 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2914 result = 1;
e2761a11
OH
2915 else
2916 result = 0;
949854d0 2917 rcu_read_unlock();
1da177e4 2918 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2919
2920 return result;
2921}
2922
2923void d_genocide(struct dentry *root)
2924{
949854d0 2925 struct dentry *this_parent;
1da177e4 2926 struct list_head *next;
949854d0 2927 unsigned seq;
58db63d0 2928 int locked = 0;
1da177e4 2929
949854d0 2930 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2931again:
2932 this_parent = root;
2fd6b7f5 2933 spin_lock(&this_parent->d_lock);
1da177e4
LT
2934repeat:
2935 next = this_parent->d_subdirs.next;
2936resume:
2937 while (next != &this_parent->d_subdirs) {
2938 struct list_head *tmp = next;
5160ee6f 2939 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2940 next = tmp->next;
949854d0 2941
da502956
NP
2942 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2943 if (d_unhashed(dentry) || !dentry->d_inode) {
2944 spin_unlock(&dentry->d_lock);
1da177e4 2945 continue;
da502956 2946 }
1da177e4 2947 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2948 spin_unlock(&this_parent->d_lock);
2949 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2950 this_parent = dentry;
2fd6b7f5 2951 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2952 goto repeat;
2953 }
949854d0
NP
2954 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2955 dentry->d_flags |= DCACHE_GENOCIDE;
2956 dentry->d_count--;
2957 }
b7ab39f6 2958 spin_unlock(&dentry->d_lock);
1da177e4
LT
2959 }
2960 if (this_parent != root) {
c826cb7d 2961 struct dentry *child = this_parent;
949854d0
NP
2962 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2963 this_parent->d_flags |= DCACHE_GENOCIDE;
2964 this_parent->d_count--;
2965 }
c826cb7d
LT
2966 this_parent = try_to_ascend(this_parent, locked, seq);
2967 if (!this_parent)
949854d0 2968 goto rename_retry;
949854d0 2969 next = child->d_u.d_child.next;
1da177e4
LT
2970 goto resume;
2971 }
2fd6b7f5 2972 spin_unlock(&this_parent->d_lock);
58db63d0 2973 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 2974 goto rename_retry;
58db63d0
NP
2975 if (locked)
2976 write_sequnlock(&rename_lock);
2977 return;
2978
2979rename_retry:
8110e16d
MS
2980 if (locked)
2981 goto again;
58db63d0
NP
2982 locked = 1;
2983 write_seqlock(&rename_lock);
2984 goto again;
1da177e4
LT
2985}
2986
2987/**
2988 * find_inode_number - check for dentry with name
2989 * @dir: directory to check
2990 * @name: Name to find.
2991 *
2992 * Check whether a dentry already exists for the given name,
2993 * and return the inode number if it has an inode. Otherwise
2994 * 0 is returned.
2995 *
2996 * This routine is used to post-process directory listings for
2997 * filesystems using synthetic inode numbers, and is necessary
2998 * to keep getcwd() working.
2999 */
3000
3001ino_t find_inode_number(struct dentry *dir, struct qstr *name)
3002{
3003 struct dentry * dentry;
3004 ino_t ino = 0;
3005
3e7e241f
EB
3006 dentry = d_hash_and_lookup(dir, name);
3007 if (dentry) {
1da177e4
LT
3008 if (dentry->d_inode)
3009 ino = dentry->d_inode->i_ino;
3010 dput(dentry);
3011 }
1da177e4
LT
3012 return ino;
3013}
ec4f8605 3014EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
3015
3016static __initdata unsigned long dhash_entries;
3017static int __init set_dhash_entries(char *str)
3018{
3019 if (!str)
3020 return 0;
3021 dhash_entries = simple_strtoul(str, &str, 0);
3022 return 1;
3023}
3024__setup("dhash_entries=", set_dhash_entries);
3025
3026static void __init dcache_init_early(void)
3027{
074b8517 3028 unsigned int loop;
1da177e4
LT
3029
3030 /* If hashes are distributed across NUMA nodes, defer
3031 * hash allocation until vmalloc space is available.
3032 */
3033 if (hashdist)
3034 return;
3035
3036 dentry_hashtable =
3037 alloc_large_system_hash("Dentry cache",
b07ad996 3038 sizeof(struct hlist_bl_head),
1da177e4
LT
3039 dhash_entries,
3040 13,
3041 HASH_EARLY,
3042 &d_hash_shift,
3043 &d_hash_mask,
31fe62b9 3044 0,
1da177e4
LT
3045 0);
3046
074b8517 3047 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3048 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3049}
3050
74bf17cf 3051static void __init dcache_init(void)
1da177e4 3052{
074b8517 3053 unsigned int loop;
1da177e4
LT
3054
3055 /*
3056 * A constructor could be added for stable state like the lists,
3057 * but it is probably not worth it because of the cache nature
3058 * of the dcache.
3059 */
0a31bd5f
CL
3060 dentry_cache = KMEM_CACHE(dentry,
3061 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3062
3063 /* Hash may have been set up in dcache_init_early */
3064 if (!hashdist)
3065 return;
3066
3067 dentry_hashtable =
3068 alloc_large_system_hash("Dentry cache",
b07ad996 3069 sizeof(struct hlist_bl_head),
1da177e4
LT
3070 dhash_entries,
3071 13,
3072 0,
3073 &d_hash_shift,
3074 &d_hash_mask,
31fe62b9 3075 0,
1da177e4
LT
3076 0);
3077
074b8517 3078 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3079 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3080}
3081
3082/* SLAB cache for __getname() consumers */
e18b890b 3083struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3084EXPORT_SYMBOL(names_cachep);
1da177e4 3085
1da177e4
LT
3086EXPORT_SYMBOL(d_genocide);
3087
1da177e4
LT
3088void __init vfs_caches_init_early(void)
3089{
3090 dcache_init_early();
3091 inode_init_early();
3092}
3093
3094void __init vfs_caches_init(unsigned long mempages)
3095{
3096 unsigned long reserve;
3097
3098 /* Base hash sizes on available memory, with a reserve equal to
3099 150% of current kernel size */
3100
3101 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3102 mempages -= reserve;
3103
3104 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3105 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3106
74bf17cf
DC
3107 dcache_init();
3108 inode_init();
1da177e4 3109 files_init(mempages);
74bf17cf 3110 mnt_init();
1da177e4
LT
3111 bdev_cache_init();
3112 chrdev_init();
3113}