cope with potentially long ->d_dname() output for shmem/hugetlb
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
630d9c47 26#include <linux/export.h>
1da177e4
LT
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
268bb0ce 38#include <linux/prefetch.h>
dd179946 39#include <linux/ratelimit.h>
07f3f05c 40#include "internal.h"
b2dba1af 41#include "mount.h"
1da177e4 42
789680d1
NP
43/*
44 * Usage:
873feea0
NP
45 * dcache->d_inode->i_lock protects:
46 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
47 * dcache_hash_bucket lock protects:
48 * - the dcache hash table
49 * s_anon bl list spinlock protects:
50 * - the s_anon list (see __d_drop)
23044507
NP
51 * dcache_lru_lock protects:
52 * - the dcache lru lists and counters
53 * d_lock protects:
54 * - d_flags
55 * - d_name
56 * - d_lru
b7ab39f6 57 * - d_count
da502956 58 * - d_unhashed()
2fd6b7f5
NP
59 * - d_parent and d_subdirs
60 * - childrens' d_child and d_parent
b23fb0a6 61 * - d_alias, d_inode
789680d1
NP
62 *
63 * Ordering:
873feea0 64 * dentry->d_inode->i_lock
b5c84bf6
NP
65 * dentry->d_lock
66 * dcache_lru_lock
ceb5bdc2
NP
67 * dcache_hash_bucket lock
68 * s_anon lock
789680d1 69 *
da502956
NP
70 * If there is an ancestor relationship:
71 * dentry->d_parent->...->d_parent->d_lock
72 * ...
73 * dentry->d_parent->d_lock
74 * dentry->d_lock
75 *
76 * If no ancestor relationship:
789680d1
NP
77 * if (dentry1 < dentry2)
78 * dentry1->d_lock
79 * dentry2->d_lock
80 */
fa3536cc 81int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
82EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
83
23044507 84static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 85__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 86
949854d0 87EXPORT_SYMBOL(rename_lock);
1da177e4 88
e18b890b 89static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 90
1da177e4
LT
91/*
92 * This is the single most critical data structure when it comes
93 * to the dcache: the hashtable for lookups. Somebody should try
94 * to make this good - I've just made it work.
95 *
96 * This hash-function tries to avoid losing too many bits of hash
97 * information, yet avoid using a prime hash-size or similar.
98 */
99#define D_HASHBITS d_hash_shift
100#define D_HASHMASK d_hash_mask
101
fa3536cc
ED
102static unsigned int d_hash_mask __read_mostly;
103static unsigned int d_hash_shift __read_mostly;
ceb5bdc2 104
b07ad996 105static struct hlist_bl_head *dentry_hashtable __read_mostly;
ceb5bdc2 106
8966be90 107static inline struct hlist_bl_head *d_hash(const struct dentry *parent,
6d7d1a0d 108 unsigned int hash)
ceb5bdc2 109{
6d7d1a0d
LT
110 hash += (unsigned long) parent / L1_CACHE_BYTES;
111 hash = hash + (hash >> D_HASHBITS);
ceb5bdc2
NP
112 return dentry_hashtable + (hash & D_HASHMASK);
113}
114
1da177e4
LT
115/* Statistics gathering. */
116struct dentry_stat_t dentry_stat = {
117 .age_limit = 45,
118};
119
3e880fb5 120static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
121
122#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
123static int get_nr_dentry(void)
124{
125 int i;
126 int sum = 0;
127 for_each_possible_cpu(i)
128 sum += per_cpu(nr_dentry, i);
129 return sum < 0 ? 0 : sum;
130}
131
312d3ca8
CH
132int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
133 size_t *lenp, loff_t *ppos)
134{
3e880fb5 135 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
136 return proc_dointvec(table, write, buffer, lenp, ppos);
137}
138#endif
139
5483f18e
LT
140/*
141 * Compare 2 name strings, return 0 if they match, otherwise non-zero.
142 * The strings are both count bytes long, and count is non-zero.
143 */
e419b4cc
LT
144#ifdef CONFIG_DCACHE_WORD_ACCESS
145
146#include <asm/word-at-a-time.h>
147/*
148 * NOTE! 'cs' and 'scount' come from a dentry, so it has a
149 * aligned allocation for this particular component. We don't
150 * strictly need the load_unaligned_zeropad() safety, but it
151 * doesn't hurt either.
152 *
153 * In contrast, 'ct' and 'tcount' can be from a pathname, and do
154 * need the careful unaligned handling.
155 */
94753db5 156static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
5483f18e 157{
bfcfaa77 158 unsigned long a,b,mask;
bfcfaa77
LT
159
160 for (;;) {
12f8ad4b 161 a = *(unsigned long *)cs;
e419b4cc 162 b = load_unaligned_zeropad(ct);
bfcfaa77
LT
163 if (tcount < sizeof(unsigned long))
164 break;
165 if (unlikely(a != b))
166 return 1;
167 cs += sizeof(unsigned long);
168 ct += sizeof(unsigned long);
169 tcount -= sizeof(unsigned long);
170 if (!tcount)
171 return 0;
172 }
173 mask = ~(~0ul << tcount*8);
174 return unlikely(!!((a ^ b) & mask));
e419b4cc
LT
175}
176
bfcfaa77 177#else
e419b4cc 178
94753db5 179static inline int dentry_string_cmp(const unsigned char *cs, const unsigned char *ct, unsigned tcount)
e419b4cc 180{
5483f18e
LT
181 do {
182 if (*cs != *ct)
183 return 1;
184 cs++;
185 ct++;
186 tcount--;
187 } while (tcount);
188 return 0;
189}
190
e419b4cc
LT
191#endif
192
94753db5
LT
193static inline int dentry_cmp(const struct dentry *dentry, const unsigned char *ct, unsigned tcount)
194{
6326c71f 195 const unsigned char *cs;
94753db5
LT
196 /*
197 * Be careful about RCU walk racing with rename:
198 * use ACCESS_ONCE to fetch the name pointer.
199 *
200 * NOTE! Even if a rename will mean that the length
201 * was not loaded atomically, we don't care. The
202 * RCU walk will check the sequence count eventually,
203 * and catch it. And we won't overrun the buffer,
204 * because we're reading the name pointer atomically,
205 * and a dentry name is guaranteed to be properly
206 * terminated with a NUL byte.
207 *
208 * End result: even if 'len' is wrong, we'll exit
209 * early because the data cannot match (there can
210 * be no NUL in the ct/tcount data)
211 */
6326c71f
LT
212 cs = ACCESS_ONCE(dentry->d_name.name);
213 smp_read_barrier_depends();
214 return dentry_string_cmp(cs, ct, tcount);
94753db5
LT
215}
216
9c82ab9c 217static void __d_free(struct rcu_head *head)
1da177e4 218{
9c82ab9c
CH
219 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
220
b3d9b7a3 221 WARN_ON(!hlist_unhashed(&dentry->d_alias));
1da177e4
LT
222 if (dname_external(dentry))
223 kfree(dentry->d_name.name);
224 kmem_cache_free(dentry_cache, dentry);
225}
226
227/*
b5c84bf6 228 * no locks, please.
1da177e4
LT
229 */
230static void d_free(struct dentry *dentry)
231{
b7ab39f6 232 BUG_ON(dentry->d_count);
3e880fb5 233 this_cpu_dec(nr_dentry);
1da177e4
LT
234 if (dentry->d_op && dentry->d_op->d_release)
235 dentry->d_op->d_release(dentry);
312d3ca8 236
dea3667b
LT
237 /* if dentry was never visible to RCU, immediate free is OK */
238 if (!(dentry->d_flags & DCACHE_RCUACCESS))
9c82ab9c 239 __d_free(&dentry->d_u.d_rcu);
b3423415 240 else
9c82ab9c 241 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
242}
243
31e6b01f
NP
244/**
245 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
ff5fdb61 246 * @dentry: the target dentry
31e6b01f
NP
247 * After this call, in-progress rcu-walk path lookup will fail. This
248 * should be called after unhashing, and after changing d_inode (if
249 * the dentry has not already been unhashed).
250 */
251static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
252{
253 assert_spin_locked(&dentry->d_lock);
254 /* Go through a barrier */
255 write_seqcount_barrier(&dentry->d_seq);
256}
257
1da177e4
LT
258/*
259 * Release the dentry's inode, using the filesystem
31e6b01f
NP
260 * d_iput() operation if defined. Dentry has no refcount
261 * and is unhashed.
1da177e4 262 */
858119e1 263static void dentry_iput(struct dentry * dentry)
31f3e0b3 264 __releases(dentry->d_lock)
873feea0 265 __releases(dentry->d_inode->i_lock)
1da177e4
LT
266{
267 struct inode *inode = dentry->d_inode;
268 if (inode) {
269 dentry->d_inode = NULL;
b3d9b7a3 270 hlist_del_init(&dentry->d_alias);
1da177e4 271 spin_unlock(&dentry->d_lock);
873feea0 272 spin_unlock(&inode->i_lock);
f805fbda
LT
273 if (!inode->i_nlink)
274 fsnotify_inoderemove(inode);
1da177e4
LT
275 if (dentry->d_op && dentry->d_op->d_iput)
276 dentry->d_op->d_iput(dentry, inode);
277 else
278 iput(inode);
279 } else {
280 spin_unlock(&dentry->d_lock);
1da177e4
LT
281 }
282}
283
31e6b01f
NP
284/*
285 * Release the dentry's inode, using the filesystem
286 * d_iput() operation if defined. dentry remains in-use.
287 */
288static void dentry_unlink_inode(struct dentry * dentry)
289 __releases(dentry->d_lock)
873feea0 290 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
291{
292 struct inode *inode = dentry->d_inode;
293 dentry->d_inode = NULL;
b3d9b7a3 294 hlist_del_init(&dentry->d_alias);
31e6b01f
NP
295 dentry_rcuwalk_barrier(dentry);
296 spin_unlock(&dentry->d_lock);
873feea0 297 spin_unlock(&inode->i_lock);
31e6b01f
NP
298 if (!inode->i_nlink)
299 fsnotify_inoderemove(inode);
300 if (dentry->d_op && dentry->d_op->d_iput)
301 dentry->d_op->d_iput(dentry, inode);
302 else
303 iput(inode);
304}
305
da3bbdd4 306/*
f0023bc6 307 * dentry_lru_(add|del|prune|move_tail) must be called with d_lock held.
da3bbdd4
KM
308 */
309static void dentry_lru_add(struct dentry *dentry)
310{
a4633357 311 if (list_empty(&dentry->d_lru)) {
23044507 312 spin_lock(&dcache_lru_lock);
a4633357
CH
313 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
314 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 315 dentry_stat.nr_unused++;
23044507 316 spin_unlock(&dcache_lru_lock);
a4633357 317 }
da3bbdd4
KM
318}
319
23044507
NP
320static void __dentry_lru_del(struct dentry *dentry)
321{
322 list_del_init(&dentry->d_lru);
eaf5f907 323 dentry->d_flags &= ~DCACHE_SHRINK_LIST;
23044507
NP
324 dentry->d_sb->s_nr_dentry_unused--;
325 dentry_stat.nr_unused--;
326}
327
f0023bc6
SW
328/*
329 * Remove a dentry with references from the LRU.
330 */
da3bbdd4
KM
331static void dentry_lru_del(struct dentry *dentry)
332{
333 if (!list_empty(&dentry->d_lru)) {
23044507
NP
334 spin_lock(&dcache_lru_lock);
335 __dentry_lru_del(dentry);
336 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
337 }
338}
339
b48f03b3 340static void dentry_lru_move_list(struct dentry *dentry, struct list_head *list)
da3bbdd4 341{
23044507 342 spin_lock(&dcache_lru_lock);
a4633357 343 if (list_empty(&dentry->d_lru)) {
b48f03b3 344 list_add_tail(&dentry->d_lru, list);
a4633357 345 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 346 dentry_stat.nr_unused++;
a4633357 347 } else {
b48f03b3 348 list_move_tail(&dentry->d_lru, list);
da3bbdd4 349 }
23044507 350 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
351}
352
d52b9086
MS
353/**
354 * d_kill - kill dentry and return parent
355 * @dentry: dentry to kill
ff5fdb61 356 * @parent: parent dentry
d52b9086 357 *
31f3e0b3 358 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
359 *
360 * If this is the root of the dentry tree, return NULL.
23044507 361 *
b5c84bf6
NP
362 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
363 * d_kill.
d52b9086 364 */
2fd6b7f5 365static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 366 __releases(dentry->d_lock)
2fd6b7f5 367 __releases(parent->d_lock)
873feea0 368 __releases(dentry->d_inode->i_lock)
d52b9086 369{
d52b9086 370 list_del(&dentry->d_u.d_child);
c83ce989
TM
371 /*
372 * Inform try_to_ascend() that we are no longer attached to the
373 * dentry tree
374 */
b161dfa6 375 dentry->d_flags |= DCACHE_DENTRY_KILLED;
2fd6b7f5
NP
376 if (parent)
377 spin_unlock(&parent->d_lock);
d52b9086 378 dentry_iput(dentry);
b7ab39f6
NP
379 /*
380 * dentry_iput drops the locks, at which point nobody (except
381 * transient RCU lookups) can reach this dentry.
382 */
d52b9086 383 d_free(dentry);
871c0067 384 return parent;
d52b9086
MS
385}
386
c6627c60
DH
387/*
388 * Unhash a dentry without inserting an RCU walk barrier or checking that
389 * dentry->d_lock is locked. The caller must take care of that, if
390 * appropriate.
391 */
392static void __d_shrink(struct dentry *dentry)
393{
394 if (!d_unhashed(dentry)) {
395 struct hlist_bl_head *b;
396 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED))
397 b = &dentry->d_sb->s_anon;
398 else
399 b = d_hash(dentry->d_parent, dentry->d_name.hash);
400
401 hlist_bl_lock(b);
402 __hlist_bl_del(&dentry->d_hash);
403 dentry->d_hash.pprev = NULL;
404 hlist_bl_unlock(b);
405 }
406}
407
789680d1
NP
408/**
409 * d_drop - drop a dentry
410 * @dentry: dentry to drop
411 *
412 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
413 * be found through a VFS lookup any more. Note that this is different from
414 * deleting the dentry - d_delete will try to mark the dentry negative if
415 * possible, giving a successful _negative_ lookup, while d_drop will
416 * just make the cache lookup fail.
417 *
418 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
419 * reason (NFS timeouts or autofs deletes).
420 *
421 * __d_drop requires dentry->d_lock.
422 */
423void __d_drop(struct dentry *dentry)
424{
dea3667b 425 if (!d_unhashed(dentry)) {
c6627c60 426 __d_shrink(dentry);
dea3667b 427 dentry_rcuwalk_barrier(dentry);
789680d1
NP
428 }
429}
430EXPORT_SYMBOL(__d_drop);
431
432void d_drop(struct dentry *dentry)
433{
789680d1
NP
434 spin_lock(&dentry->d_lock);
435 __d_drop(dentry);
436 spin_unlock(&dentry->d_lock);
789680d1
NP
437}
438EXPORT_SYMBOL(d_drop);
439
77812a1e
NP
440/*
441 * Finish off a dentry we've decided to kill.
442 * dentry->d_lock must be held, returns with it unlocked.
443 * If ref is non-zero, then decrement the refcount too.
444 * Returns dentry requiring refcount drop, or NULL if we're done.
445 */
446static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
447 __releases(dentry->d_lock)
448{
873feea0 449 struct inode *inode;
77812a1e
NP
450 struct dentry *parent;
451
873feea0
NP
452 inode = dentry->d_inode;
453 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
454relock:
455 spin_unlock(&dentry->d_lock);
456 cpu_relax();
457 return dentry; /* try again with same dentry */
458 }
459 if (IS_ROOT(dentry))
460 parent = NULL;
461 else
462 parent = dentry->d_parent;
463 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
464 if (inode)
465 spin_unlock(&inode->i_lock);
77812a1e
NP
466 goto relock;
467 }
31e6b01f 468
77812a1e
NP
469 if (ref)
470 dentry->d_count--;
f0023bc6 471 /*
f0023bc6
SW
472 * inform the fs via d_prune that this dentry is about to be
473 * unhashed and destroyed.
474 */
61572bb1
YZ
475 if (dentry->d_flags & DCACHE_OP_PRUNE)
476 dentry->d_op->d_prune(dentry);
477
478 dentry_lru_del(dentry);
77812a1e
NP
479 /* if it was on the hash then remove it */
480 __d_drop(dentry);
481 return d_kill(dentry, parent);
482}
483
1da177e4
LT
484/*
485 * This is dput
486 *
487 * This is complicated by the fact that we do not want to put
488 * dentries that are no longer on any hash chain on the unused
489 * list: we'd much rather just get rid of them immediately.
490 *
491 * However, that implies that we have to traverse the dentry
492 * tree upwards to the parents which might _also_ now be
493 * scheduled for deletion (it may have been only waiting for
494 * its last child to go away).
495 *
496 * This tail recursion is done by hand as we don't want to depend
497 * on the compiler to always get this right (gcc generally doesn't).
498 * Real recursion would eat up our stack space.
499 */
500
501/*
502 * dput - release a dentry
503 * @dentry: dentry to release
504 *
505 * Release a dentry. This will drop the usage count and if appropriate
506 * call the dentry unlink method as well as removing it from the queues and
507 * releasing its resources. If the parent dentries were scheduled for release
508 * they too may now get deleted.
1da177e4 509 */
1da177e4
LT
510void dput(struct dentry *dentry)
511{
512 if (!dentry)
513 return;
514
515repeat:
b7ab39f6 516 if (dentry->d_count == 1)
1da177e4 517 might_sleep();
1da177e4 518 spin_lock(&dentry->d_lock);
61f3dee4
NP
519 BUG_ON(!dentry->d_count);
520 if (dentry->d_count > 1) {
521 dentry->d_count--;
1da177e4 522 spin_unlock(&dentry->d_lock);
1da177e4
LT
523 return;
524 }
525
fb045adb 526 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 527 if (dentry->d_op->d_delete(dentry))
61f3dee4 528 goto kill_it;
1da177e4 529 }
265ac902 530
1da177e4
LT
531 /* Unreachable? Get rid of it */
532 if (d_unhashed(dentry))
533 goto kill_it;
265ac902 534
39e3c955 535 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 536 dentry_lru_add(dentry);
265ac902 537
61f3dee4
NP
538 dentry->d_count--;
539 spin_unlock(&dentry->d_lock);
1da177e4
LT
540 return;
541
d52b9086 542kill_it:
77812a1e 543 dentry = dentry_kill(dentry, 1);
d52b9086
MS
544 if (dentry)
545 goto repeat;
1da177e4 546}
ec4f8605 547EXPORT_SYMBOL(dput);
1da177e4
LT
548
549/**
550 * d_invalidate - invalidate a dentry
551 * @dentry: dentry to invalidate
552 *
553 * Try to invalidate the dentry if it turns out to be
554 * possible. If there are other dentries that can be
555 * reached through this one we can't delete it and we
556 * return -EBUSY. On success we return 0.
557 *
558 * no dcache lock.
559 */
560
561int d_invalidate(struct dentry * dentry)
562{
563 /*
564 * If it's already been dropped, return OK.
565 */
da502956 566 spin_lock(&dentry->d_lock);
1da177e4 567 if (d_unhashed(dentry)) {
da502956 568 spin_unlock(&dentry->d_lock);
1da177e4
LT
569 return 0;
570 }
571 /*
572 * Check whether to do a partial shrink_dcache
573 * to get rid of unused child entries.
574 */
575 if (!list_empty(&dentry->d_subdirs)) {
da502956 576 spin_unlock(&dentry->d_lock);
1da177e4 577 shrink_dcache_parent(dentry);
da502956 578 spin_lock(&dentry->d_lock);
1da177e4
LT
579 }
580
581 /*
582 * Somebody else still using it?
583 *
584 * If it's a directory, we can't drop it
585 * for fear of somebody re-populating it
586 * with children (even though dropping it
587 * would make it unreachable from the root,
588 * we might still populate it if it was a
589 * working directory or similar).
50e69630
AV
590 * We also need to leave mountpoints alone,
591 * directory or not.
1da177e4 592 */
50e69630
AV
593 if (dentry->d_count > 1 && dentry->d_inode) {
594 if (S_ISDIR(dentry->d_inode->i_mode) || d_mountpoint(dentry)) {
1da177e4 595 spin_unlock(&dentry->d_lock);
1da177e4
LT
596 return -EBUSY;
597 }
598 }
599
600 __d_drop(dentry);
601 spin_unlock(&dentry->d_lock);
1da177e4
LT
602 return 0;
603}
ec4f8605 604EXPORT_SYMBOL(d_invalidate);
1da177e4 605
b5c84bf6 606/* This must be called with d_lock held */
dc0474be 607static inline void __dget_dlock(struct dentry *dentry)
23044507 608{
b7ab39f6 609 dentry->d_count++;
23044507
NP
610}
611
dc0474be 612static inline void __dget(struct dentry *dentry)
1da177e4 613{
23044507 614 spin_lock(&dentry->d_lock);
dc0474be 615 __dget_dlock(dentry);
23044507 616 spin_unlock(&dentry->d_lock);
1da177e4
LT
617}
618
b7ab39f6
NP
619struct dentry *dget_parent(struct dentry *dentry)
620{
621 struct dentry *ret;
622
623repeat:
a734eb45
NP
624 /*
625 * Don't need rcu_dereference because we re-check it was correct under
626 * the lock.
627 */
628 rcu_read_lock();
b7ab39f6 629 ret = dentry->d_parent;
a734eb45
NP
630 spin_lock(&ret->d_lock);
631 if (unlikely(ret != dentry->d_parent)) {
632 spin_unlock(&ret->d_lock);
633 rcu_read_unlock();
b7ab39f6
NP
634 goto repeat;
635 }
a734eb45 636 rcu_read_unlock();
b7ab39f6
NP
637 BUG_ON(!ret->d_count);
638 ret->d_count++;
639 spin_unlock(&ret->d_lock);
b7ab39f6
NP
640 return ret;
641}
642EXPORT_SYMBOL(dget_parent);
643
1da177e4
LT
644/**
645 * d_find_alias - grab a hashed alias of inode
646 * @inode: inode in question
32ba9c3f
LT
647 * @want_discon: flag, used by d_splice_alias, to request
648 * that only a DISCONNECTED alias be returned.
1da177e4
LT
649 *
650 * If inode has a hashed alias, or is a directory and has any alias,
651 * acquire the reference to alias and return it. Otherwise return NULL.
652 * Notice that if inode is a directory there can be only one alias and
653 * it can be unhashed only if it has no children, or if it is the root
654 * of a filesystem.
655 *
21c0d8fd 656 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
32ba9c3f
LT
657 * any other hashed alias over that one unless @want_discon is set,
658 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 659 */
32ba9c3f 660static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 661{
da502956 662 struct dentry *alias, *discon_alias;
1da177e4 663
da502956
NP
664again:
665 discon_alias = NULL;
b67bfe0d 666 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
da502956 667 spin_lock(&alias->d_lock);
1da177e4 668 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 669 if (IS_ROOT(alias) &&
da502956 670 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 671 discon_alias = alias;
32ba9c3f 672 } else if (!want_discon) {
dc0474be 673 __dget_dlock(alias);
da502956
NP
674 spin_unlock(&alias->d_lock);
675 return alias;
676 }
677 }
678 spin_unlock(&alias->d_lock);
679 }
680 if (discon_alias) {
681 alias = discon_alias;
682 spin_lock(&alias->d_lock);
683 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
684 if (IS_ROOT(alias) &&
685 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 686 __dget_dlock(alias);
da502956 687 spin_unlock(&alias->d_lock);
1da177e4
LT
688 return alias;
689 }
690 }
da502956
NP
691 spin_unlock(&alias->d_lock);
692 goto again;
1da177e4 693 }
da502956 694 return NULL;
1da177e4
LT
695}
696
da502956 697struct dentry *d_find_alias(struct inode *inode)
1da177e4 698{
214fda1f
DH
699 struct dentry *de = NULL;
700
b3d9b7a3 701 if (!hlist_empty(&inode->i_dentry)) {
873feea0 702 spin_lock(&inode->i_lock);
32ba9c3f 703 de = __d_find_alias(inode, 0);
873feea0 704 spin_unlock(&inode->i_lock);
214fda1f 705 }
1da177e4
LT
706 return de;
707}
ec4f8605 708EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
709
710/*
711 * Try to kill dentries associated with this inode.
712 * WARNING: you must own a reference to inode.
713 */
714void d_prune_aliases(struct inode *inode)
715{
0cdca3f9 716 struct dentry *dentry;
1da177e4 717restart:
873feea0 718 spin_lock(&inode->i_lock);
b67bfe0d 719 hlist_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 720 spin_lock(&dentry->d_lock);
b7ab39f6 721 if (!dentry->d_count) {
dc0474be 722 __dget_dlock(dentry);
1da177e4
LT
723 __d_drop(dentry);
724 spin_unlock(&dentry->d_lock);
873feea0 725 spin_unlock(&inode->i_lock);
1da177e4
LT
726 dput(dentry);
727 goto restart;
728 }
729 spin_unlock(&dentry->d_lock);
730 }
873feea0 731 spin_unlock(&inode->i_lock);
1da177e4 732}
ec4f8605 733EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
734
735/*
77812a1e
NP
736 * Try to throw away a dentry - free the inode, dput the parent.
737 * Requires dentry->d_lock is held, and dentry->d_count == 0.
738 * Releases dentry->d_lock.
d702ccb3 739 *
77812a1e 740 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 741 */
77812a1e 742static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 743 __releases(dentry->d_lock)
1da177e4 744{
77812a1e 745 struct dentry *parent;
d52b9086 746
77812a1e 747 parent = dentry_kill(dentry, 0);
d52b9086 748 /*
77812a1e
NP
749 * If dentry_kill returns NULL, we have nothing more to do.
750 * if it returns the same dentry, trylocks failed. In either
751 * case, just loop again.
752 *
753 * Otherwise, we need to prune ancestors too. This is necessary
754 * to prevent quadratic behavior of shrink_dcache_parent(), but
755 * is also expected to be beneficial in reducing dentry cache
756 * fragmentation.
d52b9086 757 */
77812a1e
NP
758 if (!parent)
759 return;
760 if (parent == dentry)
761 return;
762
763 /* Prune ancestors. */
764 dentry = parent;
d52b9086 765 while (dentry) {
b7ab39f6 766 spin_lock(&dentry->d_lock);
89e60548
NP
767 if (dentry->d_count > 1) {
768 dentry->d_count--;
769 spin_unlock(&dentry->d_lock);
770 return;
771 }
77812a1e 772 dentry = dentry_kill(dentry, 1);
d52b9086 773 }
1da177e4
LT
774}
775
3049cfe2 776static void shrink_dentry_list(struct list_head *list)
1da177e4 777{
da3bbdd4 778 struct dentry *dentry;
da3bbdd4 779
ec33679d
NP
780 rcu_read_lock();
781 for (;;) {
ec33679d
NP
782 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
783 if (&dentry->d_lru == list)
784 break; /* empty */
785 spin_lock(&dentry->d_lock);
786 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
787 spin_unlock(&dentry->d_lock);
23044507
NP
788 continue;
789 }
790
1da177e4
LT
791 /*
792 * We found an inuse dentry which was not removed from
da3bbdd4
KM
793 * the LRU because of laziness during lookup. Do not free
794 * it - just keep it off the LRU list.
1da177e4 795 */
b7ab39f6 796 if (dentry->d_count) {
ec33679d 797 dentry_lru_del(dentry);
da3bbdd4 798 spin_unlock(&dentry->d_lock);
1da177e4
LT
799 continue;
800 }
ec33679d 801
ec33679d 802 rcu_read_unlock();
77812a1e
NP
803
804 try_prune_one_dentry(dentry);
805
ec33679d 806 rcu_read_lock();
da3bbdd4 807 }
ec33679d 808 rcu_read_unlock();
3049cfe2
CH
809}
810
811/**
b48f03b3
DC
812 * prune_dcache_sb - shrink the dcache
813 * @sb: superblock
814 * @count: number of entries to try to free
815 *
816 * Attempt to shrink the superblock dcache LRU by @count entries. This is
817 * done when we need more memory an called from the superblock shrinker
818 * function.
3049cfe2 819 *
b48f03b3
DC
820 * This function may fail to free any resources if all the dentries are in
821 * use.
3049cfe2 822 */
b48f03b3 823void prune_dcache_sb(struct super_block *sb, int count)
3049cfe2 824{
3049cfe2
CH
825 struct dentry *dentry;
826 LIST_HEAD(referenced);
827 LIST_HEAD(tmp);
3049cfe2 828
23044507
NP
829relock:
830 spin_lock(&dcache_lru_lock);
3049cfe2
CH
831 while (!list_empty(&sb->s_dentry_lru)) {
832 dentry = list_entry(sb->s_dentry_lru.prev,
833 struct dentry, d_lru);
834 BUG_ON(dentry->d_sb != sb);
835
23044507
NP
836 if (!spin_trylock(&dentry->d_lock)) {
837 spin_unlock(&dcache_lru_lock);
838 cpu_relax();
839 goto relock;
840 }
841
b48f03b3 842 if (dentry->d_flags & DCACHE_REFERENCED) {
23044507
NP
843 dentry->d_flags &= ~DCACHE_REFERENCED;
844 list_move(&dentry->d_lru, &referenced);
3049cfe2 845 spin_unlock(&dentry->d_lock);
23044507
NP
846 } else {
847 list_move_tail(&dentry->d_lru, &tmp);
eaf5f907 848 dentry->d_flags |= DCACHE_SHRINK_LIST;
23044507 849 spin_unlock(&dentry->d_lock);
b0d40c92 850 if (!--count)
23044507 851 break;
3049cfe2 852 }
ec33679d 853 cond_resched_lock(&dcache_lru_lock);
3049cfe2 854 }
da3bbdd4
KM
855 if (!list_empty(&referenced))
856 list_splice(&referenced, &sb->s_dentry_lru);
23044507 857 spin_unlock(&dcache_lru_lock);
ec33679d
NP
858
859 shrink_dentry_list(&tmp);
da3bbdd4
KM
860}
861
1da177e4
LT
862/**
863 * shrink_dcache_sb - shrink dcache for a superblock
864 * @sb: superblock
865 *
3049cfe2
CH
866 * Shrink the dcache for the specified super block. This is used to free
867 * the dcache before unmounting a file system.
1da177e4 868 */
3049cfe2 869void shrink_dcache_sb(struct super_block *sb)
1da177e4 870{
3049cfe2
CH
871 LIST_HEAD(tmp);
872
23044507 873 spin_lock(&dcache_lru_lock);
3049cfe2
CH
874 while (!list_empty(&sb->s_dentry_lru)) {
875 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 876 spin_unlock(&dcache_lru_lock);
3049cfe2 877 shrink_dentry_list(&tmp);
ec33679d 878 spin_lock(&dcache_lru_lock);
3049cfe2 879 }
23044507 880 spin_unlock(&dcache_lru_lock);
1da177e4 881}
ec4f8605 882EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 883
c636ebdb
DH
884/*
885 * destroy a single subtree of dentries for unmount
886 * - see the comments on shrink_dcache_for_umount() for a description of the
887 * locking
888 */
889static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
890{
891 struct dentry *parent;
892
893 BUG_ON(!IS_ROOT(dentry));
894
c636ebdb
DH
895 for (;;) {
896 /* descend to the first leaf in the current subtree */
43c1c9cd 897 while (!list_empty(&dentry->d_subdirs))
c636ebdb
DH
898 dentry = list_entry(dentry->d_subdirs.next,
899 struct dentry, d_u.d_child);
c636ebdb
DH
900
901 /* consume the dentries from this leaf up through its parents
902 * until we find one with children or run out altogether */
903 do {
904 struct inode *inode;
905
f0023bc6 906 /*
61572bb1 907 * inform the fs that this dentry is about to be
f0023bc6
SW
908 * unhashed and destroyed.
909 */
61572bb1
YZ
910 if (dentry->d_flags & DCACHE_OP_PRUNE)
911 dentry->d_op->d_prune(dentry);
912
913 dentry_lru_del(dentry);
43c1c9cd
DH
914 __d_shrink(dentry);
915
b7ab39f6 916 if (dentry->d_count != 0) {
c636ebdb
DH
917 printk(KERN_ERR
918 "BUG: Dentry %p{i=%lx,n=%s}"
919 " still in use (%d)"
920 " [unmount of %s %s]\n",
921 dentry,
922 dentry->d_inode ?
923 dentry->d_inode->i_ino : 0UL,
924 dentry->d_name.name,
b7ab39f6 925 dentry->d_count,
c636ebdb
DH
926 dentry->d_sb->s_type->name,
927 dentry->d_sb->s_id);
928 BUG();
929 }
930
2fd6b7f5 931 if (IS_ROOT(dentry)) {
c636ebdb 932 parent = NULL;
2fd6b7f5
NP
933 list_del(&dentry->d_u.d_child);
934 } else {
871c0067 935 parent = dentry->d_parent;
b7ab39f6 936 parent->d_count--;
2fd6b7f5 937 list_del(&dentry->d_u.d_child);
871c0067 938 }
c636ebdb 939
c636ebdb
DH
940 inode = dentry->d_inode;
941 if (inode) {
942 dentry->d_inode = NULL;
b3d9b7a3 943 hlist_del_init(&dentry->d_alias);
c636ebdb
DH
944 if (dentry->d_op && dentry->d_op->d_iput)
945 dentry->d_op->d_iput(dentry, inode);
946 else
947 iput(inode);
948 }
949
950 d_free(dentry);
951
952 /* finished when we fall off the top of the tree,
953 * otherwise we ascend to the parent and move to the
954 * next sibling if there is one */
955 if (!parent)
312d3ca8 956 return;
c636ebdb 957 dentry = parent;
c636ebdb
DH
958 } while (list_empty(&dentry->d_subdirs));
959
960 dentry = list_entry(dentry->d_subdirs.next,
961 struct dentry, d_u.d_child);
962 }
963}
964
965/*
966 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 967 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
968 * - the superblock is detached from all mountings and open files, so the
969 * dentry trees will not be rearranged by the VFS
970 * - s_umount is write-locked, so the memory pressure shrinker will ignore
971 * any dentries belonging to this superblock that it comes across
972 * - the filesystem itself is no longer permitted to rearrange the dentries
973 * in this superblock
974 */
975void shrink_dcache_for_umount(struct super_block *sb)
976{
977 struct dentry *dentry;
978
979 if (down_read_trylock(&sb->s_umount))
980 BUG();
981
982 dentry = sb->s_root;
983 sb->s_root = NULL;
b7ab39f6 984 dentry->d_count--;
c636ebdb
DH
985 shrink_dcache_for_umount_subtree(dentry);
986
ceb5bdc2
NP
987 while (!hlist_bl_empty(&sb->s_anon)) {
988 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
989 shrink_dcache_for_umount_subtree(dentry);
990 }
991}
992
c826cb7d
LT
993/*
994 * This tries to ascend one level of parenthood, but
995 * we can race with renaming, so we need to re-check
996 * the parenthood after dropping the lock and check
997 * that the sequence number still matches.
998 */
999static struct dentry *try_to_ascend(struct dentry *old, int locked, unsigned seq)
1000{
1001 struct dentry *new = old->d_parent;
1002
1003 rcu_read_lock();
1004 spin_unlock(&old->d_lock);
1005 spin_lock(&new->d_lock);
1006
1007 /*
1008 * might go back up the wrong parent if we have had a rename
1009 * or deletion
1010 */
1011 if (new != old->d_parent ||
b161dfa6 1012 (old->d_flags & DCACHE_DENTRY_KILLED) ||
c826cb7d
LT
1013 (!locked && read_seqretry(&rename_lock, seq))) {
1014 spin_unlock(&new->d_lock);
1015 new = NULL;
1016 }
1017 rcu_read_unlock();
1018 return new;
1019}
1020
1021
1da177e4
LT
1022/*
1023 * Search for at least 1 mount point in the dentry's subdirs.
1024 * We descend to the next level whenever the d_subdirs
1025 * list is non-empty and continue searching.
1026 */
1027
1028/**
1029 * have_submounts - check for mounts over a dentry
1030 * @parent: dentry to check.
1031 *
1032 * Return true if the parent or its subdirectories contain
1033 * a mount point
1034 */
1da177e4
LT
1035int have_submounts(struct dentry *parent)
1036{
949854d0 1037 struct dentry *this_parent;
1da177e4 1038 struct list_head *next;
949854d0 1039 unsigned seq;
58db63d0 1040 int locked = 0;
949854d0 1041
949854d0 1042 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1043again:
1044 this_parent = parent;
1da177e4 1045
1da177e4
LT
1046 if (d_mountpoint(parent))
1047 goto positive;
2fd6b7f5 1048 spin_lock(&this_parent->d_lock);
1da177e4
LT
1049repeat:
1050 next = this_parent->d_subdirs.next;
1051resume:
1052 while (next != &this_parent->d_subdirs) {
1053 struct list_head *tmp = next;
5160ee6f 1054 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1055 next = tmp->next;
2fd6b7f5
NP
1056
1057 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1058 /* Have we found a mount point ? */
2fd6b7f5
NP
1059 if (d_mountpoint(dentry)) {
1060 spin_unlock(&dentry->d_lock);
1061 spin_unlock(&this_parent->d_lock);
1da177e4 1062 goto positive;
2fd6b7f5 1063 }
1da177e4 1064 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1065 spin_unlock(&this_parent->d_lock);
1066 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1067 this_parent = dentry;
2fd6b7f5 1068 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1069 goto repeat;
1070 }
2fd6b7f5 1071 spin_unlock(&dentry->d_lock);
1da177e4
LT
1072 }
1073 /*
1074 * All done at this level ... ascend and resume the search.
1075 */
1076 if (this_parent != parent) {
c826cb7d
LT
1077 struct dentry *child = this_parent;
1078 this_parent = try_to_ascend(this_parent, locked, seq);
1079 if (!this_parent)
949854d0 1080 goto rename_retry;
949854d0 1081 next = child->d_u.d_child.next;
1da177e4
LT
1082 goto resume;
1083 }
2fd6b7f5 1084 spin_unlock(&this_parent->d_lock);
58db63d0 1085 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1086 goto rename_retry;
58db63d0
NP
1087 if (locked)
1088 write_sequnlock(&rename_lock);
1da177e4
LT
1089 return 0; /* No mount points found in tree */
1090positive:
58db63d0 1091 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1092 goto rename_retry;
58db63d0
NP
1093 if (locked)
1094 write_sequnlock(&rename_lock);
1da177e4 1095 return 1;
58db63d0
NP
1096
1097rename_retry:
8110e16d
MS
1098 if (locked)
1099 goto again;
58db63d0
NP
1100 locked = 1;
1101 write_seqlock(&rename_lock);
1102 goto again;
1da177e4 1103}
ec4f8605 1104EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1105
1106/*
fd517909 1107 * Search the dentry child list of the specified parent,
1da177e4
LT
1108 * and move any unused dentries to the end of the unused
1109 * list for prune_dcache(). We descend to the next level
1110 * whenever the d_subdirs list is non-empty and continue
1111 * searching.
1112 *
1113 * It returns zero iff there are no unused children,
1114 * otherwise it returns the number of children moved to
1115 * the end of the unused list. This may not be the total
1116 * number of unused children, because select_parent can
1117 * drop the lock and return early due to latency
1118 * constraints.
1119 */
b48f03b3 1120static int select_parent(struct dentry *parent, struct list_head *dispose)
1da177e4 1121{
949854d0 1122 struct dentry *this_parent;
1da177e4 1123 struct list_head *next;
949854d0 1124 unsigned seq;
1da177e4 1125 int found = 0;
58db63d0 1126 int locked = 0;
1da177e4 1127
949854d0 1128 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1129again:
1130 this_parent = parent;
2fd6b7f5 1131 spin_lock(&this_parent->d_lock);
1da177e4
LT
1132repeat:
1133 next = this_parent->d_subdirs.next;
1134resume:
1135 while (next != &this_parent->d_subdirs) {
1136 struct list_head *tmp = next;
5160ee6f 1137 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1138 next = tmp->next;
1139
2fd6b7f5 1140 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1141
b48f03b3
DC
1142 /*
1143 * move only zero ref count dentries to the dispose list.
eaf5f907
MS
1144 *
1145 * Those which are presently on the shrink list, being processed
1146 * by shrink_dentry_list(), shouldn't be moved. Otherwise the
1147 * loop in shrink_dcache_parent() might not make any progress
1148 * and loop forever.
1da177e4 1149 */
eaf5f907
MS
1150 if (dentry->d_count) {
1151 dentry_lru_del(dentry);
1152 } else if (!(dentry->d_flags & DCACHE_SHRINK_LIST)) {
b48f03b3 1153 dentry_lru_move_list(dentry, dispose);
eaf5f907 1154 dentry->d_flags |= DCACHE_SHRINK_LIST;
1da177e4
LT
1155 found++;
1156 }
1da177e4
LT
1157 /*
1158 * We can return to the caller if we have found some (this
1159 * ensures forward progress). We'll be coming back to find
1160 * the rest.
1161 */
2fd6b7f5
NP
1162 if (found && need_resched()) {
1163 spin_unlock(&dentry->d_lock);
1da177e4 1164 goto out;
2fd6b7f5 1165 }
1da177e4
LT
1166
1167 /*
1168 * Descend a level if the d_subdirs list is non-empty.
1169 */
1170 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1171 spin_unlock(&this_parent->d_lock);
1172 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1173 this_parent = dentry;
2fd6b7f5 1174 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1175 goto repeat;
1176 }
2fd6b7f5
NP
1177
1178 spin_unlock(&dentry->d_lock);
1da177e4
LT
1179 }
1180 /*
1181 * All done at this level ... ascend and resume the search.
1182 */
1183 if (this_parent != parent) {
c826cb7d
LT
1184 struct dentry *child = this_parent;
1185 this_parent = try_to_ascend(this_parent, locked, seq);
1186 if (!this_parent)
949854d0 1187 goto rename_retry;
949854d0 1188 next = child->d_u.d_child.next;
1da177e4
LT
1189 goto resume;
1190 }
1191out:
2fd6b7f5 1192 spin_unlock(&this_parent->d_lock);
58db63d0 1193 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1194 goto rename_retry;
58db63d0
NP
1195 if (locked)
1196 write_sequnlock(&rename_lock);
1da177e4 1197 return found;
58db63d0
NP
1198
1199rename_retry:
1200 if (found)
1201 return found;
8110e16d
MS
1202 if (locked)
1203 goto again;
58db63d0
NP
1204 locked = 1;
1205 write_seqlock(&rename_lock);
1206 goto again;
1da177e4
LT
1207}
1208
1209/**
1210 * shrink_dcache_parent - prune dcache
1211 * @parent: parent of entries to prune
1212 *
1213 * Prune the dcache to remove unused children of the parent dentry.
1214 */
1da177e4
LT
1215void shrink_dcache_parent(struct dentry * parent)
1216{
b48f03b3 1217 LIST_HEAD(dispose);
1da177e4
LT
1218 int found;
1219
421348f1 1220 while ((found = select_parent(parent, &dispose)) != 0) {
b48f03b3 1221 shrink_dentry_list(&dispose);
421348f1
GT
1222 cond_resched();
1223 }
1da177e4 1224}
ec4f8605 1225EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1226
1da177e4 1227/**
a4464dbc
AV
1228 * __d_alloc - allocate a dcache entry
1229 * @sb: filesystem it will belong to
1da177e4
LT
1230 * @name: qstr of the name
1231 *
1232 * Allocates a dentry. It returns %NULL if there is insufficient memory
1233 * available. On a success the dentry is returned. The name passed in is
1234 * copied and the copy passed in may be reused after this call.
1235 */
1236
a4464dbc 1237struct dentry *__d_alloc(struct super_block *sb, const struct qstr *name)
1da177e4
LT
1238{
1239 struct dentry *dentry;
1240 char *dname;
1241
e12ba74d 1242 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1243 if (!dentry)
1244 return NULL;
1245
6326c71f
LT
1246 /*
1247 * We guarantee that the inline name is always NUL-terminated.
1248 * This way the memcpy() done by the name switching in rename
1249 * will still always have a NUL at the end, even if we might
1250 * be overwriting an internal NUL character
1251 */
1252 dentry->d_iname[DNAME_INLINE_LEN-1] = 0;
1da177e4
LT
1253 if (name->len > DNAME_INLINE_LEN-1) {
1254 dname = kmalloc(name->len + 1, GFP_KERNEL);
1255 if (!dname) {
1256 kmem_cache_free(dentry_cache, dentry);
1257 return NULL;
1258 }
1259 } else {
1260 dname = dentry->d_iname;
1261 }
1da177e4
LT
1262
1263 dentry->d_name.len = name->len;
1264 dentry->d_name.hash = name->hash;
1265 memcpy(dname, name->name, name->len);
1266 dname[name->len] = 0;
1267
6326c71f
LT
1268 /* Make sure we always see the terminating NUL character */
1269 smp_wmb();
1270 dentry->d_name.name = dname;
1271
b7ab39f6 1272 dentry->d_count = 1;
dea3667b 1273 dentry->d_flags = 0;
1da177e4 1274 spin_lock_init(&dentry->d_lock);
31e6b01f 1275 seqcount_init(&dentry->d_seq);
1da177e4 1276 dentry->d_inode = NULL;
a4464dbc
AV
1277 dentry->d_parent = dentry;
1278 dentry->d_sb = sb;
1da177e4
LT
1279 dentry->d_op = NULL;
1280 dentry->d_fsdata = NULL;
ceb5bdc2 1281 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1282 INIT_LIST_HEAD(&dentry->d_lru);
1283 INIT_LIST_HEAD(&dentry->d_subdirs);
b3d9b7a3 1284 INIT_HLIST_NODE(&dentry->d_alias);
2fd6b7f5 1285 INIT_LIST_HEAD(&dentry->d_u.d_child);
a4464dbc 1286 d_set_d_op(dentry, dentry->d_sb->s_d_op);
1da177e4 1287
3e880fb5 1288 this_cpu_inc(nr_dentry);
312d3ca8 1289
1da177e4
LT
1290 return dentry;
1291}
a4464dbc
AV
1292
1293/**
1294 * d_alloc - allocate a dcache entry
1295 * @parent: parent of entry to allocate
1296 * @name: qstr of the name
1297 *
1298 * Allocates a dentry. It returns %NULL if there is insufficient memory
1299 * available. On a success the dentry is returned. The name passed in is
1300 * copied and the copy passed in may be reused after this call.
1301 */
1302struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1303{
1304 struct dentry *dentry = __d_alloc(parent->d_sb, name);
1305 if (!dentry)
1306 return NULL;
1307
1308 spin_lock(&parent->d_lock);
1309 /*
1310 * don't need child lock because it is not subject
1311 * to concurrency here
1312 */
1313 __dget_dlock(parent);
1314 dentry->d_parent = parent;
1315 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
1316 spin_unlock(&parent->d_lock);
1317
1318 return dentry;
1319}
ec4f8605 1320EXPORT_SYMBOL(d_alloc);
1da177e4 1321
4b936885
NP
1322struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1323{
a4464dbc
AV
1324 struct dentry *dentry = __d_alloc(sb, name);
1325 if (dentry)
4b936885 1326 dentry->d_flags |= DCACHE_DISCONNECTED;
4b936885
NP
1327 return dentry;
1328}
1329EXPORT_SYMBOL(d_alloc_pseudo);
1330
1da177e4
LT
1331struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1332{
1333 struct qstr q;
1334
1335 q.name = name;
1336 q.len = strlen(name);
1337 q.hash = full_name_hash(q.name, q.len);
1338 return d_alloc(parent, &q);
1339}
ef26ca97 1340EXPORT_SYMBOL(d_alloc_name);
1da177e4 1341
fb045adb
NP
1342void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1343{
6f7f7caa
LT
1344 WARN_ON_ONCE(dentry->d_op);
1345 WARN_ON_ONCE(dentry->d_flags & (DCACHE_OP_HASH |
fb045adb
NP
1346 DCACHE_OP_COMPARE |
1347 DCACHE_OP_REVALIDATE |
ecf3d1f1 1348 DCACHE_OP_WEAK_REVALIDATE |
fb045adb
NP
1349 DCACHE_OP_DELETE ));
1350 dentry->d_op = op;
1351 if (!op)
1352 return;
1353 if (op->d_hash)
1354 dentry->d_flags |= DCACHE_OP_HASH;
1355 if (op->d_compare)
1356 dentry->d_flags |= DCACHE_OP_COMPARE;
1357 if (op->d_revalidate)
1358 dentry->d_flags |= DCACHE_OP_REVALIDATE;
ecf3d1f1
JL
1359 if (op->d_weak_revalidate)
1360 dentry->d_flags |= DCACHE_OP_WEAK_REVALIDATE;
fb045adb
NP
1361 if (op->d_delete)
1362 dentry->d_flags |= DCACHE_OP_DELETE;
f0023bc6
SW
1363 if (op->d_prune)
1364 dentry->d_flags |= DCACHE_OP_PRUNE;
fb045adb
NP
1365
1366}
1367EXPORT_SYMBOL(d_set_d_op);
1368
360da900
OH
1369static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1370{
b23fb0a6 1371 spin_lock(&dentry->d_lock);
9875cf80
DH
1372 if (inode) {
1373 if (unlikely(IS_AUTOMOUNT(inode)))
1374 dentry->d_flags |= DCACHE_NEED_AUTOMOUNT;
b3d9b7a3 1375 hlist_add_head(&dentry->d_alias, &inode->i_dentry);
9875cf80 1376 }
360da900 1377 dentry->d_inode = inode;
31e6b01f 1378 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1379 spin_unlock(&dentry->d_lock);
360da900
OH
1380 fsnotify_d_instantiate(dentry, inode);
1381}
1382
1da177e4
LT
1383/**
1384 * d_instantiate - fill in inode information for a dentry
1385 * @entry: dentry to complete
1386 * @inode: inode to attach to this dentry
1387 *
1388 * Fill in inode information in the entry.
1389 *
1390 * This turns negative dentries into productive full members
1391 * of society.
1392 *
1393 * NOTE! This assumes that the inode count has been incremented
1394 * (or otherwise set) by the caller to indicate that it is now
1395 * in use by the dcache.
1396 */
1397
1398void d_instantiate(struct dentry *entry, struct inode * inode)
1399{
b3d9b7a3 1400 BUG_ON(!hlist_unhashed(&entry->d_alias));
873feea0
NP
1401 if (inode)
1402 spin_lock(&inode->i_lock);
360da900 1403 __d_instantiate(entry, inode);
873feea0
NP
1404 if (inode)
1405 spin_unlock(&inode->i_lock);
1da177e4
LT
1406 security_d_instantiate(entry, inode);
1407}
ec4f8605 1408EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1409
1410/**
1411 * d_instantiate_unique - instantiate a non-aliased dentry
1412 * @entry: dentry to instantiate
1413 * @inode: inode to attach to this dentry
1414 *
1415 * Fill in inode information in the entry. On success, it returns NULL.
1416 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1417 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1418 *
1419 * Note that in order to avoid conflicts with rename() etc, the caller
1420 * had better be holding the parent directory semaphore.
e866cfa9
OD
1421 *
1422 * This also assumes that the inode count has been incremented
1423 * (or otherwise set) by the caller to indicate that it is now
1424 * in use by the dcache.
1da177e4 1425 */
770bfad8
DH
1426static struct dentry *__d_instantiate_unique(struct dentry *entry,
1427 struct inode *inode)
1da177e4
LT
1428{
1429 struct dentry *alias;
1430 int len = entry->d_name.len;
1431 const char *name = entry->d_name.name;
1432 unsigned int hash = entry->d_name.hash;
1433
770bfad8 1434 if (!inode) {
360da900 1435 __d_instantiate(entry, NULL);
770bfad8
DH
1436 return NULL;
1437 }
1438
b67bfe0d 1439 hlist_for_each_entry(alias, &inode->i_dentry, d_alias) {
9abca360
NP
1440 /*
1441 * Don't need alias->d_lock here, because aliases with
1442 * d_parent == entry->d_parent are not subject to name or
1443 * parent changes, because the parent inode i_mutex is held.
1444 */
12f8ad4b 1445 if (alias->d_name.hash != hash)
1da177e4
LT
1446 continue;
1447 if (alias->d_parent != entry->d_parent)
1448 continue;
ee983e89
LT
1449 if (alias->d_name.len != len)
1450 continue;
12f8ad4b 1451 if (dentry_cmp(alias, name, len))
1da177e4 1452 continue;
dc0474be 1453 __dget(alias);
1da177e4
LT
1454 return alias;
1455 }
770bfad8 1456
360da900 1457 __d_instantiate(entry, inode);
1da177e4
LT
1458 return NULL;
1459}
770bfad8
DH
1460
1461struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1462{
1463 struct dentry *result;
1464
b3d9b7a3 1465 BUG_ON(!hlist_unhashed(&entry->d_alias));
770bfad8 1466
873feea0
NP
1467 if (inode)
1468 spin_lock(&inode->i_lock);
770bfad8 1469 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1470 if (inode)
1471 spin_unlock(&inode->i_lock);
770bfad8
DH
1472
1473 if (!result) {
1474 security_d_instantiate(entry, inode);
1475 return NULL;
1476 }
1477
1478 BUG_ON(!d_unhashed(result));
1479 iput(inode);
1480 return result;
1481}
1482
1da177e4
LT
1483EXPORT_SYMBOL(d_instantiate_unique);
1484
adc0e91a
AV
1485struct dentry *d_make_root(struct inode *root_inode)
1486{
1487 struct dentry *res = NULL;
1488
1489 if (root_inode) {
26fe5750 1490 static const struct qstr name = QSTR_INIT("/", 1);
adc0e91a
AV
1491
1492 res = __d_alloc(root_inode->i_sb, &name);
1493 if (res)
1494 d_instantiate(res, root_inode);
1495 else
1496 iput(root_inode);
1497 }
1498 return res;
1499}
1500EXPORT_SYMBOL(d_make_root);
1501
d891eedb
BF
1502static struct dentry * __d_find_any_alias(struct inode *inode)
1503{
1504 struct dentry *alias;
1505
b3d9b7a3 1506 if (hlist_empty(&inode->i_dentry))
d891eedb 1507 return NULL;
b3d9b7a3 1508 alias = hlist_entry(inode->i_dentry.first, struct dentry, d_alias);
d891eedb
BF
1509 __dget(alias);
1510 return alias;
1511}
1512
46f72b34
SW
1513/**
1514 * d_find_any_alias - find any alias for a given inode
1515 * @inode: inode to find an alias for
1516 *
1517 * If any aliases exist for the given inode, take and return a
1518 * reference for one of them. If no aliases exist, return %NULL.
1519 */
1520struct dentry *d_find_any_alias(struct inode *inode)
d891eedb
BF
1521{
1522 struct dentry *de;
1523
1524 spin_lock(&inode->i_lock);
1525 de = __d_find_any_alias(inode);
1526 spin_unlock(&inode->i_lock);
1527 return de;
1528}
46f72b34 1529EXPORT_SYMBOL(d_find_any_alias);
d891eedb 1530
4ea3ada2
CH
1531/**
1532 * d_obtain_alias - find or allocate a dentry for a given inode
1533 * @inode: inode to allocate the dentry for
1534 *
1535 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1536 * similar open by handle operations. The returned dentry may be anonymous,
1537 * or may have a full name (if the inode was already in the cache).
1538 *
1539 * When called on a directory inode, we must ensure that the inode only ever
1540 * has one dentry. If a dentry is found, that is returned instead of
1541 * allocating a new one.
1542 *
1543 * On successful return, the reference to the inode has been transferred
44003728
CH
1544 * to the dentry. In case of an error the reference on the inode is released.
1545 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1546 * be passed in and will be the error will be propagate to the return value,
1547 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1548 */
1549struct dentry *d_obtain_alias(struct inode *inode)
1550{
b911a6bd 1551 static const struct qstr anonstring = QSTR_INIT("/", 1);
9308a612
CH
1552 struct dentry *tmp;
1553 struct dentry *res;
4ea3ada2
CH
1554
1555 if (!inode)
44003728 1556 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1557 if (IS_ERR(inode))
1558 return ERR_CAST(inode);
1559
d891eedb 1560 res = d_find_any_alias(inode);
9308a612
CH
1561 if (res)
1562 goto out_iput;
1563
a4464dbc 1564 tmp = __d_alloc(inode->i_sb, &anonstring);
9308a612
CH
1565 if (!tmp) {
1566 res = ERR_PTR(-ENOMEM);
1567 goto out_iput;
4ea3ada2 1568 }
b5c84bf6 1569
873feea0 1570 spin_lock(&inode->i_lock);
d891eedb 1571 res = __d_find_any_alias(inode);
9308a612 1572 if (res) {
873feea0 1573 spin_unlock(&inode->i_lock);
9308a612
CH
1574 dput(tmp);
1575 goto out_iput;
1576 }
1577
1578 /* attach a disconnected dentry */
1579 spin_lock(&tmp->d_lock);
9308a612
CH
1580 tmp->d_inode = inode;
1581 tmp->d_flags |= DCACHE_DISCONNECTED;
b3d9b7a3 1582 hlist_add_head(&tmp->d_alias, &inode->i_dentry);
1879fd6a 1583 hlist_bl_lock(&tmp->d_sb->s_anon);
ceb5bdc2 1584 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1879fd6a 1585 hlist_bl_unlock(&tmp->d_sb->s_anon);
9308a612 1586 spin_unlock(&tmp->d_lock);
873feea0 1587 spin_unlock(&inode->i_lock);
24ff6663 1588 security_d_instantiate(tmp, inode);
9308a612 1589
9308a612
CH
1590 return tmp;
1591
1592 out_iput:
24ff6663
JB
1593 if (res && !IS_ERR(res))
1594 security_d_instantiate(res, inode);
9308a612
CH
1595 iput(inode);
1596 return res;
4ea3ada2 1597}
adc48720 1598EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1599
1600/**
1601 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1602 * @inode: the inode which may have a disconnected dentry
1603 * @dentry: a negative dentry which we want to point to the inode.
1604 *
1605 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1606 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1607 * and return it, else simply d_add the inode to the dentry and return NULL.
1608 *
1609 * This is needed in the lookup routine of any filesystem that is exportable
1610 * (via knfsd) so that we can build dcache paths to directories effectively.
1611 *
1612 * If a dentry was found and moved, then it is returned. Otherwise NULL
1613 * is returned. This matches the expected return value of ->lookup.
1614 *
1615 */
1616struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1617{
1618 struct dentry *new = NULL;
1619
a9049376
AV
1620 if (IS_ERR(inode))
1621 return ERR_CAST(inode);
1622
21c0d8fd 1623 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1624 spin_lock(&inode->i_lock);
32ba9c3f 1625 new = __d_find_alias(inode, 1);
1da177e4 1626 if (new) {
32ba9c3f 1627 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1628 spin_unlock(&inode->i_lock);
1da177e4 1629 security_d_instantiate(new, inode);
1da177e4
LT
1630 d_move(new, dentry);
1631 iput(inode);
1632 } else {
873feea0 1633 /* already taking inode->i_lock, so d_add() by hand */
360da900 1634 __d_instantiate(dentry, inode);
873feea0 1635 spin_unlock(&inode->i_lock);
1da177e4
LT
1636 security_d_instantiate(dentry, inode);
1637 d_rehash(dentry);
1638 }
1639 } else
1640 d_add(dentry, inode);
1641 return new;
1642}
ec4f8605 1643EXPORT_SYMBOL(d_splice_alias);
1da177e4 1644
9403540c
BN
1645/**
1646 * d_add_ci - lookup or allocate new dentry with case-exact name
1647 * @inode: the inode case-insensitive lookup has found
1648 * @dentry: the negative dentry that was passed to the parent's lookup func
1649 * @name: the case-exact name to be associated with the returned dentry
1650 *
1651 * This is to avoid filling the dcache with case-insensitive names to the
1652 * same inode, only the actual correct case is stored in the dcache for
1653 * case-insensitive filesystems.
1654 *
1655 * For a case-insensitive lookup match and if the the case-exact dentry
1656 * already exists in in the dcache, use it and return it.
1657 *
1658 * If no entry exists with the exact case name, allocate new dentry with
1659 * the exact case, and return the spliced entry.
1660 */
e45b590b 1661struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1662 struct qstr *name)
1663{
9403540c
BN
1664 struct dentry *found;
1665 struct dentry *new;
1666
b6520c81
CH
1667 /*
1668 * First check if a dentry matching the name already exists,
1669 * if not go ahead and create it now.
1670 */
9403540c 1671 found = d_hash_and_lookup(dentry->d_parent, name);
4f522a24
AV
1672 if (unlikely(IS_ERR(found)))
1673 goto err_out;
9403540c
BN
1674 if (!found) {
1675 new = d_alloc(dentry->d_parent, name);
1676 if (!new) {
4f522a24 1677 found = ERR_PTR(-ENOMEM);
9403540c
BN
1678 goto err_out;
1679 }
b6520c81 1680
9403540c
BN
1681 found = d_splice_alias(inode, new);
1682 if (found) {
1683 dput(new);
1684 return found;
1685 }
1686 return new;
1687 }
b6520c81
CH
1688
1689 /*
1690 * If a matching dentry exists, and it's not negative use it.
1691 *
1692 * Decrement the reference count to balance the iget() done
1693 * earlier on.
1694 */
9403540c
BN
1695 if (found->d_inode) {
1696 if (unlikely(found->d_inode != inode)) {
1697 /* This can't happen because bad inodes are unhashed. */
1698 BUG_ON(!is_bad_inode(inode));
1699 BUG_ON(!is_bad_inode(found->d_inode));
1700 }
9403540c
BN
1701 iput(inode);
1702 return found;
1703 }
b6520c81 1704
9403540c 1705 /*
9403540c 1706 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1707 * already has a dentry.
9403540c 1708 */
4513d899
AV
1709 new = d_splice_alias(inode, found);
1710 if (new) {
1711 dput(found);
1712 found = new;
9403540c 1713 }
4513d899 1714 return found;
9403540c
BN
1715
1716err_out:
1717 iput(inode);
4f522a24 1718 return found;
9403540c 1719}
ec4f8605 1720EXPORT_SYMBOL(d_add_ci);
1da177e4 1721
12f8ad4b
LT
1722/*
1723 * Do the slow-case of the dentry name compare.
1724 *
1725 * Unlike the dentry_cmp() function, we need to atomically
1726 * load the name, length and inode information, so that the
1727 * filesystem can rely on them, and can use the 'name' and
1728 * 'len' information without worrying about walking off the
1729 * end of memory etc.
1730 *
1731 * Thus the read_seqcount_retry() and the "duplicate" info
1732 * in arguments (the low-level filesystem should not look
1733 * at the dentry inode or name contents directly, since
1734 * rename can change them while we're in RCU mode).
1735 */
1736enum slow_d_compare {
1737 D_COMP_OK,
1738 D_COMP_NOMATCH,
1739 D_COMP_SEQRETRY,
1740};
1741
1742static noinline enum slow_d_compare slow_dentry_cmp(
1743 const struct dentry *parent,
1744 struct inode *inode,
1745 struct dentry *dentry,
1746 unsigned int seq,
1747 const struct qstr *name)
1748{
1749 int tlen = dentry->d_name.len;
1750 const char *tname = dentry->d_name.name;
1751 struct inode *i = dentry->d_inode;
1752
1753 if (read_seqcount_retry(&dentry->d_seq, seq)) {
1754 cpu_relax();
1755 return D_COMP_SEQRETRY;
1756 }
1757 if (parent->d_op->d_compare(parent, inode,
1758 dentry, i,
1759 tlen, tname, name))
1760 return D_COMP_NOMATCH;
1761 return D_COMP_OK;
1762}
1763
31e6b01f
NP
1764/**
1765 * __d_lookup_rcu - search for a dentry (racy, store-free)
1766 * @parent: parent dentry
1767 * @name: qstr of name we wish to find
1f1e6e52 1768 * @seqp: returns d_seq value at the point where the dentry was found
31e6b01f
NP
1769 * @inode: returns dentry->d_inode when the inode was found valid.
1770 * Returns: dentry, or NULL
1771 *
1772 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1773 * resolution (store-free path walking) design described in
1774 * Documentation/filesystems/path-lookup.txt.
1775 *
1776 * This is not to be used outside core vfs.
1777 *
1778 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1779 * held, and rcu_read_lock held. The returned dentry must not be stored into
1780 * without taking d_lock and checking d_seq sequence count against @seq
1781 * returned here.
1782 *
1783 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1784 * function.
1785 *
1786 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1787 * the returned dentry, so long as its parent's seqlock is checked after the
1788 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1789 * is formed, giving integrity down the path walk.
12f8ad4b
LT
1790 *
1791 * NOTE! The caller *has* to check the resulting dentry against the sequence
1792 * number we've returned before using any of the resulting dentry state!
31e6b01f 1793 */
8966be90
LT
1794struct dentry *__d_lookup_rcu(const struct dentry *parent,
1795 const struct qstr *name,
12f8ad4b 1796 unsigned *seqp, struct inode *inode)
31e6b01f 1797{
26fe5750 1798 u64 hashlen = name->hash_len;
31e6b01f 1799 const unsigned char *str = name->name;
26fe5750 1800 struct hlist_bl_head *b = d_hash(parent, hashlen_hash(hashlen));
ceb5bdc2 1801 struct hlist_bl_node *node;
31e6b01f
NP
1802 struct dentry *dentry;
1803
1804 /*
1805 * Note: There is significant duplication with __d_lookup_rcu which is
1806 * required to prevent single threaded performance regressions
1807 * especially on architectures where smp_rmb (in seqcounts) are costly.
1808 * Keep the two functions in sync.
1809 */
1810
1811 /*
1812 * The hash list is protected using RCU.
1813 *
1814 * Carefully use d_seq when comparing a candidate dentry, to avoid
1815 * races with d_move().
1816 *
1817 * It is possible that concurrent renames can mess up our list
1818 * walk here and result in missing our dentry, resulting in the
1819 * false-negative result. d_lookup() protects against concurrent
1820 * renames using rename_lock seqlock.
1821 *
b0a4bb83 1822 * See Documentation/filesystems/path-lookup.txt for more details.
31e6b01f 1823 */
b07ad996 1824 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
8966be90 1825 unsigned seq;
31e6b01f 1826
31e6b01f 1827seqretry:
12f8ad4b
LT
1828 /*
1829 * The dentry sequence count protects us from concurrent
1830 * renames, and thus protects inode, parent and name fields.
1831 *
1832 * The caller must perform a seqcount check in order
1833 * to do anything useful with the returned dentry,
1834 * including using the 'd_inode' pointer.
1835 *
1836 * NOTE! We do a "raw" seqcount_begin here. That means that
1837 * we don't wait for the sequence count to stabilize if it
1838 * is in the middle of a sequence change. If we do the slow
1839 * dentry compare, we will do seqretries until it is stable,
1840 * and if we end up with a successful lookup, we actually
1841 * want to exit RCU lookup anyway.
1842 */
1843 seq = raw_seqcount_begin(&dentry->d_seq);
31e6b01f
NP
1844 if (dentry->d_parent != parent)
1845 continue;
2e321806
LT
1846 if (d_unhashed(dentry))
1847 continue;
12f8ad4b
LT
1848 *seqp = seq;
1849
830c0f0e 1850 if (unlikely(parent->d_flags & DCACHE_OP_COMPARE)) {
26fe5750
LT
1851 if (dentry->d_name.hash != hashlen_hash(hashlen))
1852 continue;
12f8ad4b
LT
1853 switch (slow_dentry_cmp(parent, inode, dentry, seq, name)) {
1854 case D_COMP_OK:
1855 return dentry;
1856 case D_COMP_NOMATCH:
31e6b01f 1857 continue;
12f8ad4b
LT
1858 default:
1859 goto seqretry;
1860 }
31e6b01f 1861 }
12f8ad4b 1862
26fe5750 1863 if (dentry->d_name.hash_len != hashlen)
ee983e89 1864 continue;
26fe5750 1865 if (!dentry_cmp(dentry, str, hashlen_len(hashlen)))
12f8ad4b 1866 return dentry;
31e6b01f
NP
1867 }
1868 return NULL;
1869}
1870
1da177e4
LT
1871/**
1872 * d_lookup - search for a dentry
1873 * @parent: parent dentry
1874 * @name: qstr of name we wish to find
b04f784e 1875 * Returns: dentry, or NULL
1da177e4 1876 *
b04f784e
NP
1877 * d_lookup searches the children of the parent dentry for the name in
1878 * question. If the dentry is found its reference count is incremented and the
1879 * dentry is returned. The caller must use dput to free the entry when it has
1880 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1881 */
da2d8455 1882struct dentry *d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4 1883{
31e6b01f 1884 struct dentry *dentry;
949854d0 1885 unsigned seq;
1da177e4
LT
1886
1887 do {
1888 seq = read_seqbegin(&rename_lock);
1889 dentry = __d_lookup(parent, name);
1890 if (dentry)
1891 break;
1892 } while (read_seqretry(&rename_lock, seq));
1893 return dentry;
1894}
ec4f8605 1895EXPORT_SYMBOL(d_lookup);
1da177e4 1896
31e6b01f 1897/**
b04f784e
NP
1898 * __d_lookup - search for a dentry (racy)
1899 * @parent: parent dentry
1900 * @name: qstr of name we wish to find
1901 * Returns: dentry, or NULL
1902 *
1903 * __d_lookup is like d_lookup, however it may (rarely) return a
1904 * false-negative result due to unrelated rename activity.
1905 *
1906 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1907 * however it must be used carefully, eg. with a following d_lookup in
1908 * the case of failure.
1909 *
1910 * __d_lookup callers must be commented.
1911 */
a713ca2a 1912struct dentry *__d_lookup(const struct dentry *parent, const struct qstr *name)
1da177e4
LT
1913{
1914 unsigned int len = name->len;
1915 unsigned int hash = name->hash;
1916 const unsigned char *str = name->name;
b07ad996 1917 struct hlist_bl_head *b = d_hash(parent, hash);
ceb5bdc2 1918 struct hlist_bl_node *node;
31e6b01f 1919 struct dentry *found = NULL;
665a7583 1920 struct dentry *dentry;
1da177e4 1921
31e6b01f
NP
1922 /*
1923 * Note: There is significant duplication with __d_lookup_rcu which is
1924 * required to prevent single threaded performance regressions
1925 * especially on architectures where smp_rmb (in seqcounts) are costly.
1926 * Keep the two functions in sync.
1927 */
1928
b04f784e
NP
1929 /*
1930 * The hash list is protected using RCU.
1931 *
1932 * Take d_lock when comparing a candidate dentry, to avoid races
1933 * with d_move().
1934 *
1935 * It is possible that concurrent renames can mess up our list
1936 * walk here and result in missing our dentry, resulting in the
1937 * false-negative result. d_lookup() protects against concurrent
1938 * renames using rename_lock seqlock.
1939 *
b0a4bb83 1940 * See Documentation/filesystems/path-lookup.txt for more details.
b04f784e 1941 */
1da177e4
LT
1942 rcu_read_lock();
1943
b07ad996 1944 hlist_bl_for_each_entry_rcu(dentry, node, b, d_hash) {
1da177e4 1945
1da177e4
LT
1946 if (dentry->d_name.hash != hash)
1947 continue;
1da177e4
LT
1948
1949 spin_lock(&dentry->d_lock);
1da177e4
LT
1950 if (dentry->d_parent != parent)
1951 goto next;
d0185c08
LT
1952 if (d_unhashed(dentry))
1953 goto next;
1954
1da177e4
LT
1955 /*
1956 * It is safe to compare names since d_move() cannot
1957 * change the qstr (protected by d_lock).
1958 */
fb045adb 1959 if (parent->d_flags & DCACHE_OP_COMPARE) {
12f8ad4b
LT
1960 int tlen = dentry->d_name.len;
1961 const char *tname = dentry->d_name.name;
621e155a
NP
1962 if (parent->d_op->d_compare(parent, parent->d_inode,
1963 dentry, dentry->d_inode,
31e6b01f 1964 tlen, tname, name))
1da177e4
LT
1965 goto next;
1966 } else {
ee983e89
LT
1967 if (dentry->d_name.len != len)
1968 goto next;
12f8ad4b 1969 if (dentry_cmp(dentry, str, len))
1da177e4
LT
1970 goto next;
1971 }
1972
b7ab39f6 1973 dentry->d_count++;
d0185c08 1974 found = dentry;
1da177e4
LT
1975 spin_unlock(&dentry->d_lock);
1976 break;
1977next:
1978 spin_unlock(&dentry->d_lock);
1979 }
1980 rcu_read_unlock();
1981
1982 return found;
1983}
1984
3e7e241f
EB
1985/**
1986 * d_hash_and_lookup - hash the qstr then search for a dentry
1987 * @dir: Directory to search in
1988 * @name: qstr of name we wish to find
1989 *
4f522a24 1990 * On lookup failure NULL is returned; on bad name - ERR_PTR(-error)
3e7e241f
EB
1991 */
1992struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1993{
3e7e241f
EB
1994 /*
1995 * Check for a fs-specific hash function. Note that we must
1996 * calculate the standard hash first, as the d_op->d_hash()
1997 * routine may choose to leave the hash value unchanged.
1998 */
1999 name->hash = full_name_hash(name->name, name->len);
fb045adb 2000 if (dir->d_flags & DCACHE_OP_HASH) {
4f522a24
AV
2001 int err = dir->d_op->d_hash(dir, dir->d_inode, name);
2002 if (unlikely(err < 0))
2003 return ERR_PTR(err);
3e7e241f 2004 }
4f522a24 2005 return d_lookup(dir, name);
3e7e241f 2006}
4f522a24 2007EXPORT_SYMBOL(d_hash_and_lookup);
3e7e241f 2008
1da177e4 2009/**
786a5e15 2010 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 2011 * @dentry: The dentry alleged to be valid child of @dparent
ff5fdb61 2012 * @dparent: The parent dentry (known to be valid)
1da177e4
LT
2013 *
2014 * An insecure source has sent us a dentry, here we verify it and dget() it.
2015 * This is used by ncpfs in its readdir implementation.
2016 * Zero is returned in the dentry is invalid.
786a5e15
NP
2017 *
2018 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 2019 */
d3a23e16 2020int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 2021{
786a5e15 2022 struct dentry *child;
d3a23e16 2023
2fd6b7f5 2024 spin_lock(&dparent->d_lock);
786a5e15
NP
2025 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
2026 if (dentry == child) {
2fd6b7f5 2027 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 2028 __dget_dlock(dentry);
2fd6b7f5
NP
2029 spin_unlock(&dentry->d_lock);
2030 spin_unlock(&dparent->d_lock);
1da177e4
LT
2031 return 1;
2032 }
2033 }
2fd6b7f5 2034 spin_unlock(&dparent->d_lock);
786a5e15 2035
1da177e4
LT
2036 return 0;
2037}
ec4f8605 2038EXPORT_SYMBOL(d_validate);
1da177e4
LT
2039
2040/*
2041 * When a file is deleted, we have two options:
2042 * - turn this dentry into a negative dentry
2043 * - unhash this dentry and free it.
2044 *
2045 * Usually, we want to just turn this into
2046 * a negative dentry, but if anybody else is
2047 * currently using the dentry or the inode
2048 * we can't do that and we fall back on removing
2049 * it from the hash queues and waiting for
2050 * it to be deleted later when it has no users
2051 */
2052
2053/**
2054 * d_delete - delete a dentry
2055 * @dentry: The dentry to delete
2056 *
2057 * Turn the dentry into a negative dentry if possible, otherwise
2058 * remove it from the hash queues so it can be deleted later
2059 */
2060
2061void d_delete(struct dentry * dentry)
2062{
873feea0 2063 struct inode *inode;
7a91bf7f 2064 int isdir = 0;
1da177e4
LT
2065 /*
2066 * Are we the only user?
2067 */
357f8e65 2068again:
1da177e4 2069 spin_lock(&dentry->d_lock);
873feea0
NP
2070 inode = dentry->d_inode;
2071 isdir = S_ISDIR(inode->i_mode);
b7ab39f6 2072 if (dentry->d_count == 1) {
1fe0c023 2073 if (!spin_trylock(&inode->i_lock)) {
357f8e65
NP
2074 spin_unlock(&dentry->d_lock);
2075 cpu_relax();
2076 goto again;
2077 }
13e3c5e5 2078 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2079 dentry_unlink_inode(dentry);
7a91bf7f 2080 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2081 return;
2082 }
2083
2084 if (!d_unhashed(dentry))
2085 __d_drop(dentry);
2086
2087 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2088
2089 fsnotify_nameremove(dentry, isdir);
1da177e4 2090}
ec4f8605 2091EXPORT_SYMBOL(d_delete);
1da177e4 2092
b07ad996 2093static void __d_rehash(struct dentry * entry, struct hlist_bl_head *b)
1da177e4 2094{
ceb5bdc2 2095 BUG_ON(!d_unhashed(entry));
1879fd6a 2096 hlist_bl_lock(b);
dea3667b 2097 entry->d_flags |= DCACHE_RCUACCESS;
b07ad996 2098 hlist_bl_add_head_rcu(&entry->d_hash, b);
1879fd6a 2099 hlist_bl_unlock(b);
1da177e4
LT
2100}
2101
770bfad8
DH
2102static void _d_rehash(struct dentry * entry)
2103{
2104 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2105}
2106
1da177e4
LT
2107/**
2108 * d_rehash - add an entry back to the hash
2109 * @entry: dentry to add to the hash
2110 *
2111 * Adds a dentry to the hash according to its name.
2112 */
2113
2114void d_rehash(struct dentry * entry)
2115{
1da177e4 2116 spin_lock(&entry->d_lock);
770bfad8 2117 _d_rehash(entry);
1da177e4 2118 spin_unlock(&entry->d_lock);
1da177e4 2119}
ec4f8605 2120EXPORT_SYMBOL(d_rehash);
1da177e4 2121
fb2d5b86
NP
2122/**
2123 * dentry_update_name_case - update case insensitive dentry with a new name
2124 * @dentry: dentry to be updated
2125 * @name: new name
2126 *
2127 * Update a case insensitive dentry with new case of name.
2128 *
2129 * dentry must have been returned by d_lookup with name @name. Old and new
2130 * name lengths must match (ie. no d_compare which allows mismatched name
2131 * lengths).
2132 *
2133 * Parent inode i_mutex must be held over d_lookup and into this call (to
2134 * keep renames and concurrent inserts, and readdir(2) away).
2135 */
2136void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2137{
7ebfa57f 2138 BUG_ON(!mutex_is_locked(&dentry->d_parent->d_inode->i_mutex));
fb2d5b86
NP
2139 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2140
fb2d5b86 2141 spin_lock(&dentry->d_lock);
31e6b01f 2142 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2143 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2144 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2145 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2146}
2147EXPORT_SYMBOL(dentry_update_name_case);
2148
1da177e4
LT
2149static void switch_names(struct dentry *dentry, struct dentry *target)
2150{
2151 if (dname_external(target)) {
2152 if (dname_external(dentry)) {
2153 /*
2154 * Both external: swap the pointers
2155 */
9a8d5bb4 2156 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2157 } else {
2158 /*
2159 * dentry:internal, target:external. Steal target's
2160 * storage and make target internal.
2161 */
321bcf92
BF
2162 memcpy(target->d_iname, dentry->d_name.name,
2163 dentry->d_name.len + 1);
1da177e4
LT
2164 dentry->d_name.name = target->d_name.name;
2165 target->d_name.name = target->d_iname;
2166 }
2167 } else {
2168 if (dname_external(dentry)) {
2169 /*
2170 * dentry:external, target:internal. Give dentry's
2171 * storage to target and make dentry internal
2172 */
2173 memcpy(dentry->d_iname, target->d_name.name,
2174 target->d_name.len + 1);
2175 target->d_name.name = dentry->d_name.name;
2176 dentry->d_name.name = dentry->d_iname;
2177 } else {
2178 /*
2179 * Both are internal. Just copy target to dentry
2180 */
2181 memcpy(dentry->d_iname, target->d_name.name,
2182 target->d_name.len + 1);
dc711ca3
AV
2183 dentry->d_name.len = target->d_name.len;
2184 return;
1da177e4
LT
2185 }
2186 }
9a8d5bb4 2187 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2188}
2189
2fd6b7f5
NP
2190static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2191{
2192 /*
2193 * XXXX: do we really need to take target->d_lock?
2194 */
2195 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2196 spin_lock(&target->d_parent->d_lock);
2197 else {
2198 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2199 spin_lock(&dentry->d_parent->d_lock);
2200 spin_lock_nested(&target->d_parent->d_lock,
2201 DENTRY_D_LOCK_NESTED);
2202 } else {
2203 spin_lock(&target->d_parent->d_lock);
2204 spin_lock_nested(&dentry->d_parent->d_lock,
2205 DENTRY_D_LOCK_NESTED);
2206 }
2207 }
2208 if (target < dentry) {
2209 spin_lock_nested(&target->d_lock, 2);
2210 spin_lock_nested(&dentry->d_lock, 3);
2211 } else {
2212 spin_lock_nested(&dentry->d_lock, 2);
2213 spin_lock_nested(&target->d_lock, 3);
2214 }
2215}
2216
2217static void dentry_unlock_parents_for_move(struct dentry *dentry,
2218 struct dentry *target)
2219{
2220 if (target->d_parent != dentry->d_parent)
2221 spin_unlock(&dentry->d_parent->d_lock);
2222 if (target->d_parent != target)
2223 spin_unlock(&target->d_parent->d_lock);
2224}
2225
1da177e4 2226/*
2fd6b7f5
NP
2227 * When switching names, the actual string doesn't strictly have to
2228 * be preserved in the target - because we're dropping the target
2229 * anyway. As such, we can just do a simple memcpy() to copy over
2230 * the new name before we switch.
2231 *
2232 * Note that we have to be a lot more careful about getting the hash
2233 * switched - we have to switch the hash value properly even if it
2234 * then no longer matches the actual (corrupted) string of the target.
2235 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2236 */
9eaef27b 2237/*
18367501 2238 * __d_move - move a dentry
1da177e4
LT
2239 * @dentry: entry to move
2240 * @target: new dentry
2241 *
2242 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2243 * dcache entries should not be moved in this way. Caller must hold
2244 * rename_lock, the i_mutex of the source and target directories,
2245 * and the sb->s_vfs_rename_mutex if they differ. See lock_rename().
1da177e4 2246 */
18367501 2247static void __d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2248{
1da177e4
LT
2249 if (!dentry->d_inode)
2250 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2251
2fd6b7f5
NP
2252 BUG_ON(d_ancestor(dentry, target));
2253 BUG_ON(d_ancestor(target, dentry));
2254
2fd6b7f5 2255 dentry_lock_for_move(dentry, target);
1da177e4 2256
31e6b01f
NP
2257 write_seqcount_begin(&dentry->d_seq);
2258 write_seqcount_begin(&target->d_seq);
2259
ceb5bdc2
NP
2260 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2261
2262 /*
2263 * Move the dentry to the target hash queue. Don't bother checking
2264 * for the same hash queue because of how unlikely it is.
2265 */
2266 __d_drop(dentry);
789680d1 2267 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2268
2269 /* Unhash the target: dput() will then get rid of it */
2270 __d_drop(target);
2271
5160ee6f
ED
2272 list_del(&dentry->d_u.d_child);
2273 list_del(&target->d_u.d_child);
1da177e4
LT
2274
2275 /* Switch the names.. */
2276 switch_names(dentry, target);
9a8d5bb4 2277 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2278
2279 /* ... and switch the parents */
2280 if (IS_ROOT(dentry)) {
2281 dentry->d_parent = target->d_parent;
2282 target->d_parent = target;
5160ee6f 2283 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2284 } else {
9a8d5bb4 2285 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2286
2287 /* And add them back to the (new) parent lists */
5160ee6f 2288 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2289 }
2290
5160ee6f 2291 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2292
31e6b01f
NP
2293 write_seqcount_end(&target->d_seq);
2294 write_seqcount_end(&dentry->d_seq);
2295
2fd6b7f5 2296 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2297 spin_unlock(&target->d_lock);
c32ccd87 2298 fsnotify_d_move(dentry);
1da177e4 2299 spin_unlock(&dentry->d_lock);
18367501
AV
2300}
2301
2302/*
2303 * d_move - move a dentry
2304 * @dentry: entry to move
2305 * @target: new dentry
2306 *
2307 * Update the dcache to reflect the move of a file name. Negative
c46c8877
JL
2308 * dcache entries should not be moved in this way. See the locking
2309 * requirements for __d_move.
18367501
AV
2310 */
2311void d_move(struct dentry *dentry, struct dentry *target)
2312{
2313 write_seqlock(&rename_lock);
2314 __d_move(dentry, target);
1da177e4 2315 write_sequnlock(&rename_lock);
9eaef27b 2316}
ec4f8605 2317EXPORT_SYMBOL(d_move);
1da177e4 2318
e2761a11
OH
2319/**
2320 * d_ancestor - search for an ancestor
2321 * @p1: ancestor dentry
2322 * @p2: child dentry
2323 *
2324 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2325 * an ancestor of p2, else NULL.
9eaef27b 2326 */
e2761a11 2327struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2328{
2329 struct dentry *p;
2330
871c0067 2331 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2332 if (p->d_parent == p1)
e2761a11 2333 return p;
9eaef27b 2334 }
e2761a11 2335 return NULL;
9eaef27b
TM
2336}
2337
2338/*
2339 * This helper attempts to cope with remotely renamed directories
2340 *
2341 * It assumes that the caller is already holding
18367501 2342 * dentry->d_parent->d_inode->i_mutex, inode->i_lock and rename_lock
9eaef27b
TM
2343 *
2344 * Note: If ever the locking in lock_rename() changes, then please
2345 * remember to update this too...
9eaef27b 2346 */
873feea0
NP
2347static struct dentry *__d_unalias(struct inode *inode,
2348 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2349{
2350 struct mutex *m1 = NULL, *m2 = NULL;
ee3efa91 2351 struct dentry *ret = ERR_PTR(-EBUSY);
9eaef27b
TM
2352
2353 /* If alias and dentry share a parent, then no extra locks required */
2354 if (alias->d_parent == dentry->d_parent)
2355 goto out_unalias;
2356
9eaef27b 2357 /* See lock_rename() */
9eaef27b
TM
2358 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2359 goto out_err;
2360 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2361 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2362 goto out_err;
2363 m2 = &alias->d_parent->d_inode->i_mutex;
2364out_unalias:
ee3efa91
AV
2365 if (likely(!d_mountpoint(alias))) {
2366 __d_move(alias, dentry);
2367 ret = alias;
2368 }
9eaef27b 2369out_err:
873feea0 2370 spin_unlock(&inode->i_lock);
9eaef27b
TM
2371 if (m2)
2372 mutex_unlock(m2);
2373 if (m1)
2374 mutex_unlock(m1);
2375 return ret;
2376}
2377
770bfad8
DH
2378/*
2379 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2380 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2381 * returns with anon->d_lock held!
770bfad8
DH
2382 */
2383static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2384{
740da42e 2385 struct dentry *dparent;
770bfad8 2386
2fd6b7f5 2387 dentry_lock_for_move(anon, dentry);
770bfad8 2388
31e6b01f
NP
2389 write_seqcount_begin(&dentry->d_seq);
2390 write_seqcount_begin(&anon->d_seq);
2391
770bfad8 2392 dparent = dentry->d_parent;
770bfad8 2393
2fd6b7f5
NP
2394 switch_names(dentry, anon);
2395 swap(dentry->d_name.hash, anon->d_name.hash);
2396
740da42e
AV
2397 dentry->d_parent = dentry;
2398 list_del_init(&dentry->d_u.d_child);
2399 anon->d_parent = dparent;
9ed53b12 2400 list_move(&anon->d_u.d_child, &dparent->d_subdirs);
770bfad8 2401
31e6b01f
NP
2402 write_seqcount_end(&dentry->d_seq);
2403 write_seqcount_end(&anon->d_seq);
2404
2fd6b7f5
NP
2405 dentry_unlock_parents_for_move(anon, dentry);
2406 spin_unlock(&dentry->d_lock);
2407
2408 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2409 anon->d_flags &= ~DCACHE_DISCONNECTED;
2410}
2411
2412/**
2413 * d_materialise_unique - introduce an inode into the tree
2414 * @dentry: candidate dentry
2415 * @inode: inode to bind to the dentry, to which aliases may be attached
2416 *
2417 * Introduces an dentry into the tree, substituting an extant disconnected
c46c8877
JL
2418 * root directory alias in its place if there is one. Caller must hold the
2419 * i_mutex of the parent directory.
770bfad8
DH
2420 */
2421struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2422{
9eaef27b 2423 struct dentry *actual;
770bfad8
DH
2424
2425 BUG_ON(!d_unhashed(dentry));
2426
770bfad8
DH
2427 if (!inode) {
2428 actual = dentry;
360da900 2429 __d_instantiate(dentry, NULL);
357f8e65
NP
2430 d_rehash(actual);
2431 goto out_nolock;
770bfad8
DH
2432 }
2433
873feea0 2434 spin_lock(&inode->i_lock);
357f8e65 2435
9eaef27b
TM
2436 if (S_ISDIR(inode->i_mode)) {
2437 struct dentry *alias;
2438
2439 /* Does an aliased dentry already exist? */
32ba9c3f 2440 alias = __d_find_alias(inode, 0);
9eaef27b
TM
2441 if (alias) {
2442 actual = alias;
18367501
AV
2443 write_seqlock(&rename_lock);
2444
2445 if (d_ancestor(alias, dentry)) {
2446 /* Check for loops */
2447 actual = ERR_PTR(-ELOOP);
b18dafc8 2448 spin_unlock(&inode->i_lock);
18367501
AV
2449 } else if (IS_ROOT(alias)) {
2450 /* Is this an anonymous mountpoint that we
2451 * could splice into our tree? */
9eaef27b 2452 __d_materialise_dentry(dentry, alias);
18367501 2453 write_sequnlock(&rename_lock);
9eaef27b
TM
2454 __d_drop(alias);
2455 goto found;
18367501
AV
2456 } else {
2457 /* Nope, but we must(!) avoid directory
b18dafc8 2458 * aliasing. This drops inode->i_lock */
18367501 2459 actual = __d_unalias(inode, dentry, alias);
9eaef27b 2460 }
18367501 2461 write_sequnlock(&rename_lock);
dd179946
DH
2462 if (IS_ERR(actual)) {
2463 if (PTR_ERR(actual) == -ELOOP)
2464 pr_warn_ratelimited(
2465 "VFS: Lookup of '%s' in %s %s"
2466 " would have caused loop\n",
2467 dentry->d_name.name,
2468 inode->i_sb->s_type->name,
2469 inode->i_sb->s_id);
9eaef27b 2470 dput(alias);
dd179946 2471 }
9eaef27b
TM
2472 goto out_nolock;
2473 }
770bfad8
DH
2474 }
2475
2476 /* Add a unique reference */
2477 actual = __d_instantiate_unique(dentry, inode);
2478 if (!actual)
2479 actual = dentry;
357f8e65
NP
2480 else
2481 BUG_ON(!d_unhashed(actual));
770bfad8 2482
770bfad8
DH
2483 spin_lock(&actual->d_lock);
2484found:
2485 _d_rehash(actual);
2486 spin_unlock(&actual->d_lock);
873feea0 2487 spin_unlock(&inode->i_lock);
9eaef27b 2488out_nolock:
770bfad8
DH
2489 if (actual == dentry) {
2490 security_d_instantiate(dentry, inode);
2491 return NULL;
2492 }
2493
2494 iput(inode);
2495 return actual;
770bfad8 2496}
ec4f8605 2497EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2498
cdd16d02 2499static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2500{
2501 *buflen -= namelen;
2502 if (*buflen < 0)
2503 return -ENAMETOOLONG;
2504 *buffer -= namelen;
2505 memcpy(*buffer, str, namelen);
2506 return 0;
2507}
2508
cdd16d02
MS
2509static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2510{
2511 return prepend(buffer, buflen, name->name, name->len);
2512}
2513
1da177e4 2514/**
208898c1 2515 * prepend_path - Prepend path string to a buffer
9d1bc601 2516 * @path: the dentry/vfsmount to report
02125a82 2517 * @root: root vfsmnt/dentry
f2eb6575
MS
2518 * @buffer: pointer to the end of the buffer
2519 * @buflen: pointer to buffer length
552ce544 2520 *
949854d0 2521 * Caller holds the rename_lock.
1da177e4 2522 */
02125a82
AV
2523static int prepend_path(const struct path *path,
2524 const struct path *root,
f2eb6575 2525 char **buffer, int *buflen)
1da177e4 2526{
9d1bc601
MS
2527 struct dentry *dentry = path->dentry;
2528 struct vfsmount *vfsmnt = path->mnt;
0714a533 2529 struct mount *mnt = real_mount(vfsmnt);
f2eb6575
MS
2530 bool slash = false;
2531 int error = 0;
6092d048 2532
f2eb6575 2533 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2534 struct dentry * parent;
2535
1da177e4 2536 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2537 /* Global root? */
676da58d 2538 if (!mnt_has_parent(mnt))
1da177e4 2539 goto global_root;
a73324da 2540 dentry = mnt->mnt_mountpoint;
0714a533
AV
2541 mnt = mnt->mnt_parent;
2542 vfsmnt = &mnt->mnt;
1da177e4
LT
2543 continue;
2544 }
2545 parent = dentry->d_parent;
2546 prefetch(parent);
9abca360 2547 spin_lock(&dentry->d_lock);
f2eb6575 2548 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2549 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2550 if (!error)
2551 error = prepend(buffer, buflen, "/", 1);
2552 if (error)
2553 break;
2554
2555 slash = true;
1da177e4
LT
2556 dentry = parent;
2557 }
2558
f2eb6575
MS
2559 if (!error && !slash)
2560 error = prepend(buffer, buflen, "/", 1);
2561
f2eb6575 2562 return error;
1da177e4
LT
2563
2564global_root:
98dc568b
MS
2565 /*
2566 * Filesystems needing to implement special "root names"
2567 * should do so with ->d_dname()
2568 */
2569 if (IS_ROOT(dentry) &&
2570 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2571 WARN(1, "Root dentry has weird name <%.*s>\n",
2572 (int) dentry->d_name.len, dentry->d_name.name);
2573 }
02125a82
AV
2574 if (!slash)
2575 error = prepend(buffer, buflen, "/", 1);
2576 if (!error)
f7a99c5b 2577 error = is_mounted(vfsmnt) ? 1 : 2;
7ea600b5 2578 return error;
f2eb6575 2579}
be285c71 2580
f2eb6575
MS
2581/**
2582 * __d_path - return the path of a dentry
2583 * @path: the dentry/vfsmount to report
02125a82 2584 * @root: root vfsmnt/dentry
cd956a1c 2585 * @buf: buffer to return value in
f2eb6575
MS
2586 * @buflen: buffer length
2587 *
ffd1f4ed 2588 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2589 *
2590 * Returns a pointer into the buffer or an error code if the
2591 * path was too long.
2592 *
be148247 2593 * "buflen" should be positive.
f2eb6575 2594 *
02125a82 2595 * If the path is not reachable from the supplied root, return %NULL.
f2eb6575 2596 */
02125a82
AV
2597char *__d_path(const struct path *path,
2598 const struct path *root,
f2eb6575
MS
2599 char *buf, int buflen)
2600{
2601 char *res = buf + buflen;
2602 int error;
2603
2604 prepend(&res, &buflen, "\0", 1);
7ea600b5 2605 br_read_lock(&vfsmount_lock);
949854d0 2606 write_seqlock(&rename_lock);
f2eb6575 2607 error = prepend_path(path, root, &res, &buflen);
949854d0 2608 write_sequnlock(&rename_lock);
7ea600b5 2609 br_read_unlock(&vfsmount_lock);
be148247 2610
02125a82
AV
2611 if (error < 0)
2612 return ERR_PTR(error);
2613 if (error > 0)
2614 return NULL;
2615 return res;
2616}
2617
2618char *d_absolute_path(const struct path *path,
2619 char *buf, int buflen)
2620{
2621 struct path root = {};
2622 char *res = buf + buflen;
2623 int error;
2624
2625 prepend(&res, &buflen, "\0", 1);
7ea600b5 2626 br_read_lock(&vfsmount_lock);
02125a82
AV
2627 write_seqlock(&rename_lock);
2628 error = prepend_path(path, &root, &res, &buflen);
2629 write_sequnlock(&rename_lock);
7ea600b5 2630 br_read_unlock(&vfsmount_lock);
02125a82
AV
2631
2632 if (error > 1)
2633 error = -EINVAL;
2634 if (error < 0)
f2eb6575 2635 return ERR_PTR(error);
f2eb6575 2636 return res;
1da177e4
LT
2637}
2638
ffd1f4ed
MS
2639/*
2640 * same as __d_path but appends "(deleted)" for unlinked files.
2641 */
02125a82
AV
2642static int path_with_deleted(const struct path *path,
2643 const struct path *root,
2644 char **buf, int *buflen)
ffd1f4ed
MS
2645{
2646 prepend(buf, buflen, "\0", 1);
2647 if (d_unlinked(path->dentry)) {
2648 int error = prepend(buf, buflen, " (deleted)", 10);
2649 if (error)
2650 return error;
2651 }
2652
2653 return prepend_path(path, root, buf, buflen);
2654}
2655
8df9d1a4
MS
2656static int prepend_unreachable(char **buffer, int *buflen)
2657{
2658 return prepend(buffer, buflen, "(unreachable)", 13);
2659}
2660
a03a8a70
JB
2661/**
2662 * d_path - return the path of a dentry
cf28b486 2663 * @path: path to report
a03a8a70
JB
2664 * @buf: buffer to return value in
2665 * @buflen: buffer length
2666 *
2667 * Convert a dentry into an ASCII path name. If the entry has been deleted
2668 * the string " (deleted)" is appended. Note that this is ambiguous.
2669 *
52afeefb
AV
2670 * Returns a pointer into the buffer or an error code if the path was
2671 * too long. Note: Callers should use the returned pointer, not the passed
2672 * in buffer, to use the name! The implementation often starts at an offset
2673 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2674 *
31f3e0b3 2675 * "buflen" should be positive.
a03a8a70 2676 */
20d4fdc1 2677char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2678{
ffd1f4ed 2679 char *res = buf + buflen;
6ac08c39 2680 struct path root;
ffd1f4ed 2681 int error;
1da177e4 2682
c23fbb6b
ED
2683 /*
2684 * We have various synthetic filesystems that never get mounted. On
2685 * these filesystems dentries are never used for lookup purposes, and
2686 * thus don't need to be hashed. They also don't need a name until a
2687 * user wants to identify the object in /proc/pid/fd/. The little hack
2688 * below allows us to generate a name for these objects on demand:
2689 */
cf28b486
JB
2690 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2691 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2692
f7ad3c6b 2693 get_fs_root(current->fs, &root);
7ea600b5 2694 br_read_lock(&vfsmount_lock);
949854d0 2695 write_seqlock(&rename_lock);
02125a82 2696 error = path_with_deleted(path, &root, &res, &buflen);
7ea600b5
AV
2697 write_sequnlock(&rename_lock);
2698 br_read_unlock(&vfsmount_lock);
02125a82 2699 if (error < 0)
ffd1f4ed 2700 res = ERR_PTR(error);
6ac08c39 2701 path_put(&root);
1da177e4
LT
2702 return res;
2703}
ec4f8605 2704EXPORT_SYMBOL(d_path);
1da177e4 2705
c23fbb6b
ED
2706/*
2707 * Helper function for dentry_operations.d_dname() members
2708 */
2709char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2710 const char *fmt, ...)
2711{
2712 va_list args;
2713 char temp[64];
2714 int sz;
2715
2716 va_start(args, fmt);
2717 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2718 va_end(args);
2719
2720 if (sz > sizeof(temp) || sz > buflen)
2721 return ERR_PTR(-ENAMETOOLONG);
2722
2723 buffer += buflen - sz;
2724 return memcpy(buffer, temp, sz);
2725}
2726
ad4c3cc4
AV
2727char *simple_dname(struct dentry *dentry, char *buffer, int buflen)
2728{
2729 char *end = buffer + buflen;
2730 /* these dentries are never renamed, so d_lock is not needed */
2731 if (prepend(&end, &buflen, " (deleted)", 11) ||
2732 prepend_name(&end, &buflen, &dentry->d_name) ||
2733 prepend(&end, &buflen, "/", 1))
2734 end = ERR_PTR(-ENAMETOOLONG);
2735 return end;
2736}
2737
6092d048
RP
2738/*
2739 * Write full pathname from the root of the filesystem into the buffer.
2740 */
ec2447c2 2741static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2742{
2743 char *end = buf + buflen;
2744 char *retval;
2745
6092d048 2746 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2747 if (buflen < 1)
2748 goto Elong;
2749 /* Get '/' right */
2750 retval = end-1;
2751 *retval = '/';
2752
cdd16d02
MS
2753 while (!IS_ROOT(dentry)) {
2754 struct dentry *parent = dentry->d_parent;
9abca360 2755 int error;
6092d048 2756
6092d048 2757 prefetch(parent);
9abca360
NP
2758 spin_lock(&dentry->d_lock);
2759 error = prepend_name(&end, &buflen, &dentry->d_name);
2760 spin_unlock(&dentry->d_lock);
2761 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2762 goto Elong;
2763
2764 retval = end;
2765 dentry = parent;
2766 }
c103135c
AV
2767 return retval;
2768Elong:
2769 return ERR_PTR(-ENAMETOOLONG);
2770}
ec2447c2
NP
2771
2772char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2773{
2774 char *retval;
2775
949854d0 2776 write_seqlock(&rename_lock);
ec2447c2 2777 retval = __dentry_path(dentry, buf, buflen);
949854d0 2778 write_sequnlock(&rename_lock);
ec2447c2
NP
2779
2780 return retval;
2781}
2782EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2783
2784char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2785{
2786 char *p = NULL;
2787 char *retval;
2788
949854d0 2789 write_seqlock(&rename_lock);
c103135c
AV
2790 if (d_unlinked(dentry)) {
2791 p = buf + buflen;
2792 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2793 goto Elong;
2794 buflen++;
2795 }
2796 retval = __dentry_path(dentry, buf, buflen);
949854d0 2797 write_sequnlock(&rename_lock);
c103135c
AV
2798 if (!IS_ERR(retval) && p)
2799 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2800 return retval;
2801Elong:
6092d048
RP
2802 return ERR_PTR(-ENAMETOOLONG);
2803}
2804
1da177e4
LT
2805/*
2806 * NOTE! The user-level library version returns a
2807 * character pointer. The kernel system call just
2808 * returns the length of the buffer filled (which
2809 * includes the ending '\0' character), or a negative
2810 * error value. So libc would do something like
2811 *
2812 * char *getcwd(char * buf, size_t size)
2813 * {
2814 * int retval;
2815 *
2816 * retval = sys_getcwd(buf, size);
2817 * if (retval >= 0)
2818 * return buf;
2819 * errno = -retval;
2820 * return NULL;
2821 * }
2822 */
3cdad428 2823SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2824{
552ce544 2825 int error;
6ac08c39 2826 struct path pwd, root;
552ce544 2827 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2828
2829 if (!page)
2830 return -ENOMEM;
2831
f7ad3c6b 2832 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2833
552ce544 2834 error = -ENOENT;
7ea600b5 2835 br_read_lock(&vfsmount_lock);
949854d0 2836 write_seqlock(&rename_lock);
f3da392e 2837 if (!d_unlinked(pwd.dentry)) {
552ce544 2838 unsigned long len;
8df9d1a4
MS
2839 char *cwd = page + PAGE_SIZE;
2840 int buflen = PAGE_SIZE;
1da177e4 2841
8df9d1a4 2842 prepend(&cwd, &buflen, "\0", 1);
02125a82 2843 error = prepend_path(&pwd, &root, &cwd, &buflen);
949854d0 2844 write_sequnlock(&rename_lock);
7ea600b5 2845 br_read_unlock(&vfsmount_lock);
552ce544 2846
02125a82 2847 if (error < 0)
552ce544
LT
2848 goto out;
2849
8df9d1a4 2850 /* Unreachable from current root */
02125a82 2851 if (error > 0) {
8df9d1a4
MS
2852 error = prepend_unreachable(&cwd, &buflen);
2853 if (error)
2854 goto out;
2855 }
2856
552ce544
LT
2857 error = -ERANGE;
2858 len = PAGE_SIZE + page - cwd;
2859 if (len <= size) {
2860 error = len;
2861 if (copy_to_user(buf, cwd, len))
2862 error = -EFAULT;
2863 }
949854d0
NP
2864 } else {
2865 write_sequnlock(&rename_lock);
7ea600b5 2866 br_read_unlock(&vfsmount_lock);
949854d0 2867 }
1da177e4
LT
2868
2869out:
6ac08c39
JB
2870 path_put(&pwd);
2871 path_put(&root);
1da177e4
LT
2872 free_page((unsigned long) page);
2873 return error;
2874}
2875
2876/*
2877 * Test whether new_dentry is a subdirectory of old_dentry.
2878 *
2879 * Trivially implemented using the dcache structure
2880 */
2881
2882/**
2883 * is_subdir - is new dentry a subdirectory of old_dentry
2884 * @new_dentry: new dentry
2885 * @old_dentry: old dentry
2886 *
2887 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2888 * Returns 0 otherwise.
2889 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2890 */
2891
e2761a11 2892int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2893{
2894 int result;
949854d0 2895 unsigned seq;
1da177e4 2896
e2761a11
OH
2897 if (new_dentry == old_dentry)
2898 return 1;
2899
e2761a11 2900 do {
1da177e4 2901 /* for restarting inner loop in case of seq retry */
1da177e4 2902 seq = read_seqbegin(&rename_lock);
949854d0
NP
2903 /*
2904 * Need rcu_readlock to protect against the d_parent trashing
2905 * due to d_move
2906 */
2907 rcu_read_lock();
e2761a11 2908 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2909 result = 1;
e2761a11
OH
2910 else
2911 result = 0;
949854d0 2912 rcu_read_unlock();
1da177e4 2913 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2914
2915 return result;
2916}
2917
2918void d_genocide(struct dentry *root)
2919{
949854d0 2920 struct dentry *this_parent;
1da177e4 2921 struct list_head *next;
949854d0 2922 unsigned seq;
58db63d0 2923 int locked = 0;
1da177e4 2924
949854d0 2925 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2926again:
2927 this_parent = root;
2fd6b7f5 2928 spin_lock(&this_parent->d_lock);
1da177e4
LT
2929repeat:
2930 next = this_parent->d_subdirs.next;
2931resume:
2932 while (next != &this_parent->d_subdirs) {
2933 struct list_head *tmp = next;
5160ee6f 2934 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2935 next = tmp->next;
949854d0 2936
da502956
NP
2937 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2938 if (d_unhashed(dentry) || !dentry->d_inode) {
2939 spin_unlock(&dentry->d_lock);
1da177e4 2940 continue;
da502956 2941 }
1da177e4 2942 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2943 spin_unlock(&this_parent->d_lock);
2944 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2945 this_parent = dentry;
2fd6b7f5 2946 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2947 goto repeat;
2948 }
949854d0
NP
2949 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2950 dentry->d_flags |= DCACHE_GENOCIDE;
2951 dentry->d_count--;
2952 }
b7ab39f6 2953 spin_unlock(&dentry->d_lock);
1da177e4
LT
2954 }
2955 if (this_parent != root) {
c826cb7d 2956 struct dentry *child = this_parent;
949854d0
NP
2957 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2958 this_parent->d_flags |= DCACHE_GENOCIDE;
2959 this_parent->d_count--;
2960 }
c826cb7d
LT
2961 this_parent = try_to_ascend(this_parent, locked, seq);
2962 if (!this_parent)
949854d0 2963 goto rename_retry;
949854d0 2964 next = child->d_u.d_child.next;
1da177e4
LT
2965 goto resume;
2966 }
2fd6b7f5 2967 spin_unlock(&this_parent->d_lock);
58db63d0 2968 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 2969 goto rename_retry;
58db63d0
NP
2970 if (locked)
2971 write_sequnlock(&rename_lock);
2972 return;
2973
2974rename_retry:
8110e16d
MS
2975 if (locked)
2976 goto again;
58db63d0
NP
2977 locked = 1;
2978 write_seqlock(&rename_lock);
2979 goto again;
1da177e4
LT
2980}
2981
2982/**
2983 * find_inode_number - check for dentry with name
2984 * @dir: directory to check
2985 * @name: Name to find.
2986 *
2987 * Check whether a dentry already exists for the given name,
2988 * and return the inode number if it has an inode. Otherwise
2989 * 0 is returned.
2990 *
2991 * This routine is used to post-process directory listings for
2992 * filesystems using synthetic inode numbers, and is necessary
2993 * to keep getcwd() working.
2994 */
2995
2996ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2997{
2998 struct dentry * dentry;
2999 ino_t ino = 0;
3000
3e7e241f 3001 dentry = d_hash_and_lookup(dir, name);
4f522a24 3002 if (!IS_ERR_OR_NULL(dentry)) {
1da177e4
LT
3003 if (dentry->d_inode)
3004 ino = dentry->d_inode->i_ino;
3005 dput(dentry);
3006 }
1da177e4
LT
3007 return ino;
3008}
ec4f8605 3009EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
3010
3011static __initdata unsigned long dhash_entries;
3012static int __init set_dhash_entries(char *str)
3013{
3014 if (!str)
3015 return 0;
3016 dhash_entries = simple_strtoul(str, &str, 0);
3017 return 1;
3018}
3019__setup("dhash_entries=", set_dhash_entries);
3020
3021static void __init dcache_init_early(void)
3022{
074b8517 3023 unsigned int loop;
1da177e4
LT
3024
3025 /* If hashes are distributed across NUMA nodes, defer
3026 * hash allocation until vmalloc space is available.
3027 */
3028 if (hashdist)
3029 return;
3030
3031 dentry_hashtable =
3032 alloc_large_system_hash("Dentry cache",
b07ad996 3033 sizeof(struct hlist_bl_head),
1da177e4
LT
3034 dhash_entries,
3035 13,
3036 HASH_EARLY,
3037 &d_hash_shift,
3038 &d_hash_mask,
31fe62b9 3039 0,
1da177e4
LT
3040 0);
3041
074b8517 3042 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3043 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3044}
3045
74bf17cf 3046static void __init dcache_init(void)
1da177e4 3047{
074b8517 3048 unsigned int loop;
1da177e4
LT
3049
3050 /*
3051 * A constructor could be added for stable state like the lists,
3052 * but it is probably not worth it because of the cache nature
3053 * of the dcache.
3054 */
0a31bd5f
CL
3055 dentry_cache = KMEM_CACHE(dentry,
3056 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4
LT
3057
3058 /* Hash may have been set up in dcache_init_early */
3059 if (!hashdist)
3060 return;
3061
3062 dentry_hashtable =
3063 alloc_large_system_hash("Dentry cache",
b07ad996 3064 sizeof(struct hlist_bl_head),
1da177e4
LT
3065 dhash_entries,
3066 13,
3067 0,
3068 &d_hash_shift,
3069 &d_hash_mask,
31fe62b9 3070 0,
1da177e4
LT
3071 0);
3072
074b8517 3073 for (loop = 0; loop < (1U << d_hash_shift); loop++)
b07ad996 3074 INIT_HLIST_BL_HEAD(dentry_hashtable + loop);
1da177e4
LT
3075}
3076
3077/* SLAB cache for __getname() consumers */
e18b890b 3078struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3079EXPORT_SYMBOL(names_cachep);
1da177e4 3080
1da177e4
LT
3081EXPORT_SYMBOL(d_genocide);
3082
1da177e4
LT
3083void __init vfs_caches_init_early(void)
3084{
3085 dcache_init_early();
3086 inode_init_early();
3087}
3088
3089void __init vfs_caches_init(unsigned long mempages)
3090{
3091 unsigned long reserve;
3092
3093 /* Base hash sizes on available memory, with a reserve equal to
3094 150% of current kernel size */
3095
3096 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3097 mempages -= reserve;
3098
3099 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3100 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3101
74bf17cf
DC
3102 dcache_init();
3103 inode_init();
1da177e4 3104 files_init(mempages);
74bf17cf 3105 mnt_init();
1da177e4
LT
3106 bdev_cache_init();
3107 chrdev_init();
3108}