fix kerneldoc for set_irq_msi()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / ath / ath5k / eeprom.c
CommitLineData
c6e387a2
NK
1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
8e218fb2
NK
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
c6e387a2
NK
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 *
18 */
19
20/*************************************\
21* EEPROM access functions and helpers *
22\*************************************/
23
24#include "ath5k.h"
25#include "reg.h"
26#include "debug.h"
27#include "base.h"
28
29/*
30 * Read from eeprom
31 */
32static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
33{
34 u32 status, timeout;
35
36 ATH5K_TRACE(ah->ah_sc);
37 /*
38 * Initialize EEPROM access
39 */
40 if (ah->ah_version == AR5K_AR5210) {
41 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
42 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
43 } else {
44 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
45 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
46 AR5K_EEPROM_CMD_READ);
47 }
48
49 for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
50 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
51 if (status & AR5K_EEPROM_STAT_RDDONE) {
52 if (status & AR5K_EEPROM_STAT_RDERR)
53 return -EIO;
54 *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
55 0xffff);
56 return 0;
57 }
58 udelay(15);
59 }
60
61 return -ETIMEDOUT;
62}
63
64/*
65 * Translate binary channel representation in EEPROM to frequency
66 */
1048643e
FF
67static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
68 unsigned int mode)
c6e387a2
NK
69{
70 u16 val;
71
72 if (bin == AR5K_EEPROM_CHANNEL_DIS)
73 return bin;
74
75 if (mode == AR5K_EEPROM_MODE_11A) {
1048643e 76 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
c6e387a2
NK
77 val = (5 * bin) + 4800;
78 else
79 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
80 (bin * 10) + 5100;
81 } else {
1048643e 82 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
c6e387a2
NK
83 val = bin + 2300;
84 else
85 val = bin + 2400;
86 }
87
88 return val;
89}
90
1048643e
FF
91/*
92 * Initialize eeprom & capabilities structs
93 */
94static int
95ath5k_eeprom_init_header(struct ath5k_hw *ah)
96{
97 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
98 int ret;
99 u16 val;
100
1048643e
FF
101 /*
102 * Read values from EEPROM and store them in the capability structure
103 */
104 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
105 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
106 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
107 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
108 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
109
110 /* Return if we have an old EEPROM */
111 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
112 return 0;
113
114#ifdef notyet
115 /*
116 * Validate the checksum of the EEPROM date. There are some
117 * devices with invalid EEPROMs.
118 */
119 for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
120 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
121 cksum ^= val;
122 }
123 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
124 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
125 return -EIO;
126 }
127#endif
128
129 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
130 ee_ant_gain);
131
132 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
133 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
134 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
0ea9c00c
NK
135
136 /* XXX: Don't know which versions include these two */
137 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
138
139 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
140 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
141
142 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
143 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
144 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
145 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
146 }
1048643e
FF
147 }
148
149 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
150 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
151 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
152 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
153
154 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
155 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
156 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
157 }
158
1889ba0a
NK
159 AR5K_EEPROM_READ(AR5K_EEPROM_IS_HB63, val);
160
161 if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && val)
162 ee->ee_is_hb63 = true;
163 else
164 ee->ee_is_hb63 = false;
165
166 AR5K_EEPROM_READ(AR5K_EEPROM_RFKILL, val);
167 ee->ee_rfkill_pin = (u8) AR5K_REG_MS(val, AR5K_EEPROM_RFKILL_GPIO_SEL);
168 ee->ee_rfkill_pol = val & AR5K_EEPROM_RFKILL_POLARITY ? true : false;
169
c38e7a93
NK
170 /* Check if PCIE_OFFSET points to PCIE_SERDES_SECTION
171 * and enable serdes programming if needed.
172 *
173 * XXX: Serdes values seem to be fixed so
174 * no need to read them here, we write them
175 * during ath5k_hw_attach */
176 AR5K_EEPROM_READ(AR5K_EEPROM_PCIE_OFFSET, val);
177 ee->ee_serdes = (val == AR5K_EEPROM_PCIE_SERDES_SECTION) ?
178 true : false;
179
1048643e
FF
180 return 0;
181}
182
183
c6e387a2
NK
184/*
185 * Read antenna infos from eeprom
186 */
187static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
188 unsigned int mode)
189{
190 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
191 u32 o = *offset;
192 u16 val;
193 int ret, i = 0;
194
195 AR5K_EEPROM_READ(o++, val);
196 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
1048643e 197 ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
c6e387a2
NK
198 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
199
200 AR5K_EEPROM_READ(o++, val);
201 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
202 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
203 ee->ee_ant_control[mode][i++] = val & 0x3f;
204
205 AR5K_EEPROM_READ(o++, val);
206 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
207 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
208 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
209
210 AR5K_EEPROM_READ(o++, val);
211 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
212 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
213 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
214 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
215
216 AR5K_EEPROM_READ(o++, val);
217 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
218 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
219 ee->ee_ant_control[mode][i++] = val & 0x3f;
220
2bed03eb
NK
221 /* Get antenna switch tables */
222 ah->ah_ant_ctl[mode][AR5K_ANT_CTL] =
e8f055f0 223 (ee->ee_ant_control[mode][0] << 4);
2bed03eb 224 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_A] =
c6e387a2
NK
225 ee->ee_ant_control[mode][1] |
226 (ee->ee_ant_control[mode][2] << 6) |
227 (ee->ee_ant_control[mode][3] << 12) |
228 (ee->ee_ant_control[mode][4] << 18) |
229 (ee->ee_ant_control[mode][5] << 24);
2bed03eb 230 ah->ah_ant_ctl[mode][AR5K_ANT_SWTABLE_B] =
c6e387a2
NK
231 ee->ee_ant_control[mode][6] |
232 (ee->ee_ant_control[mode][7] << 6) |
233 (ee->ee_ant_control[mode][8] << 12) |
234 (ee->ee_ant_control[mode][9] << 18) |
235 (ee->ee_ant_control[mode][10] << 24);
236
237 /* return new offset */
238 *offset = o;
239
240 return 0;
241}
242
243/*
0ea9c00c
NK
244 * Read supported modes and some mode-specific calibration data
245 * from eeprom
c6e387a2
NK
246 */
247static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
248 unsigned int mode)
249{
250 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
251 u32 o = *offset;
252 u16 val;
253 int ret;
254
1048643e
FF
255 ee->ee_n_piers[mode] = 0;
256 AR5K_EEPROM_READ(o++, val);
257 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
258 switch(mode) {
259 case AR5K_EEPROM_MODE_11A:
8e218fb2
NK
260 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
261 ee->ee_db[mode][3] = (val >> 2) & 0x7;
262 ee->ee_ob[mode][2] = (val << 1) & 0x7;
1048643e
FF
263
264 AR5K_EEPROM_READ(o++, val);
8e218fb2
NK
265 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
266 ee->ee_db[mode][2] = (val >> 12) & 0x7;
267 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
268 ee->ee_db[mode][1] = (val >> 6) & 0x7;
269 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
270 ee->ee_db[mode][0] = val & 0x7;
1048643e
FF
271 break;
272 case AR5K_EEPROM_MODE_11G:
273 case AR5K_EEPROM_MODE_11B:
8e218fb2
NK
274 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
275 ee->ee_db[mode][1] = val & 0x7;
1048643e
FF
276 break;
277 }
278
c6e387a2
NK
279 AR5K_EEPROM_READ(o++, val);
280 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
281 ee->ee_thr_62[mode] = val & 0xff;
282
283 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
284 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
285
286 AR5K_EEPROM_READ(o++, val);
287 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
288 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
289
290 AR5K_EEPROM_READ(o++, val);
291 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
292
293 if ((val & 0xff) & 0x80)
294 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
295 else
296 ee->ee_noise_floor_thr[mode] = val & 0xff;
297
298 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
299 ee->ee_noise_floor_thr[mode] =
300 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
301
302 AR5K_EEPROM_READ(o++, val);
303 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
304 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
305 ee->ee_xpd[mode] = val & 0x1;
306
307 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
308 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
309
310 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
311 AR5K_EEPROM_READ(o++, val);
312 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
313
314 if (mode == AR5K_EEPROM_MODE_11A)
315 ee->ee_xr_power[mode] = val & 0x3f;
316 else {
317 ee->ee_ob[mode][0] = val & 0x7;
318 ee->ee_db[mode][0] = (val >> 3) & 0x7;
319 }
320 }
321
322 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
323 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
324 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
325 } else {
326 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
327
328 AR5K_EEPROM_READ(o++, val);
329 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
330
1048643e 331 if (mode == AR5K_EEPROM_MODE_11G) {
c6e387a2 332 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
1048643e
FF
333 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
334 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
335 }
c6e387a2
NK
336 }
337
338 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
339 mode == AR5K_EEPROM_MODE_11A) {
340 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
341 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
342 }
343
1048643e
FF
344 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
345 goto done;
346
0ea9c00c
NK
347 /* Note: >= v5 have bg freq piers on another location
348 * so these freq piers are ignored for >= v5 (should be 0xff
349 * anyway) */
1048643e
FF
350 switch(mode) {
351 case AR5K_EEPROM_MODE_11A:
352 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
353 break;
354
355 AR5K_EEPROM_READ(o++, val);
356 ee->ee_margin_tx_rx[mode] = val & 0x3f;
357 break;
358 case AR5K_EEPROM_MODE_11B:
359 AR5K_EEPROM_READ(o++, val);
360
361 ee->ee_pwr_cal_b[0].freq =
362 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
363 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
364 ee->ee_n_piers[mode]++;
365
366 ee->ee_pwr_cal_b[1].freq =
367 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
368 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
369 ee->ee_n_piers[mode]++;
370
371 AR5K_EEPROM_READ(o++, val);
372 ee->ee_pwr_cal_b[2].freq =
373 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
374 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
375 ee->ee_n_piers[mode]++;
376
377 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
378 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
379 break;
380 case AR5K_EEPROM_MODE_11G:
381 AR5K_EEPROM_READ(o++, val);
382
383 ee->ee_pwr_cal_g[0].freq =
384 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
385 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
386 ee->ee_n_piers[mode]++;
387
388 ee->ee_pwr_cal_g[1].freq =
389 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
390 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
391 ee->ee_n_piers[mode]++;
392
393 AR5K_EEPROM_READ(o++, val);
394 ee->ee_turbo_max_power[mode] = val & 0x7f;
395 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
396
397 AR5K_EEPROM_READ(o++, val);
398 ee->ee_pwr_cal_g[2].freq =
399 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
400 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
401 ee->ee_n_piers[mode]++;
c6e387a2 402
1048643e
FF
403 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
404 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
405
406 AR5K_EEPROM_READ(o++, val);
407 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
408 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
409
410 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
411 AR5K_EEPROM_READ(o++, val);
412 ee->ee_cck_ofdm_gain_delta = val & 0xff;
413 }
414 break;
415 }
416
3b3ee43d
PR
417 /*
418 * Read turbo mode information on newer EEPROM versions
419 */
1048643e 420 if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
3b3ee43d 421 goto done;
c6e387a2 422
1048643e
FF
423 switch (mode){
424 case AR5K_EEPROM_MODE_11A:
425 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
c6e387a2 426
1048643e
FF
427 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
428 AR5K_EEPROM_READ(o++, val);
429 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
430 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
431
432 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
433 AR5K_EEPROM_READ(o++, val);
434 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
435 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
436
437 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
438 ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
439 break;
440 case AR5K_EEPROM_MODE_11G:
441 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
442
443 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
444 AR5K_EEPROM_READ(o++, val);
445 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
446 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
447
448 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
449 AR5K_EEPROM_READ(o++, val);
450 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
451 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
452 break;
453 }
454
3b3ee43d 455done:
1048643e
FF
456 /* return new offset */
457 *offset = o;
458
459 return 0;
460}
461
0ea9c00c 462/* Read mode-specific data (except power calibration data) */
1048643e
FF
463static int
464ath5k_eeprom_init_modes(struct ath5k_hw *ah)
465{
466 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
467 u32 mode_offset[3];
468 unsigned int mode;
469 u32 offset;
470 int ret;
c6e387a2 471
c6e387a2 472 /*
1048643e 473 * Get values for all modes
c6e387a2 474 */
1048643e
FF
475 mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
476 mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
477 mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
478
479 ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
480 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
481
482 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
483 offset = mode_offset[mode];
484
485 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
486 if (ret)
487 return ret;
488
489 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
490 if (ret)
491 return ret;
c6e387a2 492 }
1048643e
FF
493
494 /* override for older eeprom versions for better performance */
495 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
496 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
497 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
498 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
c6e387a2 499 }
c6e387a2 500
1048643e
FF
501 return 0;
502}
c6e387a2 503
0ea9c00c
NK
504/* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
505 * frequency mask) */
1048643e
FF
506static inline int
507ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
0ea9c00c 508 struct ath5k_chan_pcal_info *pc, unsigned int mode)
1048643e 509{
0ea9c00c 510 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1048643e
FF
511 int o = *offset;
512 int i = 0;
0ea9c00c 513 u8 freq1, freq2;
1048643e
FF
514 int ret;
515 u16 val;
516
8e218fb2 517 ee->ee_n_piers[mode] = 0;
1048643e
FF
518 while(i < max) {
519 AR5K_EEPROM_READ(o++, val);
520
8e218fb2
NK
521 freq1 = val & 0xff;
522 if (!freq1)
523 break;
1048643e 524
8e218fb2
NK
525 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
526 freq1, mode);
527 ee->ee_n_piers[mode]++;
1048643e 528
8e218fb2
NK
529 freq2 = (val >> 8) & 0xff;
530 if (!freq2)
1048643e 531 break;
8e218fb2
NK
532
533 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
534 freq2, mode);
535 ee->ee_n_piers[mode]++;
c6e387a2 536 }
0ea9c00c
NK
537
538 /* return new offset */
1048643e 539 *offset = o;
c6e387a2 540
1048643e
FF
541 return 0;
542}
543
0ea9c00c 544/* Read frequency piers for 802.11a */
1048643e
FF
545static int
546ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
547{
548 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
549 struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
550 int i, ret;
551 u16 val;
552 u8 mask;
553
554 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
555 ath5k_eeprom_read_freq_list(ah, &offset,
556 AR5K_EEPROM_N_5GHZ_CHAN, pcal,
0ea9c00c 557 AR5K_EEPROM_MODE_11A);
1048643e
FF
558 } else {
559 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
c6e387a2 560
c6e387a2 561 AR5K_EEPROM_READ(offset++, val);
1048643e
FF
562 pcal[0].freq = (val >> 9) & mask;
563 pcal[1].freq = (val >> 2) & mask;
564 pcal[2].freq = (val << 5) & mask;
565
566 AR5K_EEPROM_READ(offset++, val);
567 pcal[2].freq |= (val >> 11) & 0x1f;
568 pcal[3].freq = (val >> 4) & mask;
569 pcal[4].freq = (val << 3) & mask;
570
571 AR5K_EEPROM_READ(offset++, val);
572 pcal[4].freq |= (val >> 13) & 0x7;
573 pcal[5].freq = (val >> 6) & mask;
574 pcal[6].freq = (val << 1) & mask;
575
576 AR5K_EEPROM_READ(offset++, val);
577 pcal[6].freq |= (val >> 15) & 0x1;
578 pcal[7].freq = (val >> 8) & mask;
579 pcal[8].freq = (val >> 1) & mask;
580 pcal[9].freq = (val << 6) & mask;
581
582 AR5K_EEPROM_READ(offset++, val);
583 pcal[9].freq |= (val >> 10) & 0x3f;
0ea9c00c
NK
584
585 /* Fixed number of piers */
1048643e 586 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
c6e387a2 587
0ea9c00c
NK
588 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
589 pcal[i].freq = ath5k_eeprom_bin2freq(ee,
1048643e 590 pcal[i].freq, AR5K_EEPROM_MODE_11A);
0ea9c00c 591 }
1048643e 592 }
c6e387a2 593
1048643e
FF
594 return 0;
595}
c6e387a2 596
0ea9c00c 597/* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
1048643e
FF
598static inline int
599ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
600{
601 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
602 struct ath5k_chan_pcal_info *pcal;
1048643e
FF
603
604 switch(mode) {
605 case AR5K_EEPROM_MODE_11B:
606 pcal = ee->ee_pwr_cal_b;
607 break;
608 case AR5K_EEPROM_MODE_11G:
609 pcal = ee->ee_pwr_cal_g;
610 break;
611 default:
612 return -EINVAL;
613 }
c6e387a2 614
1048643e
FF
615 ath5k_eeprom_read_freq_list(ah, &offset,
616 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
0ea9c00c 617 mode);
c6e387a2 618
1048643e
FF
619 return 0;
620}
c6e387a2 621
8e218fb2
NK
622/*
623 * Read power calibration for RF5111 chips
624 *
0ea9c00c 625 * For RF5111 we have an XPD -eXternal Power Detector- curve
8e218fb2
NK
626 * for each calibrated channel. Each curve has 0,5dB Power steps
627 * on x axis and PCDAC steps (offsets) on y axis and looks like an
628 * exponential function. To recreate the curve we read 11 points
629 * here and interpolate later.
0ea9c00c 630 */
8e218fb2
NK
631
632/* Used to match PCDAC steps with power values on RF5111 chips
633 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
634 * steps that match with the power values we read from eeprom. On
635 * older eeprom versions (< 3.2) these steps are equaly spaced at
636 * 10% of the pcdac curve -until the curve reaches it's maximum-
637 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
638 * these 11 steps are spaced in a different way. This function returns
639 * the pcdac steps based on eeprom version and curve min/max so that we
640 * can have pcdac/pwr points.
641 */
642static inline void
643ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
644{
bbb33881 645 static const u16 intercepts3[] =
8e218fb2 646 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
bbb33881 647 static const u16 intercepts3_2[] =
8e218fb2
NK
648 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
649 const u16 *ip;
650 int i;
651
652 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
653 ip = intercepts3_2;
654 else
655 ip = intercepts3;
656
657 for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
658 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
659}
660
661/* Convert RF5111 specific data to generic raw data
662 * used by interpolation code */
663static int
664ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
665 struct ath5k_chan_pcal_info *chinfo)
666{
667 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
668 struct ath5k_chan_pcal_info_rf5111 *pcinfo;
669 struct ath5k_pdgain_info *pd;
670 u8 pier, point, idx;
671 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
672
673 /* Fill raw data for each calibration pier */
674 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
675
676 pcinfo = &chinfo[pier].rf5111_info;
677
678 /* Allocate pd_curves for this cal pier */
679 chinfo[pier].pd_curves =
680 kcalloc(AR5K_EEPROM_N_PD_CURVES,
681 sizeof(struct ath5k_pdgain_info),
682 GFP_KERNEL);
683
684 if (!chinfo[pier].pd_curves)
685 return -ENOMEM;
686
687 /* Only one curve for RF5111
688 * find out which one and place
689 * in in pd_curves.
690 * Note: ee_x_gain is reversed here */
691 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
692
693 if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
694 pdgain_idx[0] = idx;
695 break;
696 }
697 }
698
699 ee->ee_pd_gains[mode] = 1;
700
701 pd = &chinfo[pier].pd_curves[idx];
702
703 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
704
705 /* Allocate pd points for this curve */
706 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
707 sizeof(u8), GFP_KERNEL);
708 if (!pd->pd_step)
709 return -ENOMEM;
710
711 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
712 sizeof(s16), GFP_KERNEL);
713 if (!pd->pd_pwr)
714 return -ENOMEM;
715
716 /* Fill raw dataset
717 * (convert power to 0.25dB units
718 * for RF5112 combatibility) */
719 for (point = 0; point < pd->pd_points; point++) {
720
721 /* Absolute values */
722 pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
723
724 /* Already sorted */
725 pd->pd_step[point] = pcinfo->pcdac[point];
726 }
727
728 /* Set min/max pwr */
729 chinfo[pier].min_pwr = pd->pd_pwr[0];
730 chinfo[pier].max_pwr = pd->pd_pwr[10];
731
732 }
733
734 return 0;
735}
736
737/* Parse EEPROM data */
1048643e
FF
738static int
739ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
740{
741 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
742 struct ath5k_chan_pcal_info *pcal;
743 int offset, ret;
eaee7cc2 744 int i;
1048643e
FF
745 u16 val;
746
747 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
748 switch(mode) {
749 case AR5K_EEPROM_MODE_11A:
750 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
751 return 0;
752
753 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
754 offset + AR5K_EEPROM_GROUP1_OFFSET);
755 if (ret < 0)
756 return ret;
757
758 offset += AR5K_EEPROM_GROUP2_OFFSET;
759 pcal = ee->ee_pwr_cal_a;
760 break;
761 case AR5K_EEPROM_MODE_11B:
762 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
763 !AR5K_EEPROM_HDR_11G(ee->ee_header))
764 return 0;
765
766 pcal = ee->ee_pwr_cal_b;
767 offset += AR5K_EEPROM_GROUP3_OFFSET;
768
769 /* fixed piers */
770 pcal[0].freq = 2412;
771 pcal[1].freq = 2447;
772 pcal[2].freq = 2484;
773 ee->ee_n_piers[mode] = 3;
774 break;
775 case AR5K_EEPROM_MODE_11G:
776 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
777 return 0;
778
779 pcal = ee->ee_pwr_cal_g;
780 offset += AR5K_EEPROM_GROUP4_OFFSET;
781
782 /* fixed piers */
783 pcal[0].freq = 2312;
784 pcal[1].freq = 2412;
785 pcal[2].freq = 2484;
786 ee->ee_n_piers[mode] = 3;
787 break;
788 default:
789 return -EINVAL;
c6e387a2
NK
790 }
791
1048643e
FF
792 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
793 struct ath5k_chan_pcal_info_rf5111 *cdata =
794 &pcal[i].rf5111_info;
c6e387a2 795
1048643e
FF
796 AR5K_EEPROM_READ(offset++, val);
797 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
798 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
799 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
c6e387a2 800
1048643e
FF
801 AR5K_EEPROM_READ(offset++, val);
802 cdata->pwr[0] |= ((val >> 14) & 0x3);
803 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
804 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
805 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
c6e387a2 806
1048643e
FF
807 AR5K_EEPROM_READ(offset++, val);
808 cdata->pwr[3] |= ((val >> 12) & 0xf);
809 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
810 cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
c6e387a2 811
c6e387a2 812 AR5K_EEPROM_READ(offset++, val);
1048643e
FF
813 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
814 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
815 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
c6e387a2
NK
816
817 AR5K_EEPROM_READ(offset++, val);
1048643e
FF
818 cdata->pwr[8] |= ((val >> 14) & 0x3);
819 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
820 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
821
822 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
823 cdata->pcdac_max, cdata->pcdac);
c6e387a2
NK
824 }
825
8e218fb2 826 return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
1048643e 827}
c6e387a2 828
8e218fb2
NK
829
830/*
831 * Read power calibration for RF5112 chips
832 *
0ea9c00c
NK
833 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
834 * for each calibrated channel on 0, -6, -12 and -18dbm but we only
8e218fb2
NK
835 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
836 * power steps on x axis and PCDAC steps on y axis and looks like a
837 * linear function. To recreate the curve and pass the power values
838 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
839 * and 3 points for xpd 3 (higher gain -> lower power) here and
840 * interpolate later.
0ea9c00c
NK
841 *
842 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
843 */
8e218fb2
NK
844
845/* Convert RF5112 specific data to generic raw data
846 * used by interpolation code */
847static int
848ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
849 struct ath5k_chan_pcal_info *chinfo)
850{
851 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
852 struct ath5k_chan_pcal_info_rf5112 *pcinfo;
853 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
854 unsigned int pier, pdg, point;
855
856 /* Fill raw data for each calibration pier */
857 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
858
859 pcinfo = &chinfo[pier].rf5112_info;
860
861 /* Allocate pd_curves for this cal pier */
862 chinfo[pier].pd_curves =
863 kcalloc(AR5K_EEPROM_N_PD_CURVES,
864 sizeof(struct ath5k_pdgain_info),
865 GFP_KERNEL);
866
867 if (!chinfo[pier].pd_curves)
868 return -ENOMEM;
869
870 /* Fill pd_curves */
871 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
872
873 u8 idx = pdgain_idx[pdg];
874 struct ath5k_pdgain_info *pd =
875 &chinfo[pier].pd_curves[idx];
876
877 /* Lowest gain curve (max power) */
878 if (pdg == 0) {
879 /* One more point for better accuracy */
880 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
881
882 /* Allocate pd points for this curve */
883 pd->pd_step = kcalloc(pd->pd_points,
884 sizeof(u8), GFP_KERNEL);
885
886 if (!pd->pd_step)
887 return -ENOMEM;
888
889 pd->pd_pwr = kcalloc(pd->pd_points,
890 sizeof(s16), GFP_KERNEL);
891
892 if (!pd->pd_pwr)
893 return -ENOMEM;
894
895
896 /* Fill raw dataset
897 * (all power levels are in 0.25dB units) */
898 pd->pd_step[0] = pcinfo->pcdac_x0[0];
899 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
900
901 for (point = 1; point < pd->pd_points;
902 point++) {
903 /* Absolute values */
904 pd->pd_pwr[point] =
905 pcinfo->pwr_x0[point];
906
907 /* Deltas */
908 pd->pd_step[point] =
909 pd->pd_step[point - 1] +
910 pcinfo->pcdac_x0[point];
911 }
912
913 /* Set min power for this frequency */
914 chinfo[pier].min_pwr = pd->pd_pwr[0];
915
916 /* Highest gain curve (min power) */
917 } else if (pdg == 1) {
918
919 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
920
921 /* Allocate pd points for this curve */
922 pd->pd_step = kcalloc(pd->pd_points,
923 sizeof(u8), GFP_KERNEL);
924
925 if (!pd->pd_step)
926 return -ENOMEM;
927
928 pd->pd_pwr = kcalloc(pd->pd_points,
929 sizeof(s16), GFP_KERNEL);
930
931 if (!pd->pd_pwr)
932 return -ENOMEM;
933
934 /* Fill raw dataset
935 * (all power levels are in 0.25dB units) */
936 for (point = 0; point < pd->pd_points;
937 point++) {
938 /* Absolute values */
939 pd->pd_pwr[point] =
940 pcinfo->pwr_x3[point];
941
942 /* Fixed points */
943 pd->pd_step[point] =
944 pcinfo->pcdac_x3[point];
945 }
946
947 /* Since we have a higher gain curve
948 * override min power */
949 chinfo[pier].min_pwr = pd->pd_pwr[0];
950 }
951 }
952 }
953
954 return 0;
955}
956
957/* Parse EEPROM data */
1048643e
FF
958static int
959ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
960{
961 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
962 struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
963 struct ath5k_chan_pcal_info *gen_chan_info;
8e218fb2 964 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1048643e 965 u32 offset;
8e218fb2 966 u8 i, c;
1048643e
FF
967 u16 val;
968 int ret;
8e218fb2
NK
969 u8 pd_gains = 0;
970
971 /* Count how many curves we have and
972 * identify them (which one of the 4
973 * available curves we have on each count).
974 * Curves are stored from lower (x0) to
975 * higher (x3) gain */
976 for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
977 /* ee_x_gain[mode] is x gain mask */
978 if ((ee->ee_x_gain[mode] >> i) & 0x1)
979 pdgain_idx[pd_gains++] = i;
980 }
981 ee->ee_pd_gains[mode] = pd_gains;
982
983 if (pd_gains == 0 || pd_gains > 2)
984 return -EINVAL;
c6e387a2 985
1048643e
FF
986 switch (mode) {
987 case AR5K_EEPROM_MODE_11A:
988 /*
989 * Read 5GHz EEPROM channels
990 */
991 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
992 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
993
994 offset += AR5K_EEPROM_GROUP2_OFFSET;
995 gen_chan_info = ee->ee_pwr_cal_a;
996 break;
997 case AR5K_EEPROM_MODE_11B:
998 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
999 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1000 offset += AR5K_EEPROM_GROUP3_OFFSET;
1001
1002 /* NB: frequency piers parsed during mode init */
1003 gen_chan_info = ee->ee_pwr_cal_b;
1004 break;
1005 case AR5K_EEPROM_MODE_11G:
1006 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1007 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1008 offset += AR5K_EEPROM_GROUP4_OFFSET;
1009 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1010 offset += AR5K_EEPROM_GROUP2_OFFSET;
1011
1012 /* NB: frequency piers parsed during mode init */
1013 gen_chan_info = ee->ee_pwr_cal_g;
1014 break;
1015 default:
1016 return -EINVAL;
1017 }
c6e387a2 1018
1048643e
FF
1019 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1020 chan_pcal_info = &gen_chan_info[i].rf5112_info;
c6e387a2 1021
8e218fb2 1022 /* Power values in quarter dB
1048643e
FF
1023 * for the lower xpd gain curve
1024 * (0 dBm -> higher output power) */
1025 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1026 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1027 chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1028 chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1048643e 1029 }
c6e387a2 1030
1048643e
FF
1031 /* PCDAC steps
1032 * corresponding to the above power
1033 * measurements */
c6e387a2 1034 AR5K_EEPROM_READ(offset++, val);
1048643e
FF
1035 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1036 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1037 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
c6e387a2 1038
8e218fb2 1039 /* Power values in quarter dB
1048643e
FF
1040 * for the higher xpd gain curve
1041 * (18 dBm -> lower output power) */
c6e387a2 1042 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1043 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1044 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
c6e387a2
NK
1045
1046 AR5K_EEPROM_READ(offset++, val);
1048643e
FF
1047 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1048
1049 /* PCDAC steps
1050 * corresponding to the above power
0ea9c00c 1051 * measurements (fixed) */
1048643e
FF
1052 chan_pcal_info->pcdac_x3[0] = 20;
1053 chan_pcal_info->pcdac_x3[1] = 35;
1054 chan_pcal_info->pcdac_x3[2] = 63;
1055
1056 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
8e218fb2 1057 chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1048643e
FF
1058
1059 /* Last xpd0 power level is also channel maximum */
1060 gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1061 } else {
1062 chan_pcal_info->pcdac_x0[0] = 1;
8e218fb2 1063 gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1048643e 1064 }
c6e387a2 1065
1048643e
FF
1066 }
1067
8e218fb2 1068 return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1048643e
FF
1069}
1070
8e218fb2
NK
1071
1072/*
1073 * Read power calibration for RF2413 chips
1074 *
1075 * For RF2413 we have a Power to PDDAC table (Power Detector)
1076 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1077 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1078 * axis and looks like an exponential function like the RF5111 curve.
1079 *
1080 * To recreate the curves we read here the points and interpolate
1081 * later. Note that in most cases only 2 (higher and lower) curves are
1082 * used (like RF5112) but vendors have the oportunity to include all
1083 * 4 curves on eeprom. The final curve (higher power) has an extra
1084 * point for better accuracy like RF5112.
1085 */
1086
0ea9c00c
NK
1087/* For RF2413 power calibration data doesn't start on a fixed location and
1088 * if a mode is not supported, it's section is missing -not zeroed-.
1089 * So we need to calculate the starting offset for each section by using
1090 * these two functions */
1091
1092/* Return the size of each section based on the mode and the number of pd
1093 * gains available (maximum 4). */
1048643e
FF
1094static inline unsigned int
1095ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1096{
1097 static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1098 unsigned int sz;
1099
1100 sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1101 sz *= ee->ee_n_piers[mode];
1102
1103 return sz;
1104}
1105
0ea9c00c
NK
1106/* Return the starting offset for a section based on the modes supported
1107 * and each section's size. */
1048643e
FF
1108static unsigned int
1109ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1110{
1111 u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1112
1113 switch(mode) {
1114 case AR5K_EEPROM_MODE_11G:
1115 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
8e218fb2
NK
1116 offset += ath5k_pdgains_size_2413(ee,
1117 AR5K_EEPROM_MODE_11B) +
1118 AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1048643e
FF
1119 /* fall through */
1120 case AR5K_EEPROM_MODE_11B:
1121 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
8e218fb2
NK
1122 offset += ath5k_pdgains_size_2413(ee,
1123 AR5K_EEPROM_MODE_11A) +
1124 AR5K_EEPROM_N_5GHZ_CHAN / 2;
1048643e
FF
1125 /* fall through */
1126 case AR5K_EEPROM_MODE_11A:
1127 break;
1128 default:
1129 break;
1130 }
1131
1132 return offset;
1133}
1134
8e218fb2
NK
1135/* Convert RF2413 specific data to generic raw data
1136 * used by interpolation code */
1137static int
1138ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1139 struct ath5k_chan_pcal_info *chinfo)
1140{
1141 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1142 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1143 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1144 unsigned int pier, pdg, point;
1145
1146 /* Fill raw data for each calibration pier */
1147 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1148
1149 pcinfo = &chinfo[pier].rf2413_info;
1150
1151 /* Allocate pd_curves for this cal pier */
1152 chinfo[pier].pd_curves =
1153 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1154 sizeof(struct ath5k_pdgain_info),
1155 GFP_KERNEL);
1156
1157 if (!chinfo[pier].pd_curves)
1158 return -ENOMEM;
1159
1160 /* Fill pd_curves */
1161 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1162
1163 u8 idx = pdgain_idx[pdg];
1164 struct ath5k_pdgain_info *pd =
1165 &chinfo[pier].pd_curves[idx];
1166
1167 /* One more point for the highest power
1168 * curve (lowest gain) */
1169 if (pdg == ee->ee_pd_gains[mode] - 1)
1170 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1171 else
1172 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1173
1174 /* Allocate pd points for this curve */
1175 pd->pd_step = kcalloc(pd->pd_points,
1176 sizeof(u8), GFP_KERNEL);
1177
1178 if (!pd->pd_step)
1179 return -ENOMEM;
1180
1181 pd->pd_pwr = kcalloc(pd->pd_points,
1182 sizeof(s16), GFP_KERNEL);
1183
1184 if (!pd->pd_pwr)
1185 return -ENOMEM;
1186
1187 /* Fill raw dataset
1188 * convert all pwr levels to
1189 * quarter dB for RF5112 combatibility */
1190 pd->pd_step[0] = pcinfo->pddac_i[pdg];
1191 pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1192
1193 for (point = 1; point < pd->pd_points; point++) {
1194
1195 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1196 2 * pcinfo->pwr[pdg][point - 1];
1197
1198 pd->pd_step[point] = pd->pd_step[point - 1] +
1199 pcinfo->pddac[pdg][point - 1];
1200
1201 }
1202
1203 /* Highest gain curve -> min power */
1204 if (pdg == 0)
1205 chinfo[pier].min_pwr = pd->pd_pwr[0];
1206
1207 /* Lowest gain curve -> max power */
1208 if (pdg == ee->ee_pd_gains[mode] - 1)
1209 chinfo[pier].max_pwr =
1210 pd->pd_pwr[pd->pd_points - 1];
1211 }
1212 }
1213
1214 return 0;
1215}
1216
1217/* Parse EEPROM data */
1048643e
FF
1218static int
1219ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1220{
1221 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
8e218fb2
NK
1222 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1223 struct ath5k_chan_pcal_info *chinfo;
1224 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1048643e 1225 u32 offset;
8e218fb2 1226 int idx, i, ret;
1048643e
FF
1227 u16 val;
1228 u8 pd_gains = 0;
1229
8e218fb2
NK
1230 /* Count how many curves we have and
1231 * identify them (which one of the 4
1232 * available curves we have on each count).
1233 * Curves are stored from higher to
1234 * lower gain so we go backwards */
1235 for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1236 /* ee_x_gain[mode] is x gain mask */
1237 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1238 pdgain_idx[pd_gains++] = idx;
1239
1240 }
1048643e
FF
1241 ee->ee_pd_gains[mode] = pd_gains;
1242
8e218fb2
NK
1243 if (pd_gains == 0)
1244 return -EINVAL;
1245
1048643e
FF
1246 offset = ath5k_cal_data_offset_2413(ee, mode);
1247 switch (mode) {
1248 case AR5K_EEPROM_MODE_11A:
1249 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1250 return 0;
1251
1252 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1253 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
8e218fb2 1254 chinfo = ee->ee_pwr_cal_a;
1048643e
FF
1255 break;
1256 case AR5K_EEPROM_MODE_11B:
1257 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1258 return 0;
c6e387a2 1259
1048643e
FF
1260 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1261 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
8e218fb2 1262 chinfo = ee->ee_pwr_cal_b;
1048643e
FF
1263 break;
1264 case AR5K_EEPROM_MODE_11G:
1265 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1266 return 0;
1267
1268 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1269 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
8e218fb2 1270 chinfo = ee->ee_pwr_cal_g;
1048643e
FF
1271 break;
1272 default:
1273 return -EINVAL;
1274 }
1275
1048643e 1276 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
8e218fb2 1277 pcinfo = &chinfo[i].rf2413_info;
1048643e
FF
1278
1279 /*
1280 * Read pwr_i, pddac_i and the first
1281 * 2 pd points (pwr, pddac)
1282 */
c6e387a2 1283 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1284 pcinfo->pwr_i[0] = val & 0x1f;
1285 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1286 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
c6e387a2 1287
1048643e 1288 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1289 pcinfo->pddac[0][0] = val & 0x3f;
1290 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1291 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1048643e
FF
1292
1293 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1294 pcinfo->pwr[0][2] = val & 0xf;
1295 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1048643e 1296
8e218fb2
NK
1297 pcinfo->pwr[0][3] = 0;
1298 pcinfo->pddac[0][3] = 0;
1048643e
FF
1299
1300 if (pd_gains > 1) {
1301 /*
1302 * Pd gain 0 is not the last pd gain
1303 * so it only has 2 pd points.
1304 * Continue wih pd gain 1.
1305 */
8e218fb2 1306 pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1048643e 1307
8e218fb2 1308 pcinfo->pddac_i[1] = (val >> 15) & 0x1;
c6e387a2 1309 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1310 pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1048643e 1311
8e218fb2
NK
1312 pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1313 pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1048643e
FF
1314
1315 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1316 pcinfo->pwr[1][1] = val & 0xf;
1317 pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1318 pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1319
1320 pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1048643e 1321 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1322 pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1048643e 1323
8e218fb2
NK
1324 pcinfo->pwr[1][3] = 0;
1325 pcinfo->pddac[1][3] = 0;
1048643e
FF
1326 } else if (pd_gains == 1) {
1327 /*
1328 * Pd gain 0 is the last one so
1329 * read the extra point.
1330 */
8e218fb2 1331 pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1048643e 1332
8e218fb2 1333 pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1048643e 1334 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1335 pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1048643e
FF
1336 }
1337
1338 /*
1339 * Proceed with the other pd_gains
1340 * as above.
1341 */
1342 if (pd_gains > 2) {
8e218fb2
NK
1343 pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1344 pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1048643e
FF
1345
1346 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1347 pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1348 pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1349 pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1350
1351 pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1048643e 1352 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1353 pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1048643e 1354
8e218fb2
NK
1355 pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1356 pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1048643e 1357
8e218fb2
NK
1358 pcinfo->pwr[2][3] = 0;
1359 pcinfo->pddac[2][3] = 0;
1048643e 1360 } else if (pd_gains == 2) {
8e218fb2
NK
1361 pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1362 pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1048643e
FF
1363 }
1364
1365 if (pd_gains > 3) {
8e218fb2 1366 pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1048643e 1367 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1368 pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1048643e 1369
8e218fb2
NK
1370 pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1371 pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1372 pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1048643e
FF
1373
1374 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1375 pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1376 pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1377 pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1378
1379 pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1048643e 1380 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1381 pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1048643e 1382
8e218fb2
NK
1383 pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1384 pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1048643e 1385
8e218fb2 1386 pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1048643e 1387 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1388 pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1048643e 1389 } else if (pd_gains == 3) {
8e218fb2 1390 pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1048643e 1391 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1392 pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1048643e 1393
8e218fb2 1394 pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
c6e387a2
NK
1395 }
1396 }
1397
8e218fb2 1398 return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1048643e
FF
1399}
1400
8e218fb2 1401
1048643e
FF
1402/*
1403 * Read per rate target power (this is the maximum tx power
1404 * supported by the card). This info is used when setting
1405 * tx power, no matter the channel.
1406 *
1407 * This also works for v5 EEPROMs.
1408 */
8e218fb2
NK
1409static int
1410ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1048643e
FF
1411{
1412 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1413 struct ath5k_rate_pcal_info *rate_pcal_info;
8e218fb2 1414 u8 *rate_target_pwr_num;
1048643e
FF
1415 u32 offset;
1416 u16 val;
1417 int ret, i;
1418
1419 offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1420 rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1421 switch (mode) {
1422 case AR5K_EEPROM_MODE_11A:
1423 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1424 rate_pcal_info = ee->ee_rate_tpwr_a;
1425 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1426 break;
1427 case AR5K_EEPROM_MODE_11B:
1428 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1429 rate_pcal_info = ee->ee_rate_tpwr_b;
1430 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1431 break;
1432 case AR5K_EEPROM_MODE_11G:
1433 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1434 rate_pcal_info = ee->ee_rate_tpwr_g;
1435 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1436 break;
1437 default:
1438 return -EINVAL;
1439 }
1440
1441 /* Different freq mask for older eeproms (<= v3.2) */
1442 if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1443 for (i = 0; i < (*rate_target_pwr_num); i++) {
1444 AR5K_EEPROM_READ(offset++, val);
1445 rate_pcal_info[i].freq =
1446 ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1447
1448 rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1449 rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1450
1451 AR5K_EEPROM_READ(offset++, val);
1452
1453 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1454 val == 0) {
1455 (*rate_target_pwr_num) = i;
1456 break;
1457 }
1458
1459 rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1460 rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1461 rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1462 }
1463 } else {
1464 for (i = 0; i < (*rate_target_pwr_num); i++) {
1465 AR5K_EEPROM_READ(offset++, val);
1466 rate_pcal_info[i].freq =
1467 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1468
1469 rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1470 rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1471
1472 AR5K_EEPROM_READ(offset++, val);
1473
1474 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1475 val == 0) {
1476 (*rate_target_pwr_num) = i;
1477 break;
1478 }
1479
1480 rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1481 rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1482 rate_pcal_info[i].target_power_54 = (val & 0x3f);
1483 }
1484 }
1485
1486 return 0;
1487}
1488
0ea9c00c
NK
1489/*
1490 * Read per channel calibration info from EEPROM
1491 *
1492 * This info is used to calibrate the baseband power table. Imagine
1493 * that for each channel there is a power curve that's hw specific
1494 * (depends on amplifier etc) and we try to "correct" this curve using
1495 * offests we pass on to phy chip (baseband -> before amplifier) so that
1496 * it can use accurate power values when setting tx power (takes amplifier's
1497 * performance on each channel into account).
1498 *
1499 * EEPROM provides us with the offsets for some pre-calibrated channels
1500 * and we have to interpolate to create the full table for these channels and
1501 * also the table for any channel.
1502 */
1048643e
FF
1503static int
1504ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1505{
1506 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1507 int (*read_pcal)(struct ath5k_hw *hw, int mode);
1508 int mode;
1509 int err;
1510
1511 if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1512 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1513 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1514 else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1515 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1516 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1517 else
1518 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1519
8e218fb2
NK
1520
1521 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1522 mode++) {
1048643e
FF
1523 err = read_pcal(ah, mode);
1524 if (err)
1525 return err;
1526
1527 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1528 if (err < 0)
1529 return err;
1530 }
1531
1532 return 0;
1533}
1534
8e218fb2
NK
1535static int
1536ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1537{
1538 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1539 struct ath5k_chan_pcal_info *chinfo;
1540 u8 pier, pdg;
1541
1542 switch (mode) {
1543 case AR5K_EEPROM_MODE_11A:
1544 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1545 return 0;
1546 chinfo = ee->ee_pwr_cal_a;
1547 break;
1548 case AR5K_EEPROM_MODE_11B:
1549 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1550 return 0;
1551 chinfo = ee->ee_pwr_cal_b;
1552 break;
1553 case AR5K_EEPROM_MODE_11G:
1554 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1555 return 0;
1556 chinfo = ee->ee_pwr_cal_g;
1557 break;
1558 default:
1559 return -EINVAL;
1560 }
1561
1562 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1563 if (!chinfo[pier].pd_curves)
1564 continue;
1565
1566 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1567 struct ath5k_pdgain_info *pd =
1568 &chinfo[pier].pd_curves[pdg];
1569
1570 if (pd != NULL) {
1571 kfree(pd->pd_step);
1572 kfree(pd->pd_pwr);
1573 }
1574 }
1575
1576 kfree(chinfo[pier].pd_curves);
1577 }
1578
1579 return 0;
1580}
1581
1582void
1583ath5k_eeprom_detach(struct ath5k_hw *ah)
1584{
1585 u8 mode;
1586
1587 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1588 ath5k_eeprom_free_pcal_info(ah, mode);
1589}
1590
0ea9c00c 1591/* Read conformance test limits used for regulatory control */
1048643e
FF
1592static int
1593ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1594{
1595 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1596 struct ath5k_edge_power *rep;
1597 unsigned int fmask, pmask;
1598 unsigned int ctl_mode;
1599 int ret, i, j;
1600 u32 offset;
1601 u16 val;
1602
1603 pmask = AR5K_EEPROM_POWER_M;
1604 fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1605 offset = AR5K_EEPROM_CTL(ee->ee_version);
1606 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1607 for (i = 0; i < ee->ee_ctls; i += 2) {
1608 AR5K_EEPROM_READ(offset++, val);
1609 ee->ee_ctl[i] = (val >> 8) & 0xff;
1610 ee->ee_ctl[i + 1] = val & 0xff;
1611 }
1612
1613 offset = AR5K_EEPROM_GROUP8_OFFSET;
1614 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1615 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1616 AR5K_EEPROM_GROUP5_OFFSET;
1617 else
1618 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1619
1620 rep = ee->ee_ctl_pwr;
1621 for(i = 0; i < ee->ee_ctls; i++) {
1622 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1623 case AR5K_CTL_11A:
1624 case AR5K_CTL_TURBO:
1625 ctl_mode = AR5K_EEPROM_MODE_11A;
1626 break;
1627 default:
1628 ctl_mode = AR5K_EEPROM_MODE_11G;
1629 break;
1630 }
1631 if (ee->ee_ctl[i] == 0) {
1632 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1633 offset += 8;
1634 else
1635 offset += 7;
1636 rep += AR5K_EEPROM_N_EDGES;
1637 continue;
1638 }
1639 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1640 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1641 AR5K_EEPROM_READ(offset++, val);
1642 rep[j].freq = (val >> 8) & fmask;
1643 rep[j + 1].freq = val & fmask;
1644 }
1645 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1646 AR5K_EEPROM_READ(offset++, val);
1647 rep[j].edge = (val >> 8) & pmask;
1648 rep[j].flag = (val >> 14) & 1;
1649 rep[j + 1].edge = val & pmask;
1650 rep[j + 1].flag = (val >> 6) & 1;
1651 }
1652 } else {
1653 AR5K_EEPROM_READ(offset++, val);
1654 rep[0].freq = (val >> 9) & fmask;
1655 rep[1].freq = (val >> 2) & fmask;
1656 rep[2].freq = (val << 5) & fmask;
1657
1658 AR5K_EEPROM_READ(offset++, val);
1659 rep[2].freq |= (val >> 11) & 0x1f;
1660 rep[3].freq = (val >> 4) & fmask;
1661 rep[4].freq = (val << 3) & fmask;
1662
1663 AR5K_EEPROM_READ(offset++, val);
1664 rep[4].freq |= (val >> 13) & 0x7;
1665 rep[5].freq = (val >> 6) & fmask;
1666 rep[6].freq = (val << 1) & fmask;
1667
1668 AR5K_EEPROM_READ(offset++, val);
1669 rep[6].freq |= (val >> 15) & 0x1;
1670 rep[7].freq = (val >> 8) & fmask;
1671
1672 rep[0].edge = (val >> 2) & pmask;
1673 rep[1].edge = (val << 4) & pmask;
1674
1675 AR5K_EEPROM_READ(offset++, val);
1676 rep[1].edge |= (val >> 12) & 0xf;
1677 rep[2].edge = (val >> 6) & pmask;
1678 rep[3].edge = val & pmask;
1679
1680 AR5K_EEPROM_READ(offset++, val);
1681 rep[4].edge = (val >> 10) & pmask;
1682 rep[5].edge = (val >> 4) & pmask;
1683 rep[6].edge = (val << 2) & pmask;
1684
1685 AR5K_EEPROM_READ(offset++, val);
1686 rep[6].edge |= (val >> 14) & 0x3;
1687 rep[7].edge = (val >> 8) & pmask;
1688 }
1689 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1690 rep[j].freq = ath5k_eeprom_bin2freq(ee,
1691 rep[j].freq, ctl_mode);
1692 }
1693 rep += AR5K_EEPROM_N_EDGES;
1694 }
c6e387a2
NK
1695
1696 return 0;
1697}
1698
cd417519
NK
1699static int
1700ath5k_eeprom_read_spur_chans(struct ath5k_hw *ah)
1701{
1702 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1703 u32 offset;
1704 u16 val;
1705 int ret = 0, i;
1706
1707 offset = AR5K_EEPROM_CTL(ee->ee_version) +
1708 AR5K_EEPROM_N_CTLS(ee->ee_version);
1709
1710 if (ee->ee_version < AR5K_EEPROM_VERSION_5_3) {
1711 /* No spur info for 5GHz */
1712 ee->ee_spur_chans[0][0] = AR5K_EEPROM_NO_SPUR;
1713 /* 2 channels for 2GHz (2464/2420) */
1714 ee->ee_spur_chans[0][1] = AR5K_EEPROM_5413_SPUR_CHAN_1;
1715 ee->ee_spur_chans[1][1] = AR5K_EEPROM_5413_SPUR_CHAN_2;
1716 ee->ee_spur_chans[2][1] = AR5K_EEPROM_NO_SPUR;
1717 } else if (ee->ee_version >= AR5K_EEPROM_VERSION_5_3) {
1718 for (i = 0; i < AR5K_EEPROM_N_SPUR_CHANS; i++) {
1719 AR5K_EEPROM_READ(offset, val);
1720 ee->ee_spur_chans[i][0] = val;
1721 AR5K_EEPROM_READ(offset + AR5K_EEPROM_N_SPUR_CHANS,
1722 val);
1723 ee->ee_spur_chans[i][1] = val;
1724 offset++;
1725 }
1726 }
1727
1728 return ret;
1729}
1048643e
FF
1730
1731/*
cd417519 1732 * Initialize eeprom data structure
1048643e
FF
1733 */
1734int
1735ath5k_eeprom_init(struct ath5k_hw *ah)
1736{
1737 int err;
1738
1739 err = ath5k_eeprom_init_header(ah);
1740 if (err < 0)
1741 return err;
1742
1743 err = ath5k_eeprom_init_modes(ah);
1744 if (err < 0)
1745 return err;
1746
1747 err = ath5k_eeprom_read_pcal_info(ah);
1748 if (err < 0)
1749 return err;
1750
1751 err = ath5k_eeprom_read_ctl_info(ah);
1752 if (err < 0)
1753 return err;
1754
cd417519
NK
1755 err = ath5k_eeprom_read_spur_chans(ah);
1756 if (err < 0)
1757 return err;
1758
1048643e
FF
1759 return 0;
1760}
e8f055f0 1761
c6e387a2
NK
1762/*
1763 * Read the MAC address from eeprom
1764 */
1765int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1766{
8d6c39ef 1767 u8 mac_d[ETH_ALEN] = {};
c6e387a2
NK
1768 u32 total, offset;
1769 u16 data;
1770 int octet, ret;
1771
c6e387a2
NK
1772 ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1773 if (ret)
1774 return ret;
1775
1776 for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1777 ret = ath5k_hw_eeprom_read(ah, offset, &data);
1778 if (ret)
1779 return ret;
1780
1781 total += data;
1782 mac_d[octet + 1] = data & 0xff;
1783 mac_d[octet] = data >> 8;
1784 octet += 2;
1785 }
1786
c6e387a2
NK
1787 if (!total || total == 3 * 0xffff)
1788 return -EINVAL;
1789
8d6c39ef
JS
1790 memcpy(mac, mac_d, ETH_ALEN);
1791
c6e387a2
NK
1792 return 0;
1793}