ar9170: wrong test on outlen in ar9170_usb_exec_cmd() ?
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / wireless / ath / ath5k / eeprom.c
CommitLineData
c6e387a2
NK
1/*
2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
8e218fb2
NK
3 * Copyright (c) 2006-2009 Nick Kossifidis <mickflemm@gmail.com>
4 * Copyright (c) 2008-2009 Felix Fietkau <nbd@openwrt.org>
c6e387a2
NK
5 *
6 * Permission to use, copy, modify, and distribute this software for any
7 * purpose with or without fee is hereby granted, provided that the above
8 * copyright notice and this permission notice appear in all copies.
9 *
10 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
11 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
12 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
13 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
14 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
15 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
16 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
17 *
18 */
19
20/*************************************\
21* EEPROM access functions and helpers *
22\*************************************/
23
24#include "ath5k.h"
25#include "reg.h"
26#include "debug.h"
27#include "base.h"
28
29/*
30 * Read from eeprom
31 */
32static int ath5k_hw_eeprom_read(struct ath5k_hw *ah, u32 offset, u16 *data)
33{
34 u32 status, timeout;
35
36 ATH5K_TRACE(ah->ah_sc);
37 /*
38 * Initialize EEPROM access
39 */
40 if (ah->ah_version == AR5K_AR5210) {
41 AR5K_REG_ENABLE_BITS(ah, AR5K_PCICFG, AR5K_PCICFG_EEAE);
42 (void)ath5k_hw_reg_read(ah, AR5K_EEPROM_BASE + (4 * offset));
43 } else {
44 ath5k_hw_reg_write(ah, offset, AR5K_EEPROM_BASE);
45 AR5K_REG_ENABLE_BITS(ah, AR5K_EEPROM_CMD,
46 AR5K_EEPROM_CMD_READ);
47 }
48
49 for (timeout = AR5K_TUNE_REGISTER_TIMEOUT; timeout > 0; timeout--) {
50 status = ath5k_hw_reg_read(ah, AR5K_EEPROM_STATUS);
51 if (status & AR5K_EEPROM_STAT_RDDONE) {
52 if (status & AR5K_EEPROM_STAT_RDERR)
53 return -EIO;
54 *data = (u16)(ath5k_hw_reg_read(ah, AR5K_EEPROM_DATA) &
55 0xffff);
56 return 0;
57 }
58 udelay(15);
59 }
60
61 return -ETIMEDOUT;
62}
63
64/*
65 * Translate binary channel representation in EEPROM to frequency
66 */
1048643e
FF
67static u16 ath5k_eeprom_bin2freq(struct ath5k_eeprom_info *ee, u16 bin,
68 unsigned int mode)
c6e387a2
NK
69{
70 u16 val;
71
72 if (bin == AR5K_EEPROM_CHANNEL_DIS)
73 return bin;
74
75 if (mode == AR5K_EEPROM_MODE_11A) {
1048643e 76 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
c6e387a2
NK
77 val = (5 * bin) + 4800;
78 else
79 val = bin > 62 ? (10 * 62) + (5 * (bin - 62)) + 5100 :
80 (bin * 10) + 5100;
81 } else {
1048643e 82 if (ee->ee_version > AR5K_EEPROM_VERSION_3_2)
c6e387a2
NK
83 val = bin + 2300;
84 else
85 val = bin + 2400;
86 }
87
88 return val;
89}
90
1048643e
FF
91/*
92 * Initialize eeprom & capabilities structs
93 */
94static int
95ath5k_eeprom_init_header(struct ath5k_hw *ah)
96{
97 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
98 int ret;
99 u16 val;
100
1048643e
FF
101 /*
102 * Read values from EEPROM and store them in the capability structure
103 */
104 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MAGIC, ee_magic);
105 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_PROTECT, ee_protect);
106 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_REG_DOMAIN, ee_regdomain);
107 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_VERSION, ee_version);
108 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_HDR, ee_header);
109
110 /* Return if we have an old EEPROM */
111 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_0)
112 return 0;
113
114#ifdef notyet
115 /*
116 * Validate the checksum of the EEPROM date. There are some
117 * devices with invalid EEPROMs.
118 */
119 for (cksum = 0, offset = 0; offset < AR5K_EEPROM_INFO_MAX; offset++) {
120 AR5K_EEPROM_READ(AR5K_EEPROM_INFO(offset), val);
121 cksum ^= val;
122 }
123 if (cksum != AR5K_EEPROM_INFO_CKSUM) {
124 ATH5K_ERR(ah->ah_sc, "Invalid EEPROM checksum 0x%04x\n", cksum);
125 return -EIO;
126 }
127#endif
128
129 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_ANT_GAIN(ah->ah_ee_version),
130 ee_ant_gain);
131
132 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) {
133 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC0, ee_misc0);
134 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC1, ee_misc1);
0ea9c00c
NK
135
136 /* XXX: Don't know which versions include these two */
137 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC2, ee_misc2);
138
139 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3)
140 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC3, ee_misc3);
141
142 if (ee->ee_version >= AR5K_EEPROM_VERSION_5_0) {
143 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC4, ee_misc4);
144 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC5, ee_misc5);
145 AR5K_EEPROM_READ_HDR(AR5K_EEPROM_MISC6, ee_misc6);
146 }
1048643e
FF
147 }
148
149 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_3) {
150 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB0_2GHZ, val);
151 ee->ee_ob[AR5K_EEPROM_MODE_11B][0] = val & 0x7;
152 ee->ee_db[AR5K_EEPROM_MODE_11B][0] = (val >> 3) & 0x7;
153
154 AR5K_EEPROM_READ(AR5K_EEPROM_OBDB1_2GHZ, val);
155 ee->ee_ob[AR5K_EEPROM_MODE_11G][0] = val & 0x7;
156 ee->ee_db[AR5K_EEPROM_MODE_11G][0] = (val >> 3) & 0x7;
157 }
158
159 return 0;
160}
161
162
c6e387a2
NK
163/*
164 * Read antenna infos from eeprom
165 */
166static int ath5k_eeprom_read_ants(struct ath5k_hw *ah, u32 *offset,
167 unsigned int mode)
168{
169 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
170 u32 o = *offset;
171 u16 val;
172 int ret, i = 0;
173
174 AR5K_EEPROM_READ(o++, val);
175 ee->ee_switch_settling[mode] = (val >> 8) & 0x7f;
1048643e 176 ee->ee_atn_tx_rx[mode] = (val >> 2) & 0x3f;
c6e387a2
NK
177 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
178
179 AR5K_EEPROM_READ(o++, val);
180 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
181 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
182 ee->ee_ant_control[mode][i++] = val & 0x3f;
183
184 AR5K_EEPROM_READ(o++, val);
185 ee->ee_ant_control[mode][i++] = (val >> 10) & 0x3f;
186 ee->ee_ant_control[mode][i++] = (val >> 4) & 0x3f;
187 ee->ee_ant_control[mode][i] = (val << 2) & 0x3f;
188
189 AR5K_EEPROM_READ(o++, val);
190 ee->ee_ant_control[mode][i++] |= (val >> 14) & 0x3;
191 ee->ee_ant_control[mode][i++] = (val >> 8) & 0x3f;
192 ee->ee_ant_control[mode][i++] = (val >> 2) & 0x3f;
193 ee->ee_ant_control[mode][i] = (val << 4) & 0x3f;
194
195 AR5K_EEPROM_READ(o++, val);
196 ee->ee_ant_control[mode][i++] |= (val >> 12) & 0xf;
197 ee->ee_ant_control[mode][i++] = (val >> 6) & 0x3f;
198 ee->ee_ant_control[mode][i++] = val & 0x3f;
199
200 /* Get antenna modes */
201 ah->ah_antenna[mode][0] =
e8f055f0 202 (ee->ee_ant_control[mode][0] << 4);
c6e387a2
NK
203 ah->ah_antenna[mode][AR5K_ANT_FIXED_A] =
204 ee->ee_ant_control[mode][1] |
205 (ee->ee_ant_control[mode][2] << 6) |
206 (ee->ee_ant_control[mode][3] << 12) |
207 (ee->ee_ant_control[mode][4] << 18) |
208 (ee->ee_ant_control[mode][5] << 24);
209 ah->ah_antenna[mode][AR5K_ANT_FIXED_B] =
210 ee->ee_ant_control[mode][6] |
211 (ee->ee_ant_control[mode][7] << 6) |
212 (ee->ee_ant_control[mode][8] << 12) |
213 (ee->ee_ant_control[mode][9] << 18) |
214 (ee->ee_ant_control[mode][10] << 24);
215
216 /* return new offset */
217 *offset = o;
218
219 return 0;
220}
221
222/*
0ea9c00c
NK
223 * Read supported modes and some mode-specific calibration data
224 * from eeprom
c6e387a2
NK
225 */
226static int ath5k_eeprom_read_modes(struct ath5k_hw *ah, u32 *offset,
227 unsigned int mode)
228{
229 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
230 u32 o = *offset;
231 u16 val;
232 int ret;
233
1048643e
FF
234 ee->ee_n_piers[mode] = 0;
235 AR5K_EEPROM_READ(o++, val);
236 ee->ee_adc_desired_size[mode] = (s8)((val >> 8) & 0xff);
237 switch(mode) {
238 case AR5K_EEPROM_MODE_11A:
8e218fb2
NK
239 ee->ee_ob[mode][3] = (val >> 5) & 0x7;
240 ee->ee_db[mode][3] = (val >> 2) & 0x7;
241 ee->ee_ob[mode][2] = (val << 1) & 0x7;
1048643e
FF
242
243 AR5K_EEPROM_READ(o++, val);
8e218fb2
NK
244 ee->ee_ob[mode][2] |= (val >> 15) & 0x1;
245 ee->ee_db[mode][2] = (val >> 12) & 0x7;
246 ee->ee_ob[mode][1] = (val >> 9) & 0x7;
247 ee->ee_db[mode][1] = (val >> 6) & 0x7;
248 ee->ee_ob[mode][0] = (val >> 3) & 0x7;
249 ee->ee_db[mode][0] = val & 0x7;
1048643e
FF
250 break;
251 case AR5K_EEPROM_MODE_11G:
252 case AR5K_EEPROM_MODE_11B:
8e218fb2
NK
253 ee->ee_ob[mode][1] = (val >> 4) & 0x7;
254 ee->ee_db[mode][1] = val & 0x7;
1048643e
FF
255 break;
256 }
257
c6e387a2
NK
258 AR5K_EEPROM_READ(o++, val);
259 ee->ee_tx_end2xlna_enable[mode] = (val >> 8) & 0xff;
260 ee->ee_thr_62[mode] = val & 0xff;
261
262 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
263 ee->ee_thr_62[mode] = mode == AR5K_EEPROM_MODE_11A ? 15 : 28;
264
265 AR5K_EEPROM_READ(o++, val);
266 ee->ee_tx_end2xpa_disable[mode] = (val >> 8) & 0xff;
267 ee->ee_tx_frm2xpa_enable[mode] = val & 0xff;
268
269 AR5K_EEPROM_READ(o++, val);
270 ee->ee_pga_desired_size[mode] = (val >> 8) & 0xff;
271
272 if ((val & 0xff) & 0x80)
273 ee->ee_noise_floor_thr[mode] = -((((val & 0xff) ^ 0xff)) + 1);
274 else
275 ee->ee_noise_floor_thr[mode] = val & 0xff;
276
277 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2)
278 ee->ee_noise_floor_thr[mode] =
279 mode == AR5K_EEPROM_MODE_11A ? -54 : -1;
280
281 AR5K_EEPROM_READ(o++, val);
282 ee->ee_xlna_gain[mode] = (val >> 5) & 0xff;
283 ee->ee_x_gain[mode] = (val >> 1) & 0xf;
284 ee->ee_xpd[mode] = val & 0x1;
285
286 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0)
287 ee->ee_fixed_bias[mode] = (val >> 13) & 0x1;
288
289 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_3) {
290 AR5K_EEPROM_READ(o++, val);
291 ee->ee_false_detect[mode] = (val >> 6) & 0x7f;
292
293 if (mode == AR5K_EEPROM_MODE_11A)
294 ee->ee_xr_power[mode] = val & 0x3f;
295 else {
296 ee->ee_ob[mode][0] = val & 0x7;
297 ee->ee_db[mode][0] = (val >> 3) & 0x7;
298 }
299 }
300
301 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_3_4) {
302 ee->ee_i_gain[mode] = AR5K_EEPROM_I_GAIN;
303 ee->ee_cck_ofdm_power_delta = AR5K_EEPROM_CCK_OFDM_DELTA;
304 } else {
305 ee->ee_i_gain[mode] = (val >> 13) & 0x7;
306
307 AR5K_EEPROM_READ(o++, val);
308 ee->ee_i_gain[mode] |= (val << 3) & 0x38;
309
1048643e 310 if (mode == AR5K_EEPROM_MODE_11G) {
c6e387a2 311 ee->ee_cck_ofdm_power_delta = (val >> 3) & 0xff;
1048643e
FF
312 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_6)
313 ee->ee_scaled_cck_delta = (val >> 11) & 0x1f;
314 }
c6e387a2
NK
315 }
316
317 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0 &&
318 mode == AR5K_EEPROM_MODE_11A) {
319 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
320 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
321 }
322
1048643e
FF
323 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_0)
324 goto done;
325
0ea9c00c
NK
326 /* Note: >= v5 have bg freq piers on another location
327 * so these freq piers are ignored for >= v5 (should be 0xff
328 * anyway) */
1048643e
FF
329 switch(mode) {
330 case AR5K_EEPROM_MODE_11A:
331 if (ah->ah_ee_version < AR5K_EEPROM_VERSION_4_1)
332 break;
333
334 AR5K_EEPROM_READ(o++, val);
335 ee->ee_margin_tx_rx[mode] = val & 0x3f;
336 break;
337 case AR5K_EEPROM_MODE_11B:
338 AR5K_EEPROM_READ(o++, val);
339
340 ee->ee_pwr_cal_b[0].freq =
341 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
342 if (ee->ee_pwr_cal_b[0].freq != AR5K_EEPROM_CHANNEL_DIS)
343 ee->ee_n_piers[mode]++;
344
345 ee->ee_pwr_cal_b[1].freq =
346 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
347 if (ee->ee_pwr_cal_b[1].freq != AR5K_EEPROM_CHANNEL_DIS)
348 ee->ee_n_piers[mode]++;
349
350 AR5K_EEPROM_READ(o++, val);
351 ee->ee_pwr_cal_b[2].freq =
352 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
353 if (ee->ee_pwr_cal_b[2].freq != AR5K_EEPROM_CHANNEL_DIS)
354 ee->ee_n_piers[mode]++;
355
356 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
357 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
358 break;
359 case AR5K_EEPROM_MODE_11G:
360 AR5K_EEPROM_READ(o++, val);
361
362 ee->ee_pwr_cal_g[0].freq =
363 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
364 if (ee->ee_pwr_cal_g[0].freq != AR5K_EEPROM_CHANNEL_DIS)
365 ee->ee_n_piers[mode]++;
366
367 ee->ee_pwr_cal_g[1].freq =
368 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
369 if (ee->ee_pwr_cal_g[1].freq != AR5K_EEPROM_CHANNEL_DIS)
370 ee->ee_n_piers[mode]++;
371
372 AR5K_EEPROM_READ(o++, val);
373 ee->ee_turbo_max_power[mode] = val & 0x7f;
374 ee->ee_xr_power[mode] = (val >> 7) & 0x3f;
375
376 AR5K_EEPROM_READ(o++, val);
377 ee->ee_pwr_cal_g[2].freq =
378 ath5k_eeprom_bin2freq(ee, val & 0xff, mode);
379 if (ee->ee_pwr_cal_g[2].freq != AR5K_EEPROM_CHANNEL_DIS)
380 ee->ee_n_piers[mode]++;
c6e387a2 381
1048643e
FF
382 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_1)
383 ee->ee_margin_tx_rx[mode] = (val >> 8) & 0x3f;
384
385 AR5K_EEPROM_READ(o++, val);
386 ee->ee_i_cal[mode] = (val >> 8) & 0x3f;
387 ee->ee_q_cal[mode] = (val >> 3) & 0x1f;
388
389 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_2) {
390 AR5K_EEPROM_READ(o++, val);
391 ee->ee_cck_ofdm_gain_delta = val & 0xff;
392 }
393 break;
394 }
395
396done:
c6e387a2
NK
397 /* return new offset */
398 *offset = o;
399
400 return 0;
401}
402
403/*
1048643e 404 * Read turbo mode information on newer EEPROM versions
c6e387a2 405 */
1048643e
FF
406static int
407ath5k_eeprom_read_turbo_modes(struct ath5k_hw *ah,
408 u32 *offset, unsigned int mode)
c6e387a2
NK
409{
410 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1048643e 411 u32 o = *offset;
c6e387a2 412 u16 val;
1048643e 413 int ret;
c6e387a2 414
1048643e
FF
415 if (ee->ee_version < AR5K_EEPROM_VERSION_5_0)
416 return 0;
c6e387a2 417
1048643e
FF
418 switch (mode){
419 case AR5K_EEPROM_MODE_11A:
420 ee->ee_switch_settling_turbo[mode] = (val >> 6) & 0x7f;
c6e387a2 421
1048643e
FF
422 ee->ee_atn_tx_rx_turbo[mode] = (val >> 13) & 0x7;
423 AR5K_EEPROM_READ(o++, val);
424 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x7) << 3;
425 ee->ee_margin_tx_rx_turbo[mode] = (val >> 3) & 0x3f;
426
427 ee->ee_adc_desired_size_turbo[mode] = (val >> 9) & 0x7f;
428 AR5K_EEPROM_READ(o++, val);
429 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x1) << 7;
430 ee->ee_pga_desired_size_turbo[mode] = (val >> 1) & 0xff;
431
432 if (AR5K_EEPROM_EEMAP(ee->ee_misc0) >=2)
433 ee->ee_pd_gain_overlap = (val >> 9) & 0xf;
434 break;
435 case AR5K_EEPROM_MODE_11G:
436 ee->ee_switch_settling_turbo[mode] = (val >> 8) & 0x7f;
437
438 ee->ee_atn_tx_rx_turbo[mode] = (val >> 15) & 0x7;
439 AR5K_EEPROM_READ(o++, val);
440 ee->ee_atn_tx_rx_turbo[mode] |= (val & 0x1f) << 1;
441 ee->ee_margin_tx_rx_turbo[mode] = (val >> 5) & 0x3f;
442
443 ee->ee_adc_desired_size_turbo[mode] = (val >> 11) & 0x7f;
444 AR5K_EEPROM_READ(o++, val);
445 ee->ee_adc_desired_size_turbo[mode] |= (val & 0x7) << 5;
446 ee->ee_pga_desired_size_turbo[mode] = (val >> 3) & 0xff;
447 break;
448 }
449
450 /* return new offset */
451 *offset = o;
452
453 return 0;
454}
455
0ea9c00c 456/* Read mode-specific data (except power calibration data) */
1048643e
FF
457static int
458ath5k_eeprom_init_modes(struct ath5k_hw *ah)
459{
460 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
461 u32 mode_offset[3];
462 unsigned int mode;
463 u32 offset;
464 int ret;
c6e387a2 465
c6e387a2 466 /*
1048643e 467 * Get values for all modes
c6e387a2 468 */
1048643e
FF
469 mode_offset[AR5K_EEPROM_MODE_11A] = AR5K_EEPROM_MODES_11A(ah->ah_ee_version);
470 mode_offset[AR5K_EEPROM_MODE_11B] = AR5K_EEPROM_MODES_11B(ah->ah_ee_version);
471 mode_offset[AR5K_EEPROM_MODE_11G] = AR5K_EEPROM_MODES_11G(ah->ah_ee_version);
472
473 ee->ee_turbo_max_power[AR5K_EEPROM_MODE_11A] =
474 AR5K_EEPROM_HDR_T_5GHZ_DBM(ee->ee_header);
475
476 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++) {
477 offset = mode_offset[mode];
478
479 ret = ath5k_eeprom_read_ants(ah, &offset, mode);
480 if (ret)
481 return ret;
482
483 ret = ath5k_eeprom_read_modes(ah, &offset, mode);
484 if (ret)
485 return ret;
486
487 ret = ath5k_eeprom_read_turbo_modes(ah, &offset, mode);
488 if (ret)
489 return ret;
c6e387a2 490 }
1048643e
FF
491
492 /* override for older eeprom versions for better performance */
493 if (ah->ah_ee_version <= AR5K_EEPROM_VERSION_3_2) {
494 ee->ee_thr_62[AR5K_EEPROM_MODE_11A] = 15;
495 ee->ee_thr_62[AR5K_EEPROM_MODE_11B] = 28;
496 ee->ee_thr_62[AR5K_EEPROM_MODE_11G] = 28;
c6e387a2 497 }
c6e387a2 498
1048643e
FF
499 return 0;
500}
c6e387a2 501
0ea9c00c
NK
502/* Read the frequency piers for each mode (mostly used on newer eeproms with 0xff
503 * frequency mask) */
1048643e
FF
504static inline int
505ath5k_eeprom_read_freq_list(struct ath5k_hw *ah, int *offset, int max,
0ea9c00c 506 struct ath5k_chan_pcal_info *pc, unsigned int mode)
1048643e 507{
0ea9c00c 508 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1048643e
FF
509 int o = *offset;
510 int i = 0;
0ea9c00c 511 u8 freq1, freq2;
1048643e
FF
512 int ret;
513 u16 val;
514
8e218fb2 515 ee->ee_n_piers[mode] = 0;
1048643e
FF
516 while(i < max) {
517 AR5K_EEPROM_READ(o++, val);
518
8e218fb2
NK
519 freq1 = val & 0xff;
520 if (!freq1)
521 break;
1048643e 522
8e218fb2
NK
523 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
524 freq1, mode);
525 ee->ee_n_piers[mode]++;
1048643e 526
8e218fb2
NK
527 freq2 = (val >> 8) & 0xff;
528 if (!freq2)
1048643e 529 break;
8e218fb2
NK
530
531 pc[i++].freq = ath5k_eeprom_bin2freq(ee,
532 freq2, mode);
533 ee->ee_n_piers[mode]++;
c6e387a2 534 }
0ea9c00c
NK
535
536 /* return new offset */
1048643e 537 *offset = o;
c6e387a2 538
1048643e
FF
539 return 0;
540}
541
0ea9c00c 542/* Read frequency piers for 802.11a */
1048643e
FF
543static int
544ath5k_eeprom_init_11a_pcal_freq(struct ath5k_hw *ah, int offset)
545{
546 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
547 struct ath5k_chan_pcal_info *pcal = ee->ee_pwr_cal_a;
548 int i, ret;
549 u16 val;
550 u8 mask;
551
552 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
553 ath5k_eeprom_read_freq_list(ah, &offset,
554 AR5K_EEPROM_N_5GHZ_CHAN, pcal,
0ea9c00c 555 AR5K_EEPROM_MODE_11A);
1048643e
FF
556 } else {
557 mask = AR5K_EEPROM_FREQ_M(ah->ah_ee_version);
c6e387a2 558
c6e387a2 559 AR5K_EEPROM_READ(offset++, val);
1048643e
FF
560 pcal[0].freq = (val >> 9) & mask;
561 pcal[1].freq = (val >> 2) & mask;
562 pcal[2].freq = (val << 5) & mask;
563
564 AR5K_EEPROM_READ(offset++, val);
565 pcal[2].freq |= (val >> 11) & 0x1f;
566 pcal[3].freq = (val >> 4) & mask;
567 pcal[4].freq = (val << 3) & mask;
568
569 AR5K_EEPROM_READ(offset++, val);
570 pcal[4].freq |= (val >> 13) & 0x7;
571 pcal[5].freq = (val >> 6) & mask;
572 pcal[6].freq = (val << 1) & mask;
573
574 AR5K_EEPROM_READ(offset++, val);
575 pcal[6].freq |= (val >> 15) & 0x1;
576 pcal[7].freq = (val >> 8) & mask;
577 pcal[8].freq = (val >> 1) & mask;
578 pcal[9].freq = (val << 6) & mask;
579
580 AR5K_EEPROM_READ(offset++, val);
581 pcal[9].freq |= (val >> 10) & 0x3f;
0ea9c00c
NK
582
583 /* Fixed number of piers */
1048643e 584 ee->ee_n_piers[AR5K_EEPROM_MODE_11A] = 10;
c6e387a2 585
0ea9c00c
NK
586 for (i = 0; i < AR5K_EEPROM_N_5GHZ_CHAN; i++) {
587 pcal[i].freq = ath5k_eeprom_bin2freq(ee,
1048643e 588 pcal[i].freq, AR5K_EEPROM_MODE_11A);
0ea9c00c 589 }
1048643e 590 }
c6e387a2 591
1048643e
FF
592 return 0;
593}
c6e387a2 594
0ea9c00c 595/* Read frequency piers for 802.11bg on eeprom versions >= 5 and eemap >= 2 */
1048643e
FF
596static inline int
597ath5k_eeprom_init_11bg_2413(struct ath5k_hw *ah, unsigned int mode, int offset)
598{
599 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
600 struct ath5k_chan_pcal_info *pcal;
1048643e
FF
601
602 switch(mode) {
603 case AR5K_EEPROM_MODE_11B:
604 pcal = ee->ee_pwr_cal_b;
605 break;
606 case AR5K_EEPROM_MODE_11G:
607 pcal = ee->ee_pwr_cal_g;
608 break;
609 default:
610 return -EINVAL;
611 }
c6e387a2 612
1048643e
FF
613 ath5k_eeprom_read_freq_list(ah, &offset,
614 AR5K_EEPROM_N_2GHZ_CHAN_2413, pcal,
0ea9c00c 615 mode);
c6e387a2 616
1048643e
FF
617 return 0;
618}
c6e387a2 619
8e218fb2
NK
620/*
621 * Read power calibration for RF5111 chips
622 *
0ea9c00c 623 * For RF5111 we have an XPD -eXternal Power Detector- curve
8e218fb2
NK
624 * for each calibrated channel. Each curve has 0,5dB Power steps
625 * on x axis and PCDAC steps (offsets) on y axis and looks like an
626 * exponential function. To recreate the curve we read 11 points
627 * here and interpolate later.
0ea9c00c 628 */
8e218fb2
NK
629
630/* Used to match PCDAC steps with power values on RF5111 chips
631 * (eeprom versions < 4). For RF5111 we have 11 pre-defined PCDAC
632 * steps that match with the power values we read from eeprom. On
633 * older eeprom versions (< 3.2) these steps are equaly spaced at
634 * 10% of the pcdac curve -until the curve reaches it's maximum-
635 * (11 steps from 0 to 100%) but on newer eeprom versions (>= 3.2)
636 * these 11 steps are spaced in a different way. This function returns
637 * the pcdac steps based on eeprom version and curve min/max so that we
638 * can have pcdac/pwr points.
639 */
640static inline void
641ath5k_get_pcdac_intercepts(struct ath5k_hw *ah, u8 min, u8 max, u8 *vp)
642{
643 const static u16 intercepts3[] =
644 { 0, 5, 10, 20, 30, 50, 70, 85, 90, 95, 100 };
645 const static u16 intercepts3_2[] =
646 { 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 };
647 const u16 *ip;
648 int i;
649
650 if (ah->ah_ee_version >= AR5K_EEPROM_VERSION_3_2)
651 ip = intercepts3_2;
652 else
653 ip = intercepts3;
654
655 for (i = 0; i < ARRAY_SIZE(intercepts3); i++)
656 vp[i] = (ip[i] * max + (100 - ip[i]) * min) / 100;
657}
658
659/* Convert RF5111 specific data to generic raw data
660 * used by interpolation code */
661static int
662ath5k_eeprom_convert_pcal_info_5111(struct ath5k_hw *ah, int mode,
663 struct ath5k_chan_pcal_info *chinfo)
664{
665 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
666 struct ath5k_chan_pcal_info_rf5111 *pcinfo;
667 struct ath5k_pdgain_info *pd;
668 u8 pier, point, idx;
669 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
670
671 /* Fill raw data for each calibration pier */
672 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
673
674 pcinfo = &chinfo[pier].rf5111_info;
675
676 /* Allocate pd_curves for this cal pier */
677 chinfo[pier].pd_curves =
678 kcalloc(AR5K_EEPROM_N_PD_CURVES,
679 sizeof(struct ath5k_pdgain_info),
680 GFP_KERNEL);
681
682 if (!chinfo[pier].pd_curves)
683 return -ENOMEM;
684
685 /* Only one curve for RF5111
686 * find out which one and place
687 * in in pd_curves.
688 * Note: ee_x_gain is reversed here */
689 for (idx = 0; idx < AR5K_EEPROM_N_PD_CURVES; idx++) {
690
691 if (!((ee->ee_x_gain[mode] >> idx) & 0x1)) {
692 pdgain_idx[0] = idx;
693 break;
694 }
695 }
696
697 ee->ee_pd_gains[mode] = 1;
698
699 pd = &chinfo[pier].pd_curves[idx];
700
701 pd->pd_points = AR5K_EEPROM_N_PWR_POINTS_5111;
702
703 /* Allocate pd points for this curve */
704 pd->pd_step = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
705 sizeof(u8), GFP_KERNEL);
706 if (!pd->pd_step)
707 return -ENOMEM;
708
709 pd->pd_pwr = kcalloc(AR5K_EEPROM_N_PWR_POINTS_5111,
710 sizeof(s16), GFP_KERNEL);
711 if (!pd->pd_pwr)
712 return -ENOMEM;
713
714 /* Fill raw dataset
715 * (convert power to 0.25dB units
716 * for RF5112 combatibility) */
717 for (point = 0; point < pd->pd_points; point++) {
718
719 /* Absolute values */
720 pd->pd_pwr[point] = 2 * pcinfo->pwr[point];
721
722 /* Already sorted */
723 pd->pd_step[point] = pcinfo->pcdac[point];
724 }
725
726 /* Set min/max pwr */
727 chinfo[pier].min_pwr = pd->pd_pwr[0];
728 chinfo[pier].max_pwr = pd->pd_pwr[10];
729
730 }
731
732 return 0;
733}
734
735/* Parse EEPROM data */
1048643e
FF
736static int
737ath5k_eeprom_read_pcal_info_5111(struct ath5k_hw *ah, int mode)
738{
739 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
740 struct ath5k_chan_pcal_info *pcal;
741 int offset, ret;
eaee7cc2 742 int i;
1048643e
FF
743 u16 val;
744
745 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
746 switch(mode) {
747 case AR5K_EEPROM_MODE_11A:
748 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
749 return 0;
750
751 ret = ath5k_eeprom_init_11a_pcal_freq(ah,
752 offset + AR5K_EEPROM_GROUP1_OFFSET);
753 if (ret < 0)
754 return ret;
755
756 offset += AR5K_EEPROM_GROUP2_OFFSET;
757 pcal = ee->ee_pwr_cal_a;
758 break;
759 case AR5K_EEPROM_MODE_11B:
760 if (!AR5K_EEPROM_HDR_11B(ee->ee_header) &&
761 !AR5K_EEPROM_HDR_11G(ee->ee_header))
762 return 0;
763
764 pcal = ee->ee_pwr_cal_b;
765 offset += AR5K_EEPROM_GROUP3_OFFSET;
766
767 /* fixed piers */
768 pcal[0].freq = 2412;
769 pcal[1].freq = 2447;
770 pcal[2].freq = 2484;
771 ee->ee_n_piers[mode] = 3;
772 break;
773 case AR5K_EEPROM_MODE_11G:
774 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
775 return 0;
776
777 pcal = ee->ee_pwr_cal_g;
778 offset += AR5K_EEPROM_GROUP4_OFFSET;
779
780 /* fixed piers */
781 pcal[0].freq = 2312;
782 pcal[1].freq = 2412;
783 pcal[2].freq = 2484;
784 ee->ee_n_piers[mode] = 3;
785 break;
786 default:
787 return -EINVAL;
c6e387a2
NK
788 }
789
1048643e
FF
790 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
791 struct ath5k_chan_pcal_info_rf5111 *cdata =
792 &pcal[i].rf5111_info;
c6e387a2 793
1048643e
FF
794 AR5K_EEPROM_READ(offset++, val);
795 cdata->pcdac_max = ((val >> 10) & AR5K_EEPROM_PCDAC_M);
796 cdata->pcdac_min = ((val >> 4) & AR5K_EEPROM_PCDAC_M);
797 cdata->pwr[0] = ((val << 2) & AR5K_EEPROM_POWER_M);
c6e387a2 798
1048643e
FF
799 AR5K_EEPROM_READ(offset++, val);
800 cdata->pwr[0] |= ((val >> 14) & 0x3);
801 cdata->pwr[1] = ((val >> 8) & AR5K_EEPROM_POWER_M);
802 cdata->pwr[2] = ((val >> 2) & AR5K_EEPROM_POWER_M);
803 cdata->pwr[3] = ((val << 4) & AR5K_EEPROM_POWER_M);
c6e387a2 804
1048643e
FF
805 AR5K_EEPROM_READ(offset++, val);
806 cdata->pwr[3] |= ((val >> 12) & 0xf);
807 cdata->pwr[4] = ((val >> 6) & AR5K_EEPROM_POWER_M);
808 cdata->pwr[5] = (val & AR5K_EEPROM_POWER_M);
c6e387a2 809
c6e387a2 810 AR5K_EEPROM_READ(offset++, val);
1048643e
FF
811 cdata->pwr[6] = ((val >> 10) & AR5K_EEPROM_POWER_M);
812 cdata->pwr[7] = ((val >> 4) & AR5K_EEPROM_POWER_M);
813 cdata->pwr[8] = ((val << 2) & AR5K_EEPROM_POWER_M);
c6e387a2
NK
814
815 AR5K_EEPROM_READ(offset++, val);
1048643e
FF
816 cdata->pwr[8] |= ((val >> 14) & 0x3);
817 cdata->pwr[9] = ((val >> 8) & AR5K_EEPROM_POWER_M);
818 cdata->pwr[10] = ((val >> 2) & AR5K_EEPROM_POWER_M);
819
820 ath5k_get_pcdac_intercepts(ah, cdata->pcdac_min,
821 cdata->pcdac_max, cdata->pcdac);
c6e387a2
NK
822 }
823
8e218fb2 824 return ath5k_eeprom_convert_pcal_info_5111(ah, mode, pcal);
1048643e 825}
c6e387a2 826
8e218fb2
NK
827
828/*
829 * Read power calibration for RF5112 chips
830 *
0ea9c00c
NK
831 * For RF5112 we have 4 XPD -eXternal Power Detector- curves
832 * for each calibrated channel on 0, -6, -12 and -18dbm but we only
8e218fb2
NK
833 * use the higher (3) and the lower (0) curves. Each curve has 0.5dB
834 * power steps on x axis and PCDAC steps on y axis and looks like a
835 * linear function. To recreate the curve and pass the power values
836 * on hw, we read 4 points for xpd 0 (lower gain -> max power)
837 * and 3 points for xpd 3 (higher gain -> lower power) here and
838 * interpolate later.
0ea9c00c
NK
839 *
840 * Note: Many vendors just use xpd 0 so xpd 3 is zeroed.
841 */
8e218fb2
NK
842
843/* Convert RF5112 specific data to generic raw data
844 * used by interpolation code */
845static int
846ath5k_eeprom_convert_pcal_info_5112(struct ath5k_hw *ah, int mode,
847 struct ath5k_chan_pcal_info *chinfo)
848{
849 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
850 struct ath5k_chan_pcal_info_rf5112 *pcinfo;
851 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
852 unsigned int pier, pdg, point;
853
854 /* Fill raw data for each calibration pier */
855 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
856
857 pcinfo = &chinfo[pier].rf5112_info;
858
859 /* Allocate pd_curves for this cal pier */
860 chinfo[pier].pd_curves =
861 kcalloc(AR5K_EEPROM_N_PD_CURVES,
862 sizeof(struct ath5k_pdgain_info),
863 GFP_KERNEL);
864
865 if (!chinfo[pier].pd_curves)
866 return -ENOMEM;
867
868 /* Fill pd_curves */
869 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
870
871 u8 idx = pdgain_idx[pdg];
872 struct ath5k_pdgain_info *pd =
873 &chinfo[pier].pd_curves[idx];
874
875 /* Lowest gain curve (max power) */
876 if (pdg == 0) {
877 /* One more point for better accuracy */
878 pd->pd_points = AR5K_EEPROM_N_XPD0_POINTS;
879
880 /* Allocate pd points for this curve */
881 pd->pd_step = kcalloc(pd->pd_points,
882 sizeof(u8), GFP_KERNEL);
883
884 if (!pd->pd_step)
885 return -ENOMEM;
886
887 pd->pd_pwr = kcalloc(pd->pd_points,
888 sizeof(s16), GFP_KERNEL);
889
890 if (!pd->pd_pwr)
891 return -ENOMEM;
892
893
894 /* Fill raw dataset
895 * (all power levels are in 0.25dB units) */
896 pd->pd_step[0] = pcinfo->pcdac_x0[0];
897 pd->pd_pwr[0] = pcinfo->pwr_x0[0];
898
899 for (point = 1; point < pd->pd_points;
900 point++) {
901 /* Absolute values */
902 pd->pd_pwr[point] =
903 pcinfo->pwr_x0[point];
904
905 /* Deltas */
906 pd->pd_step[point] =
907 pd->pd_step[point - 1] +
908 pcinfo->pcdac_x0[point];
909 }
910
911 /* Set min power for this frequency */
912 chinfo[pier].min_pwr = pd->pd_pwr[0];
913
914 /* Highest gain curve (min power) */
915 } else if (pdg == 1) {
916
917 pd->pd_points = AR5K_EEPROM_N_XPD3_POINTS;
918
919 /* Allocate pd points for this curve */
920 pd->pd_step = kcalloc(pd->pd_points,
921 sizeof(u8), GFP_KERNEL);
922
923 if (!pd->pd_step)
924 return -ENOMEM;
925
926 pd->pd_pwr = kcalloc(pd->pd_points,
927 sizeof(s16), GFP_KERNEL);
928
929 if (!pd->pd_pwr)
930 return -ENOMEM;
931
932 /* Fill raw dataset
933 * (all power levels are in 0.25dB units) */
934 for (point = 0; point < pd->pd_points;
935 point++) {
936 /* Absolute values */
937 pd->pd_pwr[point] =
938 pcinfo->pwr_x3[point];
939
940 /* Fixed points */
941 pd->pd_step[point] =
942 pcinfo->pcdac_x3[point];
943 }
944
945 /* Since we have a higher gain curve
946 * override min power */
947 chinfo[pier].min_pwr = pd->pd_pwr[0];
948 }
949 }
950 }
951
952 return 0;
953}
954
955/* Parse EEPROM data */
1048643e
FF
956static int
957ath5k_eeprom_read_pcal_info_5112(struct ath5k_hw *ah, int mode)
958{
959 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
960 struct ath5k_chan_pcal_info_rf5112 *chan_pcal_info;
961 struct ath5k_chan_pcal_info *gen_chan_info;
8e218fb2 962 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1048643e 963 u32 offset;
8e218fb2 964 u8 i, c;
1048643e
FF
965 u16 val;
966 int ret;
8e218fb2
NK
967 u8 pd_gains = 0;
968
969 /* Count how many curves we have and
970 * identify them (which one of the 4
971 * available curves we have on each count).
972 * Curves are stored from lower (x0) to
973 * higher (x3) gain */
974 for (i = 0; i < AR5K_EEPROM_N_PD_CURVES; i++) {
975 /* ee_x_gain[mode] is x gain mask */
976 if ((ee->ee_x_gain[mode] >> i) & 0x1)
977 pdgain_idx[pd_gains++] = i;
978 }
979 ee->ee_pd_gains[mode] = pd_gains;
980
981 if (pd_gains == 0 || pd_gains > 2)
982 return -EINVAL;
c6e387a2 983
1048643e
FF
984 switch (mode) {
985 case AR5K_EEPROM_MODE_11A:
986 /*
987 * Read 5GHz EEPROM channels
988 */
989 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
990 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
991
992 offset += AR5K_EEPROM_GROUP2_OFFSET;
993 gen_chan_info = ee->ee_pwr_cal_a;
994 break;
995 case AR5K_EEPROM_MODE_11B:
996 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
997 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
998 offset += AR5K_EEPROM_GROUP3_OFFSET;
999
1000 /* NB: frequency piers parsed during mode init */
1001 gen_chan_info = ee->ee_pwr_cal_b;
1002 break;
1003 case AR5K_EEPROM_MODE_11G:
1004 offset = AR5K_EEPROM_GROUPS_START(ee->ee_version);
1005 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
1006 offset += AR5K_EEPROM_GROUP4_OFFSET;
1007 else if (AR5K_EEPROM_HDR_11B(ee->ee_header))
1008 offset += AR5K_EEPROM_GROUP2_OFFSET;
1009
1010 /* NB: frequency piers parsed during mode init */
1011 gen_chan_info = ee->ee_pwr_cal_g;
1012 break;
1013 default:
1014 return -EINVAL;
1015 }
c6e387a2 1016
1048643e
FF
1017 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
1018 chan_pcal_info = &gen_chan_info[i].rf5112_info;
c6e387a2 1019
8e218fb2 1020 /* Power values in quarter dB
1048643e
FF
1021 * for the lower xpd gain curve
1022 * (0 dBm -> higher output power) */
1023 for (c = 0; c < AR5K_EEPROM_N_XPD0_POINTS; c++) {
1024 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1025 chan_pcal_info->pwr_x0[c] = (s8) (val & 0xff);
1026 chan_pcal_info->pwr_x0[++c] = (s8) ((val >> 8) & 0xff);
1048643e 1027 }
c6e387a2 1028
1048643e
FF
1029 /* PCDAC steps
1030 * corresponding to the above power
1031 * measurements */
c6e387a2 1032 AR5K_EEPROM_READ(offset++, val);
1048643e
FF
1033 chan_pcal_info->pcdac_x0[1] = (val & 0x1f);
1034 chan_pcal_info->pcdac_x0[2] = ((val >> 5) & 0x1f);
1035 chan_pcal_info->pcdac_x0[3] = ((val >> 10) & 0x1f);
c6e387a2 1036
8e218fb2 1037 /* Power values in quarter dB
1048643e
FF
1038 * for the higher xpd gain curve
1039 * (18 dBm -> lower output power) */
c6e387a2 1040 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1041 chan_pcal_info->pwr_x3[0] = (s8) (val & 0xff);
1042 chan_pcal_info->pwr_x3[1] = (s8) ((val >> 8) & 0xff);
c6e387a2
NK
1043
1044 AR5K_EEPROM_READ(offset++, val);
1048643e
FF
1045 chan_pcal_info->pwr_x3[2] = (val & 0xff);
1046
1047 /* PCDAC steps
1048 * corresponding to the above power
0ea9c00c 1049 * measurements (fixed) */
1048643e
FF
1050 chan_pcal_info->pcdac_x3[0] = 20;
1051 chan_pcal_info->pcdac_x3[1] = 35;
1052 chan_pcal_info->pcdac_x3[2] = 63;
1053
1054 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_3) {
8e218fb2 1055 chan_pcal_info->pcdac_x0[0] = ((val >> 8) & 0x3f);
1048643e
FF
1056
1057 /* Last xpd0 power level is also channel maximum */
1058 gen_chan_info[i].max_pwr = chan_pcal_info->pwr_x0[3];
1059 } else {
1060 chan_pcal_info->pcdac_x0[0] = 1;
8e218fb2 1061 gen_chan_info[i].max_pwr = (s8) ((val >> 8) & 0xff);
1048643e 1062 }
c6e387a2 1063
1048643e
FF
1064 }
1065
8e218fb2 1066 return ath5k_eeprom_convert_pcal_info_5112(ah, mode, gen_chan_info);
1048643e
FF
1067}
1068
8e218fb2
NK
1069
1070/*
1071 * Read power calibration for RF2413 chips
1072 *
1073 * For RF2413 we have a Power to PDDAC table (Power Detector)
1074 * instead of a PCDAC and 4 pd gain curves for each calibrated channel.
1075 * Each curve has power on x axis in 0.5 db steps and PDDADC steps on y
1076 * axis and looks like an exponential function like the RF5111 curve.
1077 *
1078 * To recreate the curves we read here the points and interpolate
1079 * later. Note that in most cases only 2 (higher and lower) curves are
1080 * used (like RF5112) but vendors have the oportunity to include all
1081 * 4 curves on eeprom. The final curve (higher power) has an extra
1082 * point for better accuracy like RF5112.
1083 */
1084
0ea9c00c
NK
1085/* For RF2413 power calibration data doesn't start on a fixed location and
1086 * if a mode is not supported, it's section is missing -not zeroed-.
1087 * So we need to calculate the starting offset for each section by using
1088 * these two functions */
1089
1090/* Return the size of each section based on the mode and the number of pd
1091 * gains available (maximum 4). */
1048643e
FF
1092static inline unsigned int
1093ath5k_pdgains_size_2413(struct ath5k_eeprom_info *ee, unsigned int mode)
1094{
1095 static const unsigned int pdgains_size[] = { 4, 6, 9, 12 };
1096 unsigned int sz;
1097
1098 sz = pdgains_size[ee->ee_pd_gains[mode] - 1];
1099 sz *= ee->ee_n_piers[mode];
1100
1101 return sz;
1102}
1103
0ea9c00c
NK
1104/* Return the starting offset for a section based on the modes supported
1105 * and each section's size. */
1048643e
FF
1106static unsigned int
1107ath5k_cal_data_offset_2413(struct ath5k_eeprom_info *ee, int mode)
1108{
1109 u32 offset = AR5K_EEPROM_CAL_DATA_START(ee->ee_misc4);
1110
1111 switch(mode) {
1112 case AR5K_EEPROM_MODE_11G:
1113 if (AR5K_EEPROM_HDR_11B(ee->ee_header))
8e218fb2
NK
1114 offset += ath5k_pdgains_size_2413(ee,
1115 AR5K_EEPROM_MODE_11B) +
1116 AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
1048643e
FF
1117 /* fall through */
1118 case AR5K_EEPROM_MODE_11B:
1119 if (AR5K_EEPROM_HDR_11A(ee->ee_header))
8e218fb2
NK
1120 offset += ath5k_pdgains_size_2413(ee,
1121 AR5K_EEPROM_MODE_11A) +
1122 AR5K_EEPROM_N_5GHZ_CHAN / 2;
1048643e
FF
1123 /* fall through */
1124 case AR5K_EEPROM_MODE_11A:
1125 break;
1126 default:
1127 break;
1128 }
1129
1130 return offset;
1131}
1132
8e218fb2
NK
1133/* Convert RF2413 specific data to generic raw data
1134 * used by interpolation code */
1135static int
1136ath5k_eeprom_convert_pcal_info_2413(struct ath5k_hw *ah, int mode,
1137 struct ath5k_chan_pcal_info *chinfo)
1138{
1139 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1140 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1141 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1142 unsigned int pier, pdg, point;
1143
1144 /* Fill raw data for each calibration pier */
1145 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1146
1147 pcinfo = &chinfo[pier].rf2413_info;
1148
1149 /* Allocate pd_curves for this cal pier */
1150 chinfo[pier].pd_curves =
1151 kcalloc(AR5K_EEPROM_N_PD_CURVES,
1152 sizeof(struct ath5k_pdgain_info),
1153 GFP_KERNEL);
1154
1155 if (!chinfo[pier].pd_curves)
1156 return -ENOMEM;
1157
1158 /* Fill pd_curves */
1159 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1160
1161 u8 idx = pdgain_idx[pdg];
1162 struct ath5k_pdgain_info *pd =
1163 &chinfo[pier].pd_curves[idx];
1164
1165 /* One more point for the highest power
1166 * curve (lowest gain) */
1167 if (pdg == ee->ee_pd_gains[mode] - 1)
1168 pd->pd_points = AR5K_EEPROM_N_PD_POINTS;
1169 else
1170 pd->pd_points = AR5K_EEPROM_N_PD_POINTS - 1;
1171
1172 /* Allocate pd points for this curve */
1173 pd->pd_step = kcalloc(pd->pd_points,
1174 sizeof(u8), GFP_KERNEL);
1175
1176 if (!pd->pd_step)
1177 return -ENOMEM;
1178
1179 pd->pd_pwr = kcalloc(pd->pd_points,
1180 sizeof(s16), GFP_KERNEL);
1181
1182 if (!pd->pd_pwr)
1183 return -ENOMEM;
1184
1185 /* Fill raw dataset
1186 * convert all pwr levels to
1187 * quarter dB for RF5112 combatibility */
1188 pd->pd_step[0] = pcinfo->pddac_i[pdg];
1189 pd->pd_pwr[0] = 4 * pcinfo->pwr_i[pdg];
1190
1191 for (point = 1; point < pd->pd_points; point++) {
1192
1193 pd->pd_pwr[point] = pd->pd_pwr[point - 1] +
1194 2 * pcinfo->pwr[pdg][point - 1];
1195
1196 pd->pd_step[point] = pd->pd_step[point - 1] +
1197 pcinfo->pddac[pdg][point - 1];
1198
1199 }
1200
1201 /* Highest gain curve -> min power */
1202 if (pdg == 0)
1203 chinfo[pier].min_pwr = pd->pd_pwr[0];
1204
1205 /* Lowest gain curve -> max power */
1206 if (pdg == ee->ee_pd_gains[mode] - 1)
1207 chinfo[pier].max_pwr =
1208 pd->pd_pwr[pd->pd_points - 1];
1209 }
1210 }
1211
1212 return 0;
1213}
1214
1215/* Parse EEPROM data */
1048643e
FF
1216static int
1217ath5k_eeprom_read_pcal_info_2413(struct ath5k_hw *ah, int mode)
1218{
1219 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
8e218fb2
NK
1220 struct ath5k_chan_pcal_info_rf2413 *pcinfo;
1221 struct ath5k_chan_pcal_info *chinfo;
1222 u8 *pdgain_idx = ee->ee_pdc_to_idx[mode];
1048643e 1223 u32 offset;
8e218fb2 1224 int idx, i, ret;
1048643e
FF
1225 u16 val;
1226 u8 pd_gains = 0;
1227
8e218fb2
NK
1228 /* Count how many curves we have and
1229 * identify them (which one of the 4
1230 * available curves we have on each count).
1231 * Curves are stored from higher to
1232 * lower gain so we go backwards */
1233 for (idx = AR5K_EEPROM_N_PD_CURVES - 1; idx >= 0; idx--) {
1234 /* ee_x_gain[mode] is x gain mask */
1235 if ((ee->ee_x_gain[mode] >> idx) & 0x1)
1236 pdgain_idx[pd_gains++] = idx;
1237
1238 }
1048643e
FF
1239 ee->ee_pd_gains[mode] = pd_gains;
1240
8e218fb2
NK
1241 if (pd_gains == 0)
1242 return -EINVAL;
1243
1048643e
FF
1244 offset = ath5k_cal_data_offset_2413(ee, mode);
1245 switch (mode) {
1246 case AR5K_EEPROM_MODE_11A:
1247 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1248 return 0;
1249
1250 ath5k_eeprom_init_11a_pcal_freq(ah, offset);
1251 offset += AR5K_EEPROM_N_5GHZ_CHAN / 2;
8e218fb2 1252 chinfo = ee->ee_pwr_cal_a;
1048643e
FF
1253 break;
1254 case AR5K_EEPROM_MODE_11B:
1255 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1256 return 0;
c6e387a2 1257
1048643e
FF
1258 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1259 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
8e218fb2 1260 chinfo = ee->ee_pwr_cal_b;
1048643e
FF
1261 break;
1262 case AR5K_EEPROM_MODE_11G:
1263 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1264 return 0;
1265
1266 ath5k_eeprom_init_11bg_2413(ah, mode, offset);
1267 offset += AR5K_EEPROM_N_2GHZ_CHAN_2413 / 2;
8e218fb2 1268 chinfo = ee->ee_pwr_cal_g;
1048643e
FF
1269 break;
1270 default:
1271 return -EINVAL;
1272 }
1273
1048643e 1274 for (i = 0; i < ee->ee_n_piers[mode]; i++) {
8e218fb2 1275 pcinfo = &chinfo[i].rf2413_info;
1048643e
FF
1276
1277 /*
1278 * Read pwr_i, pddac_i and the first
1279 * 2 pd points (pwr, pddac)
1280 */
c6e387a2 1281 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1282 pcinfo->pwr_i[0] = val & 0x1f;
1283 pcinfo->pddac_i[0] = (val >> 5) & 0x7f;
1284 pcinfo->pwr[0][0] = (val >> 12) & 0xf;
c6e387a2 1285
1048643e 1286 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1287 pcinfo->pddac[0][0] = val & 0x3f;
1288 pcinfo->pwr[0][1] = (val >> 6) & 0xf;
1289 pcinfo->pddac[0][1] = (val >> 10) & 0x3f;
1048643e
FF
1290
1291 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1292 pcinfo->pwr[0][2] = val & 0xf;
1293 pcinfo->pddac[0][2] = (val >> 4) & 0x3f;
1048643e 1294
8e218fb2
NK
1295 pcinfo->pwr[0][3] = 0;
1296 pcinfo->pddac[0][3] = 0;
1048643e
FF
1297
1298 if (pd_gains > 1) {
1299 /*
1300 * Pd gain 0 is not the last pd gain
1301 * so it only has 2 pd points.
1302 * Continue wih pd gain 1.
1303 */
8e218fb2 1304 pcinfo->pwr_i[1] = (val >> 10) & 0x1f;
1048643e 1305
8e218fb2 1306 pcinfo->pddac_i[1] = (val >> 15) & 0x1;
c6e387a2 1307 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1308 pcinfo->pddac_i[1] |= (val & 0x3F) << 1;
1048643e 1309
8e218fb2
NK
1310 pcinfo->pwr[1][0] = (val >> 6) & 0xf;
1311 pcinfo->pddac[1][0] = (val >> 10) & 0x3f;
1048643e
FF
1312
1313 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1314 pcinfo->pwr[1][1] = val & 0xf;
1315 pcinfo->pddac[1][1] = (val >> 4) & 0x3f;
1316 pcinfo->pwr[1][2] = (val >> 10) & 0xf;
1317
1318 pcinfo->pddac[1][2] = (val >> 14) & 0x3;
1048643e 1319 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1320 pcinfo->pddac[1][2] |= (val & 0xF) << 2;
1048643e 1321
8e218fb2
NK
1322 pcinfo->pwr[1][3] = 0;
1323 pcinfo->pddac[1][3] = 0;
1048643e
FF
1324 } else if (pd_gains == 1) {
1325 /*
1326 * Pd gain 0 is the last one so
1327 * read the extra point.
1328 */
8e218fb2 1329 pcinfo->pwr[0][3] = (val >> 10) & 0xf;
1048643e 1330
8e218fb2 1331 pcinfo->pddac[0][3] = (val >> 14) & 0x3;
1048643e 1332 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1333 pcinfo->pddac[0][3] |= (val & 0xF) << 2;
1048643e
FF
1334 }
1335
1336 /*
1337 * Proceed with the other pd_gains
1338 * as above.
1339 */
1340 if (pd_gains > 2) {
8e218fb2
NK
1341 pcinfo->pwr_i[2] = (val >> 4) & 0x1f;
1342 pcinfo->pddac_i[2] = (val >> 9) & 0x7f;
1048643e
FF
1343
1344 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1345 pcinfo->pwr[2][0] = (val >> 0) & 0xf;
1346 pcinfo->pddac[2][0] = (val >> 4) & 0x3f;
1347 pcinfo->pwr[2][1] = (val >> 10) & 0xf;
1348
1349 pcinfo->pddac[2][1] = (val >> 14) & 0x3;
1048643e 1350 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1351 pcinfo->pddac[2][1] |= (val & 0xF) << 2;
1048643e 1352
8e218fb2
NK
1353 pcinfo->pwr[2][2] = (val >> 4) & 0xf;
1354 pcinfo->pddac[2][2] = (val >> 8) & 0x3f;
1048643e 1355
8e218fb2
NK
1356 pcinfo->pwr[2][3] = 0;
1357 pcinfo->pddac[2][3] = 0;
1048643e 1358 } else if (pd_gains == 2) {
8e218fb2
NK
1359 pcinfo->pwr[1][3] = (val >> 4) & 0xf;
1360 pcinfo->pddac[1][3] = (val >> 8) & 0x3f;
1048643e
FF
1361 }
1362
1363 if (pd_gains > 3) {
8e218fb2 1364 pcinfo->pwr_i[3] = (val >> 14) & 0x3;
1048643e 1365 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1366 pcinfo->pwr_i[3] |= ((val >> 0) & 0x7) << 2;
1048643e 1367
8e218fb2
NK
1368 pcinfo->pddac_i[3] = (val >> 3) & 0x7f;
1369 pcinfo->pwr[3][0] = (val >> 10) & 0xf;
1370 pcinfo->pddac[3][0] = (val >> 14) & 0x3;
1048643e
FF
1371
1372 AR5K_EEPROM_READ(offset++, val);
8e218fb2
NK
1373 pcinfo->pddac[3][0] |= (val & 0xF) << 2;
1374 pcinfo->pwr[3][1] = (val >> 4) & 0xf;
1375 pcinfo->pddac[3][1] = (val >> 8) & 0x3f;
1376
1377 pcinfo->pwr[3][2] = (val >> 14) & 0x3;
1048643e 1378 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1379 pcinfo->pwr[3][2] |= ((val >> 0) & 0x3) << 2;
1048643e 1380
8e218fb2
NK
1381 pcinfo->pddac[3][2] = (val >> 2) & 0x3f;
1382 pcinfo->pwr[3][3] = (val >> 8) & 0xf;
1048643e 1383
8e218fb2 1384 pcinfo->pddac[3][3] = (val >> 12) & 0xF;
1048643e 1385 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1386 pcinfo->pddac[3][3] |= ((val >> 0) & 0x3) << 4;
1048643e 1387 } else if (pd_gains == 3) {
8e218fb2 1388 pcinfo->pwr[2][3] = (val >> 14) & 0x3;
1048643e 1389 AR5K_EEPROM_READ(offset++, val);
8e218fb2 1390 pcinfo->pwr[2][3] |= ((val >> 0) & 0x3) << 2;
1048643e 1391
8e218fb2 1392 pcinfo->pddac[2][3] = (val >> 2) & 0x3f;
c6e387a2
NK
1393 }
1394 }
1395
8e218fb2 1396 return ath5k_eeprom_convert_pcal_info_2413(ah, mode, chinfo);
1048643e
FF
1397}
1398
8e218fb2 1399
1048643e
FF
1400/*
1401 * Read per rate target power (this is the maximum tx power
1402 * supported by the card). This info is used when setting
1403 * tx power, no matter the channel.
1404 *
1405 * This also works for v5 EEPROMs.
1406 */
8e218fb2
NK
1407static int
1408ath5k_eeprom_read_target_rate_pwr_info(struct ath5k_hw *ah, unsigned int mode)
1048643e
FF
1409{
1410 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1411 struct ath5k_rate_pcal_info *rate_pcal_info;
8e218fb2 1412 u8 *rate_target_pwr_num;
1048643e
FF
1413 u32 offset;
1414 u16 val;
1415 int ret, i;
1416
1417 offset = AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1);
1418 rate_target_pwr_num = &ee->ee_rate_target_pwr_num[mode];
1419 switch (mode) {
1420 case AR5K_EEPROM_MODE_11A:
1421 offset += AR5K_EEPROM_TARGET_PWR_OFF_11A(ee->ee_version);
1422 rate_pcal_info = ee->ee_rate_tpwr_a;
1423 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_5GHZ_CHAN;
1424 break;
1425 case AR5K_EEPROM_MODE_11B:
1426 offset += AR5K_EEPROM_TARGET_PWR_OFF_11B(ee->ee_version);
1427 rate_pcal_info = ee->ee_rate_tpwr_b;
1428 ee->ee_rate_target_pwr_num[mode] = 2; /* 3rd is g mode's 1st */
1429 break;
1430 case AR5K_EEPROM_MODE_11G:
1431 offset += AR5K_EEPROM_TARGET_PWR_OFF_11G(ee->ee_version);
1432 rate_pcal_info = ee->ee_rate_tpwr_g;
1433 ee->ee_rate_target_pwr_num[mode] = AR5K_EEPROM_N_2GHZ_CHAN;
1434 break;
1435 default:
1436 return -EINVAL;
1437 }
1438
1439 /* Different freq mask for older eeproms (<= v3.2) */
1440 if (ee->ee_version <= AR5K_EEPROM_VERSION_3_2) {
1441 for (i = 0; i < (*rate_target_pwr_num); i++) {
1442 AR5K_EEPROM_READ(offset++, val);
1443 rate_pcal_info[i].freq =
1444 ath5k_eeprom_bin2freq(ee, (val >> 9) & 0x7f, mode);
1445
1446 rate_pcal_info[i].target_power_6to24 = ((val >> 3) & 0x3f);
1447 rate_pcal_info[i].target_power_36 = (val << 3) & 0x3f;
1448
1449 AR5K_EEPROM_READ(offset++, val);
1450
1451 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1452 val == 0) {
1453 (*rate_target_pwr_num) = i;
1454 break;
1455 }
1456
1457 rate_pcal_info[i].target_power_36 |= ((val >> 13) & 0x7);
1458 rate_pcal_info[i].target_power_48 = ((val >> 7) & 0x3f);
1459 rate_pcal_info[i].target_power_54 = ((val >> 1) & 0x3f);
1460 }
1461 } else {
1462 for (i = 0; i < (*rate_target_pwr_num); i++) {
1463 AR5K_EEPROM_READ(offset++, val);
1464 rate_pcal_info[i].freq =
1465 ath5k_eeprom_bin2freq(ee, (val >> 8) & 0xff, mode);
1466
1467 rate_pcal_info[i].target_power_6to24 = ((val >> 2) & 0x3f);
1468 rate_pcal_info[i].target_power_36 = (val << 4) & 0x3f;
1469
1470 AR5K_EEPROM_READ(offset++, val);
1471
1472 if (rate_pcal_info[i].freq == AR5K_EEPROM_CHANNEL_DIS ||
1473 val == 0) {
1474 (*rate_target_pwr_num) = i;
1475 break;
1476 }
1477
1478 rate_pcal_info[i].target_power_36 |= (val >> 12) & 0xf;
1479 rate_pcal_info[i].target_power_48 = ((val >> 6) & 0x3f);
1480 rate_pcal_info[i].target_power_54 = (val & 0x3f);
1481 }
1482 }
1483
1484 return 0;
1485}
1486
0ea9c00c
NK
1487/*
1488 * Read per channel calibration info from EEPROM
1489 *
1490 * This info is used to calibrate the baseband power table. Imagine
1491 * that for each channel there is a power curve that's hw specific
1492 * (depends on amplifier etc) and we try to "correct" this curve using
1493 * offests we pass on to phy chip (baseband -> before amplifier) so that
1494 * it can use accurate power values when setting tx power (takes amplifier's
1495 * performance on each channel into account).
1496 *
1497 * EEPROM provides us with the offsets for some pre-calibrated channels
1498 * and we have to interpolate to create the full table for these channels and
1499 * also the table for any channel.
1500 */
1048643e
FF
1501static int
1502ath5k_eeprom_read_pcal_info(struct ath5k_hw *ah)
1503{
1504 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1505 int (*read_pcal)(struct ath5k_hw *hw, int mode);
1506 int mode;
1507 int err;
1508
1509 if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_4_0) &&
1510 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 1))
1511 read_pcal = ath5k_eeprom_read_pcal_info_5112;
1512 else if ((ah->ah_ee_version >= AR5K_EEPROM_VERSION_5_0) &&
1513 (AR5K_EEPROM_EEMAP(ee->ee_misc0) == 2))
1514 read_pcal = ath5k_eeprom_read_pcal_info_2413;
1515 else
1516 read_pcal = ath5k_eeprom_read_pcal_info_5111;
1517
8e218fb2
NK
1518
1519 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G;
1520 mode++) {
1048643e
FF
1521 err = read_pcal(ah, mode);
1522 if (err)
1523 return err;
1524
1525 err = ath5k_eeprom_read_target_rate_pwr_info(ah, mode);
1526 if (err < 0)
1527 return err;
1528 }
1529
1530 return 0;
1531}
1532
8e218fb2
NK
1533static int
1534ath5k_eeprom_free_pcal_info(struct ath5k_hw *ah, int mode)
1535{
1536 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1537 struct ath5k_chan_pcal_info *chinfo;
1538 u8 pier, pdg;
1539
1540 switch (mode) {
1541 case AR5K_EEPROM_MODE_11A:
1542 if (!AR5K_EEPROM_HDR_11A(ee->ee_header))
1543 return 0;
1544 chinfo = ee->ee_pwr_cal_a;
1545 break;
1546 case AR5K_EEPROM_MODE_11B:
1547 if (!AR5K_EEPROM_HDR_11B(ee->ee_header))
1548 return 0;
1549 chinfo = ee->ee_pwr_cal_b;
1550 break;
1551 case AR5K_EEPROM_MODE_11G:
1552 if (!AR5K_EEPROM_HDR_11G(ee->ee_header))
1553 return 0;
1554 chinfo = ee->ee_pwr_cal_g;
1555 break;
1556 default:
1557 return -EINVAL;
1558 }
1559
1560 for (pier = 0; pier < ee->ee_n_piers[mode]; pier++) {
1561 if (!chinfo[pier].pd_curves)
1562 continue;
1563
1564 for (pdg = 0; pdg < ee->ee_pd_gains[mode]; pdg++) {
1565 struct ath5k_pdgain_info *pd =
1566 &chinfo[pier].pd_curves[pdg];
1567
1568 if (pd != NULL) {
1569 kfree(pd->pd_step);
1570 kfree(pd->pd_pwr);
1571 }
1572 }
1573
1574 kfree(chinfo[pier].pd_curves);
1575 }
1576
1577 return 0;
1578}
1579
1580void
1581ath5k_eeprom_detach(struct ath5k_hw *ah)
1582{
1583 u8 mode;
1584
1585 for (mode = AR5K_EEPROM_MODE_11A; mode <= AR5K_EEPROM_MODE_11G; mode++)
1586 ath5k_eeprom_free_pcal_info(ah, mode);
1587}
1588
0ea9c00c 1589/* Read conformance test limits used for regulatory control */
1048643e
FF
1590static int
1591ath5k_eeprom_read_ctl_info(struct ath5k_hw *ah)
1592{
1593 struct ath5k_eeprom_info *ee = &ah->ah_capabilities.cap_eeprom;
1594 struct ath5k_edge_power *rep;
1595 unsigned int fmask, pmask;
1596 unsigned int ctl_mode;
1597 int ret, i, j;
1598 u32 offset;
1599 u16 val;
1600
1601 pmask = AR5K_EEPROM_POWER_M;
1602 fmask = AR5K_EEPROM_FREQ_M(ee->ee_version);
1603 offset = AR5K_EEPROM_CTL(ee->ee_version);
1604 ee->ee_ctls = AR5K_EEPROM_N_CTLS(ee->ee_version);
1605 for (i = 0; i < ee->ee_ctls; i += 2) {
1606 AR5K_EEPROM_READ(offset++, val);
1607 ee->ee_ctl[i] = (val >> 8) & 0xff;
1608 ee->ee_ctl[i + 1] = val & 0xff;
1609 }
1610
1611 offset = AR5K_EEPROM_GROUP8_OFFSET;
1612 if (ee->ee_version >= AR5K_EEPROM_VERSION_4_0)
1613 offset += AR5K_EEPROM_TARGET_PWRSTART(ee->ee_misc1) -
1614 AR5K_EEPROM_GROUP5_OFFSET;
1615 else
1616 offset += AR5K_EEPROM_GROUPS_START(ee->ee_version);
1617
1618 rep = ee->ee_ctl_pwr;
1619 for(i = 0; i < ee->ee_ctls; i++) {
1620 switch(ee->ee_ctl[i] & AR5K_CTL_MODE_M) {
1621 case AR5K_CTL_11A:
1622 case AR5K_CTL_TURBO:
1623 ctl_mode = AR5K_EEPROM_MODE_11A;
1624 break;
1625 default:
1626 ctl_mode = AR5K_EEPROM_MODE_11G;
1627 break;
1628 }
1629 if (ee->ee_ctl[i] == 0) {
1630 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3)
1631 offset += 8;
1632 else
1633 offset += 7;
1634 rep += AR5K_EEPROM_N_EDGES;
1635 continue;
1636 }
1637 if (ee->ee_version >= AR5K_EEPROM_VERSION_3_3) {
1638 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1639 AR5K_EEPROM_READ(offset++, val);
1640 rep[j].freq = (val >> 8) & fmask;
1641 rep[j + 1].freq = val & fmask;
1642 }
1643 for (j = 0; j < AR5K_EEPROM_N_EDGES; j += 2) {
1644 AR5K_EEPROM_READ(offset++, val);
1645 rep[j].edge = (val >> 8) & pmask;
1646 rep[j].flag = (val >> 14) & 1;
1647 rep[j + 1].edge = val & pmask;
1648 rep[j + 1].flag = (val >> 6) & 1;
1649 }
1650 } else {
1651 AR5K_EEPROM_READ(offset++, val);
1652 rep[0].freq = (val >> 9) & fmask;
1653 rep[1].freq = (val >> 2) & fmask;
1654 rep[2].freq = (val << 5) & fmask;
1655
1656 AR5K_EEPROM_READ(offset++, val);
1657 rep[2].freq |= (val >> 11) & 0x1f;
1658 rep[3].freq = (val >> 4) & fmask;
1659 rep[4].freq = (val << 3) & fmask;
1660
1661 AR5K_EEPROM_READ(offset++, val);
1662 rep[4].freq |= (val >> 13) & 0x7;
1663 rep[5].freq = (val >> 6) & fmask;
1664 rep[6].freq = (val << 1) & fmask;
1665
1666 AR5K_EEPROM_READ(offset++, val);
1667 rep[6].freq |= (val >> 15) & 0x1;
1668 rep[7].freq = (val >> 8) & fmask;
1669
1670 rep[0].edge = (val >> 2) & pmask;
1671 rep[1].edge = (val << 4) & pmask;
1672
1673 AR5K_EEPROM_READ(offset++, val);
1674 rep[1].edge |= (val >> 12) & 0xf;
1675 rep[2].edge = (val >> 6) & pmask;
1676 rep[3].edge = val & pmask;
1677
1678 AR5K_EEPROM_READ(offset++, val);
1679 rep[4].edge = (val >> 10) & pmask;
1680 rep[5].edge = (val >> 4) & pmask;
1681 rep[6].edge = (val << 2) & pmask;
1682
1683 AR5K_EEPROM_READ(offset++, val);
1684 rep[6].edge |= (val >> 14) & 0x3;
1685 rep[7].edge = (val >> 8) & pmask;
1686 }
1687 for (j = 0; j < AR5K_EEPROM_N_EDGES; j++) {
1688 rep[j].freq = ath5k_eeprom_bin2freq(ee,
1689 rep[j].freq, ctl_mode);
1690 }
1691 rep += AR5K_EEPROM_N_EDGES;
1692 }
c6e387a2
NK
1693
1694 return 0;
1695}
1696
1048643e
FF
1697
1698/*
1699 * Initialize eeprom power tables
1700 */
1701int
1702ath5k_eeprom_init(struct ath5k_hw *ah)
1703{
1704 int err;
1705
1706 err = ath5k_eeprom_init_header(ah);
1707 if (err < 0)
1708 return err;
1709
1710 err = ath5k_eeprom_init_modes(ah);
1711 if (err < 0)
1712 return err;
1713
1714 err = ath5k_eeprom_read_pcal_info(ah);
1715 if (err < 0)
1716 return err;
1717
1718 err = ath5k_eeprom_read_ctl_info(ah);
1719 if (err < 0)
1720 return err;
1721
1722 return 0;
1723}
e8f055f0 1724
c6e387a2
NK
1725/*
1726 * Read the MAC address from eeprom
1727 */
1728int ath5k_eeprom_read_mac(struct ath5k_hw *ah, u8 *mac)
1729{
8d6c39ef 1730 u8 mac_d[ETH_ALEN] = {};
c6e387a2
NK
1731 u32 total, offset;
1732 u16 data;
1733 int octet, ret;
1734
c6e387a2
NK
1735 ret = ath5k_hw_eeprom_read(ah, 0x20, &data);
1736 if (ret)
1737 return ret;
1738
1739 for (offset = 0x1f, octet = 0, total = 0; offset >= 0x1d; offset--) {
1740 ret = ath5k_hw_eeprom_read(ah, offset, &data);
1741 if (ret)
1742 return ret;
1743
1744 total += data;
1745 mac_d[octet + 1] = data & 0xff;
1746 mac_d[octet] = data >> 8;
1747 octet += 2;
1748 }
1749
c6e387a2
NK
1750 if (!total || total == 3 * 0xffff)
1751 return -EINVAL;
1752
8d6c39ef
JS
1753 memcpy(mac, mac_d, ETH_ALEN);
1754
c6e387a2
NK
1755 return 0;
1756}
1757
e8f055f0
NK
1758bool ath5k_eeprom_is_hb63(struct ath5k_hw *ah)
1759{
1760 u16 data;
1761
1762 ath5k_hw_eeprom_read(ah, AR5K_EEPROM_IS_HB63, &data);
1763
1764 if ((ah->ah_mac_version == (AR5K_SREV_AR2425 >> 4)) && data)
1765 return true;
1766 else
1767 return false;
1768}
8e218fb2 1769