AR7 ethernet
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / net / cpmac.c
CommitLineData
d95b39c3
MC
1/*
2 * Copyright (C) 2006, 2007 Eugene Konev
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
17 */
18
19#include <linux/module.h>
20#include <linux/init.h>
21#include <linux/moduleparam.h>
22
23#include <linux/sched.h>
24#include <linux/kernel.h>
25#include <linux/slab.h>
26#include <linux/errno.h>
27#include <linux/types.h>
28#include <linux/delay.h>
29#include <linux/version.h>
30
31#include <linux/netdevice.h>
32#include <linux/etherdevice.h>
33#include <linux/ethtool.h>
34#include <linux/skbuff.h>
35#include <linux/mii.h>
36#include <linux/phy.h>
37#include <linux/platform_device.h>
38#include <linux/dma-mapping.h>
39#include <asm/gpio.h>
40
41MODULE_AUTHOR("Eugene Konev <ejka@imfi.kspu.ru>");
42MODULE_DESCRIPTION("TI AR7 ethernet driver (CPMAC)");
43MODULE_LICENSE("GPL");
44
45static int debug_level = 8;
46static int dumb_switch;
47
48/* Next 2 are only used in cpmac_probe, so it's pointless to change them */
49module_param(debug_level, int, 0444);
50module_param(dumb_switch, int, 0444);
51
52MODULE_PARM_DESC(debug_level, "Number of NETIF_MSG bits to enable");
53MODULE_PARM_DESC(dumb_switch, "Assume switch is not connected to MDIO bus");
54
55#define CPMAC_VERSION "0.5.0"
56/* stolen from net/ieee80211.h */
57#ifndef MAC_FMT
58#define MAC_FMT "%02x:%02x:%02x:%02x:%02x:%02x"
59#define MAC_ARG(x) ((u8*)(x))[0], ((u8*)(x))[1], ((u8*)(x))[2], \
60 ((u8*)(x))[3], ((u8*)(x))[4], ((u8*)(x))[5]
61#endif
62/* frame size + 802.1q tag */
63#define CPMAC_SKB_SIZE (ETH_FRAME_LEN + 4)
64#define CPMAC_QUEUES 8
65
66/* Ethernet registers */
67#define CPMAC_TX_CONTROL 0x0004
68#define CPMAC_TX_TEARDOWN 0x0008
69#define CPMAC_RX_CONTROL 0x0014
70#define CPMAC_RX_TEARDOWN 0x0018
71#define CPMAC_MBP 0x0100
72# define MBP_RXPASSCRC 0x40000000
73# define MBP_RXQOS 0x20000000
74# define MBP_RXNOCHAIN 0x10000000
75# define MBP_RXCMF 0x01000000
76# define MBP_RXSHORT 0x00800000
77# define MBP_RXCEF 0x00400000
78# define MBP_RXPROMISC 0x00200000
79# define MBP_PROMISCCHAN(channel) (((channel) & 0x7) << 16)
80# define MBP_RXBCAST 0x00002000
81# define MBP_BCASTCHAN(channel) (((channel) & 0x7) << 8)
82# define MBP_RXMCAST 0x00000020
83# define MBP_MCASTCHAN(channel) ((channel) & 0x7)
84#define CPMAC_UNICAST_ENABLE 0x0104
85#define CPMAC_UNICAST_CLEAR 0x0108
86#define CPMAC_MAX_LENGTH 0x010c
87#define CPMAC_BUFFER_OFFSET 0x0110
88#define CPMAC_MAC_CONTROL 0x0160
89# define MAC_TXPTYPE 0x00000200
90# define MAC_TXPACE 0x00000040
91# define MAC_MII 0x00000020
92# define MAC_TXFLOW 0x00000010
93# define MAC_RXFLOW 0x00000008
94# define MAC_MTEST 0x00000004
95# define MAC_LOOPBACK 0x00000002
96# define MAC_FDX 0x00000001
97#define CPMAC_MAC_STATUS 0x0164
98# define MAC_STATUS_QOS 0x00000004
99# define MAC_STATUS_RXFLOW 0x00000002
100# define MAC_STATUS_TXFLOW 0x00000001
101#define CPMAC_TX_INT_ENABLE 0x0178
102#define CPMAC_TX_INT_CLEAR 0x017c
103#define CPMAC_MAC_INT_VECTOR 0x0180
104# define MAC_INT_STATUS 0x00080000
105# define MAC_INT_HOST 0x00040000
106# define MAC_INT_RX 0x00020000
107# define MAC_INT_TX 0x00010000
108#define CPMAC_MAC_EOI_VECTOR 0x0184
109#define CPMAC_RX_INT_ENABLE 0x0198
110#define CPMAC_RX_INT_CLEAR 0x019c
111#define CPMAC_MAC_INT_ENABLE 0x01a8
112#define CPMAC_MAC_INT_CLEAR 0x01ac
113#define CPMAC_MAC_ADDR_LO(channel) (0x01b0 + (channel) * 4)
114#define CPMAC_MAC_ADDR_MID 0x01d0
115#define CPMAC_MAC_ADDR_HI 0x01d4
116#define CPMAC_MAC_HASH_LO 0x01d8
117#define CPMAC_MAC_HASH_HI 0x01dc
118#define CPMAC_TX_PTR(channel) (0x0600 + (channel) * 4)
119#define CPMAC_RX_PTR(channel) (0x0620 + (channel) * 4)
120#define CPMAC_TX_ACK(channel) (0x0640 + (channel) * 4)
121#define CPMAC_RX_ACK(channel) (0x0660 + (channel) * 4)
122#define CPMAC_REG_END 0x0680
123/*
124 * Rx/Tx statistics
125 * TODO: use some of them to fill stats in cpmac_stats()
126 */
127#define CPMAC_STATS_RX_GOOD 0x0200
128#define CPMAC_STATS_RX_BCAST 0x0204
129#define CPMAC_STATS_RX_MCAST 0x0208
130#define CPMAC_STATS_RX_PAUSE 0x020c
131#define CPMAC_STATS_RX_CRC 0x0210
132#define CPMAC_STATS_RX_ALIGN 0x0214
133#define CPMAC_STATS_RX_OVER 0x0218
134#define CPMAC_STATS_RX_JABBER 0x021c
135#define CPMAC_STATS_RX_UNDER 0x0220
136#define CPMAC_STATS_RX_FRAG 0x0224
137#define CPMAC_STATS_RX_FILTER 0x0228
138#define CPMAC_STATS_RX_QOSFILTER 0x022c
139#define CPMAC_STATS_RX_OCTETS 0x0230
140
141#define CPMAC_STATS_TX_GOOD 0x0234
142#define CPMAC_STATS_TX_BCAST 0x0238
143#define CPMAC_STATS_TX_MCAST 0x023c
144#define CPMAC_STATS_TX_PAUSE 0x0240
145#define CPMAC_STATS_TX_DEFER 0x0244
146#define CPMAC_STATS_TX_COLLISION 0x0248
147#define CPMAC_STATS_TX_SINGLECOLL 0x024c
148#define CPMAC_STATS_TX_MULTICOLL 0x0250
149#define CPMAC_STATS_TX_EXCESSCOLL 0x0254
150#define CPMAC_STATS_TX_LATECOLL 0x0258
151#define CPMAC_STATS_TX_UNDERRUN 0x025c
152#define CPMAC_STATS_TX_CARRIERSENSE 0x0260
153#define CPMAC_STATS_TX_OCTETS 0x0264
154
155#define cpmac_read(base, reg) (readl((void __iomem *)(base) + (reg)))
156#define cpmac_write(base, reg, val) (writel(val, (void __iomem *)(base) + \
157 (reg)))
158
159/* MDIO bus */
160#define CPMAC_MDIO_VERSION 0x0000
161#define CPMAC_MDIO_CONTROL 0x0004
162# define MDIOC_IDLE 0x80000000
163# define MDIOC_ENABLE 0x40000000
164# define MDIOC_PREAMBLE 0x00100000
165# define MDIOC_FAULT 0x00080000
166# define MDIOC_FAULTDETECT 0x00040000
167# define MDIOC_INTTEST 0x00020000
168# define MDIOC_CLKDIV(div) ((div) & 0xff)
169#define CPMAC_MDIO_ALIVE 0x0008
170#define CPMAC_MDIO_LINK 0x000c
171#define CPMAC_MDIO_ACCESS(channel) (0x0080 + (channel) * 8)
172# define MDIO_BUSY 0x80000000
173# define MDIO_WRITE 0x40000000
174# define MDIO_REG(reg) (((reg) & 0x1f) << 21)
175# define MDIO_PHY(phy) (((phy) & 0x1f) << 16)
176# define MDIO_DATA(data) ((data) & 0xffff)
177#define CPMAC_MDIO_PHYSEL(channel) (0x0084 + (channel) * 8)
178# define PHYSEL_LINKSEL 0x00000040
179# define PHYSEL_LINKINT 0x00000020
180
181struct cpmac_desc {
182 u32 hw_next;
183 u32 hw_data;
184 u16 buflen;
185 u16 bufflags;
186 u16 datalen;
187 u16 dataflags;
188#define CPMAC_SOP 0x8000
189#define CPMAC_EOP 0x4000
190#define CPMAC_OWN 0x2000
191#define CPMAC_EOQ 0x1000
192 struct sk_buff *skb;
193 struct cpmac_desc *next;
194 dma_addr_t mapping;
195 dma_addr_t data_mapping;
196};
197
198struct cpmac_priv {
199 spinlock_t lock;
200 spinlock_t rx_lock;
201 struct cpmac_desc *rx_head;
202 int ring_size;
203 struct cpmac_desc *desc_ring;
204 dma_addr_t dma_ring;
205 void __iomem *regs;
206 struct mii_bus *mii_bus;
207 struct phy_device *phy;
208 char phy_name[BUS_ID_SIZE];
209 int oldlink, oldspeed, oldduplex;
210 u32 msg_enable;
211 struct net_device *dev;
212 struct work_struct reset_work;
213 struct platform_device *pdev;
214};
215
216static irqreturn_t cpmac_irq(int, void *);
217static void cpmac_hw_start(struct net_device *dev);
218static void cpmac_hw_stop(struct net_device *dev);
219static int cpmac_stop(struct net_device *dev);
220static int cpmac_open(struct net_device *dev);
221
222static void cpmac_dump_regs(struct net_device *dev)
223{
224 int i;
225 struct cpmac_priv *priv = netdev_priv(dev);
226 for (i = 0; i < CPMAC_REG_END; i += 4) {
227 if (i % 16 == 0) {
228 if (i)
229 printk("\n");
230 printk(KERN_DEBUG "%s: reg[%p]:", dev->name,
231 priv->regs + i);
232 }
233 printk(" %08x", cpmac_read(priv->regs, i));
234 }
235 printk("\n");
236}
237
238static void cpmac_dump_desc(struct net_device *dev, struct cpmac_desc *desc)
239{
240 int i;
241 printk(KERN_DEBUG "%s: desc[%p]:", dev->name, desc);
242 for (i = 0; i < sizeof(*desc) / 4; i++)
243 printk(" %08x", ((u32 *)desc)[i]);
244 printk("\n");
245}
246
247static void cpmac_dump_skb(struct net_device *dev, struct sk_buff *skb)
248{
249 int i;
250 printk(KERN_DEBUG "%s: skb 0x%p, len=%d\n", dev->name, skb, skb->len);
251 for (i = 0; i < skb->len; i++) {
252 if (i % 16 == 0) {
253 if (i)
254 printk("\n");
255 printk(KERN_DEBUG "%s: data[%p]:", dev->name,
256 skb->data + i);
257 }
258 printk(" %02x", ((u8 *)skb->data)[i]);
259 }
260 printk("\n");
261}
262
263static int cpmac_mdio_read(struct mii_bus *bus, int phy_id, int reg)
264{
265 u32 val;
266
267 while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
268 cpu_relax();
269 cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_REG(reg) |
270 MDIO_PHY(phy_id));
271 while ((val = cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0))) & MDIO_BUSY)
272 cpu_relax();
273 return MDIO_DATA(val);
274}
275
276static int cpmac_mdio_write(struct mii_bus *bus, int phy_id,
277 int reg, u16 val)
278{
279 while (cpmac_read(bus->priv, CPMAC_MDIO_ACCESS(0)) & MDIO_BUSY)
280 cpu_relax();
281 cpmac_write(bus->priv, CPMAC_MDIO_ACCESS(0), MDIO_BUSY | MDIO_WRITE |
282 MDIO_REG(reg) | MDIO_PHY(phy_id) | MDIO_DATA(val));
283 return 0;
284}
285
286static int cpmac_mdio_reset(struct mii_bus *bus)
287{
288 ar7_device_reset(AR7_RESET_BIT_MDIO);
289 cpmac_write(bus->priv, CPMAC_MDIO_CONTROL, MDIOC_ENABLE |
290 MDIOC_CLKDIV(ar7_cpmac_freq() / 2200000 - 1));
291 return 0;
292}
293
294static int mii_irqs[PHY_MAX_ADDR] = { PHY_POLL, };
295
296static struct mii_bus cpmac_mii = {
297 .name = "cpmac-mii",
298 .read = cpmac_mdio_read,
299 .write = cpmac_mdio_write,
300 .reset = cpmac_mdio_reset,
301 .irq = mii_irqs,
302};
303
304static int cpmac_config(struct net_device *dev, struct ifmap *map)
305{
306 if (dev->flags & IFF_UP)
307 return -EBUSY;
308
309 /* Don't allow changing the I/O address */
310 if (map->base_addr != dev->base_addr)
311 return -EOPNOTSUPP;
312
313 /* ignore other fields */
314 return 0;
315}
316
317static void cpmac_set_multicast_list(struct net_device *dev)
318{
319 struct dev_mc_list *iter;
320 int i;
321 u8 tmp;
322 u32 mbp, bit, hash[2] = { 0, };
323 struct cpmac_priv *priv = netdev_priv(dev);
324
325 mbp = cpmac_read(priv->regs, CPMAC_MBP);
326 if (dev->flags & IFF_PROMISC) {
327 cpmac_write(priv->regs, CPMAC_MBP, (mbp & ~MBP_PROMISCCHAN(0)) |
328 MBP_RXPROMISC);
329 } else {
330 cpmac_write(priv->regs, CPMAC_MBP, mbp & ~MBP_RXPROMISC);
331 if (dev->flags & IFF_ALLMULTI) {
332 /* enable all multicast mode */
333 cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, 0xffffffff);
334 cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, 0xffffffff);
335 } else {
336 /*
337 * cpmac uses some strange mac address hashing
338 * (not crc32)
339 */
340 for (i = 0, iter = dev->mc_list; i < dev->mc_count;
341 i++, iter = iter->next) {
342 bit = 0;
343 tmp = iter->dmi_addr[0];
344 bit ^= (tmp >> 2) ^ (tmp << 4);
345 tmp = iter->dmi_addr[1];
346 bit ^= (tmp >> 4) ^ (tmp << 2);
347 tmp = iter->dmi_addr[2];
348 bit ^= (tmp >> 6) ^ tmp;
349 tmp = iter->dmi_addr[3];
350 bit ^= (tmp >> 2) ^ (tmp << 4);
351 tmp = iter->dmi_addr[4];
352 bit ^= (tmp >> 4) ^ (tmp << 2);
353 tmp = iter->dmi_addr[5];
354 bit ^= (tmp >> 6) ^ tmp;
355 bit &= 0x3f;
356 hash[bit / 32] |= 1 << (bit % 32);
357 }
358
359 cpmac_write(priv->regs, CPMAC_MAC_HASH_LO, hash[0]);
360 cpmac_write(priv->regs, CPMAC_MAC_HASH_HI, hash[1]);
361 }
362 }
363}
364
365static struct sk_buff *cpmac_rx_one(struct net_device *dev,
366 struct cpmac_priv *priv,
367 struct cpmac_desc *desc)
368{
369 struct sk_buff *skb, *result = NULL;
370
371 if (unlikely(netif_msg_hw(priv)))
372 cpmac_dump_desc(dev, desc);
373 cpmac_write(priv->regs, CPMAC_RX_ACK(0), (u32)desc->mapping);
374 if (unlikely(!desc->datalen)) {
375 if (netif_msg_rx_err(priv) && net_ratelimit())
376 printk(KERN_WARNING "%s: rx: spurious interrupt\n",
377 dev->name);
378 return NULL;
379 }
380
381 skb = netdev_alloc_skb(dev, CPMAC_SKB_SIZE);
382 if (likely(skb)) {
383 skb_reserve(skb, 2);
384 skb_put(desc->skb, desc->datalen);
385 desc->skb->protocol = eth_type_trans(desc->skb, dev);
386 desc->skb->ip_summed = CHECKSUM_NONE;
387 dev->stats.rx_packets++;
388 dev->stats.rx_bytes += desc->datalen;
389 result = desc->skb;
390 dma_unmap_single(&dev->dev, desc->data_mapping, CPMAC_SKB_SIZE,
391 DMA_FROM_DEVICE);
392 desc->skb = skb;
393 desc->data_mapping = dma_map_single(&dev->dev, skb->data,
394 CPMAC_SKB_SIZE,
395 DMA_FROM_DEVICE);
396 desc->hw_data = (u32)desc->data_mapping;
397 if (unlikely(netif_msg_pktdata(priv))) {
398 printk(KERN_DEBUG "%s: received packet:\n", dev->name);
399 cpmac_dump_skb(dev, result);
400 }
401 } else {
402 if (netif_msg_rx_err(priv) && net_ratelimit())
403 printk(KERN_WARNING
404 "%s: low on skbs, dropping packet\n", dev->name);
405 dev->stats.rx_dropped++;
406 }
407
408 desc->buflen = CPMAC_SKB_SIZE;
409 desc->dataflags = CPMAC_OWN;
410
411 return result;
412}
413
414static int cpmac_poll(struct net_device *dev, int *budget)
415{
416 struct sk_buff *skb;
417 struct cpmac_desc *desc;
418 int received = 0, quota = min(dev->quota, *budget);
419 struct cpmac_priv *priv = netdev_priv(dev);
420
421 spin_lock(&priv->rx_lock);
422 if (unlikely(!priv->rx_head)) {
423 if (netif_msg_rx_err(priv) && net_ratelimit())
424 printk(KERN_WARNING "%s: rx: polling, but no queue\n",
425 dev->name);
426 netif_rx_complete(dev);
427 return 0;
428 }
429
430 desc = priv->rx_head;
431 while ((received < quota) && ((desc->dataflags & CPMAC_OWN) == 0)) {
432 skb = cpmac_rx_one(dev, priv, desc);
433 if (likely(skb)) {
434 netif_receive_skb(skb);
435 received++;
436 }
437 desc = desc->next;
438 }
439
440 priv->rx_head = desc;
441 spin_unlock(&priv->rx_lock);
442 *budget -= received;
443 dev->quota -= received;
444 if (unlikely(netif_msg_rx_status(priv)))
445 printk(KERN_DEBUG "%s: poll processed %d packets\n", dev->name,
446 received);
447 if (desc->dataflags & CPMAC_OWN) {
448 netif_rx_complete(dev);
449 cpmac_write(priv->regs, CPMAC_RX_PTR(0), (u32)desc->mapping);
450 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
451 return 0;
452 }
453
454 return 1;
455}
456
457static int cpmac_start_xmit(struct sk_buff *skb, struct net_device *dev)
458{
459 int queue, len;
460 struct cpmac_desc *desc;
461 struct cpmac_priv *priv = netdev_priv(dev);
462
463 if (unlikely(skb_padto(skb, ETH_ZLEN))) {
464 if (netif_msg_tx_err(priv) && net_ratelimit())
465 printk(KERN_WARNING
466 "%s: tx: padding failed, dropping\n", dev->name);
467 spin_lock(&priv->lock);
468 dev->stats.tx_dropped++;
469 spin_unlock(&priv->lock);
470 return -ENOMEM;
471 }
472
473 len = max(skb->len, ETH_ZLEN);
474 queue = skb->queue_mapping;
475#ifdef CONFIG_NETDEVICES_MULTIQUEUE
476 netif_stop_subqueue(dev, queue);
477#else
478 netif_stop_queue(dev);
479#endif
480
481 desc = &priv->desc_ring[queue];
482 if (unlikely(desc->dataflags & CPMAC_OWN)) {
483 if (netif_msg_tx_err(priv) && net_ratelimit())
484 printk(KERN_WARNING "%s: tx dma ring full, dropping\n",
485 dev->name);
486 spin_lock(&priv->lock);
487 dev->stats.tx_dropped++;
488 spin_unlock(&priv->lock);
489 dev_kfree_skb_any(skb);
490 return -ENOMEM;
491 }
492
493 spin_lock(&priv->lock);
494 dev->trans_start = jiffies;
495 spin_unlock(&priv->lock);
496 desc->dataflags = CPMAC_SOP | CPMAC_EOP | CPMAC_OWN;
497 desc->skb = skb;
498 desc->data_mapping = dma_map_single(&dev->dev, skb->data, len,
499 DMA_TO_DEVICE);
500 desc->hw_data = (u32)desc->data_mapping;
501 desc->datalen = len;
502 desc->buflen = len;
503 if (unlikely(netif_msg_tx_queued(priv)))
504 printk(KERN_DEBUG "%s: sending 0x%p, len=%d\n", dev->name, skb,
505 skb->len);
506 if (unlikely(netif_msg_hw(priv)))
507 cpmac_dump_desc(dev, desc);
508 if (unlikely(netif_msg_pktdata(priv)))
509 cpmac_dump_skb(dev, skb);
510 cpmac_write(priv->regs, CPMAC_TX_PTR(queue), (u32)desc->mapping);
511
512 return 0;
513}
514
515static void cpmac_end_xmit(struct net_device *dev, int queue)
516{
517 struct cpmac_desc *desc;
518 struct cpmac_priv *priv = netdev_priv(dev);
519
520 desc = &priv->desc_ring[queue];
521 cpmac_write(priv->regs, CPMAC_TX_ACK(queue), (u32)desc->mapping);
522 if (likely(desc->skb)) {
523 spin_lock(&priv->lock);
524 dev->stats.tx_packets++;
525 dev->stats.tx_bytes += desc->skb->len;
526 spin_unlock(&priv->lock);
527 dma_unmap_single(&dev->dev, desc->data_mapping, desc->skb->len,
528 DMA_TO_DEVICE);
529
530 if (unlikely(netif_msg_tx_done(priv)))
531 printk(KERN_DEBUG "%s: sent 0x%p, len=%d\n", dev->name,
532 desc->skb, desc->skb->len);
533
534 dev_kfree_skb_irq(desc->skb);
535 desc->skb = NULL;
536#ifdef CONFIG_NETDEVICES_MULTIQUEUE
537 if (netif_subqueue_stopped(dev, queue))
538 netif_wake_subqueue(dev, queue);
539#else
540 if (netif_queue_stopped(dev))
541 netif_wake_queue(dev);
542#endif
543 } else {
544 if (netif_msg_tx_err(priv) && net_ratelimit())
545 printk(KERN_WARNING
546 "%s: end_xmit: spurious interrupt\n", dev->name);
547#ifdef CONFIG_NETDEVICES_MULTIQUEUE
548 if (netif_subqueue_stopped(dev, queue))
549 netif_wake_subqueue(dev, queue);
550#else
551 if (netif_queue_stopped(dev))
552 netif_wake_queue(dev);
553#endif
554 }
555}
556
557static void cpmac_hw_stop(struct net_device *dev)
558{
559 int i;
560 struct cpmac_priv *priv = netdev_priv(dev);
561 struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
562
563 ar7_device_reset(pdata->reset_bit);
564 cpmac_write(priv->regs, CPMAC_RX_CONTROL,
565 cpmac_read(priv->regs, CPMAC_RX_CONTROL) & ~1);
566 cpmac_write(priv->regs, CPMAC_TX_CONTROL,
567 cpmac_read(priv->regs, CPMAC_TX_CONTROL) & ~1);
568 for (i = 0; i < 8; i++) {
569 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
570 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
571 }
572 cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
573 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
574 cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
575 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
576 cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
577 cpmac_read(priv->regs, CPMAC_MAC_CONTROL) & ~MAC_MII);
578}
579
580static void cpmac_hw_start(struct net_device *dev)
581{
582 int i;
583 struct cpmac_priv *priv = netdev_priv(dev);
584 struct plat_cpmac_data *pdata = priv->pdev->dev.platform_data;
585
586 ar7_device_reset(pdata->reset_bit);
587 for (i = 0; i < 8; i++) {
588 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
589 cpmac_write(priv->regs, CPMAC_RX_PTR(i), 0);
590 }
591 cpmac_write(priv->regs, CPMAC_RX_PTR(0), priv->rx_head->mapping);
592
593 cpmac_write(priv->regs, CPMAC_MBP, MBP_RXSHORT | MBP_RXBCAST |
594 MBP_RXMCAST);
595 cpmac_write(priv->regs, CPMAC_BUFFER_OFFSET, 0);
596 for (i = 0; i < 8; i++)
597 cpmac_write(priv->regs, CPMAC_MAC_ADDR_LO(i), dev->dev_addr[5]);
598 cpmac_write(priv->regs, CPMAC_MAC_ADDR_MID, dev->dev_addr[4]);
599 cpmac_write(priv->regs, CPMAC_MAC_ADDR_HI, dev->dev_addr[0] |
600 (dev->dev_addr[1] << 8) | (dev->dev_addr[2] << 16) |
601 (dev->dev_addr[3] << 24));
602 cpmac_write(priv->regs, CPMAC_MAX_LENGTH, CPMAC_SKB_SIZE);
603 cpmac_write(priv->regs, CPMAC_UNICAST_CLEAR, 0xff);
604 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 0xff);
605 cpmac_write(priv->regs, CPMAC_TX_INT_CLEAR, 0xff);
606 cpmac_write(priv->regs, CPMAC_MAC_INT_CLEAR, 0xff);
607 cpmac_write(priv->regs, CPMAC_UNICAST_ENABLE, 1);
608 cpmac_write(priv->regs, CPMAC_RX_INT_ENABLE, 1);
609 cpmac_write(priv->regs, CPMAC_TX_INT_ENABLE, 0xff);
610 cpmac_write(priv->regs, CPMAC_MAC_INT_ENABLE, 3);
611
612 cpmac_write(priv->regs, CPMAC_RX_CONTROL,
613 cpmac_read(priv->regs, CPMAC_RX_CONTROL) | 1);
614 cpmac_write(priv->regs, CPMAC_TX_CONTROL,
615 cpmac_read(priv->regs, CPMAC_TX_CONTROL) | 1);
616 cpmac_write(priv->regs, CPMAC_MAC_CONTROL,
617 cpmac_read(priv->regs, CPMAC_MAC_CONTROL) | MAC_MII |
618 MAC_FDX);
619}
620
621static void cpmac_clear_rx(struct net_device *dev)
622{
623 struct cpmac_priv *priv = netdev_priv(dev);
624 struct cpmac_desc *desc;
625 int i;
626 if (unlikely(!priv->rx_head))
627 return;
628 desc = priv->rx_head;
629 for (i = 0; i < priv->ring_size; i++) {
630 if ((desc->dataflags & CPMAC_OWN) == 0) {
631 if (netif_msg_rx_err(priv) && net_ratelimit())
632 printk(KERN_WARNING "%s: packet dropped\n",
633 dev->name);
634 if (unlikely(netif_msg_hw(priv)))
635 cpmac_dump_desc(dev, desc);
636 desc->dataflags = CPMAC_OWN;
637 dev->stats.rx_dropped++;
638 }
639 desc = desc->next;
640 }
641}
642
643static void cpmac_clear_tx(struct net_device *dev)
644{
645 struct cpmac_priv *priv = netdev_priv(dev);
646 int i;
647 if (unlikely(!priv->desc_ring))
648 return;
649 for (i = 0; i < CPMAC_QUEUES; i++)
650 if (priv->desc_ring[i].skb) {
651 dev_kfree_skb_any(priv->desc_ring[i].skb);
652 if (netif_subqueue_stopped(dev, i))
653 netif_wake_subqueue(dev, i);
654 }
655}
656
657static void cpmac_hw_error(struct work_struct *work)
658{
659 struct cpmac_priv *priv =
660 container_of(work, struct cpmac_priv, reset_work);
661
662 spin_lock(&priv->rx_lock);
663 cpmac_clear_rx(priv->dev);
664 spin_unlock(&priv->rx_lock);
665 cpmac_clear_tx(priv->dev);
666 cpmac_hw_start(priv->dev);
667 netif_start_queue(priv->dev);
668}
669
670static irqreturn_t cpmac_irq(int irq, void *dev_id)
671{
672 struct net_device *dev = dev_id;
673 struct cpmac_priv *priv;
674 int queue;
675 u32 status;
676
677 if (!dev)
678 return IRQ_NONE;
679
680 priv = netdev_priv(dev);
681
682 status = cpmac_read(priv->regs, CPMAC_MAC_INT_VECTOR);
683
684 if (unlikely(netif_msg_intr(priv)))
685 printk(KERN_DEBUG "%s: interrupt status: 0x%08x\n", dev->name,
686 status);
687
688 if (status & MAC_INT_TX)
689 cpmac_end_xmit(dev, (status & 7));
690
691 if (status & MAC_INT_RX) {
692 queue = (status >> 8) & 7;
693 netif_rx_schedule(dev);
694 cpmac_write(priv->regs, CPMAC_RX_INT_CLEAR, 1 << queue);
695 }
696
697 cpmac_write(priv->regs, CPMAC_MAC_EOI_VECTOR, 0);
698
699 if (unlikely(status & (MAC_INT_HOST | MAC_INT_STATUS))) {
700 if (netif_msg_drv(priv) && net_ratelimit())
701 printk(KERN_ERR "%s: hw error, resetting...\n",
702 dev->name);
703 netif_stop_queue(dev);
704 cpmac_hw_stop(dev);
705 schedule_work(&priv->reset_work);
706 if (unlikely(netif_msg_hw(priv)))
707 cpmac_dump_regs(dev);
708 }
709
710 return IRQ_HANDLED;
711}
712
713static void cpmac_tx_timeout(struct net_device *dev)
714{
715 struct cpmac_priv *priv = netdev_priv(dev);
716 int i;
717
718 spin_lock(&priv->lock);
719 dev->stats.tx_errors++;
720 spin_unlock(&priv->lock);
721 if (netif_msg_tx_err(priv) && net_ratelimit())
722 printk(KERN_WARNING "%s: transmit timeout\n", dev->name);
723 /*
724 * FIXME: waking up random queue is not the best thing to
725 * do... on the other hand why we got here at all?
726 */
727#ifdef CONFIG_NETDEVICES_MULTIQUEUE
728 for (i = 0; i < CPMAC_QUEUES; i++)
729 if (priv->desc_ring[i].skb) {
730 dev_kfree_skb_any(priv->desc_ring[i].skb);
731 netif_wake_subqueue(dev, i);
732 break;
733 }
734#else
735 if (priv->desc_ring[0].skb)
736 dev_kfree_skb_any(priv->desc_ring[0].skb);
737 netif_wake_queue(dev);
738#endif
739}
740
741static int cpmac_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
742{
743 struct cpmac_priv *priv = netdev_priv(dev);
744 if (!(netif_running(dev)))
745 return -EINVAL;
746 if (!priv->phy)
747 return -EINVAL;
748 if ((cmd == SIOCGMIIPHY) || (cmd == SIOCGMIIREG) ||
749 (cmd == SIOCSMIIREG))
750 return phy_mii_ioctl(priv->phy, if_mii(ifr), cmd);
751
752 return -EOPNOTSUPP;
753}
754
755static int cpmac_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
756{
757 struct cpmac_priv *priv = netdev_priv(dev);
758
759 if (priv->phy)
760 return phy_ethtool_gset(priv->phy, cmd);
761
762 return -EINVAL;
763}
764
765static int cpmac_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
766{
767 struct cpmac_priv *priv = netdev_priv(dev);
768
769 if (!capable(CAP_NET_ADMIN))
770 return -EPERM;
771
772 if (priv->phy)
773 return phy_ethtool_sset(priv->phy, cmd);
774
775 return -EINVAL;
776}
777
778static void cpmac_get_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
779{
780 struct cpmac_priv *priv = netdev_priv(dev);
781
782 ring->rx_max_pending = 1024;
783 ring->rx_mini_max_pending = 1;
784 ring->rx_jumbo_max_pending = 1;
785 ring->tx_max_pending = 1;
786
787 ring->rx_pending = priv->ring_size;
788 ring->rx_mini_pending = 1;
789 ring->rx_jumbo_pending = 1;
790 ring->tx_pending = 1;
791}
792
793static int cpmac_set_ringparam(struct net_device *dev, struct ethtool_ringparam* ring)
794{
795 struct cpmac_priv *priv = netdev_priv(dev);
796
797 if (dev->flags && IFF_UP)
798 return -EBUSY;
799 priv->ring_size = ring->rx_pending;
800 return 0;
801}
802
803static void cpmac_get_drvinfo(struct net_device *dev,
804 struct ethtool_drvinfo *info)
805{
806 strcpy(info->driver, "cpmac");
807 strcpy(info->version, CPMAC_VERSION);
808 info->fw_version[0] = '\0';
809 sprintf(info->bus_info, "%s", "cpmac");
810 info->regdump_len = 0;
811}
812
813static const struct ethtool_ops cpmac_ethtool_ops = {
814 .get_settings = cpmac_get_settings,
815 .set_settings = cpmac_set_settings,
816 .get_drvinfo = cpmac_get_drvinfo,
817 .get_link = ethtool_op_get_link,
818 .get_ringparam = cpmac_get_ringparam,
819 .set_ringparam = cpmac_set_ringparam,
820};
821
822static void cpmac_adjust_link(struct net_device *dev)
823{
824 struct cpmac_priv *priv = netdev_priv(dev);
825 int new_state = 0;
826
827 spin_lock(&priv->lock);
828 if (priv->phy->link) {
829 netif_start_queue(dev);
830 if (priv->phy->duplex != priv->oldduplex) {
831 new_state = 1;
832 priv->oldduplex = priv->phy->duplex;
833 }
834
835 if (priv->phy->speed != priv->oldspeed) {
836 new_state = 1;
837 priv->oldspeed = priv->phy->speed;
838 }
839
840 if (!priv->oldlink) {
841 new_state = 1;
842 priv->oldlink = 1;
843 netif_schedule(dev);
844 }
845 } else if (priv->oldlink) {
846 netif_stop_queue(dev);
847 new_state = 1;
848 priv->oldlink = 0;
849 priv->oldspeed = 0;
850 priv->oldduplex = -1;
851 }
852
853 if (new_state && netif_msg_link(priv) && net_ratelimit())
854 phy_print_status(priv->phy);
855
856 spin_unlock(&priv->lock);
857}
858
859static int cpmac_open(struct net_device *dev)
860{
861 int i, size, res;
862 struct cpmac_priv *priv = netdev_priv(dev);
863 struct resource *mem;
864 struct cpmac_desc *desc;
865 struct sk_buff *skb;
866
867 priv->phy = phy_connect(dev, priv->phy_name, &cpmac_adjust_link,
868 0, PHY_INTERFACE_MODE_MII);
869 if (IS_ERR(priv->phy)) {
870 if (netif_msg_drv(priv))
871 printk(KERN_ERR "%s: Could not attach to PHY\n",
872 dev->name);
873 return PTR_ERR(priv->phy);
874 }
875
876 mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
877 if (!request_mem_region(mem->start, mem->end - mem->start, dev->name)) {
878 if (netif_msg_drv(priv))
879 printk(KERN_ERR "%s: failed to request registers\n",
880 dev->name);
881 res = -ENXIO;
882 goto fail_reserve;
883 }
884
885 priv->regs = ioremap(mem->start, mem->end - mem->start);
886 if (!priv->regs) {
887 if (netif_msg_drv(priv))
888 printk(KERN_ERR "%s: failed to remap registers\n",
889 dev->name);
890 res = -ENXIO;
891 goto fail_remap;
892 }
893
894 size = priv->ring_size + CPMAC_QUEUES;
895 priv->desc_ring = dma_alloc_coherent(&dev->dev,
896 sizeof(struct cpmac_desc) * size,
897 &priv->dma_ring,
898 GFP_KERNEL);
899 if (!priv->desc_ring) {
900 res = -ENOMEM;
901 goto fail_alloc;
902 }
903
904 for (i = 0; i < size; i++)
905 priv->desc_ring[i].mapping = priv->dma_ring + sizeof(*desc) * i;
906
907 priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
908 for (i = 0, desc = priv->rx_head; i < priv->ring_size; i++, desc++) {
909 skb = netdev_alloc_skb(dev, CPMAC_SKB_SIZE);
910 if (unlikely(!skb)) {
911 res = -ENOMEM;
912 goto fail_desc;
913 }
914 skb_reserve(skb, 2);
915 desc->skb = skb;
916 desc->data_mapping = dma_map_single(&dev->dev, skb->data,
917 CPMAC_SKB_SIZE,
918 DMA_FROM_DEVICE);
919 desc->hw_data = (u32)desc->data_mapping;
920 desc->buflen = CPMAC_SKB_SIZE;
921 desc->dataflags = CPMAC_OWN;
922 desc->next = &priv->rx_head[(i + 1) % priv->ring_size];
923 desc->hw_next = (u32)desc->next->mapping;
924 }
925
926 if ((res = request_irq(dev->irq, cpmac_irq, IRQF_SHARED,
927 dev->name, dev))) {
928 if (netif_msg_drv(priv))
929 printk(KERN_ERR "%s: failed to obtain irq\n",
930 dev->name);
931 goto fail_irq;
932 }
933
934 INIT_WORK(&priv->reset_work, cpmac_hw_error);
935 cpmac_hw_start(dev);
936
937 priv->phy->state = PHY_CHANGELINK;
938 phy_start(priv->phy);
939
940 return 0;
941
942fail_irq:
943fail_desc:
944 for (i = 0; i < priv->ring_size; i++) {
945 if (priv->rx_head[i].skb) {
946 dma_unmap_single(&dev->dev,
947 priv->rx_head[i].data_mapping,
948 CPMAC_SKB_SIZE,
949 DMA_FROM_DEVICE);
950 kfree_skb(priv->rx_head[i].skb);
951 }
952 }
953fail_alloc:
954 kfree(priv->desc_ring);
955 iounmap(priv->regs);
956
957fail_remap:
958 release_mem_region(mem->start, mem->end - mem->start);
959
960fail_reserve:
961 phy_disconnect(priv->phy);
962
963 return res;
964}
965
966static int cpmac_stop(struct net_device *dev)
967{
968 int i;
969 struct cpmac_priv *priv = netdev_priv(dev);
970 struct resource *mem;
971
972 netif_stop_queue(dev);
973
974 cancel_work_sync(&priv->reset_work);
975 phy_stop(priv->phy);
976 phy_disconnect(priv->phy);
977 priv->phy = NULL;
978
979 cpmac_hw_stop(dev);
980
981 for (i = 0; i < 8; i++)
982 cpmac_write(priv->regs, CPMAC_TX_PTR(i), 0);
983 cpmac_write(priv->regs, CPMAC_RX_PTR(0), 0);
984 cpmac_write(priv->regs, CPMAC_MBP, 0);
985
986 free_irq(dev->irq, dev);
987 iounmap(priv->regs);
988 mem = platform_get_resource_byname(priv->pdev, IORESOURCE_MEM, "regs");
989 release_mem_region(mem->start, mem->end - mem->start);
990 priv->rx_head = &priv->desc_ring[CPMAC_QUEUES];
991 for (i = 0; i < priv->ring_size; i++) {
992 if (priv->rx_head[i].skb) {
993 dma_unmap_single(&dev->dev,
994 priv->rx_head[i].data_mapping,
995 CPMAC_SKB_SIZE,
996 DMA_FROM_DEVICE);
997 kfree_skb(priv->rx_head[i].skb);
998 }
999 }
1000
1001 dma_free_coherent(&dev->dev, sizeof(struct cpmac_desc) *
1002 (CPMAC_QUEUES + priv->ring_size),
1003 priv->desc_ring, priv->dma_ring);
1004 return 0;
1005}
1006
1007static int external_switch;
1008
1009static int __devinit cpmac_probe(struct platform_device *pdev)
1010{
1011 int rc, phy_id;
1012 struct resource *mem;
1013 struct cpmac_priv *priv;
1014 struct net_device *dev;
1015 struct plat_cpmac_data *pdata;
1016
1017 pdata = pdev->dev.platform_data;
1018
1019 for (phy_id = 0; phy_id < PHY_MAX_ADDR; phy_id++) {
1020 if (!(pdata->phy_mask & (1 << phy_id)))
1021 continue;
1022 if (!cpmac_mii.phy_map[phy_id])
1023 continue;
1024 break;
1025 }
1026
1027 if (phy_id == PHY_MAX_ADDR) {
1028 if (external_switch || dumb_switch)
1029 phy_id = 0;
1030 else {
1031 printk(KERN_ERR "cpmac: no PHY present\n");
1032 return -ENODEV;
1033 }
1034 }
1035
1036 dev = alloc_etherdev_mq(sizeof(*priv), CPMAC_QUEUES);
1037
1038 if (!dev) {
1039 printk(KERN_ERR "cpmac: Unable to allocate net_device\n");
1040 return -ENOMEM;
1041 }
1042
1043 platform_set_drvdata(pdev, dev);
1044 priv = netdev_priv(dev);
1045
1046 priv->pdev = pdev;
1047 mem = platform_get_resource_byname(pdev, IORESOURCE_MEM, "regs");
1048 if (!mem) {
1049 rc = -ENODEV;
1050 goto fail;
1051 }
1052
1053 dev->irq = platform_get_irq_byname(pdev, "irq");
1054
1055 dev->open = cpmac_open;
1056 dev->stop = cpmac_stop;
1057 dev->set_config = cpmac_config;
1058 dev->hard_start_xmit = cpmac_start_xmit;
1059 dev->do_ioctl = cpmac_ioctl;
1060 dev->set_multicast_list = cpmac_set_multicast_list;
1061 dev->tx_timeout = cpmac_tx_timeout;
1062 dev->ethtool_ops = &cpmac_ethtool_ops;
1063 dev->poll = cpmac_poll;
1064 dev->weight = 64;
1065 dev->features |= NETIF_F_MULTI_QUEUE;
1066
1067 spin_lock_init(&priv->lock);
1068 spin_lock_init(&priv->rx_lock);
1069 priv->dev = dev;
1070 priv->ring_size = 64;
1071 priv->msg_enable = netif_msg_init(debug_level, 0xff);
1072 memcpy(dev->dev_addr, pdata->dev_addr, sizeof(dev->dev_addr));
1073 if (phy_id == 31) {
1074 snprintf(priv->phy_name, BUS_ID_SIZE, PHY_ID_FMT,
1075 cpmac_mii.id, phy_id);
1076 } else
1077 snprintf(priv->phy_name, BUS_ID_SIZE, "fixed@%d:%d", 100, 1);
1078
1079 if ((rc = register_netdev(dev))) {
1080 printk(KERN_ERR "cpmac: error %i registering device %s\n", rc,
1081 dev->name);
1082 goto fail;
1083 }
1084
1085 if (netif_msg_probe(priv)) {
1086 printk(KERN_INFO
1087 "cpmac: device %s (regs: %p, irq: %d, phy: %s, mac: "
1088 MAC_FMT ")\n", dev->name, (void *)mem->start, dev->irq,
1089 priv->phy_name, MAC_ARG(dev->dev_addr));
1090 }
1091 return 0;
1092
1093fail:
1094 free_netdev(dev);
1095 return rc;
1096}
1097
1098static int __devexit cpmac_remove(struct platform_device *pdev)
1099{
1100 struct net_device *dev = platform_get_drvdata(pdev);
1101 unregister_netdev(dev);
1102 free_netdev(dev);
1103 return 0;
1104}
1105
1106static struct platform_driver cpmac_driver = {
1107 .driver.name = "cpmac",
1108 .probe = cpmac_probe,
1109 .remove = __devexit_p(cpmac_remove),
1110};
1111
1112int __devinit cpmac_init(void)
1113{
1114 u32 mask;
1115 int i, res;
1116
1117 cpmac_mii.priv = ioremap(AR7_REGS_MDIO, 256);
1118
1119 if (!cpmac_mii.priv) {
1120 printk(KERN_ERR "Can't ioremap mdio registers\n");
1121 return -ENXIO;
1122 }
1123
1124#warning FIXME: unhardcode gpio&reset bits
1125 ar7_gpio_disable(26);
1126 ar7_gpio_disable(27);
1127 ar7_device_reset(AR7_RESET_BIT_CPMAC_LO);
1128 ar7_device_reset(AR7_RESET_BIT_CPMAC_HI);
1129 ar7_device_reset(AR7_RESET_BIT_EPHY);
1130
1131 cpmac_mii.reset(&cpmac_mii);
1132
1133 for (i = 0; i < 300000; i++)
1134 if ((mask = cpmac_read(cpmac_mii.priv, CPMAC_MDIO_ALIVE)))
1135 break;
1136 else
1137 cpu_relax();
1138
1139 mask &= 0x7fffffff;
1140 if (mask & (mask - 1)) {
1141 external_switch = 1;
1142 mask = 0;
1143 }
1144
1145 cpmac_mii.phy_mask = ~(mask | 0x80000000);
1146
1147 res = mdiobus_register(&cpmac_mii);
1148 if (res)
1149 goto fail_mii;
1150
1151 res = platform_driver_register(&cpmac_driver);
1152 if (res)
1153 goto fail_cpmac;
1154
1155 return 0;
1156
1157fail_cpmac:
1158 mdiobus_unregister(&cpmac_mii);
1159
1160fail_mii:
1161 iounmap(cpmac_mii.priv);
1162
1163 return res;
1164}
1165
1166void __devexit cpmac_exit(void)
1167{
1168 platform_driver_unregister(&cpmac_driver);
1169 mdiobus_unregister(&cpmac_mii);
1170 iounmap(cpmac_mii.priv);
1171}
1172
1173module_init(cpmac_init);
1174module_exit(cpmac_exit);