UBI: improve ECC error message
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / ubi / scan.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/*
85c6e6e2 22 * UBI scanning sub-system.
801c135c 23 *
85c6e6e2 24 * This sub-system is responsible for scanning the flash media, checking UBI
801c135c
AB
25 * headers and providing complete information about the UBI flash image.
26 *
78d87c95 27 * The scanning information is represented by a &struct ubi_scan_info' object.
801c135c
AB
28 * Information about found volumes is represented by &struct ubi_scan_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
31 *
32 * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
33 * These objects are kept in per-volume RB-trees with the root at the
34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35 * an RB-tree of per-volume objects and each of these objects is the root of
36 * RB-tree of per-eraseblock objects.
37 *
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
41 */
42
43#include <linux/err.h>
5a0e3ad6 44#include <linux/slab.h>
801c135c 45#include <linux/crc32.h>
3013ee31 46#include <linux/math64.h>
801c135c
AB
47#include "ubi.h"
48
49#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
e88d6e10 50static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
801c135c
AB
51#else
52#define paranoid_check_si(ubi, si) 0
53#endif
54
55/* Temporary variables used during scanning */
56static struct ubi_ec_hdr *ech;
57static struct ubi_vid_hdr *vidh;
58
941dfb07 59/**
78d87c95
AB
60 * add_to_list - add physical eraseblock to a list.
61 * @si: scanning information
62 * @pnum: physical eraseblock number to add
63 * @ec: erase counter of the physical eraseblock
64 * @list: the list to add to
65 *
66 * This function adds physical eraseblock @pnum to free, erase, corrupted or
67 * alien lists. Returns zero in case of success and a negative error code in
68 * case of failure.
69 */
70static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
71 struct list_head *list)
801c135c
AB
72{
73 struct ubi_scan_leb *seb;
74
33789fb9 75 if (list == &si->free) {
801c135c 76 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
33789fb9
AB
77 si->free_peb_count += 1;
78 } else if (list == &si->erase) {
801c135c 79 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
33789fb9
AB
80 si->erase_peb_count += 1;
81 } else if (list == &si->corr) {
801c135c 82 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
33789fb9
AB
83 si->corr_peb_count += 1;
84 } else if (list == &si->alien) {
801c135c 85 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
33789fb9
AB
86 si->alien_peb_count += 1;
87 } else
801c135c
AB
88 BUG();
89
90 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
91 if (!seb)
92 return -ENOMEM;
93
94 seb->pnum = pnum;
95 seb->ec = ec;
96 list_add_tail(&seb->u.list, list);
97 return 0;
98}
99
801c135c 100/**
ebaaf1af 101 * validate_vid_hdr - check volume identifier header.
801c135c
AB
102 * @vid_hdr: the volume identifier header to check
103 * @sv: information about the volume this logical eraseblock belongs to
104 * @pnum: physical eraseblock number the VID header came from
105 *
106 * This function checks that data stored in @vid_hdr is consistent. Returns
107 * non-zero if an inconsistency was found and zero if not.
108 *
109 * Note, UBI does sanity check of everything it reads from the flash media.
85c6e6e2 110 * Most of the checks are done in the I/O sub-system. Here we check that the
801c135c
AB
111 * information in the VID header is consistent to the information in other VID
112 * headers of the same volume.
113 */
114static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
115 const struct ubi_scan_volume *sv, int pnum)
116{
117 int vol_type = vid_hdr->vol_type;
3261ebd7
CH
118 int vol_id = be32_to_cpu(vid_hdr->vol_id);
119 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
120 int data_pad = be32_to_cpu(vid_hdr->data_pad);
801c135c
AB
121
122 if (sv->leb_count != 0) {
123 int sv_vol_type;
124
125 /*
126 * This is not the first logical eraseblock belonging to this
127 * volume. Ensure that the data in its VID header is consistent
128 * to the data in previous logical eraseblock headers.
129 */
130
131 if (vol_id != sv->vol_id) {
132 dbg_err("inconsistent vol_id");
133 goto bad;
134 }
135
136 if (sv->vol_type == UBI_STATIC_VOLUME)
137 sv_vol_type = UBI_VID_STATIC;
138 else
139 sv_vol_type = UBI_VID_DYNAMIC;
140
141 if (vol_type != sv_vol_type) {
142 dbg_err("inconsistent vol_type");
143 goto bad;
144 }
145
146 if (used_ebs != sv->used_ebs) {
147 dbg_err("inconsistent used_ebs");
148 goto bad;
149 }
150
151 if (data_pad != sv->data_pad) {
152 dbg_err("inconsistent data_pad");
153 goto bad;
154 }
155 }
156
157 return 0;
158
159bad:
160 ubi_err("inconsistent VID header at PEB %d", pnum);
161 ubi_dbg_dump_vid_hdr(vid_hdr);
162 ubi_dbg_dump_sv(sv);
163 return -EINVAL;
164}
165
166/**
167 * add_volume - add volume to the scanning information.
168 * @si: scanning information
169 * @vol_id: ID of the volume to add
170 * @pnum: physical eraseblock number
171 * @vid_hdr: volume identifier header
172 *
173 * If the volume corresponding to the @vid_hdr logical eraseblock is already
174 * present in the scanning information, this function does nothing. Otherwise
175 * it adds corresponding volume to the scanning information. Returns a pointer
176 * to the scanning volume object in case of success and a negative error code
177 * in case of failure.
178 */
179static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
180 int pnum,
181 const struct ubi_vid_hdr *vid_hdr)
182{
183 struct ubi_scan_volume *sv;
184 struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
185
3261ebd7 186 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
801c135c
AB
187
188 /* Walk the volume RB-tree to look if this volume is already present */
189 while (*p) {
190 parent = *p;
191 sv = rb_entry(parent, struct ubi_scan_volume, rb);
192
193 if (vol_id == sv->vol_id)
194 return sv;
195
196 if (vol_id > sv->vol_id)
197 p = &(*p)->rb_left;
198 else
199 p = &(*p)->rb_right;
200 }
201
202 /* The volume is absent - add it */
203 sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
204 if (!sv)
205 return ERR_PTR(-ENOMEM);
206
207 sv->highest_lnum = sv->leb_count = 0;
801c135c
AB
208 sv->vol_id = vol_id;
209 sv->root = RB_ROOT;
3261ebd7
CH
210 sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
211 sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
801c135c
AB
212 sv->compat = vid_hdr->compat;
213 sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
214 : UBI_STATIC_VOLUME;
215 if (vol_id > si->highest_vol_id)
216 si->highest_vol_id = vol_id;
217
218 rb_link_node(&sv->rb, parent, p);
219 rb_insert_color(&sv->rb, &si->volumes);
220 si->vols_found += 1;
221 dbg_bld("added volume %d", vol_id);
222 return sv;
223}
224
225/**
226 * compare_lebs - find out which logical eraseblock is newer.
227 * @ubi: UBI device description object
228 * @seb: first logical eraseblock to compare
229 * @pnum: physical eraseblock number of the second logical eraseblock to
230 * compare
231 * @vid_hdr: volume identifier header of the second logical eraseblock
232 *
233 * This function compares 2 copies of a LEB and informs which one is newer. In
234 * case of success this function returns a positive value, in case of failure, a
235 * negative error code is returned. The success return codes use the following
236 * bits:
3f502622 237 * o bit 0 is cleared: the first PEB (described by @seb) is newer than the
801c135c
AB
238 * second PEB (described by @pnum and @vid_hdr);
239 * o bit 0 is set: the second PEB is newer;
240 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
241 * o bit 1 is set: bit-flips were detected in the newer LEB;
242 * o bit 2 is cleared: the older LEB is not corrupted;
243 * o bit 2 is set: the older LEB is corrupted.
244 */
e88d6e10
AB
245static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
246 int pnum, const struct ubi_vid_hdr *vid_hdr)
801c135c
AB
247{
248 void *buf;
249 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
250 uint32_t data_crc, crc;
8bc22961 251 struct ubi_vid_hdr *vh = NULL;
3261ebd7 252 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
801c135c 253
9869cd80 254 if (sqnum2 == seb->sqnum) {
801c135c 255 /*
9869cd80
AB
256 * This must be a really ancient UBI image which has been
257 * created before sequence numbers support has been added. At
258 * that times we used 32-bit LEB versions stored in logical
259 * eraseblocks. That was before UBI got into mainline. We do not
260 * support these images anymore. Well, those images will work
261 * still work, but only if no unclean reboots happened.
801c135c 262 */
9869cd80
AB
263 ubi_err("unsupported on-flash UBI format\n");
264 return -EINVAL;
265 }
64203195 266
9869cd80
AB
267 /* Obviously the LEB with lower sequence counter is older */
268 second_is_newer = !!(sqnum2 > seb->sqnum);
801c135c
AB
269
270 /*
271 * Now we know which copy is newer. If the copy flag of the PEB with
272 * newer version is not set, then we just return, otherwise we have to
273 * check data CRC. For the second PEB we already have the VID header,
274 * for the first one - we'll need to re-read it from flash.
275 *
9869cd80 276 * Note: this may be optimized so that we wouldn't read twice.
801c135c
AB
277 */
278
279 if (second_is_newer) {
280 if (!vid_hdr->copy_flag) {
281 /* It is not a copy, so it is newer */
282 dbg_bld("second PEB %d is newer, copy_flag is unset",
283 pnum);
284 return 1;
285 }
286 } else {
287 pnum = seb->pnum;
288
33818bbb 289 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
8bc22961 290 if (!vh)
801c135c
AB
291 return -ENOMEM;
292
8bc22961 293 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
801c135c
AB
294 if (err) {
295 if (err == UBI_IO_BITFLIPS)
296 bitflips = 1;
297 else {
298 dbg_err("VID of PEB %d header is bad, but it "
299 "was OK earlier", pnum);
300 if (err > 0)
301 err = -EIO;
302
303 goto out_free_vidh;
304 }
305 }
306
8bc22961 307 if (!vh->copy_flag) {
801c135c
AB
308 /* It is not a copy, so it is newer */
309 dbg_bld("first PEB %d is newer, copy_flag is unset",
310 pnum);
311 err = bitflips << 1;
312 goto out_free_vidh;
313 }
314
8bc22961 315 vid_hdr = vh;
801c135c
AB
316 }
317
318 /* Read the data of the copy and check the CRC */
319
3261ebd7 320 len = be32_to_cpu(vid_hdr->data_size);
92ad8f37 321 buf = vmalloc(len);
801c135c
AB
322 if (!buf) {
323 err = -ENOMEM;
324 goto out_free_vidh;
325 }
326
327 err = ubi_io_read_data(ubi, buf, pnum, 0, len);
b77bcb07 328 if (err && err != UBI_IO_BITFLIPS && err != -EBADMSG)
801c135c
AB
329 goto out_free_buf;
330
3261ebd7 331 data_crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
332 crc = crc32(UBI_CRC32_INIT, buf, len);
333 if (crc != data_crc) {
334 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
335 pnum, crc, data_crc);
336 corrupted = 1;
337 bitflips = 0;
338 second_is_newer = !second_is_newer;
339 } else {
340 dbg_bld("PEB %d CRC is OK", pnum);
341 bitflips = !!err;
342 }
343
92ad8f37 344 vfree(buf);
8bc22961 345 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
346
347 if (second_is_newer)
348 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
349 else
350 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
351
352 return second_is_newer | (bitflips << 1) | (corrupted << 2);
353
354out_free_buf:
92ad8f37 355 vfree(buf);
801c135c 356out_free_vidh:
8bc22961 357 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
358 return err;
359}
360
361/**
ebaaf1af 362 * ubi_scan_add_used - add physical eraseblock to the scanning information.
801c135c
AB
363 * @ubi: UBI device description object
364 * @si: scanning information
365 * @pnum: the physical eraseblock number
366 * @ec: erase counter
367 * @vid_hdr: the volume identifier header
368 * @bitflips: if bit-flips were detected when this physical eraseblock was read
369 *
79b510c0
AB
370 * This function adds information about a used physical eraseblock to the
371 * 'used' tree of the corresponding volume. The function is rather complex
372 * because it has to handle cases when this is not the first physical
373 * eraseblock belonging to the same logical eraseblock, and the newer one has
374 * to be picked, while the older one has to be dropped. This function returns
375 * zero in case of success and a negative error code in case of failure.
801c135c 376 */
e88d6e10 377int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
801c135c
AB
378 int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
379 int bitflips)
380{
381 int err, vol_id, lnum;
801c135c
AB
382 unsigned long long sqnum;
383 struct ubi_scan_volume *sv;
384 struct ubi_scan_leb *seb;
385 struct rb_node **p, *parent = NULL;
386
3261ebd7
CH
387 vol_id = be32_to_cpu(vid_hdr->vol_id);
388 lnum = be32_to_cpu(vid_hdr->lnum);
389 sqnum = be64_to_cpu(vid_hdr->sqnum);
801c135c 390
9869cd80
AB
391 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
392 pnum, vol_id, lnum, ec, sqnum, bitflips);
801c135c
AB
393
394 sv = add_volume(si, vol_id, pnum, vid_hdr);
0e4a008a 395 if (IS_ERR(sv))
801c135c
AB
396 return PTR_ERR(sv);
397
76eafe47
BS
398 if (si->max_sqnum < sqnum)
399 si->max_sqnum = sqnum;
400
801c135c
AB
401 /*
402 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
403 * if this is the first instance of this logical eraseblock or not.
404 */
405 p = &sv->root.rb_node;
406 while (*p) {
407 int cmp_res;
408
409 parent = *p;
410 seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
411 if (lnum != seb->lnum) {
412 if (lnum < seb->lnum)
413 p = &(*p)->rb_left;
414 else
415 p = &(*p)->rb_right;
416 continue;
417 }
418
419 /*
420 * There is already a physical eraseblock describing the same
421 * logical eraseblock present.
422 */
423
424 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
9869cd80 425 "EC %d", seb->pnum, seb->sqnum, seb->ec);
801c135c
AB
426
427 /*
428 * Make sure that the logical eraseblocks have different
429 * sequence numbers. Otherwise the image is bad.
430 *
9869cd80
AB
431 * However, if the sequence number is zero, we assume it must
432 * be an ancient UBI image from the era when UBI did not have
433 * sequence numbers. We still can attach these images, unless
434 * there is a need to distinguish between old and new
435 * eraseblocks, in which case we'll refuse the image in
436 * 'compare_lebs()'. In other words, we attach old clean
437 * images, but refuse attaching old images with duplicated
438 * logical eraseblocks because there was an unclean reboot.
801c135c
AB
439 */
440 if (seb->sqnum == sqnum && sqnum != 0) {
441 ubi_err("two LEBs with same sequence number %llu",
442 sqnum);
443 ubi_dbg_dump_seb(seb, 0);
444 ubi_dbg_dump_vid_hdr(vid_hdr);
445 return -EINVAL;
446 }
447
448 /*
449 * Now we have to drop the older one and preserve the newer
450 * one.
451 */
452 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
453 if (cmp_res < 0)
454 return cmp_res;
455
456 if (cmp_res & 1) {
457 /*
3f502622 458 * This logical eraseblock is newer than the one
801c135c
AB
459 * found earlier.
460 */
461 err = validate_vid_hdr(vid_hdr, sv, pnum);
462 if (err)
463 return err;
464
465 if (cmp_res & 4)
78d87c95
AB
466 err = add_to_list(si, seb->pnum, seb->ec,
467 &si->corr);
801c135c 468 else
78d87c95
AB
469 err = add_to_list(si, seb->pnum, seb->ec,
470 &si->erase);
801c135c
AB
471 if (err)
472 return err;
473
474 seb->ec = ec;
475 seb->pnum = pnum;
476 seb->scrub = ((cmp_res & 2) || bitflips);
477 seb->sqnum = sqnum;
801c135c
AB
478
479 if (sv->highest_lnum == lnum)
480 sv->last_data_size =
3261ebd7 481 be32_to_cpu(vid_hdr->data_size);
801c135c
AB
482
483 return 0;
484 } else {
485 /*
025dfdaf 486 * This logical eraseblock is older than the one found
801c135c
AB
487 * previously.
488 */
489 if (cmp_res & 4)
78d87c95 490 return add_to_list(si, pnum, ec, &si->corr);
801c135c 491 else
78d87c95 492 return add_to_list(si, pnum, ec, &si->erase);
801c135c
AB
493 }
494 }
495
496 /*
497 * We've met this logical eraseblock for the first time, add it to the
498 * scanning information.
499 */
500
501 err = validate_vid_hdr(vid_hdr, sv, pnum);
502 if (err)
503 return err;
504
505 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
506 if (!seb)
507 return -ENOMEM;
508
509 seb->ec = ec;
510 seb->pnum = pnum;
511 seb->lnum = lnum;
512 seb->sqnum = sqnum;
513 seb->scrub = bitflips;
801c135c
AB
514
515 if (sv->highest_lnum <= lnum) {
516 sv->highest_lnum = lnum;
3261ebd7 517 sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
801c135c
AB
518 }
519
801c135c
AB
520 sv->leb_count += 1;
521 rb_link_node(&seb->u.rb, parent, p);
522 rb_insert_color(&seb->u.rb, &sv->root);
33789fb9 523 si->used_peb_count += 1;
801c135c
AB
524 return 0;
525}
526
527/**
ebaaf1af 528 * ubi_scan_find_sv - find volume in the scanning information.
801c135c
AB
529 * @si: scanning information
530 * @vol_id: the requested volume ID
531 *
532 * This function returns a pointer to the volume description or %NULL if there
533 * are no data about this volume in the scanning information.
534 */
535struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
536 int vol_id)
537{
538 struct ubi_scan_volume *sv;
539 struct rb_node *p = si->volumes.rb_node;
540
541 while (p) {
542 sv = rb_entry(p, struct ubi_scan_volume, rb);
543
544 if (vol_id == sv->vol_id)
545 return sv;
546
547 if (vol_id > sv->vol_id)
548 p = p->rb_left;
549 else
550 p = p->rb_right;
551 }
552
553 return NULL;
554}
555
556/**
ebaaf1af 557 * ubi_scan_find_seb - find LEB in the volume scanning information.
801c135c
AB
558 * @sv: a pointer to the volume scanning information
559 * @lnum: the requested logical eraseblock
560 *
561 * This function returns a pointer to the scanning logical eraseblock or %NULL
562 * if there are no data about it in the scanning volume information.
563 */
564struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
565 int lnum)
566{
567 struct ubi_scan_leb *seb;
568 struct rb_node *p = sv->root.rb_node;
569
570 while (p) {
571 seb = rb_entry(p, struct ubi_scan_leb, u.rb);
572
573 if (lnum == seb->lnum)
574 return seb;
575
576 if (lnum > seb->lnum)
577 p = p->rb_left;
578 else
579 p = p->rb_right;
580 }
581
582 return NULL;
583}
584
585/**
586 * ubi_scan_rm_volume - delete scanning information about a volume.
587 * @si: scanning information
588 * @sv: the volume scanning information to delete
589 */
590void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
591{
592 struct rb_node *rb;
593 struct ubi_scan_leb *seb;
594
595 dbg_bld("remove scanning information about volume %d", sv->vol_id);
596
597 while ((rb = rb_first(&sv->root))) {
598 seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
599 rb_erase(&seb->u.rb, &sv->root);
600 list_add_tail(&seb->u.list, &si->erase);
601 }
602
603 rb_erase(&sv->rb, &si->volumes);
604 kfree(sv);
605 si->vols_found -= 1;
606}
607
608/**
609 * ubi_scan_erase_peb - erase a physical eraseblock.
610 * @ubi: UBI device description object
611 * @si: scanning information
612 * @pnum: physical eraseblock number to erase;
613 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
614 *
615 * This function erases physical eraseblock 'pnum', and writes the erase
616 * counter header to it. This function should only be used on UBI device
85c6e6e2
AB
617 * initialization stages, when the EBA sub-system had not been yet initialized.
618 * This function returns zero in case of success and a negative error code in
619 * case of failure.
801c135c 620 */
e88d6e10
AB
621int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
622 int pnum, int ec)
801c135c
AB
623{
624 int err;
625 struct ubi_ec_hdr *ec_hdr;
626
801c135c
AB
627 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
628 /*
629 * Erase counter overflow. Upgrade UBI and use 64-bit
630 * erase counters internally.
631 */
632 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
633 return -EINVAL;
634 }
635
dcec4c3b
FM
636 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
637 if (!ec_hdr)
638 return -ENOMEM;
639
3261ebd7 640 ec_hdr->ec = cpu_to_be64(ec);
801c135c
AB
641
642 err = ubi_io_sync_erase(ubi, pnum, 0);
643 if (err < 0)
644 goto out_free;
645
646 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
647
648out_free:
649 kfree(ec_hdr);
650 return err;
651}
652
653/**
654 * ubi_scan_get_free_peb - get a free physical eraseblock.
655 * @ubi: UBI device description object
656 * @si: scanning information
657 *
658 * This function returns a free physical eraseblock. It is supposed to be
85c6e6e2
AB
659 * called on the UBI initialization stages when the wear-leveling sub-system is
660 * not initialized yet. This function picks a physical eraseblocks from one of
661 * the lists, writes the EC header if it is needed, and removes it from the
662 * list.
801c135c
AB
663 *
664 * This function returns scanning physical eraseblock information in case of
665 * success and an error code in case of failure.
666 */
e88d6e10 667struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
801c135c
AB
668 struct ubi_scan_info *si)
669{
670 int err = 0, i;
671 struct ubi_scan_leb *seb;
672
673 if (!list_empty(&si->free)) {
674 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
675 list_del(&seb->u.list);
676 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
677 return seb;
678 }
679
680 for (i = 0; i < 2; i++) {
681 struct list_head *head;
682 struct ubi_scan_leb *tmp_seb;
683
684 if (i == 0)
685 head = &si->erase;
686 else
687 head = &si->corr;
688
689 /*
690 * We try to erase the first physical eraseblock from the @head
691 * list and pick it if we succeed, or try to erase the
692 * next one if not. And so forth. We don't want to take care
693 * about bad eraseblocks here - they'll be handled later.
694 */
695 list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
696 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
697 seb->ec = si->mean_ec;
698
699 err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
700 if (err)
701 continue;
702
703 seb->ec += 1;
704 list_del(&seb->u.list);
705 dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
706 return seb;
707 }
708 }
709
710 ubi_err("no eraseblocks found");
711 return ERR_PTR(-ENOSPC);
712}
713
714/**
ebaaf1af 715 * process_eb - read, check UBI headers, and add them to scanning information.
801c135c
AB
716 * @ubi: UBI device description object
717 * @si: scanning information
718 * @pnum: the physical eraseblock number
719 *
78d87c95 720 * This function returns a zero if the physical eraseblock was successfully
801c135c
AB
721 * handled and a negative error code in case of failure.
722 */
9c9ec147
AB
723static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si,
724 int pnum)
801c135c 725{
c18a8418 726 long long uninitialized_var(ec);
801c135c
AB
727 int err, bitflips = 0, vol_id, ec_corr = 0;
728
729 dbg_bld("scan PEB %d", pnum);
730
731 /* Skip bad physical eraseblocks */
732 err = ubi_io_is_bad(ubi, pnum);
733 if (err < 0)
734 return err;
735 else if (err) {
736 /*
85c6e6e2
AB
737 * FIXME: this is actually duty of the I/O sub-system to
738 * initialize this, but MTD does not provide enough
739 * information.
801c135c
AB
740 */
741 si->bad_peb_count += 1;
742 return 0;
743 }
744
745 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
746 if (err < 0)
747 return err;
748 else if (err == UBI_IO_BITFLIPS)
749 bitflips = 1;
750 else if (err == UBI_IO_PEB_EMPTY)
78d87c95 751 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase);
eb89580e 752 else if (err == UBI_IO_BAD_HDR_READ || err == UBI_IO_BAD_HDR) {
801c135c
AB
753 /*
754 * We have to also look at the VID header, possibly it is not
755 * corrupted. Set %bitflips flag in order to make this PEB be
756 * moved and EC be re-created.
757 */
33789fb9 758 ec_corr = err;
801c135c
AB
759 ec = UBI_SCAN_UNKNOWN_EC;
760 bitflips = 1;
761 }
762
801c135c 763 if (!ec_corr) {
fe96efc1
AB
764 int image_seq;
765
801c135c
AB
766 /* Make sure UBI version is OK */
767 if (ech->version != UBI_VERSION) {
768 ubi_err("this UBI version is %d, image version is %d",
769 UBI_VERSION, (int)ech->version);
770 return -EINVAL;
771 }
772
3261ebd7 773 ec = be64_to_cpu(ech->ec);
801c135c
AB
774 if (ec > UBI_MAX_ERASECOUNTER) {
775 /*
776 * Erase counter overflow. The EC headers have 64 bits
777 * reserved, but we anyway make use of only 31 bit
778 * values, as this seems to be enough for any existing
779 * flash. Upgrade UBI and use 64-bit erase counters
780 * internally.
781 */
782 ubi_err("erase counter overflow, max is %d",
783 UBI_MAX_ERASECOUNTER);
784 ubi_dbg_dump_ec_hdr(ech);
785 return -EINVAL;
786 }
fe96efc1 787
32bc4820
AH
788 /*
789 * Make sure that all PEBs have the same image sequence number.
790 * This allows us to detect situations when users flash UBI
791 * images incorrectly, so that the flash has the new UBI image
792 * and leftovers from the old one. This feature was added
793 * relatively recently, and the sequence number was always
794 * zero, because old UBI implementations always set it to zero.
795 * For this reasons, we do not panic if some PEBs have zero
796 * sequence number, while other PEBs have non-zero sequence
797 * number.
798 */
3dc948da 799 image_seq = be32_to_cpu(ech->image_seq);
2eadaad6 800 if (!ubi->image_seq && image_seq)
fe96efc1 801 ubi->image_seq = image_seq;
2eadaad6
AB
802 if (ubi->image_seq && image_seq &&
803 ubi->image_seq != image_seq) {
fe96efc1
AB
804 ubi_err("bad image sequence number %d in PEB %d, "
805 "expected %d", image_seq, pnum, ubi->image_seq);
806 ubi_dbg_dump_ec_hdr(ech);
807 return -EINVAL;
808 }
801c135c
AB
809 }
810
811 /* OK, we've done with the EC header, let's look at the VID header */
812
813 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
814 if (err < 0)
815 return err;
816 else if (err == UBI_IO_BITFLIPS)
817 bitflips = 1;
eb89580e 818 else if (err == UBI_IO_BAD_HDR_READ || err == UBI_IO_BAD_HDR ||
801c135c
AB
819 (err == UBI_IO_PEB_FREE && ec_corr)) {
820 /* VID header is corrupted */
33789fb9
AB
821 if (err == UBI_IO_BAD_HDR_READ ||
822 ec_corr == UBI_IO_BAD_HDR_READ)
823 si->read_err_count += 1;
78d87c95 824 err = add_to_list(si, pnum, ec, &si->corr);
801c135c
AB
825 if (err)
826 return err;
827 goto adjust_mean_ec;
828 } else if (err == UBI_IO_PEB_FREE) {
829 /* No VID header - the physical eraseblock is free */
78d87c95 830 err = add_to_list(si, pnum, ec, &si->free);
801c135c
AB
831 if (err)
832 return err;
833 goto adjust_mean_ec;
834 }
835
3261ebd7 836 vol_id = be32_to_cpu(vidh->vol_id);
91f2d53c 837 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
3261ebd7 838 int lnum = be32_to_cpu(vidh->lnum);
801c135c
AB
839
840 /* Unsupported internal volume */
841 switch (vidh->compat) {
842 case UBI_COMPAT_DELETE:
843 ubi_msg("\"delete\" compatible internal volume %d:%d"
844 " found, remove it", vol_id, lnum);
78d87c95 845 err = add_to_list(si, pnum, ec, &si->corr);
801c135c
AB
846 if (err)
847 return err;
848 break;
849
850 case UBI_COMPAT_RO:
851 ubi_msg("read-only compatible internal volume %d:%d"
852 " found, switch to read-only mode",
853 vol_id, lnum);
854 ubi->ro_mode = 1;
855 break;
856
857 case UBI_COMPAT_PRESERVE:
858 ubi_msg("\"preserve\" compatible internal volume %d:%d"
859 " found", vol_id, lnum);
78d87c95 860 err = add_to_list(si, pnum, ec, &si->alien);
801c135c
AB
861 if (err)
862 return err;
801c135c
AB
863 return 0;
864
865 case UBI_COMPAT_REJECT:
866 ubi_err("incompatible internal volume %d:%d found",
867 vol_id, lnum);
868 return -EINVAL;
869 }
870 }
871
29a88c99
AB
872 if (ec_corr)
873 ubi_warn("valid VID header but corrupted EC header at PEB %d",
874 pnum);
801c135c
AB
875 err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
876 if (err)
877 return err;
878
879adjust_mean_ec:
880 if (!ec_corr) {
4bc1dca4
AB
881 si->ec_sum += ec;
882 si->ec_count += 1;
801c135c
AB
883 if (ec > si->max_ec)
884 si->max_ec = ec;
885 if (ec < si->min_ec)
886 si->min_ec = ec;
887 }
888
889 return 0;
890}
891
0798cea8
AB
892/**
893 * check_what_we_have - check what PEB were found by scanning.
894 * @ubi: UBI device description object
895 * @si: scanning information
896 *
897 * This is a helper function which takes a look what PEBs were found by
898 * scanning, and decides whether the flash is empty and should be formatted and
899 * whether there are too many corrupted PEBs and we should not attach this
900 * MTD device. Returns zero if we should proceed with attaching the MTD device,
901 * and %-EINVAL if we should not.
902 */
903static int check_what_we_have(const struct ubi_device *ubi,
904 struct ubi_scan_info *si)
905{
906 struct ubi_scan_leb *seb;
907 int max_corr;
908
909 max_corr = ubi->peb_count - si->bad_peb_count - si->alien_peb_count;
910 max_corr = max_corr / 20 ?: 8;
911
912 /*
913 * Few corrupted PEBs are not a problem and may be just a result of
914 * unclean reboots. However, many of them may indicate some problems
915 * with the flash HW or driver.
916 */
917 if (si->corr_peb_count >= 8) {
918 ubi_warn("%d PEBs are corrupted", si->corr_peb_count);
919 printk(KERN_WARNING "corrupted PEBs are:");
920 list_for_each_entry(seb, &si->corr, u.list)
921 printk(KERN_CONT " %d", seb->pnum);
922 printk(KERN_CONT "\n");
923
924 /*
925 * If too many PEBs are corrupted, we refuse attaching,
926 * otherwise, only print a warning.
927 */
928 if (si->corr_peb_count >= max_corr) {
929 ubi_err("too many corrupted PEBs, refusing this device");
930 return -EINVAL;
931 }
932 }
933
934 if (si->free_peb_count + si->used_peb_count +
935 si->alien_peb_count == 0) {
936 /* No UBI-formatted eraseblocks were found */
937 if (si->corr_peb_count == si->read_err_count &&
938 si->corr_peb_count < 8) {
939 /* No or just few corrupted PEBs, and all of them had a
940 * read error. We assume that those are bad PEBs, which
941 * were just not marked as bad so far.
942 *
943 * This piece of code basically tries to distinguish
944 * between the following 2 situations:
945 *
946 * 1. Flash is empty, but there are few bad PEBs, which
947 * are not marked as bad so far, and which were read
948 * with error. We want to go ahead and format this
949 * flash. While formating, the faulty PEBs will
950 * probably be marked as bad.
951 *
952 * 2. Flash probably contains non-UBI data and we do
953 * not want to format it and destroy possibly needed
954 * data (e.g., consider the case when the bootloader
955 * MTD partition was accidentally fed to UBI).
956 */
957 si->is_empty = 1;
958 ubi_msg("empty MTD device detected");
959 } else {
960 ubi_err("MTD device possibly contains non-UBI data, "
961 "refusing it");
962 return -EINVAL;
963 }
964 }
965
966 if (si->corr_peb_count >= 0)
967 ubi_msg("corrupted PEBs will be formatted");
968 return 0;
969}
970
801c135c
AB
971/**
972 * ubi_scan - scan an MTD device.
973 * @ubi: UBI device description object
974 *
975 * This function does full scanning of an MTD device and returns complete
976 * information about it. In case of failure, an error code is returned.
977 */
978struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
979{
980 int err, pnum;
981 struct rb_node *rb1, *rb2;
982 struct ubi_scan_volume *sv;
983 struct ubi_scan_leb *seb;
984 struct ubi_scan_info *si;
985
986 si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
987 if (!si)
988 return ERR_PTR(-ENOMEM);
989
990 INIT_LIST_HEAD(&si->corr);
991 INIT_LIST_HEAD(&si->free);
992 INIT_LIST_HEAD(&si->erase);
993 INIT_LIST_HEAD(&si->alien);
994 si->volumes = RB_ROOT;
801c135c
AB
995
996 err = -ENOMEM;
997 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
998 if (!ech)
999 goto out_si;
1000
33818bbb 1001 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
801c135c
AB
1002 if (!vidh)
1003 goto out_ech;
1004
1005 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1006 cond_resched();
1007
c8566350 1008 dbg_gen("process PEB %d", pnum);
801c135c
AB
1009 err = process_eb(ubi, si, pnum);
1010 if (err < 0)
1011 goto out_vidh;
1012 }
1013
1014 dbg_msg("scanning is finished");
1015
4bc1dca4 1016 /* Calculate mean erase counter */
3013ee31
AB
1017 if (si->ec_count)
1018 si->mean_ec = div_u64(si->ec_sum, si->ec_count);
801c135c 1019
0798cea8
AB
1020 err = check_what_we_have(ubi, si);
1021 if (err)
1022 goto out_vidh;
4a406856 1023
801c135c
AB
1024 /*
1025 * In case of unknown erase counter we use the mean erase counter
1026 * value.
1027 */
1028 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1029 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
1030 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1031 seb->ec = si->mean_ec;
1032 }
1033
1034 list_for_each_entry(seb, &si->free, u.list) {
1035 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1036 seb->ec = si->mean_ec;
1037 }
1038
1039 list_for_each_entry(seb, &si->corr, u.list)
1040 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1041 seb->ec = si->mean_ec;
1042
1043 list_for_each_entry(seb, &si->erase, u.list)
1044 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
1045 seb->ec = si->mean_ec;
1046
1047 err = paranoid_check_si(ubi, si);
adbf05e3 1048 if (err)
801c135c 1049 goto out_vidh;
801c135c
AB
1050
1051 ubi_free_vid_hdr(ubi, vidh);
1052 kfree(ech);
1053
1054 return si;
1055
1056out_vidh:
1057 ubi_free_vid_hdr(ubi, vidh);
1058out_ech:
1059 kfree(ech);
1060out_si:
1061 ubi_scan_destroy_si(si);
1062 return ERR_PTR(err);
1063}
1064
1065/**
1066 * destroy_sv - free the scanning volume information
1067 * @sv: scanning volume information
1068 *
1069 * This function destroys the volume RB-tree (@sv->root) and the scanning
1070 * volume information.
1071 */
1072static void destroy_sv(struct ubi_scan_volume *sv)
1073{
1074 struct ubi_scan_leb *seb;
1075 struct rb_node *this = sv->root.rb_node;
1076
1077 while (this) {
1078 if (this->rb_left)
1079 this = this->rb_left;
1080 else if (this->rb_right)
1081 this = this->rb_right;
1082 else {
1083 seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1084 this = rb_parent(this);
1085 if (this) {
1086 if (this->rb_left == &seb->u.rb)
1087 this->rb_left = NULL;
1088 else
1089 this->rb_right = NULL;
1090 }
1091
1092 kfree(seb);
1093 }
1094 }
1095 kfree(sv);
1096}
1097
1098/**
1099 * ubi_scan_destroy_si - destroy scanning information.
1100 * @si: scanning information
1101 */
1102void ubi_scan_destroy_si(struct ubi_scan_info *si)
1103{
1104 struct ubi_scan_leb *seb, *seb_tmp;
1105 struct ubi_scan_volume *sv;
1106 struct rb_node *rb;
1107
1108 list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1109 list_del(&seb->u.list);
1110 kfree(seb);
1111 }
1112 list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1113 list_del(&seb->u.list);
1114 kfree(seb);
1115 }
1116 list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1117 list_del(&seb->u.list);
1118 kfree(seb);
1119 }
1120 list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1121 list_del(&seb->u.list);
1122 kfree(seb);
1123 }
1124
1125 /* Destroy the volume RB-tree */
1126 rb = si->volumes.rb_node;
1127 while (rb) {
1128 if (rb->rb_left)
1129 rb = rb->rb_left;
1130 else if (rb->rb_right)
1131 rb = rb->rb_right;
1132 else {
1133 sv = rb_entry(rb, struct ubi_scan_volume, rb);
1134
1135 rb = rb_parent(rb);
1136 if (rb) {
1137 if (rb->rb_left == &sv->rb)
1138 rb->rb_left = NULL;
1139 else
1140 rb->rb_right = NULL;
1141 }
1142
1143 destroy_sv(sv);
1144 }
1145 }
1146
1147 kfree(si);
1148}
1149
1150#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1151
1152/**
ebaaf1af 1153 * paranoid_check_si - check the scanning information.
801c135c
AB
1154 * @ubi: UBI device description object
1155 * @si: scanning information
1156 *
adbf05e3
AB
1157 * This function returns zero if the scanning information is all right, and a
1158 * negative error code if not or if an error occurred.
801c135c 1159 */
e88d6e10 1160static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
801c135c
AB
1161{
1162 int pnum, err, vols_found = 0;
1163 struct rb_node *rb1, *rb2;
1164 struct ubi_scan_volume *sv;
1165 struct ubi_scan_leb *seb, *last_seb;
1166 uint8_t *buf;
1167
1168 /*
78d87c95 1169 * At first, check that scanning information is OK.
801c135c
AB
1170 */
1171 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1172 int leb_count = 0;
1173
1174 cond_resched();
1175
1176 vols_found += 1;
1177
1178 if (si->is_empty) {
1179 ubi_err("bad is_empty flag");
1180 goto bad_sv;
1181 }
1182
1183 if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1184 sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1185 sv->data_pad < 0 || sv->last_data_size < 0) {
1186 ubi_err("negative values");
1187 goto bad_sv;
1188 }
1189
1190 if (sv->vol_id >= UBI_MAX_VOLUMES &&
1191 sv->vol_id < UBI_INTERNAL_VOL_START) {
1192 ubi_err("bad vol_id");
1193 goto bad_sv;
1194 }
1195
1196 if (sv->vol_id > si->highest_vol_id) {
1197 ubi_err("highest_vol_id is %d, but vol_id %d is there",
1198 si->highest_vol_id, sv->vol_id);
1199 goto out;
1200 }
1201
1202 if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1203 sv->vol_type != UBI_STATIC_VOLUME) {
1204 ubi_err("bad vol_type");
1205 goto bad_sv;
1206 }
1207
1208 if (sv->data_pad > ubi->leb_size / 2) {
1209 ubi_err("bad data_pad");
1210 goto bad_sv;
1211 }
1212
1213 last_seb = NULL;
1214 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1215 cond_resched();
1216
1217 last_seb = seb;
1218 leb_count += 1;
1219
1220 if (seb->pnum < 0 || seb->ec < 0) {
1221 ubi_err("negative values");
1222 goto bad_seb;
1223 }
1224
1225 if (seb->ec < si->min_ec) {
1226 ubi_err("bad si->min_ec (%d), %d found",
1227 si->min_ec, seb->ec);
1228 goto bad_seb;
1229 }
1230
1231 if (seb->ec > si->max_ec) {
1232 ubi_err("bad si->max_ec (%d), %d found",
1233 si->max_ec, seb->ec);
1234 goto bad_seb;
1235 }
1236
1237 if (seb->pnum >= ubi->peb_count) {
1238 ubi_err("too high PEB number %d, total PEBs %d",
1239 seb->pnum, ubi->peb_count);
1240 goto bad_seb;
1241 }
1242
1243 if (sv->vol_type == UBI_STATIC_VOLUME) {
1244 if (seb->lnum >= sv->used_ebs) {
1245 ubi_err("bad lnum or used_ebs");
1246 goto bad_seb;
1247 }
1248 } else {
1249 if (sv->used_ebs != 0) {
1250 ubi_err("non-zero used_ebs");
1251 goto bad_seb;
1252 }
1253 }
1254
1255 if (seb->lnum > sv->highest_lnum) {
1256 ubi_err("incorrect highest_lnum or lnum");
1257 goto bad_seb;
1258 }
1259 }
1260
1261 if (sv->leb_count != leb_count) {
1262 ubi_err("bad leb_count, %d objects in the tree",
1263 leb_count);
1264 goto bad_sv;
1265 }
1266
1267 if (!last_seb)
1268 continue;
1269
1270 seb = last_seb;
1271
1272 if (seb->lnum != sv->highest_lnum) {
1273 ubi_err("bad highest_lnum");
1274 goto bad_seb;
1275 }
1276 }
1277
1278 if (vols_found != si->vols_found) {
1279 ubi_err("bad si->vols_found %d, should be %d",
1280 si->vols_found, vols_found);
1281 goto out;
1282 }
1283
1284 /* Check that scanning information is correct */
1285 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1286 last_seb = NULL;
1287 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1288 int vol_type;
1289
1290 cond_resched();
1291
1292 last_seb = seb;
1293
1294 err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1295 if (err && err != UBI_IO_BITFLIPS) {
1296 ubi_err("VID header is not OK (%d)", err);
1297 if (err > 0)
1298 err = -EIO;
1299 return err;
1300 }
1301
1302 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1303 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1304 if (sv->vol_type != vol_type) {
1305 ubi_err("bad vol_type");
1306 goto bad_vid_hdr;
1307 }
1308
3261ebd7 1309 if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
801c135c
AB
1310 ubi_err("bad sqnum %llu", seb->sqnum);
1311 goto bad_vid_hdr;
1312 }
1313
3261ebd7 1314 if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
801c135c
AB
1315 ubi_err("bad vol_id %d", sv->vol_id);
1316 goto bad_vid_hdr;
1317 }
1318
1319 if (sv->compat != vidh->compat) {
1320 ubi_err("bad compat %d", vidh->compat);
1321 goto bad_vid_hdr;
1322 }
1323
3261ebd7 1324 if (seb->lnum != be32_to_cpu(vidh->lnum)) {
801c135c
AB
1325 ubi_err("bad lnum %d", seb->lnum);
1326 goto bad_vid_hdr;
1327 }
1328
3261ebd7 1329 if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
801c135c
AB
1330 ubi_err("bad used_ebs %d", sv->used_ebs);
1331 goto bad_vid_hdr;
1332 }
1333
3261ebd7 1334 if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
801c135c
AB
1335 ubi_err("bad data_pad %d", sv->data_pad);
1336 goto bad_vid_hdr;
1337 }
801c135c
AB
1338 }
1339
1340 if (!last_seb)
1341 continue;
1342
3261ebd7 1343 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
801c135c
AB
1344 ubi_err("bad highest_lnum %d", sv->highest_lnum);
1345 goto bad_vid_hdr;
1346 }
1347
3261ebd7 1348 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
801c135c
AB
1349 ubi_err("bad last_data_size %d", sv->last_data_size);
1350 goto bad_vid_hdr;
1351 }
1352 }
1353
1354 /*
1355 * Make sure that all the physical eraseblocks are in one of the lists
1356 * or trees.
1357 */
d9b0744d 1358 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
801c135c
AB
1359 if (!buf)
1360 return -ENOMEM;
1361
801c135c
AB
1362 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1363 err = ubi_io_is_bad(ubi, pnum);
341e1a0c
AB
1364 if (err < 0) {
1365 kfree(buf);
801c135c 1366 return err;
9c9ec147 1367 } else if (err)
d9b0744d 1368 buf[pnum] = 1;
801c135c
AB
1369 }
1370
1371 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1372 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
d9b0744d 1373 buf[seb->pnum] = 1;
801c135c
AB
1374
1375 list_for_each_entry(seb, &si->free, u.list)
d9b0744d 1376 buf[seb->pnum] = 1;
801c135c
AB
1377
1378 list_for_each_entry(seb, &si->corr, u.list)
d9b0744d 1379 buf[seb->pnum] = 1;
801c135c
AB
1380
1381 list_for_each_entry(seb, &si->erase, u.list)
d9b0744d 1382 buf[seb->pnum] = 1;
801c135c
AB
1383
1384 list_for_each_entry(seb, &si->alien, u.list)
d9b0744d 1385 buf[seb->pnum] = 1;
801c135c
AB
1386
1387 err = 0;
1388 for (pnum = 0; pnum < ubi->peb_count; pnum++)
d9b0744d 1389 if (!buf[pnum]) {
801c135c
AB
1390 ubi_err("PEB %d is not referred", pnum);
1391 err = 1;
1392 }
1393
1394 kfree(buf);
1395 if (err)
1396 goto out;
1397 return 0;
1398
1399bad_seb:
1400 ubi_err("bad scanning information about LEB %d", seb->lnum);
1401 ubi_dbg_dump_seb(seb, 0);
1402 ubi_dbg_dump_sv(sv);
1403 goto out;
1404
1405bad_sv:
1406 ubi_err("bad scanning information about volume %d", sv->vol_id);
1407 ubi_dbg_dump_sv(sv);
1408 goto out;
1409
1410bad_vid_hdr:
1411 ubi_err("bad scanning information about volume %d", sv->vol_id);
1412 ubi_dbg_dump_sv(sv);
1413 ubi_dbg_dump_vid_hdr(vidh);
1414
1415out:
1416 ubi_dbg_dump_stack();
adbf05e3 1417 return -EINVAL;
801c135c
AB
1418}
1419
1420#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */