UBI: fix checkpatch.pl errors and warnings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / mtd / ubi / scan.c
CommitLineData
801c135c
AB
1/*
2 * Copyright (c) International Business Machines Corp., 2006
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
12 * the GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 *
18 * Author: Artem Bityutskiy (Битюцкий Артём)
19 */
20
21/*
85c6e6e2 22 * UBI scanning sub-system.
801c135c 23 *
85c6e6e2 24 * This sub-system is responsible for scanning the flash media, checking UBI
801c135c
AB
25 * headers and providing complete information about the UBI flash image.
26 *
78d87c95 27 * The scanning information is represented by a &struct ubi_scan_info' object.
801c135c
AB
28 * Information about found volumes is represented by &struct ubi_scan_volume
29 * objects which are kept in volume RB-tree with root at the @volumes field.
30 * The RB-tree is indexed by the volume ID.
31 *
32 * Found logical eraseblocks are represented by &struct ubi_scan_leb objects.
33 * These objects are kept in per-volume RB-trees with the root at the
34 * corresponding &struct ubi_scan_volume object. To put it differently, we keep
35 * an RB-tree of per-volume objects and each of these objects is the root of
36 * RB-tree of per-eraseblock objects.
37 *
38 * Corrupted physical eraseblocks are put to the @corr list, free physical
39 * eraseblocks are put to the @free list and the physical eraseblock to be
40 * erased are put to the @erase list.
41 */
42
43#include <linux/err.h>
44#include <linux/crc32.h>
4bc1dca4 45#include <asm/div64.h>
801c135c
AB
46#include "ubi.h"
47
48#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
e88d6e10 49static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si);
801c135c
AB
50#else
51#define paranoid_check_si(ubi, si) 0
52#endif
53
54/* Temporary variables used during scanning */
55static struct ubi_ec_hdr *ech;
56static struct ubi_vid_hdr *vidh;
57
941dfb07 58/**
78d87c95
AB
59 * add_to_list - add physical eraseblock to a list.
60 * @si: scanning information
61 * @pnum: physical eraseblock number to add
62 * @ec: erase counter of the physical eraseblock
63 * @list: the list to add to
64 *
65 * This function adds physical eraseblock @pnum to free, erase, corrupted or
66 * alien lists. Returns zero in case of success and a negative error code in
67 * case of failure.
68 */
69static int add_to_list(struct ubi_scan_info *si, int pnum, int ec,
70 struct list_head *list)
801c135c
AB
71{
72 struct ubi_scan_leb *seb;
73
74 if (list == &si->free)
75 dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
76 else if (list == &si->erase)
77 dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
78 else if (list == &si->corr)
79 dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
80 else if (list == &si->alien)
81 dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
82 else
83 BUG();
84
85 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
86 if (!seb)
87 return -ENOMEM;
88
89 seb->pnum = pnum;
90 seb->ec = ec;
91 list_add_tail(&seb->u.list, list);
92 return 0;
93}
94
801c135c
AB
95/**
96 * validate_vid_hdr - check that volume identifier header is correct and
97 * consistent.
98 * @vid_hdr: the volume identifier header to check
99 * @sv: information about the volume this logical eraseblock belongs to
100 * @pnum: physical eraseblock number the VID header came from
101 *
102 * This function checks that data stored in @vid_hdr is consistent. Returns
103 * non-zero if an inconsistency was found and zero if not.
104 *
105 * Note, UBI does sanity check of everything it reads from the flash media.
85c6e6e2 106 * Most of the checks are done in the I/O sub-system. Here we check that the
801c135c
AB
107 * information in the VID header is consistent to the information in other VID
108 * headers of the same volume.
109 */
110static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
111 const struct ubi_scan_volume *sv, int pnum)
112{
113 int vol_type = vid_hdr->vol_type;
3261ebd7
CH
114 int vol_id = be32_to_cpu(vid_hdr->vol_id);
115 int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
116 int data_pad = be32_to_cpu(vid_hdr->data_pad);
801c135c
AB
117
118 if (sv->leb_count != 0) {
119 int sv_vol_type;
120
121 /*
122 * This is not the first logical eraseblock belonging to this
123 * volume. Ensure that the data in its VID header is consistent
124 * to the data in previous logical eraseblock headers.
125 */
126
127 if (vol_id != sv->vol_id) {
128 dbg_err("inconsistent vol_id");
129 goto bad;
130 }
131
132 if (sv->vol_type == UBI_STATIC_VOLUME)
133 sv_vol_type = UBI_VID_STATIC;
134 else
135 sv_vol_type = UBI_VID_DYNAMIC;
136
137 if (vol_type != sv_vol_type) {
138 dbg_err("inconsistent vol_type");
139 goto bad;
140 }
141
142 if (used_ebs != sv->used_ebs) {
143 dbg_err("inconsistent used_ebs");
144 goto bad;
145 }
146
147 if (data_pad != sv->data_pad) {
148 dbg_err("inconsistent data_pad");
149 goto bad;
150 }
151 }
152
153 return 0;
154
155bad:
156 ubi_err("inconsistent VID header at PEB %d", pnum);
157 ubi_dbg_dump_vid_hdr(vid_hdr);
158 ubi_dbg_dump_sv(sv);
159 return -EINVAL;
160}
161
162/**
163 * add_volume - add volume to the scanning information.
164 * @si: scanning information
165 * @vol_id: ID of the volume to add
166 * @pnum: physical eraseblock number
167 * @vid_hdr: volume identifier header
168 *
169 * If the volume corresponding to the @vid_hdr logical eraseblock is already
170 * present in the scanning information, this function does nothing. Otherwise
171 * it adds corresponding volume to the scanning information. Returns a pointer
172 * to the scanning volume object in case of success and a negative error code
173 * in case of failure.
174 */
175static struct ubi_scan_volume *add_volume(struct ubi_scan_info *si, int vol_id,
176 int pnum,
177 const struct ubi_vid_hdr *vid_hdr)
178{
179 struct ubi_scan_volume *sv;
180 struct rb_node **p = &si->volumes.rb_node, *parent = NULL;
181
3261ebd7 182 ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
801c135c
AB
183
184 /* Walk the volume RB-tree to look if this volume is already present */
185 while (*p) {
186 parent = *p;
187 sv = rb_entry(parent, struct ubi_scan_volume, rb);
188
189 if (vol_id == sv->vol_id)
190 return sv;
191
192 if (vol_id > sv->vol_id)
193 p = &(*p)->rb_left;
194 else
195 p = &(*p)->rb_right;
196 }
197
198 /* The volume is absent - add it */
199 sv = kmalloc(sizeof(struct ubi_scan_volume), GFP_KERNEL);
200 if (!sv)
201 return ERR_PTR(-ENOMEM);
202
203 sv->highest_lnum = sv->leb_count = 0;
801c135c
AB
204 sv->vol_id = vol_id;
205 sv->root = RB_ROOT;
3261ebd7
CH
206 sv->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
207 sv->data_pad = be32_to_cpu(vid_hdr->data_pad);
801c135c
AB
208 sv->compat = vid_hdr->compat;
209 sv->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
210 : UBI_STATIC_VOLUME;
211 if (vol_id > si->highest_vol_id)
212 si->highest_vol_id = vol_id;
213
214 rb_link_node(&sv->rb, parent, p);
215 rb_insert_color(&sv->rb, &si->volumes);
216 si->vols_found += 1;
217 dbg_bld("added volume %d", vol_id);
218 return sv;
219}
220
221/**
222 * compare_lebs - find out which logical eraseblock is newer.
223 * @ubi: UBI device description object
224 * @seb: first logical eraseblock to compare
225 * @pnum: physical eraseblock number of the second logical eraseblock to
226 * compare
227 * @vid_hdr: volume identifier header of the second logical eraseblock
228 *
229 * This function compares 2 copies of a LEB and informs which one is newer. In
230 * case of success this function returns a positive value, in case of failure, a
231 * negative error code is returned. The success return codes use the following
232 * bits:
233 * o bit 0 is cleared: the first PEB (described by @seb) is newer then the
234 * second PEB (described by @pnum and @vid_hdr);
235 * o bit 0 is set: the second PEB is newer;
236 * o bit 1 is cleared: no bit-flips were detected in the newer LEB;
237 * o bit 1 is set: bit-flips were detected in the newer LEB;
238 * o bit 2 is cleared: the older LEB is not corrupted;
239 * o bit 2 is set: the older LEB is corrupted.
240 */
e88d6e10
AB
241static int compare_lebs(struct ubi_device *ubi, const struct ubi_scan_leb *seb,
242 int pnum, const struct ubi_vid_hdr *vid_hdr)
801c135c
AB
243{
244 void *buf;
245 int len, err, second_is_newer, bitflips = 0, corrupted = 0;
246 uint32_t data_crc, crc;
8bc22961 247 struct ubi_vid_hdr *vh = NULL;
3261ebd7 248 unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
801c135c
AB
249
250 if (seb->sqnum == 0 && sqnum2 == 0) {
9c9ec147
AB
251 long long abs;
252 long long v1 = seb->leb_ver, v2 = be32_to_cpu(vid_hdr->leb_ver);
801c135c
AB
253
254 /*
255 * UBI constantly increases the logical eraseblock version
256 * number and it can overflow. Thus, we have to bear in mind
257 * that versions that are close to %0xFFFFFFFF are less then
258 * versions that are close to %0.
259 *
85c6e6e2
AB
260 * The UBI WL sub-system guarantees that the number of pending
261 * tasks is not greater then %0x7FFFFFFF. So, if the difference
801c135c
AB
262 * between any two versions is greater or equivalent to
263 * %0x7FFFFFFF, there was an overflow and the logical
264 * eraseblock with lower version is actually newer then the one
265 * with higher version.
266 *
267 * FIXME: but this is anyway obsolete and will be removed at
268 * some point.
269 */
801c135c
AB
270 dbg_bld("using old crappy leb_ver stuff");
271
64203195
AB
272 if (v1 == v2) {
273 ubi_err("PEB %d and PEB %d have the same version %lld",
274 seb->pnum, pnum, v1);
275 return -EINVAL;
276 }
277
801c135c
AB
278 abs = v1 - v2;
279 if (abs < 0)
280 abs = -abs;
281
282 if (abs < 0x7FFFFFFF)
283 /* Non-overflow situation */
284 second_is_newer = (v2 > v1);
285 else
286 second_is_newer = (v2 < v1);
287 } else
288 /* Obviously the LEB with lower sequence counter is older */
289 second_is_newer = sqnum2 > seb->sqnum;
290
291 /*
292 * Now we know which copy is newer. If the copy flag of the PEB with
293 * newer version is not set, then we just return, otherwise we have to
294 * check data CRC. For the second PEB we already have the VID header,
295 * for the first one - we'll need to re-read it from flash.
296 *
297 * FIXME: this may be optimized so that we wouldn't read twice.
298 */
299
300 if (second_is_newer) {
301 if (!vid_hdr->copy_flag) {
302 /* It is not a copy, so it is newer */
303 dbg_bld("second PEB %d is newer, copy_flag is unset",
304 pnum);
305 return 1;
306 }
307 } else {
308 pnum = seb->pnum;
309
33818bbb 310 vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
8bc22961 311 if (!vh)
801c135c
AB
312 return -ENOMEM;
313
8bc22961 314 err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
801c135c
AB
315 if (err) {
316 if (err == UBI_IO_BITFLIPS)
317 bitflips = 1;
318 else {
319 dbg_err("VID of PEB %d header is bad, but it "
320 "was OK earlier", pnum);
321 if (err > 0)
322 err = -EIO;
323
324 goto out_free_vidh;
325 }
326 }
327
8bc22961 328 if (!vh->copy_flag) {
801c135c
AB
329 /* It is not a copy, so it is newer */
330 dbg_bld("first PEB %d is newer, copy_flag is unset",
331 pnum);
332 err = bitflips << 1;
333 goto out_free_vidh;
334 }
335
8bc22961 336 vid_hdr = vh;
801c135c
AB
337 }
338
339 /* Read the data of the copy and check the CRC */
340
3261ebd7 341 len = be32_to_cpu(vid_hdr->data_size);
92ad8f37 342 buf = vmalloc(len);
801c135c
AB
343 if (!buf) {
344 err = -ENOMEM;
345 goto out_free_vidh;
346 }
347
348 err = ubi_io_read_data(ubi, buf, pnum, 0, len);
349 if (err && err != UBI_IO_BITFLIPS)
350 goto out_free_buf;
351
3261ebd7 352 data_crc = be32_to_cpu(vid_hdr->data_crc);
801c135c
AB
353 crc = crc32(UBI_CRC32_INIT, buf, len);
354 if (crc != data_crc) {
355 dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
356 pnum, crc, data_crc);
357 corrupted = 1;
358 bitflips = 0;
359 second_is_newer = !second_is_newer;
360 } else {
361 dbg_bld("PEB %d CRC is OK", pnum);
362 bitflips = !!err;
363 }
364
92ad8f37 365 vfree(buf);
8bc22961 366 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
367
368 if (second_is_newer)
369 dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
370 else
371 dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
372
373 return second_is_newer | (bitflips << 1) | (corrupted << 2);
374
375out_free_buf:
92ad8f37 376 vfree(buf);
801c135c 377out_free_vidh:
8bc22961 378 ubi_free_vid_hdr(ubi, vh);
801c135c
AB
379 return err;
380}
381
382/**
383 * ubi_scan_add_used - add information about a physical eraseblock to the
384 * scanning information.
385 * @ubi: UBI device description object
386 * @si: scanning information
387 * @pnum: the physical eraseblock number
388 * @ec: erase counter
389 * @vid_hdr: the volume identifier header
390 * @bitflips: if bit-flips were detected when this physical eraseblock was read
391 *
79b510c0
AB
392 * This function adds information about a used physical eraseblock to the
393 * 'used' tree of the corresponding volume. The function is rather complex
394 * because it has to handle cases when this is not the first physical
395 * eraseblock belonging to the same logical eraseblock, and the newer one has
396 * to be picked, while the older one has to be dropped. This function returns
397 * zero in case of success and a negative error code in case of failure.
801c135c 398 */
e88d6e10 399int ubi_scan_add_used(struct ubi_device *ubi, struct ubi_scan_info *si,
801c135c
AB
400 int pnum, int ec, const struct ubi_vid_hdr *vid_hdr,
401 int bitflips)
402{
403 int err, vol_id, lnum;
404 uint32_t leb_ver;
405 unsigned long long sqnum;
406 struct ubi_scan_volume *sv;
407 struct ubi_scan_leb *seb;
408 struct rb_node **p, *parent = NULL;
409
3261ebd7
CH
410 vol_id = be32_to_cpu(vid_hdr->vol_id);
411 lnum = be32_to_cpu(vid_hdr->lnum);
412 sqnum = be64_to_cpu(vid_hdr->sqnum);
413 leb_ver = be32_to_cpu(vid_hdr->leb_ver);
801c135c
AB
414
415 dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, ver %u, bitflips %d",
416 pnum, vol_id, lnum, ec, sqnum, leb_ver, bitflips);
417
418 sv = add_volume(si, vol_id, pnum, vid_hdr);
419 if (IS_ERR(sv) < 0)
420 return PTR_ERR(sv);
421
76eafe47
BS
422 if (si->max_sqnum < sqnum)
423 si->max_sqnum = sqnum;
424
801c135c
AB
425 /*
426 * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
427 * if this is the first instance of this logical eraseblock or not.
428 */
429 p = &sv->root.rb_node;
430 while (*p) {
431 int cmp_res;
432
433 parent = *p;
434 seb = rb_entry(parent, struct ubi_scan_leb, u.rb);
435 if (lnum != seb->lnum) {
436 if (lnum < seb->lnum)
437 p = &(*p)->rb_left;
438 else
439 p = &(*p)->rb_right;
440 continue;
441 }
442
443 /*
444 * There is already a physical eraseblock describing the same
445 * logical eraseblock present.
446 */
447
448 dbg_bld("this LEB already exists: PEB %d, sqnum %llu, "
449 "LEB ver %u, EC %d", seb->pnum, seb->sqnum,
450 seb->leb_ver, seb->ec);
451
452 /*
453 * Make sure that the logical eraseblocks have different
454 * versions. Otherwise the image is bad.
455 */
456 if (seb->leb_ver == leb_ver && leb_ver != 0) {
457 ubi_err("two LEBs with same version %u", leb_ver);
458 ubi_dbg_dump_seb(seb, 0);
459 ubi_dbg_dump_vid_hdr(vid_hdr);
460 return -EINVAL;
461 }
462
463 /*
464 * Make sure that the logical eraseblocks have different
465 * sequence numbers. Otherwise the image is bad.
466 *
467 * FIXME: remove 'sqnum != 0' check when leb_ver is removed.
468 */
469 if (seb->sqnum == sqnum && sqnum != 0) {
470 ubi_err("two LEBs with same sequence number %llu",
471 sqnum);
472 ubi_dbg_dump_seb(seb, 0);
473 ubi_dbg_dump_vid_hdr(vid_hdr);
474 return -EINVAL;
475 }
476
477 /*
478 * Now we have to drop the older one and preserve the newer
479 * one.
480 */
481 cmp_res = compare_lebs(ubi, seb, pnum, vid_hdr);
482 if (cmp_res < 0)
483 return cmp_res;
484
485 if (cmp_res & 1) {
486 /*
487 * This logical eraseblock is newer then the one
488 * found earlier.
489 */
490 err = validate_vid_hdr(vid_hdr, sv, pnum);
491 if (err)
492 return err;
493
494 if (cmp_res & 4)
78d87c95
AB
495 err = add_to_list(si, seb->pnum, seb->ec,
496 &si->corr);
801c135c 497 else
78d87c95
AB
498 err = add_to_list(si, seb->pnum, seb->ec,
499 &si->erase);
801c135c
AB
500 if (err)
501 return err;
502
503 seb->ec = ec;
504 seb->pnum = pnum;
505 seb->scrub = ((cmp_res & 2) || bitflips);
506 seb->sqnum = sqnum;
507 seb->leb_ver = leb_ver;
508
509 if (sv->highest_lnum == lnum)
510 sv->last_data_size =
3261ebd7 511 be32_to_cpu(vid_hdr->data_size);
801c135c
AB
512
513 return 0;
514 } else {
515 /*
516 * This logical eraseblock is older then the one found
517 * previously.
518 */
519 if (cmp_res & 4)
78d87c95 520 return add_to_list(si, pnum, ec, &si->corr);
801c135c 521 else
78d87c95 522 return add_to_list(si, pnum, ec, &si->erase);
801c135c
AB
523 }
524 }
525
526 /*
527 * We've met this logical eraseblock for the first time, add it to the
528 * scanning information.
529 */
530
531 err = validate_vid_hdr(vid_hdr, sv, pnum);
532 if (err)
533 return err;
534
535 seb = kmalloc(sizeof(struct ubi_scan_leb), GFP_KERNEL);
536 if (!seb)
537 return -ENOMEM;
538
539 seb->ec = ec;
540 seb->pnum = pnum;
541 seb->lnum = lnum;
542 seb->sqnum = sqnum;
543 seb->scrub = bitflips;
544 seb->leb_ver = leb_ver;
545
546 if (sv->highest_lnum <= lnum) {
547 sv->highest_lnum = lnum;
3261ebd7 548 sv->last_data_size = be32_to_cpu(vid_hdr->data_size);
801c135c
AB
549 }
550
801c135c
AB
551 sv->leb_count += 1;
552 rb_link_node(&seb->u.rb, parent, p);
553 rb_insert_color(&seb->u.rb, &sv->root);
554 return 0;
555}
556
557/**
558 * ubi_scan_find_sv - find information about a particular volume in the
559 * scanning information.
560 * @si: scanning information
561 * @vol_id: the requested volume ID
562 *
563 * This function returns a pointer to the volume description or %NULL if there
564 * are no data about this volume in the scanning information.
565 */
566struct ubi_scan_volume *ubi_scan_find_sv(const struct ubi_scan_info *si,
567 int vol_id)
568{
569 struct ubi_scan_volume *sv;
570 struct rb_node *p = si->volumes.rb_node;
571
572 while (p) {
573 sv = rb_entry(p, struct ubi_scan_volume, rb);
574
575 if (vol_id == sv->vol_id)
576 return sv;
577
578 if (vol_id > sv->vol_id)
579 p = p->rb_left;
580 else
581 p = p->rb_right;
582 }
583
584 return NULL;
585}
586
587/**
588 * ubi_scan_find_seb - find information about a particular logical
589 * eraseblock in the volume scanning information.
590 * @sv: a pointer to the volume scanning information
591 * @lnum: the requested logical eraseblock
592 *
593 * This function returns a pointer to the scanning logical eraseblock or %NULL
594 * if there are no data about it in the scanning volume information.
595 */
596struct ubi_scan_leb *ubi_scan_find_seb(const struct ubi_scan_volume *sv,
597 int lnum)
598{
599 struct ubi_scan_leb *seb;
600 struct rb_node *p = sv->root.rb_node;
601
602 while (p) {
603 seb = rb_entry(p, struct ubi_scan_leb, u.rb);
604
605 if (lnum == seb->lnum)
606 return seb;
607
608 if (lnum > seb->lnum)
609 p = p->rb_left;
610 else
611 p = p->rb_right;
612 }
613
614 return NULL;
615}
616
617/**
618 * ubi_scan_rm_volume - delete scanning information about a volume.
619 * @si: scanning information
620 * @sv: the volume scanning information to delete
621 */
622void ubi_scan_rm_volume(struct ubi_scan_info *si, struct ubi_scan_volume *sv)
623{
624 struct rb_node *rb;
625 struct ubi_scan_leb *seb;
626
627 dbg_bld("remove scanning information about volume %d", sv->vol_id);
628
629 while ((rb = rb_first(&sv->root))) {
630 seb = rb_entry(rb, struct ubi_scan_leb, u.rb);
631 rb_erase(&seb->u.rb, &sv->root);
632 list_add_tail(&seb->u.list, &si->erase);
633 }
634
635 rb_erase(&sv->rb, &si->volumes);
636 kfree(sv);
637 si->vols_found -= 1;
638}
639
640/**
641 * ubi_scan_erase_peb - erase a physical eraseblock.
642 * @ubi: UBI device description object
643 * @si: scanning information
644 * @pnum: physical eraseblock number to erase;
645 * @ec: erase counter value to write (%UBI_SCAN_UNKNOWN_EC if it is unknown)
646 *
647 * This function erases physical eraseblock 'pnum', and writes the erase
648 * counter header to it. This function should only be used on UBI device
85c6e6e2
AB
649 * initialization stages, when the EBA sub-system had not been yet initialized.
650 * This function returns zero in case of success and a negative error code in
651 * case of failure.
801c135c 652 */
e88d6e10
AB
653int ubi_scan_erase_peb(struct ubi_device *ubi, const struct ubi_scan_info *si,
654 int pnum, int ec)
801c135c
AB
655{
656 int err;
657 struct ubi_ec_hdr *ec_hdr;
658
801c135c
AB
659 if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
660 /*
661 * Erase counter overflow. Upgrade UBI and use 64-bit
662 * erase counters internally.
663 */
664 ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
665 return -EINVAL;
666 }
667
dcec4c3b
FM
668 ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
669 if (!ec_hdr)
670 return -ENOMEM;
671
3261ebd7 672 ec_hdr->ec = cpu_to_be64(ec);
801c135c
AB
673
674 err = ubi_io_sync_erase(ubi, pnum, 0);
675 if (err < 0)
676 goto out_free;
677
678 err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
679
680out_free:
681 kfree(ec_hdr);
682 return err;
683}
684
685/**
686 * ubi_scan_get_free_peb - get a free physical eraseblock.
687 * @ubi: UBI device description object
688 * @si: scanning information
689 *
690 * This function returns a free physical eraseblock. It is supposed to be
85c6e6e2
AB
691 * called on the UBI initialization stages when the wear-leveling sub-system is
692 * not initialized yet. This function picks a physical eraseblocks from one of
693 * the lists, writes the EC header if it is needed, and removes it from the
694 * list.
801c135c
AB
695 *
696 * This function returns scanning physical eraseblock information in case of
697 * success and an error code in case of failure.
698 */
e88d6e10 699struct ubi_scan_leb *ubi_scan_get_free_peb(struct ubi_device *ubi,
801c135c
AB
700 struct ubi_scan_info *si)
701{
702 int err = 0, i;
703 struct ubi_scan_leb *seb;
704
705 if (!list_empty(&si->free)) {
706 seb = list_entry(si->free.next, struct ubi_scan_leb, u.list);
707 list_del(&seb->u.list);
708 dbg_bld("return free PEB %d, EC %d", seb->pnum, seb->ec);
709 return seb;
710 }
711
712 for (i = 0; i < 2; i++) {
713 struct list_head *head;
714 struct ubi_scan_leb *tmp_seb;
715
716 if (i == 0)
717 head = &si->erase;
718 else
719 head = &si->corr;
720
721 /*
722 * We try to erase the first physical eraseblock from the @head
723 * list and pick it if we succeed, or try to erase the
724 * next one if not. And so forth. We don't want to take care
725 * about bad eraseblocks here - they'll be handled later.
726 */
727 list_for_each_entry_safe(seb, tmp_seb, head, u.list) {
728 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
729 seb->ec = si->mean_ec;
730
731 err = ubi_scan_erase_peb(ubi, si, seb->pnum, seb->ec+1);
732 if (err)
733 continue;
734
735 seb->ec += 1;
736 list_del(&seb->u.list);
737 dbg_bld("return PEB %d, EC %d", seb->pnum, seb->ec);
738 return seb;
739 }
740 }
741
742 ubi_err("no eraseblocks found");
743 return ERR_PTR(-ENOSPC);
744}
745
746/**
747 * process_eb - read UBI headers, check them and add corresponding data
748 * to the scanning information.
749 * @ubi: UBI device description object
750 * @si: scanning information
751 * @pnum: the physical eraseblock number
752 *
78d87c95 753 * This function returns a zero if the physical eraseblock was successfully
801c135c
AB
754 * handled and a negative error code in case of failure.
755 */
9c9ec147
AB
756static int process_eb(struct ubi_device *ubi, struct ubi_scan_info *si,
757 int pnum)
801c135c 758{
c18a8418 759 long long uninitialized_var(ec);
801c135c
AB
760 int err, bitflips = 0, vol_id, ec_corr = 0;
761
762 dbg_bld("scan PEB %d", pnum);
763
764 /* Skip bad physical eraseblocks */
765 err = ubi_io_is_bad(ubi, pnum);
766 if (err < 0)
767 return err;
768 else if (err) {
769 /*
85c6e6e2
AB
770 * FIXME: this is actually duty of the I/O sub-system to
771 * initialize this, but MTD does not provide enough
772 * information.
801c135c
AB
773 */
774 si->bad_peb_count += 1;
775 return 0;
776 }
777
778 err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
779 if (err < 0)
780 return err;
781 else if (err == UBI_IO_BITFLIPS)
782 bitflips = 1;
783 else if (err == UBI_IO_PEB_EMPTY)
78d87c95 784 return add_to_list(si, pnum, UBI_SCAN_UNKNOWN_EC, &si->erase);
801c135c
AB
785 else if (err == UBI_IO_BAD_EC_HDR) {
786 /*
787 * We have to also look at the VID header, possibly it is not
788 * corrupted. Set %bitflips flag in order to make this PEB be
789 * moved and EC be re-created.
790 */
791 ec_corr = 1;
792 ec = UBI_SCAN_UNKNOWN_EC;
793 bitflips = 1;
794 }
795
796 si->is_empty = 0;
797
798 if (!ec_corr) {
799 /* Make sure UBI version is OK */
800 if (ech->version != UBI_VERSION) {
801 ubi_err("this UBI version is %d, image version is %d",
802 UBI_VERSION, (int)ech->version);
803 return -EINVAL;
804 }
805
3261ebd7 806 ec = be64_to_cpu(ech->ec);
801c135c
AB
807 if (ec > UBI_MAX_ERASECOUNTER) {
808 /*
809 * Erase counter overflow. The EC headers have 64 bits
810 * reserved, but we anyway make use of only 31 bit
811 * values, as this seems to be enough for any existing
812 * flash. Upgrade UBI and use 64-bit erase counters
813 * internally.
814 */
815 ubi_err("erase counter overflow, max is %d",
816 UBI_MAX_ERASECOUNTER);
817 ubi_dbg_dump_ec_hdr(ech);
818 return -EINVAL;
819 }
820 }
821
822 /* OK, we've done with the EC header, let's look at the VID header */
823
824 err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
825 if (err < 0)
826 return err;
827 else if (err == UBI_IO_BITFLIPS)
828 bitflips = 1;
829 else if (err == UBI_IO_BAD_VID_HDR ||
830 (err == UBI_IO_PEB_FREE && ec_corr)) {
831 /* VID header is corrupted */
78d87c95 832 err = add_to_list(si, pnum, ec, &si->corr);
801c135c
AB
833 if (err)
834 return err;
835 goto adjust_mean_ec;
836 } else if (err == UBI_IO_PEB_FREE) {
837 /* No VID header - the physical eraseblock is free */
78d87c95 838 err = add_to_list(si, pnum, ec, &si->free);
801c135c
AB
839 if (err)
840 return err;
841 goto adjust_mean_ec;
842 }
843
3261ebd7 844 vol_id = be32_to_cpu(vidh->vol_id);
91f2d53c 845 if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
3261ebd7 846 int lnum = be32_to_cpu(vidh->lnum);
801c135c
AB
847
848 /* Unsupported internal volume */
849 switch (vidh->compat) {
850 case UBI_COMPAT_DELETE:
851 ubi_msg("\"delete\" compatible internal volume %d:%d"
852 " found, remove it", vol_id, lnum);
78d87c95 853 err = add_to_list(si, pnum, ec, &si->corr);
801c135c
AB
854 if (err)
855 return err;
856 break;
857
858 case UBI_COMPAT_RO:
859 ubi_msg("read-only compatible internal volume %d:%d"
860 " found, switch to read-only mode",
861 vol_id, lnum);
862 ubi->ro_mode = 1;
863 break;
864
865 case UBI_COMPAT_PRESERVE:
866 ubi_msg("\"preserve\" compatible internal volume %d:%d"
867 " found", vol_id, lnum);
78d87c95 868 err = add_to_list(si, pnum, ec, &si->alien);
801c135c
AB
869 if (err)
870 return err;
871 si->alien_peb_count += 1;
872 return 0;
873
874 case UBI_COMPAT_REJECT:
875 ubi_err("incompatible internal volume %d:%d found",
876 vol_id, lnum);
877 return -EINVAL;
878 }
879 }
880
881 /* Both UBI headers seem to be fine */
882 err = ubi_scan_add_used(ubi, si, pnum, ec, vidh, bitflips);
883 if (err)
884 return err;
885
886adjust_mean_ec:
887 if (!ec_corr) {
4bc1dca4
AB
888 si->ec_sum += ec;
889 si->ec_count += 1;
801c135c
AB
890 if (ec > si->max_ec)
891 si->max_ec = ec;
892 if (ec < si->min_ec)
893 si->min_ec = ec;
894 }
895
896 return 0;
897}
898
899/**
900 * ubi_scan - scan an MTD device.
901 * @ubi: UBI device description object
902 *
903 * This function does full scanning of an MTD device and returns complete
904 * information about it. In case of failure, an error code is returned.
905 */
906struct ubi_scan_info *ubi_scan(struct ubi_device *ubi)
907{
908 int err, pnum;
909 struct rb_node *rb1, *rb2;
910 struct ubi_scan_volume *sv;
911 struct ubi_scan_leb *seb;
912 struct ubi_scan_info *si;
913
914 si = kzalloc(sizeof(struct ubi_scan_info), GFP_KERNEL);
915 if (!si)
916 return ERR_PTR(-ENOMEM);
917
918 INIT_LIST_HEAD(&si->corr);
919 INIT_LIST_HEAD(&si->free);
920 INIT_LIST_HEAD(&si->erase);
921 INIT_LIST_HEAD(&si->alien);
922 si->volumes = RB_ROOT;
923 si->is_empty = 1;
924
925 err = -ENOMEM;
926 ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
927 if (!ech)
928 goto out_si;
929
33818bbb 930 vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
801c135c
AB
931 if (!vidh)
932 goto out_ech;
933
934 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
935 cond_resched();
936
c8566350 937 dbg_gen("process PEB %d", pnum);
801c135c
AB
938 err = process_eb(ubi, si, pnum);
939 if (err < 0)
940 goto out_vidh;
941 }
942
943 dbg_msg("scanning is finished");
944
4bc1dca4
AB
945 /* Calculate mean erase counter */
946 if (si->ec_count) {
947 do_div(si->ec_sum, si->ec_count);
948 si->mean_ec = si->ec_sum;
949 }
801c135c
AB
950
951 if (si->is_empty)
952 ubi_msg("empty MTD device detected");
953
954 /*
955 * In case of unknown erase counter we use the mean erase counter
956 * value.
957 */
958 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
959 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
960 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
961 seb->ec = si->mean_ec;
962 }
963
964 list_for_each_entry(seb, &si->free, u.list) {
965 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
966 seb->ec = si->mean_ec;
967 }
968
969 list_for_each_entry(seb, &si->corr, u.list)
970 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
971 seb->ec = si->mean_ec;
972
973 list_for_each_entry(seb, &si->erase, u.list)
974 if (seb->ec == UBI_SCAN_UNKNOWN_EC)
975 seb->ec = si->mean_ec;
976
977 err = paranoid_check_si(ubi, si);
978 if (err) {
979 if (err > 0)
980 err = -EINVAL;
981 goto out_vidh;
982 }
983
984 ubi_free_vid_hdr(ubi, vidh);
985 kfree(ech);
986
987 return si;
988
989out_vidh:
990 ubi_free_vid_hdr(ubi, vidh);
991out_ech:
992 kfree(ech);
993out_si:
994 ubi_scan_destroy_si(si);
995 return ERR_PTR(err);
996}
997
998/**
999 * destroy_sv - free the scanning volume information
1000 * @sv: scanning volume information
1001 *
1002 * This function destroys the volume RB-tree (@sv->root) and the scanning
1003 * volume information.
1004 */
1005static void destroy_sv(struct ubi_scan_volume *sv)
1006{
1007 struct ubi_scan_leb *seb;
1008 struct rb_node *this = sv->root.rb_node;
1009
1010 while (this) {
1011 if (this->rb_left)
1012 this = this->rb_left;
1013 else if (this->rb_right)
1014 this = this->rb_right;
1015 else {
1016 seb = rb_entry(this, struct ubi_scan_leb, u.rb);
1017 this = rb_parent(this);
1018 if (this) {
1019 if (this->rb_left == &seb->u.rb)
1020 this->rb_left = NULL;
1021 else
1022 this->rb_right = NULL;
1023 }
1024
1025 kfree(seb);
1026 }
1027 }
1028 kfree(sv);
1029}
1030
1031/**
1032 * ubi_scan_destroy_si - destroy scanning information.
1033 * @si: scanning information
1034 */
1035void ubi_scan_destroy_si(struct ubi_scan_info *si)
1036{
1037 struct ubi_scan_leb *seb, *seb_tmp;
1038 struct ubi_scan_volume *sv;
1039 struct rb_node *rb;
1040
1041 list_for_each_entry_safe(seb, seb_tmp, &si->alien, u.list) {
1042 list_del(&seb->u.list);
1043 kfree(seb);
1044 }
1045 list_for_each_entry_safe(seb, seb_tmp, &si->erase, u.list) {
1046 list_del(&seb->u.list);
1047 kfree(seb);
1048 }
1049 list_for_each_entry_safe(seb, seb_tmp, &si->corr, u.list) {
1050 list_del(&seb->u.list);
1051 kfree(seb);
1052 }
1053 list_for_each_entry_safe(seb, seb_tmp, &si->free, u.list) {
1054 list_del(&seb->u.list);
1055 kfree(seb);
1056 }
1057
1058 /* Destroy the volume RB-tree */
1059 rb = si->volumes.rb_node;
1060 while (rb) {
1061 if (rb->rb_left)
1062 rb = rb->rb_left;
1063 else if (rb->rb_right)
1064 rb = rb->rb_right;
1065 else {
1066 sv = rb_entry(rb, struct ubi_scan_volume, rb);
1067
1068 rb = rb_parent(rb);
1069 if (rb) {
1070 if (rb->rb_left == &sv->rb)
1071 rb->rb_left = NULL;
1072 else
1073 rb->rb_right = NULL;
1074 }
1075
1076 destroy_sv(sv);
1077 }
1078 }
1079
1080 kfree(si);
1081}
1082
1083#ifdef CONFIG_MTD_UBI_DEBUG_PARANOID
1084
1085/**
1086 * paranoid_check_si - check if the scanning information is correct and
1087 * consistent.
1088 * @ubi: UBI device description object
1089 * @si: scanning information
1090 *
1091 * This function returns zero if the scanning information is all right, %1 if
1092 * not and a negative error code if an error occurred.
1093 */
e88d6e10 1094static int paranoid_check_si(struct ubi_device *ubi, struct ubi_scan_info *si)
801c135c
AB
1095{
1096 int pnum, err, vols_found = 0;
1097 struct rb_node *rb1, *rb2;
1098 struct ubi_scan_volume *sv;
1099 struct ubi_scan_leb *seb, *last_seb;
1100 uint8_t *buf;
1101
1102 /*
78d87c95 1103 * At first, check that scanning information is OK.
801c135c
AB
1104 */
1105 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1106 int leb_count = 0;
1107
1108 cond_resched();
1109
1110 vols_found += 1;
1111
1112 if (si->is_empty) {
1113 ubi_err("bad is_empty flag");
1114 goto bad_sv;
1115 }
1116
1117 if (sv->vol_id < 0 || sv->highest_lnum < 0 ||
1118 sv->leb_count < 0 || sv->vol_type < 0 || sv->used_ebs < 0 ||
1119 sv->data_pad < 0 || sv->last_data_size < 0) {
1120 ubi_err("negative values");
1121 goto bad_sv;
1122 }
1123
1124 if (sv->vol_id >= UBI_MAX_VOLUMES &&
1125 sv->vol_id < UBI_INTERNAL_VOL_START) {
1126 ubi_err("bad vol_id");
1127 goto bad_sv;
1128 }
1129
1130 if (sv->vol_id > si->highest_vol_id) {
1131 ubi_err("highest_vol_id is %d, but vol_id %d is there",
1132 si->highest_vol_id, sv->vol_id);
1133 goto out;
1134 }
1135
1136 if (sv->vol_type != UBI_DYNAMIC_VOLUME &&
1137 sv->vol_type != UBI_STATIC_VOLUME) {
1138 ubi_err("bad vol_type");
1139 goto bad_sv;
1140 }
1141
1142 if (sv->data_pad > ubi->leb_size / 2) {
1143 ubi_err("bad data_pad");
1144 goto bad_sv;
1145 }
1146
1147 last_seb = NULL;
1148 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1149 cond_resched();
1150
1151 last_seb = seb;
1152 leb_count += 1;
1153
1154 if (seb->pnum < 0 || seb->ec < 0) {
1155 ubi_err("negative values");
1156 goto bad_seb;
1157 }
1158
1159 if (seb->ec < si->min_ec) {
1160 ubi_err("bad si->min_ec (%d), %d found",
1161 si->min_ec, seb->ec);
1162 goto bad_seb;
1163 }
1164
1165 if (seb->ec > si->max_ec) {
1166 ubi_err("bad si->max_ec (%d), %d found",
1167 si->max_ec, seb->ec);
1168 goto bad_seb;
1169 }
1170
1171 if (seb->pnum >= ubi->peb_count) {
1172 ubi_err("too high PEB number %d, total PEBs %d",
1173 seb->pnum, ubi->peb_count);
1174 goto bad_seb;
1175 }
1176
1177 if (sv->vol_type == UBI_STATIC_VOLUME) {
1178 if (seb->lnum >= sv->used_ebs) {
1179 ubi_err("bad lnum or used_ebs");
1180 goto bad_seb;
1181 }
1182 } else {
1183 if (sv->used_ebs != 0) {
1184 ubi_err("non-zero used_ebs");
1185 goto bad_seb;
1186 }
1187 }
1188
1189 if (seb->lnum > sv->highest_lnum) {
1190 ubi_err("incorrect highest_lnum or lnum");
1191 goto bad_seb;
1192 }
1193 }
1194
1195 if (sv->leb_count != leb_count) {
1196 ubi_err("bad leb_count, %d objects in the tree",
1197 leb_count);
1198 goto bad_sv;
1199 }
1200
1201 if (!last_seb)
1202 continue;
1203
1204 seb = last_seb;
1205
1206 if (seb->lnum != sv->highest_lnum) {
1207 ubi_err("bad highest_lnum");
1208 goto bad_seb;
1209 }
1210 }
1211
1212 if (vols_found != si->vols_found) {
1213 ubi_err("bad si->vols_found %d, should be %d",
1214 si->vols_found, vols_found);
1215 goto out;
1216 }
1217
1218 /* Check that scanning information is correct */
1219 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb) {
1220 last_seb = NULL;
1221 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb) {
1222 int vol_type;
1223
1224 cond_resched();
1225
1226 last_seb = seb;
1227
1228 err = ubi_io_read_vid_hdr(ubi, seb->pnum, vidh, 1);
1229 if (err && err != UBI_IO_BITFLIPS) {
1230 ubi_err("VID header is not OK (%d)", err);
1231 if (err > 0)
1232 err = -EIO;
1233 return err;
1234 }
1235
1236 vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1237 UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1238 if (sv->vol_type != vol_type) {
1239 ubi_err("bad vol_type");
1240 goto bad_vid_hdr;
1241 }
1242
3261ebd7 1243 if (seb->sqnum != be64_to_cpu(vidh->sqnum)) {
801c135c
AB
1244 ubi_err("bad sqnum %llu", seb->sqnum);
1245 goto bad_vid_hdr;
1246 }
1247
3261ebd7 1248 if (sv->vol_id != be32_to_cpu(vidh->vol_id)) {
801c135c
AB
1249 ubi_err("bad vol_id %d", sv->vol_id);
1250 goto bad_vid_hdr;
1251 }
1252
1253 if (sv->compat != vidh->compat) {
1254 ubi_err("bad compat %d", vidh->compat);
1255 goto bad_vid_hdr;
1256 }
1257
3261ebd7 1258 if (seb->lnum != be32_to_cpu(vidh->lnum)) {
801c135c
AB
1259 ubi_err("bad lnum %d", seb->lnum);
1260 goto bad_vid_hdr;
1261 }
1262
3261ebd7 1263 if (sv->used_ebs != be32_to_cpu(vidh->used_ebs)) {
801c135c
AB
1264 ubi_err("bad used_ebs %d", sv->used_ebs);
1265 goto bad_vid_hdr;
1266 }
1267
3261ebd7 1268 if (sv->data_pad != be32_to_cpu(vidh->data_pad)) {
801c135c
AB
1269 ubi_err("bad data_pad %d", sv->data_pad);
1270 goto bad_vid_hdr;
1271 }
1272
3261ebd7 1273 if (seb->leb_ver != be32_to_cpu(vidh->leb_ver)) {
801c135c
AB
1274 ubi_err("bad leb_ver %u", seb->leb_ver);
1275 goto bad_vid_hdr;
1276 }
1277 }
1278
1279 if (!last_seb)
1280 continue;
1281
3261ebd7 1282 if (sv->highest_lnum != be32_to_cpu(vidh->lnum)) {
801c135c
AB
1283 ubi_err("bad highest_lnum %d", sv->highest_lnum);
1284 goto bad_vid_hdr;
1285 }
1286
3261ebd7 1287 if (sv->last_data_size != be32_to_cpu(vidh->data_size)) {
801c135c
AB
1288 ubi_err("bad last_data_size %d", sv->last_data_size);
1289 goto bad_vid_hdr;
1290 }
1291 }
1292
1293 /*
1294 * Make sure that all the physical eraseblocks are in one of the lists
1295 * or trees.
1296 */
d9b0744d 1297 buf = kzalloc(ubi->peb_count, GFP_KERNEL);
801c135c
AB
1298 if (!buf)
1299 return -ENOMEM;
1300
801c135c
AB
1301 for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1302 err = ubi_io_is_bad(ubi, pnum);
341e1a0c
AB
1303 if (err < 0) {
1304 kfree(buf);
801c135c 1305 return err;
9c9ec147 1306 } else if (err)
d9b0744d 1307 buf[pnum] = 1;
801c135c
AB
1308 }
1309
1310 ubi_rb_for_each_entry(rb1, sv, &si->volumes, rb)
1311 ubi_rb_for_each_entry(rb2, seb, &sv->root, u.rb)
d9b0744d 1312 buf[seb->pnum] = 1;
801c135c
AB
1313
1314 list_for_each_entry(seb, &si->free, u.list)
d9b0744d 1315 buf[seb->pnum] = 1;
801c135c
AB
1316
1317 list_for_each_entry(seb, &si->corr, u.list)
d9b0744d 1318 buf[seb->pnum] = 1;
801c135c
AB
1319
1320 list_for_each_entry(seb, &si->erase, u.list)
d9b0744d 1321 buf[seb->pnum] = 1;
801c135c
AB
1322
1323 list_for_each_entry(seb, &si->alien, u.list)
d9b0744d 1324 buf[seb->pnum] = 1;
801c135c
AB
1325
1326 err = 0;
1327 for (pnum = 0; pnum < ubi->peb_count; pnum++)
d9b0744d 1328 if (!buf[pnum]) {
801c135c
AB
1329 ubi_err("PEB %d is not referred", pnum);
1330 err = 1;
1331 }
1332
1333 kfree(buf);
1334 if (err)
1335 goto out;
1336 return 0;
1337
1338bad_seb:
1339 ubi_err("bad scanning information about LEB %d", seb->lnum);
1340 ubi_dbg_dump_seb(seb, 0);
1341 ubi_dbg_dump_sv(sv);
1342 goto out;
1343
1344bad_sv:
1345 ubi_err("bad scanning information about volume %d", sv->vol_id);
1346 ubi_dbg_dump_sv(sv);
1347 goto out;
1348
1349bad_vid_hdr:
1350 ubi_err("bad scanning information about volume %d", sv->vol_id);
1351 ubi_dbg_dump_sv(sv);
1352 ubi_dbg_dump_vid_hdr(vidh);
1353
1354out:
1355 ubi_dbg_dump_stack();
1356 return 1;
1357}
1358
1359#endif /* CONFIG_MTD_UBI_DEBUG_PARANOID */