drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / lguest / core.c
CommitLineData
2e04ef76
RR
1/*P:400
2 * This contains run_guest() which actually calls into the Host<->Guest
f938d2c8 3 * Switcher and analyzes the return, such as determining if the Guest wants the
2e04ef76
RR
4 * Host to do something. This file also contains useful helper routines.
5:*/
d7e28ffe
RR
6#include <linux/module.h>
7#include <linux/stringify.h>
8#include <linux/stddef.h>
9#include <linux/io.h>
10#include <linux/mm.h>
11#include <linux/vmalloc.h>
12#include <linux/cpu.h>
13#include <linux/freezer.h>
625efab1 14#include <linux/highmem.h>
5a0e3ad6 15#include <linux/slab.h>
d7e28ffe 16#include <asm/paravirt.h>
d7e28ffe
RR
17#include <asm/pgtable.h>
18#include <asm/uaccess.h>
19#include <asm/poll.h>
d7e28ffe 20#include <asm/asm-offsets.h>
d7e28ffe
RR
21#include "lg.h"
22
406a590b 23unsigned long switcher_addr;
f1f394b1 24struct page **lg_switcher_pages;
d7e28ffe 25static struct vm_struct *switcher_vma;
d7e28ffe 26
d7e28ffe
RR
27/* This One Big lock protects all inter-guest data structures. */
28DEFINE_MUTEX(lguest_lock);
d7e28ffe 29
2e04ef76
RR
30/*H:010
31 * We need to set up the Switcher at a high virtual address. Remember the
bff672e6
RR
32 * Switcher is a few hundred bytes of assembler code which actually changes the
33 * CPU to run the Guest, and then changes back to the Host when a trap or
34 * interrupt happens.
35 *
36 * The Switcher code must be at the same virtual address in the Guest as the
37 * Host since it will be running as the switchover occurs.
38 *
39 * Trying to map memory at a particular address is an unusual thing to do, so
2e04ef76
RR
40 * it's not a simple one-liner.
41 */
d7e28ffe
RR
42static __init int map_switcher(void)
43{
44 int i, err;
45 struct page **pagep;
46
bff672e6
RR
47 /*
48 * Map the Switcher in to high memory.
49 *
50 * It turns out that if we choose the address 0xFFC00000 (4MB under the
51 * top virtual address), it makes setting up the page tables really
52 * easy.
53 */
54
93a2cdff
RR
55 /* We assume Switcher text fits into a single page. */
56 if (end_switcher_text - start_switcher_text > PAGE_SIZE) {
57 printk(KERN_ERR "lguest: switcher text too large (%zu)\n",
58 end_switcher_text - start_switcher_text);
59 return -EINVAL;
60 }
61
2e04ef76
RR
62 /*
63 * We allocate an array of struct page pointers. map_vm_area() wants
64 * this, rather than just an array of pages.
65 */
f1f394b1
RR
66 lg_switcher_pages = kmalloc(sizeof(lg_switcher_pages[0])
67 * TOTAL_SWITCHER_PAGES,
68 GFP_KERNEL);
69 if (!lg_switcher_pages) {
d7e28ffe
RR
70 err = -ENOMEM;
71 goto out;
72 }
73
2e04ef76
RR
74 /*
75 * Now we actually allocate the pages. The Guest will see these pages,
76 * so we make sure they're zeroed.
77 */
d7e28ffe 78 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
f1f394b1
RR
79 lg_switcher_pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
80 if (!lg_switcher_pages[i]) {
d7e28ffe
RR
81 err = -ENOMEM;
82 goto free_some_pages;
83 }
d7e28ffe
RR
84 }
85
2e04ef76 86 /*
6b392717
RR
87 * We place the Switcher underneath the fixmap area, which is the
88 * highest virtual address we can get. This is important, since we
89 * tell the Guest it can't access this memory, so we want its ceiling
90 * as high as possible.
2e04ef76 91 */
6b392717 92 switcher_addr = FIXADDR_START - (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE;
f14ae652 93
2e04ef76 94 /*
406a590b
RR
95 * Now we reserve the "virtual memory area" we want. We might
96 * not get it in theory, but in practice it's worked so far.
97 * The end address needs +1 because __get_vm_area allocates an
98 * extra guard page, so we need space for that.
2e04ef76 99 */
d7e28ffe 100 switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
406a590b 101 VM_ALLOC, switcher_addr, switcher_addr
f14ae652 102 + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
d7e28ffe
RR
103 if (!switcher_vma) {
104 err = -ENOMEM;
105 printk("lguest: could not map switcher pages high\n");
106 goto free_pages;
107 }
108
2e04ef76
RR
109 /*
110 * This code actually sets up the pages we've allocated to appear at
406a590b 111 * switcher_addr. map_vm_area() takes the vma we allocated above, the
bff672e6
RR
112 * kind of pages we're mapping (kernel pages), and a pointer to our
113 * array of struct pages. It increments that pointer, but we don't
2e04ef76
RR
114 * care.
115 */
f1f394b1 116 pagep = lg_switcher_pages;
ed1dc778 117 err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
d7e28ffe
RR
118 if (err) {
119 printk("lguest: map_vm_area failed: %i\n", err);
120 goto free_vma;
121 }
bff672e6 122
2e04ef76
RR
123 /*
124 * Now the Switcher is mapped at the right address, we can't fail!
9f54288d 125 * Copy in the compiled-in Switcher code (from x86/switcher_32.S).
2e04ef76 126 */
d7e28ffe
RR
127 memcpy(switcher_vma->addr, start_switcher_text,
128 end_switcher_text - start_switcher_text);
129
d7e28ffe
RR
130 printk(KERN_INFO "lguest: mapped switcher at %p\n",
131 switcher_vma->addr);
bff672e6 132 /* And we succeeded... */
d7e28ffe
RR
133 return 0;
134
135free_vma:
136 vunmap(switcher_vma->addr);
137free_pages:
138 i = TOTAL_SWITCHER_PAGES;
139free_some_pages:
140 for (--i; i >= 0; i--)
f1f394b1
RR
141 __free_pages(lg_switcher_pages[i], 0);
142 kfree(lg_switcher_pages);
d7e28ffe
RR
143out:
144 return err;
145}
bff672e6 146/*:*/
d7e28ffe 147
2e04ef76 148/* Cleaning up the mapping when the module is unloaded is almost... too easy. */
d7e28ffe
RR
149static void unmap_switcher(void)
150{
151 unsigned int i;
152
bff672e6 153 /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
d7e28ffe 154 vunmap(switcher_vma->addr);
bff672e6 155 /* Now we just need to free the pages we copied the switcher into */
d7e28ffe 156 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
f1f394b1
RR
157 __free_pages(lg_switcher_pages[i], 0);
158 kfree(lg_switcher_pages);
d7e28ffe
RR
159}
160
e1e72965 161/*H:032
dde79789
RR
162 * Dealing With Guest Memory.
163 *
e1e72965
RR
164 * Before we go too much further into the Host, we need to grok the routines
165 * we use to deal with Guest memory.
166 *
dde79789 167 * When the Guest gives us (what it thinks is) a physical address, we can use
3c6b5bfa
RR
168 * the normal copy_from_user() & copy_to_user() on the corresponding place in
169 * the memory region allocated by the Launcher.
dde79789
RR
170 *
171 * But we can't trust the Guest: it might be trying to access the Launcher
172 * code. We have to check that the range is below the pfn_limit the Launcher
173 * gave us. We have to make sure that addr + len doesn't give us a false
2e04ef76
RR
174 * positive by overflowing, too.
175 */
df1693ab
MZ
176bool lguest_address_ok(const struct lguest *lg,
177 unsigned long addr, unsigned long len)
d7e28ffe 178{
15a6585a 179 return addr+len <= lg->pfn_limit * PAGE_SIZE && (addr+len >= addr);
d7e28ffe
RR
180}
181
2e04ef76
RR
182/*
183 * This routine copies memory from the Guest. Here we can see how useful the
2d37f94a 184 * kill_lguest() routine we met in the Launcher can be: we return a random
2e04ef76
RR
185 * value (all zeroes) instead of needing to return an error.
186 */
382ac6b3 187void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
d7e28ffe 188{
382ac6b3
GOC
189 if (!lguest_address_ok(cpu->lg, addr, bytes)
190 || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
d7e28ffe
RR
191 /* copy_from_user should do this, but as we rely on it... */
192 memset(b, 0, bytes);
382ac6b3 193 kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
d7e28ffe
RR
194 }
195}
196
a6bd8e13 197/* This is the write (copy into Guest) version. */
382ac6b3 198void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
2d37f94a 199 unsigned bytes)
d7e28ffe 200{
382ac6b3
GOC
201 if (!lguest_address_ok(cpu->lg, addr, bytes)
202 || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
203 kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
d7e28ffe 204}
2d37f94a 205/*:*/
d7e28ffe 206
2e04ef76
RR
207/*H:030
208 * Let's jump straight to the the main loop which runs the Guest.
bff672e6 209 * Remember, this is called by the Launcher reading /dev/lguest, and we keep
2e04ef76
RR
210 * going around and around until something interesting happens.
211 */
d0953d42 212int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
d7e28ffe 213{
bff672e6 214 /* We stop running once the Guest is dead. */
382ac6b3 215 while (!cpu->lg->dead) {
abd41f03 216 unsigned int irq;
a32a8813 217 bool more;
abd41f03 218
cc6d4fbc 219 /* First we run any hypercalls the Guest wants done. */
73044f05
GOC
220 if (cpu->hcall)
221 do_hypercalls(cpu);
cc6d4fbc 222
2e04ef76
RR
223 /*
224 * It's possible the Guest did a NOTIFY hypercall to the
a91d74a3 225 * Launcher.
2e04ef76 226 */
5e232f4f 227 if (cpu->pending_notify) {
a91d74a3
RR
228 /*
229 * Does it just needs to write to a registered
230 * eventfd (ie. the appropriate virtqueue thread)?
231 */
df60aeef 232 if (!send_notify_to_eventfd(cpu)) {
681f2066 233 /* OK, we tell the main Launcher. */
df60aeef
RR
234 if (put_user(cpu->pending_notify, user))
235 return -EFAULT;
236 return sizeof(cpu->pending_notify);
237 }
d7e28ffe
RR
238 }
239
0acf0001
MH
240 /*
241 * All long-lived kernel loops need to check with this horrible
242 * thing called the freezer. If the Host is trying to suspend,
243 * it stops us.
244 */
245 try_to_freeze();
246
bff672e6 247 /* Check for signals */
d7e28ffe
RR
248 if (signal_pending(current))
249 return -ERESTARTSYS;
250
2e04ef76
RR
251 /*
252 * Check if there are any interrupts which can be delivered now:
a6bd8e13 253 * if so, this sets up the hander to be executed when we next
2e04ef76
RR
254 * run the Guest.
255 */
a32a8813 256 irq = interrupt_pending(cpu, &more);
abd41f03 257 if (irq < LGUEST_IRQS)
a32a8813 258 try_deliver_interrupt(cpu, irq, more);
d7e28ffe 259
2e04ef76
RR
260 /*
261 * Just make absolutely sure the Guest is still alive. One of
262 * those hypercalls could have been fatal, for example.
263 */
382ac6b3 264 if (cpu->lg->dead)
d7e28ffe
RR
265 break;
266
2e04ef76
RR
267 /*
268 * If the Guest asked to be stopped, we sleep. The Guest's
269 * clock timer will wake us.
270 */
66686c2a 271 if (cpu->halted) {
d7e28ffe 272 set_current_state(TASK_INTERRUPTIBLE);
2e04ef76
RR
273 /*
274 * Just before we sleep, make sure no interrupt snuck in
275 * which we should be doing.
276 */
5dac051b 277 if (interrupt_pending(cpu, &more) < LGUEST_IRQS)
abd41f03
RR
278 set_current_state(TASK_RUNNING);
279 else
280 schedule();
d7e28ffe
RR
281 continue;
282 }
283
2e04ef76
RR
284 /*
285 * OK, now we're ready to jump into the Guest. First we put up
286 * the "Do Not Disturb" sign:
287 */
d7e28ffe
RR
288 local_irq_disable();
289
625efab1 290 /* Actually run the Guest until something happens. */
d0953d42 291 lguest_arch_run_guest(cpu);
bff672e6
RR
292
293 /* Now we're ready to be interrupted or moved to other CPUs */
d7e28ffe
RR
294 local_irq_enable();
295
625efab1 296 /* Now we deal with whatever happened to the Guest. */
73044f05 297 lguest_arch_handle_trap(cpu);
d7e28ffe 298 }
625efab1 299
a6bd8e13 300 /* Special case: Guest is 'dead' but wants a reboot. */
382ac6b3 301 if (cpu->lg->dead == ERR_PTR(-ERESTART))
ec04b13f 302 return -ERESTART;
a6bd8e13 303
bff672e6 304 /* The Guest is dead => "No such file or directory" */
d7e28ffe
RR
305 return -ENOENT;
306}
307
bff672e6
RR
308/*H:000
309 * Welcome to the Host!
310 *
311 * By this point your brain has been tickled by the Guest code and numbed by
312 * the Launcher code; prepare for it to be stretched by the Host code. This is
313 * the heart. Let's begin at the initialization routine for the Host's lg
314 * module.
315 */
d7e28ffe
RR
316static int __init init(void)
317{
318 int err;
319
bff672e6 320 /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
b56e3215 321 if (get_kernel_rpl() != 0) {
5c55841d 322 printk("lguest is afraid of being a guest\n");
d7e28ffe
RR
323 return -EPERM;
324 }
325
bff672e6 326 /* First we put the Switcher up in very high virtual memory. */
d7e28ffe
RR
327 err = map_switcher();
328 if (err)
c18acd73 329 goto out;
d7e28ffe 330
c18acd73
RR
331 /* We might need to reserve an interrupt vector. */
332 err = init_interrupts();
333 if (err)
3412b6ae 334 goto unmap;
c18acd73 335
bff672e6 336 /* /dev/lguest needs to be registered. */
d7e28ffe 337 err = lguest_device_init();
c18acd73
RR
338 if (err)
339 goto free_interrupts;
bff672e6 340
625efab1
JS
341 /* Finally we do some architecture-specific setup. */
342 lguest_arch_host_init();
bff672e6
RR
343
344 /* All good! */
d7e28ffe 345 return 0;
c18acd73
RR
346
347free_interrupts:
348 free_interrupts();
c18acd73
RR
349unmap:
350 unmap_switcher();
351out:
352 return err;
d7e28ffe
RR
353}
354
bff672e6 355/* Cleaning up is just the same code, backwards. With a little French. */
d7e28ffe
RR
356static void __exit fini(void)
357{
358 lguest_device_remove();
c18acd73 359 free_interrupts();
d7e28ffe 360 unmap_switcher();
bff672e6 361
625efab1 362 lguest_arch_host_fini();
d7e28ffe 363}
625efab1 364/*:*/
d7e28ffe 365
2e04ef76
RR
366/*
367 * The Host side of lguest can be a module. This is a nice way for people to
368 * play with it.
369 */
d7e28ffe
RR
370module_init(init);
371module_exit(fini);
372MODULE_LICENSE("GPL");
373MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");