lguest: have example Launcher service all devices in separate threads
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / lguest / core.c
CommitLineData
f938d2c8
RR
1/*P:400 This contains run_guest() which actually calls into the Host<->Guest
2 * Switcher and analyzes the return, such as determining if the Guest wants the
a6bd8e13 3 * Host to do something. This file also contains useful helper routines. :*/
d7e28ffe
RR
4#include <linux/module.h>
5#include <linux/stringify.h>
6#include <linux/stddef.h>
7#include <linux/io.h>
8#include <linux/mm.h>
9#include <linux/vmalloc.h>
10#include <linux/cpu.h>
11#include <linux/freezer.h>
625efab1 12#include <linux/highmem.h>
d7e28ffe 13#include <asm/paravirt.h>
d7e28ffe
RR
14#include <asm/pgtable.h>
15#include <asm/uaccess.h>
16#include <asm/poll.h>
d7e28ffe 17#include <asm/asm-offsets.h>
d7e28ffe
RR
18#include "lg.h"
19
d7e28ffe
RR
20
21static struct vm_struct *switcher_vma;
22static struct page **switcher_page;
23
d7e28ffe
RR
24/* This One Big lock protects all inter-guest data structures. */
25DEFINE_MUTEX(lguest_lock);
d7e28ffe 26
bff672e6
RR
27/*H:010 We need to set up the Switcher at a high virtual address. Remember the
28 * Switcher is a few hundred bytes of assembler code which actually changes the
29 * CPU to run the Guest, and then changes back to the Host when a trap or
30 * interrupt happens.
31 *
32 * The Switcher code must be at the same virtual address in the Guest as the
33 * Host since it will be running as the switchover occurs.
34 *
35 * Trying to map memory at a particular address is an unusual thing to do, so
625efab1 36 * it's not a simple one-liner. */
d7e28ffe
RR
37static __init int map_switcher(void)
38{
39 int i, err;
40 struct page **pagep;
41
bff672e6
RR
42 /*
43 * Map the Switcher in to high memory.
44 *
45 * It turns out that if we choose the address 0xFFC00000 (4MB under the
46 * top virtual address), it makes setting up the page tables really
47 * easy.
48 */
49
a6bd8e13
RR
50 /* We allocate an array of struct page pointers. map_vm_area() wants
51 * this, rather than just an array of pages. */
d7e28ffe
RR
52 switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
53 GFP_KERNEL);
54 if (!switcher_page) {
55 err = -ENOMEM;
56 goto out;
57 }
58
bff672e6
RR
59 /* Now we actually allocate the pages. The Guest will see these pages,
60 * so we make sure they're zeroed. */
d7e28ffe
RR
61 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
62 unsigned long addr = get_zeroed_page(GFP_KERNEL);
63 if (!addr) {
64 err = -ENOMEM;
65 goto free_some_pages;
66 }
67 switcher_page[i] = virt_to_page(addr);
68 }
69
f14ae652
RR
70 /* First we check that the Switcher won't overlap the fixmap area at
71 * the top of memory. It's currently nowhere near, but it could have
72 * very strange effects if it ever happened. */
73 if (SWITCHER_ADDR + (TOTAL_SWITCHER_PAGES+1)*PAGE_SIZE > FIXADDR_START){
74 err = -ENOMEM;
75 printk("lguest: mapping switcher would thwack fixmap\n");
76 goto free_pages;
77 }
78
bff672e6
RR
79 /* Now we reserve the "virtual memory area" we want: 0xFFC00000
80 * (SWITCHER_ADDR). We might not get it in theory, but in practice
f14ae652
RR
81 * it's worked so far. The end address needs +1 because __get_vm_area
82 * allocates an extra guard page, so we need space for that. */
d7e28ffe 83 switcher_vma = __get_vm_area(TOTAL_SWITCHER_PAGES * PAGE_SIZE,
f14ae652
RR
84 VM_ALLOC, SWITCHER_ADDR, SWITCHER_ADDR
85 + (TOTAL_SWITCHER_PAGES+1) * PAGE_SIZE);
d7e28ffe
RR
86 if (!switcher_vma) {
87 err = -ENOMEM;
88 printk("lguest: could not map switcher pages high\n");
89 goto free_pages;
90 }
91
bff672e6
RR
92 /* This code actually sets up the pages we've allocated to appear at
93 * SWITCHER_ADDR. map_vm_area() takes the vma we allocated above, the
94 * kind of pages we're mapping (kernel pages), and a pointer to our
95 * array of struct pages. It increments that pointer, but we don't
96 * care. */
d7e28ffe 97 pagep = switcher_page;
ed1dc778 98 err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
d7e28ffe
RR
99 if (err) {
100 printk("lguest: map_vm_area failed: %i\n", err);
101 goto free_vma;
102 }
bff672e6 103
625efab1
JS
104 /* Now the Switcher is mapped at the right address, we can't fail!
105 * Copy in the compiled-in Switcher code (from <arch>_switcher.S). */
d7e28ffe
RR
106 memcpy(switcher_vma->addr, start_switcher_text,
107 end_switcher_text - start_switcher_text);
108
d7e28ffe
RR
109 printk(KERN_INFO "lguest: mapped switcher at %p\n",
110 switcher_vma->addr);
bff672e6 111 /* And we succeeded... */
d7e28ffe
RR
112 return 0;
113
114free_vma:
115 vunmap(switcher_vma->addr);
116free_pages:
117 i = TOTAL_SWITCHER_PAGES;
118free_some_pages:
119 for (--i; i >= 0; i--)
120 __free_pages(switcher_page[i], 0);
121 kfree(switcher_page);
122out:
123 return err;
124}
bff672e6 125/*:*/
d7e28ffe 126
bff672e6
RR
127/* Cleaning up the mapping when the module is unloaded is almost...
128 * too easy. */
d7e28ffe
RR
129static void unmap_switcher(void)
130{
131 unsigned int i;
132
bff672e6 133 /* vunmap() undoes *both* map_vm_area() and __get_vm_area(). */
d7e28ffe 134 vunmap(switcher_vma->addr);
bff672e6 135 /* Now we just need to free the pages we copied the switcher into */
d7e28ffe
RR
136 for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
137 __free_pages(switcher_page[i], 0);
0a707210 138 kfree(switcher_page);
d7e28ffe
RR
139}
140
e1e72965 141/*H:032
dde79789
RR
142 * Dealing With Guest Memory.
143 *
e1e72965
RR
144 * Before we go too much further into the Host, we need to grok the routines
145 * we use to deal with Guest memory.
146 *
dde79789 147 * When the Guest gives us (what it thinks is) a physical address, we can use
3c6b5bfa
RR
148 * the normal copy_from_user() & copy_to_user() on the corresponding place in
149 * the memory region allocated by the Launcher.
dde79789
RR
150 *
151 * But we can't trust the Guest: it might be trying to access the Launcher
152 * code. We have to check that the range is below the pfn_limit the Launcher
153 * gave us. We have to make sure that addr + len doesn't give us a false
154 * positive by overflowing, too. */
df1693ab
MZ
155bool lguest_address_ok(const struct lguest *lg,
156 unsigned long addr, unsigned long len)
d7e28ffe
RR
157{
158 return (addr+len) / PAGE_SIZE < lg->pfn_limit && (addr+len >= addr);
159}
160
2d37f94a
RR
161/* This routine copies memory from the Guest. Here we can see how useful the
162 * kill_lguest() routine we met in the Launcher can be: we return a random
163 * value (all zeroes) instead of needing to return an error. */
382ac6b3 164void __lgread(struct lg_cpu *cpu, void *b, unsigned long addr, unsigned bytes)
d7e28ffe 165{
382ac6b3
GOC
166 if (!lguest_address_ok(cpu->lg, addr, bytes)
167 || copy_from_user(b, cpu->lg->mem_base + addr, bytes) != 0) {
d7e28ffe
RR
168 /* copy_from_user should do this, but as we rely on it... */
169 memset(b, 0, bytes);
382ac6b3 170 kill_guest(cpu, "bad read address %#lx len %u", addr, bytes);
d7e28ffe
RR
171 }
172}
173
a6bd8e13 174/* This is the write (copy into Guest) version. */
382ac6b3 175void __lgwrite(struct lg_cpu *cpu, unsigned long addr, const void *b,
2d37f94a 176 unsigned bytes)
d7e28ffe 177{
382ac6b3
GOC
178 if (!lguest_address_ok(cpu->lg, addr, bytes)
179 || copy_to_user(cpu->lg->mem_base + addr, b, bytes) != 0)
180 kill_guest(cpu, "bad write address %#lx len %u", addr, bytes);
d7e28ffe 181}
2d37f94a 182/*:*/
d7e28ffe 183
bff672e6
RR
184/*H:030 Let's jump straight to the the main loop which runs the Guest.
185 * Remember, this is called by the Launcher reading /dev/lguest, and we keep
186 * going around and around until something interesting happens. */
d0953d42 187int run_guest(struct lg_cpu *cpu, unsigned long __user *user)
d7e28ffe 188{
bff672e6 189 /* We stop running once the Guest is dead. */
382ac6b3 190 while (!cpu->lg->dead) {
abd41f03 191 unsigned int irq;
a32a8813 192 bool more;
abd41f03 193
cc6d4fbc 194 /* First we run any hypercalls the Guest wants done. */
73044f05
GOC
195 if (cpu->hcall)
196 do_hypercalls(cpu);
cc6d4fbc 197
15045275 198 /* It's possible the Guest did a NOTIFY hypercall to the
bff672e6 199 * Launcher, in which case we return from the read() now. */
5e232f4f 200 if (cpu->pending_notify) {
df60aeef
RR
201 if (!send_notify_to_eventfd(cpu)) {
202 if (put_user(cpu->pending_notify, user))
203 return -EFAULT;
204 return sizeof(cpu->pending_notify);
205 }
d7e28ffe
RR
206 }
207
bff672e6 208 /* Check for signals */
d7e28ffe
RR
209 if (signal_pending(current))
210 return -ERESTARTSYS;
211
212 /* If Waker set break_out, return to Launcher. */
66686c2a 213 if (cpu->break_out)
d7e28ffe
RR
214 return -EAGAIN;
215
a6bd8e13
RR
216 /* Check if there are any interrupts which can be delivered now:
217 * if so, this sets up the hander to be executed when we next
218 * run the Guest. */
a32a8813 219 irq = interrupt_pending(cpu, &more);
abd41f03 220 if (irq < LGUEST_IRQS)
a32a8813 221 try_deliver_interrupt(cpu, irq, more);
d7e28ffe 222
bff672e6
RR
223 /* All long-lived kernel loops need to check with this horrible
224 * thing called the freezer. If the Host is trying to suspend,
225 * it stops us. */
d7e28ffe
RR
226 try_to_freeze();
227
bff672e6
RR
228 /* Just make absolutely sure the Guest is still alive. One of
229 * those hypercalls could have been fatal, for example. */
382ac6b3 230 if (cpu->lg->dead)
d7e28ffe
RR
231 break;
232
bff672e6 233 /* If the Guest asked to be stopped, we sleep. The Guest's
72410af9 234 * clock timer or LHREQ_BREAK from the Waker will wake us. */
66686c2a 235 if (cpu->halted) {
d7e28ffe 236 set_current_state(TASK_INTERRUPTIBLE);
abd41f03
RR
237 /* Just before we sleep, make sure nothing snuck in
238 * which we should be doing. */
a32a8813 239 if (interrupt_pending(cpu, &more) < LGUEST_IRQS
abd41f03
RR
240 || cpu->break_out)
241 set_current_state(TASK_RUNNING);
242 else
243 schedule();
d7e28ffe
RR
244 continue;
245 }
246
bff672e6
RR
247 /* OK, now we're ready to jump into the Guest. First we put up
248 * the "Do Not Disturb" sign: */
d7e28ffe
RR
249 local_irq_disable();
250
625efab1 251 /* Actually run the Guest until something happens. */
d0953d42 252 lguest_arch_run_guest(cpu);
bff672e6
RR
253
254 /* Now we're ready to be interrupted or moved to other CPUs */
d7e28ffe
RR
255 local_irq_enable();
256
625efab1 257 /* Now we deal with whatever happened to the Guest. */
73044f05 258 lguest_arch_handle_trap(cpu);
d7e28ffe 259 }
625efab1 260
a6bd8e13 261 /* Special case: Guest is 'dead' but wants a reboot. */
382ac6b3 262 if (cpu->lg->dead == ERR_PTR(-ERESTART))
ec04b13f 263 return -ERESTART;
a6bd8e13 264
bff672e6 265 /* The Guest is dead => "No such file or directory" */
d7e28ffe
RR
266 return -ENOENT;
267}
268
bff672e6
RR
269/*H:000
270 * Welcome to the Host!
271 *
272 * By this point your brain has been tickled by the Guest code and numbed by
273 * the Launcher code; prepare for it to be stretched by the Host code. This is
274 * the heart. Let's begin at the initialization routine for the Host's lg
275 * module.
276 */
d7e28ffe
RR
277static int __init init(void)
278{
279 int err;
280
bff672e6 281 /* Lguest can't run under Xen, VMI or itself. It does Tricky Stuff. */
d7e28ffe 282 if (paravirt_enabled()) {
5c55841d 283 printk("lguest is afraid of being a guest\n");
d7e28ffe
RR
284 return -EPERM;
285 }
286
bff672e6 287 /* First we put the Switcher up in very high virtual memory. */
d7e28ffe
RR
288 err = map_switcher();
289 if (err)
c18acd73 290 goto out;
d7e28ffe 291
bff672e6 292 /* Now we set up the pagetable implementation for the Guests. */
d7e28ffe 293 err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
c18acd73
RR
294 if (err)
295 goto unmap;
bff672e6 296
c18acd73
RR
297 /* We might need to reserve an interrupt vector. */
298 err = init_interrupts();
299 if (err)
300 goto free_pgtables;
301
bff672e6 302 /* /dev/lguest needs to be registered. */
d7e28ffe 303 err = lguest_device_init();
c18acd73
RR
304 if (err)
305 goto free_interrupts;
bff672e6 306
625efab1
JS
307 /* Finally we do some architecture-specific setup. */
308 lguest_arch_host_init();
bff672e6
RR
309
310 /* All good! */
d7e28ffe 311 return 0;
c18acd73
RR
312
313free_interrupts:
314 free_interrupts();
315free_pgtables:
316 free_pagetables();
317unmap:
318 unmap_switcher();
319out:
320 return err;
d7e28ffe
RR
321}
322
bff672e6 323/* Cleaning up is just the same code, backwards. With a little French. */
d7e28ffe
RR
324static void __exit fini(void)
325{
326 lguest_device_remove();
c18acd73 327 free_interrupts();
d7e28ffe
RR
328 free_pagetables();
329 unmap_switcher();
bff672e6 330
625efab1 331 lguest_arch_host_fini();
d7e28ffe 332}
625efab1 333/*:*/
d7e28ffe 334
bff672e6
RR
335/* The Host side of lguest can be a module. This is a nice way for people to
336 * play with it. */
d7e28ffe
RR
337module_init(init);
338module_exit(fini);
339MODULE_LICENSE("GPL");
340MODULE_AUTHOR("Rusty Russell <rusty@rustcorp.com.au>");