block: remove elevator_queue->ops
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
5a0e3ad6 10#include <linux/slab.h>
1cc9be68
AV
11#include <linux/blkdev.h>
12#include <linux/elevator.h>
ad5ebd2f 13#include <linux/jiffies.h>
1da177e4 14#include <linux/rbtree.h>
22e2c507 15#include <linux/ioprio.h>
7b679138 16#include <linux/blktrace_api.h>
6e736be7 17#include "blk.h"
e98ef89b 18#include "cfq.h"
1da177e4
LT
19
20/*
21 * tunables
22 */
fe094d98 23/* max queue in one round of service */
abc3c744 24static const int cfq_quantum = 8;
64100099 25static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
26/* maximum backwards seek, in KiB */
27static const int cfq_back_max = 16 * 1024;
28/* penalty of a backwards seek */
29static const int cfq_back_penalty = 2;
64100099 30static const int cfq_slice_sync = HZ / 10;
3b18152c 31static int cfq_slice_async = HZ / 25;
64100099 32static const int cfq_slice_async_rq = 2;
caaa5f9f 33static int cfq_slice_idle = HZ / 125;
80bdf0c7 34static int cfq_group_idle = HZ / 125;
5db5d642
CZ
35static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
36static const int cfq_hist_divisor = 4;
22e2c507 37
d9e7620e 38/*
0871714e 39 * offset from end of service tree
d9e7620e 40 */
0871714e 41#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
42
43/*
44 * below this threshold, we consider thinktime immediate
45 */
46#define CFQ_MIN_TT (2)
47
22e2c507 48#define CFQ_SLICE_SCALE (5)
45333d5a 49#define CFQ_HW_QUEUE_MIN (5)
25bc6b07 50#define CFQ_SERVICE_SHIFT 12
22e2c507 51
3dde36dd 52#define CFQQ_SEEK_THR (sector_t)(8 * 100)
e9ce335d 53#define CFQQ_CLOSE_THR (sector_t)(8 * 1024)
41647e7a 54#define CFQQ_SECT_THR_NONROT (sector_t)(2 * 32)
3dde36dd 55#define CFQQ_SEEKY(cfqq) (hweight32(cfqq->seek_history) > 32/8)
ae54abed 56
fe094d98 57#define RQ_CIC(rq) \
c186794d
MS
58 ((struct cfq_io_context *) (rq)->elevator_private[0])
59#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private[1])
60#define RQ_CFQG(rq) (struct cfq_group *) ((rq)->elevator_private[2])
1da177e4 61
e18b890b
CL
62static struct kmem_cache *cfq_pool;
63static struct kmem_cache *cfq_ioc_pool;
1da177e4 64
22e2c507
JA
65#define CFQ_PRIO_LISTS IOPRIO_BE_NR
66#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
67#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
68
206dc69b 69#define sample_valid(samples) ((samples) > 80)
1fa8f6d6 70#define rb_entry_cfqg(node) rb_entry((node), struct cfq_group, rb_node)
206dc69b 71
cc09e299
JA
72/*
73 * Most of our rbtree usage is for sorting with min extraction, so
74 * if we cache the leftmost node we don't have to walk down the tree
75 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
76 * move this into the elevator for the rq sorting as well.
77 */
78struct cfq_rb_root {
79 struct rb_root rb;
80 struct rb_node *left;
aa6f6a3d 81 unsigned count;
73e9ffdd 82 unsigned total_weight;
1fa8f6d6 83 u64 min_vdisktime;
f5f2b6ce 84 struct cfq_ttime ttime;
cc09e299 85};
f5f2b6ce
SL
86#define CFQ_RB_ROOT (struct cfq_rb_root) { .rb = RB_ROOT, \
87 .ttime = {.last_end_request = jiffies,},}
cc09e299 88
6118b70b
JA
89/*
90 * Per process-grouping structure
91 */
92struct cfq_queue {
93 /* reference count */
30d7b944 94 int ref;
6118b70b
JA
95 /* various state flags, see below */
96 unsigned int flags;
97 /* parent cfq_data */
98 struct cfq_data *cfqd;
99 /* service_tree member */
100 struct rb_node rb_node;
101 /* service_tree key */
102 unsigned long rb_key;
103 /* prio tree member */
104 struct rb_node p_node;
105 /* prio tree root we belong to, if any */
106 struct rb_root *p_root;
107 /* sorted list of pending requests */
108 struct rb_root sort_list;
109 /* if fifo isn't expired, next request to serve */
110 struct request *next_rq;
111 /* requests queued in sort_list */
112 int queued[2];
113 /* currently allocated requests */
114 int allocated[2];
115 /* fifo list of requests in sort_list */
116 struct list_head fifo;
117
dae739eb
VG
118 /* time when queue got scheduled in to dispatch first request. */
119 unsigned long dispatch_start;
f75edf2d 120 unsigned int allocated_slice;
c4081ba5 121 unsigned int slice_dispatch;
dae739eb
VG
122 /* time when first request from queue completed and slice started. */
123 unsigned long slice_start;
6118b70b
JA
124 unsigned long slice_end;
125 long slice_resid;
6118b70b 126
65299a3b
CH
127 /* pending priority requests */
128 int prio_pending;
6118b70b
JA
129 /* number of requests that are on the dispatch list or inside driver */
130 int dispatched;
131
132 /* io prio of this group */
133 unsigned short ioprio, org_ioprio;
4aede84b 134 unsigned short ioprio_class;
6118b70b 135
c4081ba5
RK
136 pid_t pid;
137
3dde36dd 138 u32 seek_history;
b2c18e1e
JM
139 sector_t last_request_pos;
140
aa6f6a3d 141 struct cfq_rb_root *service_tree;
df5fe3e8 142 struct cfq_queue *new_cfqq;
cdb16e8f 143 struct cfq_group *cfqg;
c4e7893e
VG
144 /* Number of sectors dispatched from queue in single dispatch round */
145 unsigned long nr_sectors;
6118b70b
JA
146};
147
c0324a02 148/*
718eee05 149 * First index in the service_trees.
c0324a02
CZ
150 * IDLE is handled separately, so it has negative index
151 */
152enum wl_prio_t {
c0324a02 153 BE_WORKLOAD = 0,
615f0259
VG
154 RT_WORKLOAD = 1,
155 IDLE_WORKLOAD = 2,
b4627321 156 CFQ_PRIO_NR,
c0324a02
CZ
157};
158
718eee05
CZ
159/*
160 * Second index in the service_trees.
161 */
162enum wl_type_t {
163 ASYNC_WORKLOAD = 0,
164 SYNC_NOIDLE_WORKLOAD = 1,
165 SYNC_WORKLOAD = 2
166};
167
cdb16e8f
VG
168/* This is per cgroup per device grouping structure */
169struct cfq_group {
1fa8f6d6
VG
170 /* group service_tree member */
171 struct rb_node rb_node;
172
173 /* group service_tree key */
174 u64 vdisktime;
25bc6b07 175 unsigned int weight;
8184f93e
JT
176 unsigned int new_weight;
177 bool needs_update;
1fa8f6d6
VG
178
179 /* number of cfqq currently on this group */
180 int nr_cfqq;
181
cdb16e8f 182 /*
4495a7d4 183 * Per group busy queues average. Useful for workload slice calc. We
b4627321
VG
184 * create the array for each prio class but at run time it is used
185 * only for RT and BE class and slot for IDLE class remains unused.
186 * This is primarily done to avoid confusion and a gcc warning.
187 */
188 unsigned int busy_queues_avg[CFQ_PRIO_NR];
189 /*
190 * rr lists of queues with requests. We maintain service trees for
191 * RT and BE classes. These trees are subdivided in subclasses
192 * of SYNC, SYNC_NOIDLE and ASYNC based on workload type. For IDLE
193 * class there is no subclassification and all the cfq queues go on
194 * a single tree service_tree_idle.
cdb16e8f
VG
195 * Counts are embedded in the cfq_rb_root
196 */
197 struct cfq_rb_root service_trees[2][3];
198 struct cfq_rb_root service_tree_idle;
dae739eb
VG
199
200 unsigned long saved_workload_slice;
201 enum wl_type_t saved_workload;
202 enum wl_prio_t saved_serving_prio;
25fb5169
VG
203 struct blkio_group blkg;
204#ifdef CONFIG_CFQ_GROUP_IOSCHED
205 struct hlist_node cfqd_node;
329a6781 206 int ref;
25fb5169 207#endif
80bdf0c7
VG
208 /* number of requests that are on the dispatch list or inside driver */
209 int dispatched;
7700fc4f 210 struct cfq_ttime ttime;
cdb16e8f 211};
718eee05 212
22e2c507
JA
213/*
214 * Per block device queue structure
215 */
1da177e4 216struct cfq_data {
165125e1 217 struct request_queue *queue;
1fa8f6d6
VG
218 /* Root service tree for cfq_groups */
219 struct cfq_rb_root grp_service_tree;
cdb16e8f 220 struct cfq_group root_group;
22e2c507 221
c0324a02
CZ
222 /*
223 * The priority currently being served
22e2c507 224 */
c0324a02 225 enum wl_prio_t serving_prio;
718eee05
CZ
226 enum wl_type_t serving_type;
227 unsigned long workload_expires;
cdb16e8f 228 struct cfq_group *serving_group;
a36e71f9
JA
229
230 /*
231 * Each priority tree is sorted by next_request position. These
232 * trees are used when determining if two or more queues are
233 * interleaving requests (see cfq_close_cooperator).
234 */
235 struct rb_root prio_trees[CFQ_PRIO_LISTS];
236
22e2c507 237 unsigned int busy_queues;
ef8a41df 238 unsigned int busy_sync_queues;
22e2c507 239
53c583d2
CZ
240 int rq_in_driver;
241 int rq_in_flight[2];
45333d5a
AC
242
243 /*
244 * queue-depth detection
245 */
246 int rq_queued;
25776e35 247 int hw_tag;
e459dd08
CZ
248 /*
249 * hw_tag can be
250 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
251 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
252 * 0 => no NCQ
253 */
254 int hw_tag_est_depth;
255 unsigned int hw_tag_samples;
1da177e4 256
22e2c507
JA
257 /*
258 * idle window management
259 */
260 struct timer_list idle_slice_timer;
23e018a1 261 struct work_struct unplug_work;
1da177e4 262
22e2c507
JA
263 struct cfq_queue *active_queue;
264 struct cfq_io_context *active_cic;
22e2c507 265
c2dea2d1
VT
266 /*
267 * async queue for each priority case
268 */
269 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
270 struct cfq_queue *async_idle_cfqq;
15c31be4 271
6d048f53 272 sector_t last_position;
1da177e4 273
1da177e4
LT
274 /*
275 * tunables, see top of file
276 */
277 unsigned int cfq_quantum;
22e2c507 278 unsigned int cfq_fifo_expire[2];
1da177e4
LT
279 unsigned int cfq_back_penalty;
280 unsigned int cfq_back_max;
22e2c507
JA
281 unsigned int cfq_slice[2];
282 unsigned int cfq_slice_async_rq;
283 unsigned int cfq_slice_idle;
80bdf0c7 284 unsigned int cfq_group_idle;
963b72fc 285 unsigned int cfq_latency;
d9ff4187
AV
286
287 struct list_head cic_list;
1da177e4 288
6118b70b
JA
289 /*
290 * Fallback dummy cfqq for extreme OOM conditions
291 */
292 struct cfq_queue oom_cfqq;
365722bb 293
573412b2 294 unsigned long last_delayed_sync;
25fb5169
VG
295
296 /* List of cfq groups being managed on this device*/
297 struct hlist_head cfqg_list;
56edf7d7
VG
298
299 /* Number of groups which are on blkcg->blkg_list */
300 unsigned int nr_blkcg_linked_grps;
1da177e4
LT
301};
302
25fb5169
VG
303static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd);
304
cdb16e8f
VG
305static struct cfq_rb_root *service_tree_for(struct cfq_group *cfqg,
306 enum wl_prio_t prio,
65b32a57 307 enum wl_type_t type)
c0324a02 308{
1fa8f6d6
VG
309 if (!cfqg)
310 return NULL;
311
c0324a02 312 if (prio == IDLE_WORKLOAD)
cdb16e8f 313 return &cfqg->service_tree_idle;
c0324a02 314
cdb16e8f 315 return &cfqg->service_trees[prio][type];
c0324a02
CZ
316}
317
3b18152c 318enum cfqq_state_flags {
b0b8d749
JA
319 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
320 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 321 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 322 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
323 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
324 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
325 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 326 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 327 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 328 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
ae54abed 329 CFQ_CFQQ_FLAG_split_coop, /* shared cfqq will be splitted */
76280aff 330 CFQ_CFQQ_FLAG_deep, /* sync cfqq experienced large depth */
f75edf2d 331 CFQ_CFQQ_FLAG_wait_busy, /* Waiting for next request */
3b18152c
JA
332};
333
334#define CFQ_CFQQ_FNS(name) \
335static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
336{ \
fe094d98 337 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
338} \
339static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
340{ \
fe094d98 341 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
342} \
343static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
344{ \
fe094d98 345 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
346}
347
348CFQ_CFQQ_FNS(on_rr);
349CFQ_CFQQ_FNS(wait_request);
b029195d 350CFQ_CFQQ_FNS(must_dispatch);
3b18152c 351CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
352CFQ_CFQQ_FNS(fifo_expire);
353CFQ_CFQQ_FNS(idle_window);
354CFQ_CFQQ_FNS(prio_changed);
44f7c160 355CFQ_CFQQ_FNS(slice_new);
91fac317 356CFQ_CFQQ_FNS(sync);
a36e71f9 357CFQ_CFQQ_FNS(coop);
ae54abed 358CFQ_CFQQ_FNS(split_coop);
76280aff 359CFQ_CFQQ_FNS(deep);
f75edf2d 360CFQ_CFQQ_FNS(wait_busy);
3b18152c
JA
361#undef CFQ_CFQQ_FNS
362
afc24d49 363#ifdef CONFIG_CFQ_GROUP_IOSCHED
2868ef7b
VG
364#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
365 blk_add_trace_msg((cfqd)->queue, "cfq%d%c %s " fmt, (cfqq)->pid, \
366 cfq_cfqq_sync((cfqq)) ? 'S' : 'A', \
4495a7d4 367 blkg_path(&(cfqq)->cfqg->blkg), ##args)
2868ef7b
VG
368
369#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) \
370 blk_add_trace_msg((cfqd)->queue, "%s " fmt, \
4495a7d4 371 blkg_path(&(cfqg)->blkg), ##args) \
2868ef7b
VG
372
373#else
7b679138
JA
374#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
375 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
4495a7d4 376#define cfq_log_cfqg(cfqd, cfqg, fmt, args...) do {} while (0)
2868ef7b 377#endif
7b679138
JA
378#define cfq_log(cfqd, fmt, args...) \
379 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
380
615f0259
VG
381/* Traverses through cfq group service trees */
382#define for_each_cfqg_st(cfqg, i, j, st) \
383 for (i = 0; i <= IDLE_WORKLOAD; i++) \
384 for (j = 0, st = i < IDLE_WORKLOAD ? &cfqg->service_trees[i][j]\
385 : &cfqg->service_tree_idle; \
386 (i < IDLE_WORKLOAD && j <= SYNC_WORKLOAD) || \
387 (i == IDLE_WORKLOAD && j == 0); \
388 j++, st = i < IDLE_WORKLOAD ? \
389 &cfqg->service_trees[i][j]: NULL) \
390
f5f2b6ce
SL
391static inline bool cfq_io_thinktime_big(struct cfq_data *cfqd,
392 struct cfq_ttime *ttime, bool group_idle)
393{
394 unsigned long slice;
395 if (!sample_valid(ttime->ttime_samples))
396 return false;
397 if (group_idle)
398 slice = cfqd->cfq_group_idle;
399 else
400 slice = cfqd->cfq_slice_idle;
401 return ttime->ttime_mean > slice;
402}
615f0259 403
02b35081
VG
404static inline bool iops_mode(struct cfq_data *cfqd)
405{
406 /*
407 * If we are not idling on queues and it is a NCQ drive, parallel
408 * execution of requests is on and measuring time is not possible
409 * in most of the cases until and unless we drive shallower queue
410 * depths and that becomes a performance bottleneck. In such cases
411 * switch to start providing fairness in terms of number of IOs.
412 */
413 if (!cfqd->cfq_slice_idle && cfqd->hw_tag)
414 return true;
415 else
416 return false;
417}
418
c0324a02
CZ
419static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
420{
421 if (cfq_class_idle(cfqq))
422 return IDLE_WORKLOAD;
423 if (cfq_class_rt(cfqq))
424 return RT_WORKLOAD;
425 return BE_WORKLOAD;
426}
427
718eee05
CZ
428
429static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
430{
431 if (!cfq_cfqq_sync(cfqq))
432 return ASYNC_WORKLOAD;
433 if (!cfq_cfqq_idle_window(cfqq))
434 return SYNC_NOIDLE_WORKLOAD;
435 return SYNC_WORKLOAD;
436}
437
58ff82f3
VG
438static inline int cfq_group_busy_queues_wl(enum wl_prio_t wl,
439 struct cfq_data *cfqd,
440 struct cfq_group *cfqg)
c0324a02
CZ
441{
442 if (wl == IDLE_WORKLOAD)
cdb16e8f 443 return cfqg->service_tree_idle.count;
c0324a02 444
cdb16e8f
VG
445 return cfqg->service_trees[wl][ASYNC_WORKLOAD].count
446 + cfqg->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
447 + cfqg->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
448}
449
f26bd1f0
VG
450static inline int cfqg_busy_async_queues(struct cfq_data *cfqd,
451 struct cfq_group *cfqg)
452{
453 return cfqg->service_trees[RT_WORKLOAD][ASYNC_WORKLOAD].count
454 + cfqg->service_trees[BE_WORKLOAD][ASYNC_WORKLOAD].count;
455}
456
165125e1 457static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 458static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 459 struct io_context *, gfp_t);
4ac845a2 460static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
461 struct io_context *);
462
463static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 464 bool is_sync)
91fac317 465{
a6151c3a 466 return cic->cfqq[is_sync];
91fac317
VT
467}
468
469static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 470 struct cfq_queue *cfqq, bool is_sync)
91fac317 471{
a6151c3a 472 cic->cfqq[is_sync] = cfqq;
91fac317
VT
473}
474
bca4b914
KK
475static inline struct cfq_data *cic_to_cfqd(struct cfq_io_context *cic)
476{
1238033c 477 return cic->q->elevator->elevator_data;
bca4b914
KK
478}
479
91fac317
VT
480/*
481 * We regard a request as SYNC, if it's either a read or has the SYNC bit
482 * set (in which case it could also be direct WRITE).
483 */
a6151c3a 484static inline bool cfq_bio_sync(struct bio *bio)
91fac317 485{
7b6d91da 486 return bio_data_dir(bio) == READ || (bio->bi_rw & REQ_SYNC);
91fac317 487}
1da177e4 488
99f95e52
AM
489/*
490 * scheduler run of queue, if there are requests pending and no one in the
491 * driver that will restart queueing
492 */
23e018a1 493static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 494{
7b679138
JA
495 if (cfqd->busy_queues) {
496 cfq_log(cfqd, "schedule dispatch");
23e018a1 497 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 498 }
99f95e52
AM
499}
500
44f7c160
JA
501/*
502 * Scale schedule slice based on io priority. Use the sync time slice only
503 * if a queue is marked sync and has sync io queued. A sync queue with async
504 * io only, should not get full sync slice length.
505 */
a6151c3a 506static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 507 unsigned short prio)
44f7c160 508{
d9e7620e 509 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 510
d9e7620e
JA
511 WARN_ON(prio >= IOPRIO_BE_NR);
512
513 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
514}
44f7c160 515
d9e7620e
JA
516static inline int
517cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
518{
519 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
520}
521
25bc6b07
VG
522static inline u64 cfq_scale_slice(unsigned long delta, struct cfq_group *cfqg)
523{
524 u64 d = delta << CFQ_SERVICE_SHIFT;
525
526 d = d * BLKIO_WEIGHT_DEFAULT;
527 do_div(d, cfqg->weight);
528 return d;
529}
530
531static inline u64 max_vdisktime(u64 min_vdisktime, u64 vdisktime)
532{
533 s64 delta = (s64)(vdisktime - min_vdisktime);
534 if (delta > 0)
535 min_vdisktime = vdisktime;
536
537 return min_vdisktime;
538}
539
540static inline u64 min_vdisktime(u64 min_vdisktime, u64 vdisktime)
541{
542 s64 delta = (s64)(vdisktime - min_vdisktime);
543 if (delta < 0)
544 min_vdisktime = vdisktime;
545
546 return min_vdisktime;
547}
548
549static void update_min_vdisktime(struct cfq_rb_root *st)
550{
25bc6b07
VG
551 struct cfq_group *cfqg;
552
25bc6b07
VG
553 if (st->left) {
554 cfqg = rb_entry_cfqg(st->left);
a6032710
GJ
555 st->min_vdisktime = max_vdisktime(st->min_vdisktime,
556 cfqg->vdisktime);
25bc6b07 557 }
25bc6b07
VG
558}
559
5db5d642
CZ
560/*
561 * get averaged number of queues of RT/BE priority.
562 * average is updated, with a formula that gives more weight to higher numbers,
563 * to quickly follows sudden increases and decrease slowly
564 */
565
58ff82f3
VG
566static inline unsigned cfq_group_get_avg_queues(struct cfq_data *cfqd,
567 struct cfq_group *cfqg, bool rt)
5869619c 568{
5db5d642
CZ
569 unsigned min_q, max_q;
570 unsigned mult = cfq_hist_divisor - 1;
571 unsigned round = cfq_hist_divisor / 2;
58ff82f3 572 unsigned busy = cfq_group_busy_queues_wl(rt, cfqd, cfqg);
5db5d642 573
58ff82f3
VG
574 min_q = min(cfqg->busy_queues_avg[rt], busy);
575 max_q = max(cfqg->busy_queues_avg[rt], busy);
576 cfqg->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
5db5d642 577 cfq_hist_divisor;
58ff82f3
VG
578 return cfqg->busy_queues_avg[rt];
579}
580
581static inline unsigned
582cfq_group_slice(struct cfq_data *cfqd, struct cfq_group *cfqg)
583{
584 struct cfq_rb_root *st = &cfqd->grp_service_tree;
585
586 return cfq_target_latency * cfqg->weight / st->total_weight;
5db5d642
CZ
587}
588
c553f8e3 589static inline unsigned
ba5bd520 590cfq_scaled_cfqq_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
44f7c160 591{
5db5d642
CZ
592 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
593 if (cfqd->cfq_latency) {
58ff82f3
VG
594 /*
595 * interested queues (we consider only the ones with the same
596 * priority class in the cfq group)
597 */
598 unsigned iq = cfq_group_get_avg_queues(cfqd, cfqq->cfqg,
599 cfq_class_rt(cfqq));
5db5d642
CZ
600 unsigned sync_slice = cfqd->cfq_slice[1];
601 unsigned expect_latency = sync_slice * iq;
58ff82f3
VG
602 unsigned group_slice = cfq_group_slice(cfqd, cfqq->cfqg);
603
604 if (expect_latency > group_slice) {
5db5d642
CZ
605 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
606 /* scale low_slice according to IO priority
607 * and sync vs async */
608 unsigned low_slice =
609 min(slice, base_low_slice * slice / sync_slice);
610 /* the adapted slice value is scaled to fit all iqs
611 * into the target latency */
58ff82f3 612 slice = max(slice * group_slice / expect_latency,
5db5d642
CZ
613 low_slice);
614 }
615 }
c553f8e3
SL
616 return slice;
617}
618
619static inline void
620cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
621{
ba5bd520 622 unsigned slice = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3 623
dae739eb 624 cfqq->slice_start = jiffies;
5db5d642 625 cfqq->slice_end = jiffies + slice;
f75edf2d 626 cfqq->allocated_slice = slice;
7b679138 627 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
628}
629
630/*
631 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
632 * isn't valid until the first request from the dispatch is activated
633 * and the slice time set.
634 */
a6151c3a 635static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
636{
637 if (cfq_cfqq_slice_new(cfqq))
c1e44756 638 return false;
44f7c160 639 if (time_before(jiffies, cfqq->slice_end))
c1e44756 640 return false;
44f7c160 641
c1e44756 642 return true;
44f7c160
JA
643}
644
1da177e4 645/*
5e705374 646 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 647 * We choose the request that is closest to the head right now. Distance
e8a99053 648 * behind the head is penalized and only allowed to a certain extent.
1da177e4 649 */
5e705374 650static struct request *
cf7c25cf 651cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 652{
cf7c25cf 653 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 654 unsigned long back_max;
e8a99053
AM
655#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
656#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
657 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 658
5e705374
JA
659 if (rq1 == NULL || rq1 == rq2)
660 return rq2;
661 if (rq2 == NULL)
662 return rq1;
9c2c38a1 663
229836bd
NK
664 if (rq_is_sync(rq1) != rq_is_sync(rq2))
665 return rq_is_sync(rq1) ? rq1 : rq2;
666
65299a3b
CH
667 if ((rq1->cmd_flags ^ rq2->cmd_flags) & REQ_PRIO)
668 return rq1->cmd_flags & REQ_PRIO ? rq1 : rq2;
b53d1ed7 669
83096ebf
TH
670 s1 = blk_rq_pos(rq1);
671 s2 = blk_rq_pos(rq2);
1da177e4 672
1da177e4
LT
673 /*
674 * by definition, 1KiB is 2 sectors
675 */
676 back_max = cfqd->cfq_back_max * 2;
677
678 /*
679 * Strict one way elevator _except_ in the case where we allow
680 * short backward seeks which are biased as twice the cost of a
681 * similar forward seek.
682 */
683 if (s1 >= last)
684 d1 = s1 - last;
685 else if (s1 + back_max >= last)
686 d1 = (last - s1) * cfqd->cfq_back_penalty;
687 else
e8a99053 688 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
689
690 if (s2 >= last)
691 d2 = s2 - last;
692 else if (s2 + back_max >= last)
693 d2 = (last - s2) * cfqd->cfq_back_penalty;
694 else
e8a99053 695 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
696
697 /* Found required data */
e8a99053
AM
698
699 /*
700 * By doing switch() on the bit mask "wrap" we avoid having to
701 * check two variables for all permutations: --> faster!
702 */
703 switch (wrap) {
5e705374 704 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 705 if (d1 < d2)
5e705374 706 return rq1;
e8a99053 707 else if (d2 < d1)
5e705374 708 return rq2;
e8a99053
AM
709 else {
710 if (s1 >= s2)
5e705374 711 return rq1;
e8a99053 712 else
5e705374 713 return rq2;
e8a99053 714 }
1da177e4 715
e8a99053 716 case CFQ_RQ2_WRAP:
5e705374 717 return rq1;
e8a99053 718 case CFQ_RQ1_WRAP:
5e705374
JA
719 return rq2;
720 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
721 default:
722 /*
723 * Since both rqs are wrapped,
724 * start with the one that's further behind head
725 * (--> only *one* back seek required),
726 * since back seek takes more time than forward.
727 */
728 if (s1 <= s2)
5e705374 729 return rq1;
1da177e4 730 else
5e705374 731 return rq2;
1da177e4
LT
732 }
733}
734
498d3aa2
JA
735/*
736 * The below is leftmost cache rbtree addon
737 */
0871714e 738static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299 739{
615f0259
VG
740 /* Service tree is empty */
741 if (!root->count)
742 return NULL;
743
cc09e299
JA
744 if (!root->left)
745 root->left = rb_first(&root->rb);
746
0871714e
JA
747 if (root->left)
748 return rb_entry(root->left, struct cfq_queue, rb_node);
749
750 return NULL;
cc09e299
JA
751}
752
1fa8f6d6
VG
753static struct cfq_group *cfq_rb_first_group(struct cfq_rb_root *root)
754{
755 if (!root->left)
756 root->left = rb_first(&root->rb);
757
758 if (root->left)
759 return rb_entry_cfqg(root->left);
760
761 return NULL;
762}
763
a36e71f9
JA
764static void rb_erase_init(struct rb_node *n, struct rb_root *root)
765{
766 rb_erase(n, root);
767 RB_CLEAR_NODE(n);
768}
769
cc09e299
JA
770static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
771{
772 if (root->left == n)
773 root->left = NULL;
a36e71f9 774 rb_erase_init(n, &root->rb);
aa6f6a3d 775 --root->count;
cc09e299
JA
776}
777
1da177e4
LT
778/*
779 * would be nice to take fifo expire time into account as well
780 */
5e705374
JA
781static struct request *
782cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
783 struct request *last)
1da177e4 784{
21183b07
JA
785 struct rb_node *rbnext = rb_next(&last->rb_node);
786 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 787 struct request *next = NULL, *prev = NULL;
1da177e4 788
21183b07 789 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
790
791 if (rbprev)
5e705374 792 prev = rb_entry_rq(rbprev);
1da177e4 793
21183b07 794 if (rbnext)
5e705374 795 next = rb_entry_rq(rbnext);
21183b07
JA
796 else {
797 rbnext = rb_first(&cfqq->sort_list);
798 if (rbnext && rbnext != &last->rb_node)
5e705374 799 next = rb_entry_rq(rbnext);
21183b07 800 }
1da177e4 801
cf7c25cf 802 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
803}
804
d9e7620e
JA
805static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
806 struct cfq_queue *cfqq)
1da177e4 807{
d9e7620e
JA
808 /*
809 * just an approximation, should be ok.
810 */
cdb16e8f 811 return (cfqq->cfqg->nr_cfqq - 1) * (cfq_prio_slice(cfqd, 1, 0) -
464191c6 812 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
813}
814
1fa8f6d6
VG
815static inline s64
816cfqg_key(struct cfq_rb_root *st, struct cfq_group *cfqg)
817{
818 return cfqg->vdisktime - st->min_vdisktime;
819}
820
821static void
822__cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
823{
824 struct rb_node **node = &st->rb.rb_node;
825 struct rb_node *parent = NULL;
826 struct cfq_group *__cfqg;
827 s64 key = cfqg_key(st, cfqg);
828 int left = 1;
829
830 while (*node != NULL) {
831 parent = *node;
832 __cfqg = rb_entry_cfqg(parent);
833
834 if (key < cfqg_key(st, __cfqg))
835 node = &parent->rb_left;
836 else {
837 node = &parent->rb_right;
838 left = 0;
839 }
840 }
841
842 if (left)
843 st->left = &cfqg->rb_node;
844
845 rb_link_node(&cfqg->rb_node, parent, node);
846 rb_insert_color(&cfqg->rb_node, &st->rb);
847}
848
849static void
8184f93e
JT
850cfq_update_group_weight(struct cfq_group *cfqg)
851{
852 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
853 if (cfqg->needs_update) {
854 cfqg->weight = cfqg->new_weight;
855 cfqg->needs_update = false;
856 }
857}
858
859static void
860cfq_group_service_tree_add(struct cfq_rb_root *st, struct cfq_group *cfqg)
861{
862 BUG_ON(!RB_EMPTY_NODE(&cfqg->rb_node));
863
864 cfq_update_group_weight(cfqg);
865 __cfq_group_service_tree_add(st, cfqg);
866 st->total_weight += cfqg->weight;
867}
868
869static void
870cfq_group_notify_queue_add(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
871{
872 struct cfq_rb_root *st = &cfqd->grp_service_tree;
873 struct cfq_group *__cfqg;
874 struct rb_node *n;
875
876 cfqg->nr_cfqq++;
760701bf 877 if (!RB_EMPTY_NODE(&cfqg->rb_node))
1fa8f6d6
VG
878 return;
879
880 /*
881 * Currently put the group at the end. Later implement something
882 * so that groups get lesser vtime based on their weights, so that
25985edc 883 * if group does not loose all if it was not continuously backlogged.
1fa8f6d6
VG
884 */
885 n = rb_last(&st->rb);
886 if (n) {
887 __cfqg = rb_entry_cfqg(n);
888 cfqg->vdisktime = __cfqg->vdisktime + CFQ_IDLE_DELAY;
889 } else
890 cfqg->vdisktime = st->min_vdisktime;
8184f93e
JT
891 cfq_group_service_tree_add(st, cfqg);
892}
1fa8f6d6 893
8184f93e
JT
894static void
895cfq_group_service_tree_del(struct cfq_rb_root *st, struct cfq_group *cfqg)
896{
897 st->total_weight -= cfqg->weight;
898 if (!RB_EMPTY_NODE(&cfqg->rb_node))
899 cfq_rb_erase(&cfqg->rb_node, st);
1fa8f6d6
VG
900}
901
902static void
8184f93e 903cfq_group_notify_queue_del(struct cfq_data *cfqd, struct cfq_group *cfqg)
1fa8f6d6
VG
904{
905 struct cfq_rb_root *st = &cfqd->grp_service_tree;
906
907 BUG_ON(cfqg->nr_cfqq < 1);
908 cfqg->nr_cfqq--;
25bc6b07 909
1fa8f6d6
VG
910 /* If there are other cfq queues under this group, don't delete it */
911 if (cfqg->nr_cfqq)
912 return;
913
2868ef7b 914 cfq_log_cfqg(cfqd, cfqg, "del_from_rr group");
8184f93e 915 cfq_group_service_tree_del(st, cfqg);
dae739eb 916 cfqg->saved_workload_slice = 0;
e98ef89b 917 cfq_blkiocg_update_dequeue_stats(&cfqg->blkg, 1);
dae739eb
VG
918}
919
167400d3
JT
920static inline unsigned int cfq_cfqq_slice_usage(struct cfq_queue *cfqq,
921 unsigned int *unaccounted_time)
dae739eb 922{
f75edf2d 923 unsigned int slice_used;
dae739eb
VG
924
925 /*
926 * Queue got expired before even a single request completed or
927 * got expired immediately after first request completion.
928 */
929 if (!cfqq->slice_start || cfqq->slice_start == jiffies) {
930 /*
931 * Also charge the seek time incurred to the group, otherwise
932 * if there are mutiple queues in the group, each can dispatch
933 * a single request on seeky media and cause lots of seek time
934 * and group will never know it.
935 */
936 slice_used = max_t(unsigned, (jiffies - cfqq->dispatch_start),
937 1);
938 } else {
939 slice_used = jiffies - cfqq->slice_start;
167400d3
JT
940 if (slice_used > cfqq->allocated_slice) {
941 *unaccounted_time = slice_used - cfqq->allocated_slice;
f75edf2d 942 slice_used = cfqq->allocated_slice;
167400d3
JT
943 }
944 if (time_after(cfqq->slice_start, cfqq->dispatch_start))
945 *unaccounted_time += cfqq->slice_start -
946 cfqq->dispatch_start;
dae739eb
VG
947 }
948
dae739eb
VG
949 return slice_used;
950}
951
952static void cfq_group_served(struct cfq_data *cfqd, struct cfq_group *cfqg,
e5ff082e 953 struct cfq_queue *cfqq)
dae739eb
VG
954{
955 struct cfq_rb_root *st = &cfqd->grp_service_tree;
167400d3 956 unsigned int used_sl, charge, unaccounted_sl = 0;
f26bd1f0
VG
957 int nr_sync = cfqg->nr_cfqq - cfqg_busy_async_queues(cfqd, cfqg)
958 - cfqg->service_tree_idle.count;
959
960 BUG_ON(nr_sync < 0);
167400d3 961 used_sl = charge = cfq_cfqq_slice_usage(cfqq, &unaccounted_sl);
dae739eb 962
02b35081
VG
963 if (iops_mode(cfqd))
964 charge = cfqq->slice_dispatch;
965 else if (!cfq_cfqq_sync(cfqq) && !nr_sync)
966 charge = cfqq->allocated_slice;
dae739eb
VG
967
968 /* Can't update vdisktime while group is on service tree */
8184f93e 969 cfq_group_service_tree_del(st, cfqg);
02b35081 970 cfqg->vdisktime += cfq_scale_slice(charge, cfqg);
8184f93e
JT
971 /* If a new weight was requested, update now, off tree */
972 cfq_group_service_tree_add(st, cfqg);
dae739eb
VG
973
974 /* This group is being expired. Save the context */
975 if (time_after(cfqd->workload_expires, jiffies)) {
976 cfqg->saved_workload_slice = cfqd->workload_expires
977 - jiffies;
978 cfqg->saved_workload = cfqd->serving_type;
979 cfqg->saved_serving_prio = cfqd->serving_prio;
980 } else
981 cfqg->saved_workload_slice = 0;
2868ef7b
VG
982
983 cfq_log_cfqg(cfqd, cfqg, "served: vt=%llu min_vt=%llu", cfqg->vdisktime,
984 st->min_vdisktime);
fd16d263
JP
985 cfq_log_cfqq(cfqq->cfqd, cfqq,
986 "sl_used=%u disp=%u charge=%u iops=%u sect=%lu",
987 used_sl, cfqq->slice_dispatch, charge,
988 iops_mode(cfqd), cfqq->nr_sectors);
167400d3
JT
989 cfq_blkiocg_update_timeslice_used(&cfqg->blkg, used_sl,
990 unaccounted_sl);
e98ef89b 991 cfq_blkiocg_set_start_empty_time(&cfqg->blkg);
1fa8f6d6
VG
992}
993
25fb5169
VG
994#ifdef CONFIG_CFQ_GROUP_IOSCHED
995static inline struct cfq_group *cfqg_of_blkg(struct blkio_group *blkg)
996{
997 if (blkg)
998 return container_of(blkg, struct cfq_group, blkg);
999 return NULL;
1000}
1001
8aea4545
PB
1002static void cfq_update_blkio_group_weight(void *key, struct blkio_group *blkg,
1003 unsigned int weight)
f8d461d6 1004{
8184f93e
JT
1005 struct cfq_group *cfqg = cfqg_of_blkg(blkg);
1006 cfqg->new_weight = weight;
1007 cfqg->needs_update = true;
f8d461d6
VG
1008}
1009
f469a7b4
VG
1010static void cfq_init_add_cfqg_lists(struct cfq_data *cfqd,
1011 struct cfq_group *cfqg, struct blkio_cgroup *blkcg)
25fb5169 1012{
22084190
VG
1013 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1014 unsigned int major, minor;
25fb5169 1015
f469a7b4
VG
1016 /*
1017 * Add group onto cgroup list. It might happen that bdi->dev is
1018 * not initialized yet. Initialize this new group without major
1019 * and minor info and this info will be filled in once a new thread
1020 * comes for IO.
1021 */
1022 if (bdi->dev) {
a74b2ada 1023 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
f469a7b4
VG
1024 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1025 (void *)cfqd, MKDEV(major, minor));
1026 } else
1027 cfq_blkiocg_add_blkio_group(blkcg, &cfqg->blkg,
1028 (void *)cfqd, 0);
1029
1030 cfqd->nr_blkcg_linked_grps++;
1031 cfqg->weight = blkcg_get_weight(blkcg, cfqg->blkg.dev);
1032
1033 /* Add group on cfqd list */
1034 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
1035}
1036
1037/*
1038 * Should be called from sleepable context. No request queue lock as per
1039 * cpu stats are allocated dynamically and alloc_percpu needs to be called
1040 * from sleepable context.
1041 */
1042static struct cfq_group * cfq_alloc_cfqg(struct cfq_data *cfqd)
1043{
1044 struct cfq_group *cfqg = NULL;
5624a4e4 1045 int i, j, ret;
f469a7b4 1046 struct cfq_rb_root *st;
25fb5169
VG
1047
1048 cfqg = kzalloc_node(sizeof(*cfqg), GFP_ATOMIC, cfqd->queue->node);
1049 if (!cfqg)
f469a7b4 1050 return NULL;
25fb5169 1051
25fb5169
VG
1052 for_each_cfqg_st(cfqg, i, j, st)
1053 *st = CFQ_RB_ROOT;
1054 RB_CLEAR_NODE(&cfqg->rb_node);
1055
7700fc4f
SL
1056 cfqg->ttime.last_end_request = jiffies;
1057
b1c35769
VG
1058 /*
1059 * Take the initial reference that will be released on destroy
1060 * This can be thought of a joint reference by cgroup and
1061 * elevator which will be dropped by either elevator exit
1062 * or cgroup deletion path depending on who is exiting first.
1063 */
329a6781 1064 cfqg->ref = 1;
5624a4e4
VG
1065
1066 ret = blkio_alloc_blkg_stats(&cfqg->blkg);
1067 if (ret) {
1068 kfree(cfqg);
1069 return NULL;
1070 }
1071
f469a7b4
VG
1072 return cfqg;
1073}
1074
1075static struct cfq_group *
1076cfq_find_cfqg(struct cfq_data *cfqd, struct blkio_cgroup *blkcg)
1077{
1078 struct cfq_group *cfqg = NULL;
1079 void *key = cfqd;
1080 struct backing_dev_info *bdi = &cfqd->queue->backing_dev_info;
1081 unsigned int major, minor;
b1c35769 1082
180be2a0 1083 /*
f469a7b4
VG
1084 * This is the common case when there are no blkio cgroups.
1085 * Avoid lookup in this case
180be2a0 1086 */
f469a7b4
VG
1087 if (blkcg == &blkio_root_cgroup)
1088 cfqg = &cfqd->root_group;
1089 else
1090 cfqg = cfqg_of_blkg(blkiocg_lookup_group(blkcg, key));
25fb5169 1091
f469a7b4
VG
1092 if (cfqg && !cfqg->blkg.dev && bdi->dev && dev_name(bdi->dev)) {
1093 sscanf(dev_name(bdi->dev), "%u:%u", &major, &minor);
1094 cfqg->blkg.dev = MKDEV(major, minor);
1095 }
25fb5169 1096
25fb5169
VG
1097 return cfqg;
1098}
1099
1100/*
3e59cf9d
VG
1101 * Search for the cfq group current task belongs to. request_queue lock must
1102 * be held.
25fb5169 1103 */
3e59cf9d 1104static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169 1105{
70087dc3 1106 struct blkio_cgroup *blkcg;
f469a7b4
VG
1107 struct cfq_group *cfqg = NULL, *__cfqg = NULL;
1108 struct request_queue *q = cfqd->queue;
25fb5169
VG
1109
1110 rcu_read_lock();
70087dc3 1111 blkcg = task_blkio_cgroup(current);
f469a7b4
VG
1112 cfqg = cfq_find_cfqg(cfqd, blkcg);
1113 if (cfqg) {
1114 rcu_read_unlock();
1115 return cfqg;
1116 }
1117
1118 /*
1119 * Need to allocate a group. Allocation of group also needs allocation
1120 * of per cpu stats which in-turn takes a mutex() and can block. Hence
1121 * we need to drop rcu lock and queue_lock before we call alloc.
1122 *
1123 * Not taking any queue reference here and assuming that queue is
1124 * around by the time we return. CFQ queue allocation code does
1125 * the same. It might be racy though.
1126 */
1127
1128 rcu_read_unlock();
1129 spin_unlock_irq(q->queue_lock);
1130
1131 cfqg = cfq_alloc_cfqg(cfqd);
1132
1133 spin_lock_irq(q->queue_lock);
1134
1135 rcu_read_lock();
1136 blkcg = task_blkio_cgroup(current);
1137
1138 /*
1139 * If some other thread already allocated the group while we were
1140 * not holding queue lock, free up the group
1141 */
1142 __cfqg = cfq_find_cfqg(cfqd, blkcg);
1143
1144 if (__cfqg) {
1145 kfree(cfqg);
1146 rcu_read_unlock();
1147 return __cfqg;
1148 }
1149
3e59cf9d 1150 if (!cfqg)
25fb5169 1151 cfqg = &cfqd->root_group;
f469a7b4
VG
1152
1153 cfq_init_add_cfqg_lists(cfqd, cfqg, blkcg);
25fb5169
VG
1154 rcu_read_unlock();
1155 return cfqg;
1156}
1157
7f1dc8a2
VG
1158static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1159{
329a6781 1160 cfqg->ref++;
7f1dc8a2
VG
1161 return cfqg;
1162}
1163
25fb5169
VG
1164static void cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg)
1165{
1166 /* Currently, all async queues are mapped to root group */
1167 if (!cfq_cfqq_sync(cfqq))
1168 cfqg = &cfqq->cfqd->root_group;
1169
1170 cfqq->cfqg = cfqg;
b1c35769 1171 /* cfqq reference on cfqg */
329a6781 1172 cfqq->cfqg->ref++;
b1c35769
VG
1173}
1174
1175static void cfq_put_cfqg(struct cfq_group *cfqg)
1176{
1177 struct cfq_rb_root *st;
1178 int i, j;
1179
329a6781
SL
1180 BUG_ON(cfqg->ref <= 0);
1181 cfqg->ref--;
1182 if (cfqg->ref)
b1c35769
VG
1183 return;
1184 for_each_cfqg_st(cfqg, i, j, st)
b54ce60e 1185 BUG_ON(!RB_EMPTY_ROOT(&st->rb));
5624a4e4 1186 free_percpu(cfqg->blkg.stats_cpu);
b1c35769
VG
1187 kfree(cfqg);
1188}
1189
1190static void cfq_destroy_cfqg(struct cfq_data *cfqd, struct cfq_group *cfqg)
1191{
1192 /* Something wrong if we are trying to remove same group twice */
1193 BUG_ON(hlist_unhashed(&cfqg->cfqd_node));
1194
1195 hlist_del_init(&cfqg->cfqd_node);
1196
a5395b83
VG
1197 BUG_ON(cfqd->nr_blkcg_linked_grps <= 0);
1198 cfqd->nr_blkcg_linked_grps--;
1199
b1c35769
VG
1200 /*
1201 * Put the reference taken at the time of creation so that when all
1202 * queues are gone, group can be destroyed.
1203 */
1204 cfq_put_cfqg(cfqg);
1205}
1206
1207static void cfq_release_cfq_groups(struct cfq_data *cfqd)
1208{
1209 struct hlist_node *pos, *n;
1210 struct cfq_group *cfqg;
1211
1212 hlist_for_each_entry_safe(cfqg, pos, n, &cfqd->cfqg_list, cfqd_node) {
1213 /*
1214 * If cgroup removal path got to blk_group first and removed
1215 * it from cgroup list, then it will take care of destroying
1216 * cfqg also.
1217 */
e98ef89b 1218 if (!cfq_blkiocg_del_blkio_group(&cfqg->blkg))
b1c35769
VG
1219 cfq_destroy_cfqg(cfqd, cfqg);
1220 }
25fb5169 1221}
b1c35769
VG
1222
1223/*
1224 * Blk cgroup controller notification saying that blkio_group object is being
1225 * delinked as associated cgroup object is going away. That also means that
1226 * no new IO will come in this group. So get rid of this group as soon as
1227 * any pending IO in the group is finished.
1228 *
1229 * This function is called under rcu_read_lock(). key is the rcu protected
1230 * pointer. That means "key" is a valid cfq_data pointer as long as we are rcu
1231 * read lock.
1232 *
1233 * "key" was fetched from blkio_group under blkio_cgroup->lock. That means
1234 * it should not be NULL as even if elevator was exiting, cgroup deltion
1235 * path got to it first.
1236 */
8aea4545 1237static void cfq_unlink_blkio_group(void *key, struct blkio_group *blkg)
b1c35769
VG
1238{
1239 unsigned long flags;
1240 struct cfq_data *cfqd = key;
1241
1242 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
1243 cfq_destroy_cfqg(cfqd, cfqg_of_blkg(blkg));
1244 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
1245}
1246
25fb5169 1247#else /* GROUP_IOSCHED */
3e59cf9d 1248static struct cfq_group *cfq_get_cfqg(struct cfq_data *cfqd)
25fb5169
VG
1249{
1250 return &cfqd->root_group;
1251}
7f1dc8a2
VG
1252
1253static inline struct cfq_group *cfq_ref_get_cfqg(struct cfq_group *cfqg)
1254{
50eaeb32 1255 return cfqg;
7f1dc8a2
VG
1256}
1257
25fb5169
VG
1258static inline void
1259cfq_link_cfqq_cfqg(struct cfq_queue *cfqq, struct cfq_group *cfqg) {
1260 cfqq->cfqg = cfqg;
1261}
1262
b1c35769
VG
1263static void cfq_release_cfq_groups(struct cfq_data *cfqd) {}
1264static inline void cfq_put_cfqg(struct cfq_group *cfqg) {}
1265
25fb5169
VG
1266#endif /* GROUP_IOSCHED */
1267
498d3aa2 1268/*
c0324a02 1269 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
1270 * requests waiting to be processed. It is sorted in the order that
1271 * we will service the queues.
1272 */
a36e71f9 1273static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1274 bool add_front)
d9e7620e 1275{
0871714e
JA
1276 struct rb_node **p, *parent;
1277 struct cfq_queue *__cfqq;
d9e7620e 1278 unsigned long rb_key;
c0324a02 1279 struct cfq_rb_root *service_tree;
498d3aa2 1280 int left;
dae739eb 1281 int new_cfqq = 1;
ae30c286 1282
cdb16e8f 1283 service_tree = service_tree_for(cfqq->cfqg, cfqq_prio(cfqq),
65b32a57 1284 cfqq_type(cfqq));
0871714e
JA
1285 if (cfq_class_idle(cfqq)) {
1286 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 1287 parent = rb_last(&service_tree->rb);
0871714e
JA
1288 if (parent && parent != &cfqq->rb_node) {
1289 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1290 rb_key += __cfqq->rb_key;
1291 } else
1292 rb_key += jiffies;
1293 } else if (!add_front) {
b9c8946b
JA
1294 /*
1295 * Get our rb key offset. Subtract any residual slice
1296 * value carried from last service. A negative resid
1297 * count indicates slice overrun, and this should position
1298 * the next service time further away in the tree.
1299 */
edd75ffd 1300 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 1301 rb_key -= cfqq->slice_resid;
edd75ffd 1302 cfqq->slice_resid = 0;
48e025e6
CZ
1303 } else {
1304 rb_key = -HZ;
aa6f6a3d 1305 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
1306 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
1307 }
1da177e4 1308
d9e7620e 1309 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
dae739eb 1310 new_cfqq = 0;
99f9628a 1311 /*
d9e7620e 1312 * same position, nothing more to do
99f9628a 1313 */
c0324a02
CZ
1314 if (rb_key == cfqq->rb_key &&
1315 cfqq->service_tree == service_tree)
d9e7620e 1316 return;
1da177e4 1317
aa6f6a3d
CZ
1318 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1319 cfqq->service_tree = NULL;
1da177e4 1320 }
d9e7620e 1321
498d3aa2 1322 left = 1;
0871714e 1323 parent = NULL;
aa6f6a3d
CZ
1324 cfqq->service_tree = service_tree;
1325 p = &service_tree->rb.rb_node;
d9e7620e 1326 while (*p) {
67060e37 1327 struct rb_node **n;
cc09e299 1328
d9e7620e
JA
1329 parent = *p;
1330 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
1331
0c534e0a 1332 /*
c0324a02 1333 * sort by key, that represents service time.
0c534e0a 1334 */
c0324a02 1335 if (time_before(rb_key, __cfqq->rb_key))
67060e37 1336 n = &(*p)->rb_left;
c0324a02 1337 else {
67060e37 1338 n = &(*p)->rb_right;
cc09e299 1339 left = 0;
c0324a02 1340 }
67060e37
JA
1341
1342 p = n;
d9e7620e
JA
1343 }
1344
cc09e299 1345 if (left)
aa6f6a3d 1346 service_tree->left = &cfqq->rb_node;
cc09e299 1347
d9e7620e
JA
1348 cfqq->rb_key = rb_key;
1349 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
1350 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
1351 service_tree->count++;
20359f27 1352 if (add_front || !new_cfqq)
dae739eb 1353 return;
8184f93e 1354 cfq_group_notify_queue_add(cfqd, cfqq->cfqg);
1da177e4
LT
1355}
1356
a36e71f9 1357static struct cfq_queue *
f2d1f0ae
JA
1358cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
1359 sector_t sector, struct rb_node **ret_parent,
1360 struct rb_node ***rb_link)
a36e71f9 1361{
a36e71f9
JA
1362 struct rb_node **p, *parent;
1363 struct cfq_queue *cfqq = NULL;
1364
1365 parent = NULL;
1366 p = &root->rb_node;
1367 while (*p) {
1368 struct rb_node **n;
1369
1370 parent = *p;
1371 cfqq = rb_entry(parent, struct cfq_queue, p_node);
1372
1373 /*
1374 * Sort strictly based on sector. Smallest to the left,
1375 * largest to the right.
1376 */
2e46e8b2 1377 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 1378 n = &(*p)->rb_right;
2e46e8b2 1379 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
1380 n = &(*p)->rb_left;
1381 else
1382 break;
1383 p = n;
3ac6c9f8 1384 cfqq = NULL;
a36e71f9
JA
1385 }
1386
1387 *ret_parent = parent;
1388 if (rb_link)
1389 *rb_link = p;
3ac6c9f8 1390 return cfqq;
a36e71f9
JA
1391}
1392
1393static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1394{
a36e71f9
JA
1395 struct rb_node **p, *parent;
1396 struct cfq_queue *__cfqq;
1397
f2d1f0ae
JA
1398 if (cfqq->p_root) {
1399 rb_erase(&cfqq->p_node, cfqq->p_root);
1400 cfqq->p_root = NULL;
1401 }
a36e71f9
JA
1402
1403 if (cfq_class_idle(cfqq))
1404 return;
1405 if (!cfqq->next_rq)
1406 return;
1407
f2d1f0ae 1408 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
1409 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
1410 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
1411 if (!__cfqq) {
1412 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
1413 rb_insert_color(&cfqq->p_node, cfqq->p_root);
1414 } else
1415 cfqq->p_root = NULL;
a36e71f9
JA
1416}
1417
498d3aa2
JA
1418/*
1419 * Update cfqq's position in the service tree.
1420 */
edd75ffd 1421static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 1422{
6d048f53
JA
1423 /*
1424 * Resorting requires the cfqq to be on the RR list already.
1425 */
a36e71f9 1426 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 1427 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
1428 cfq_prio_tree_add(cfqd, cfqq);
1429 }
6d048f53
JA
1430}
1431
1da177e4
LT
1432/*
1433 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 1434 * the pending list according to last request service
1da177e4 1435 */
febffd61 1436static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1437{
7b679138 1438 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
1439 BUG_ON(cfq_cfqq_on_rr(cfqq));
1440 cfq_mark_cfqq_on_rr(cfqq);
1da177e4 1441 cfqd->busy_queues++;
ef8a41df
SL
1442 if (cfq_cfqq_sync(cfqq))
1443 cfqd->busy_sync_queues++;
1da177e4 1444
edd75ffd 1445 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
1446}
1447
498d3aa2
JA
1448/*
1449 * Called when the cfqq no longer has requests pending, remove it from
1450 * the service tree.
1451 */
febffd61 1452static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1453{
7b679138 1454 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
1455 BUG_ON(!cfq_cfqq_on_rr(cfqq));
1456 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 1457
aa6f6a3d
CZ
1458 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
1459 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
1460 cfqq->service_tree = NULL;
1461 }
f2d1f0ae
JA
1462 if (cfqq->p_root) {
1463 rb_erase(&cfqq->p_node, cfqq->p_root);
1464 cfqq->p_root = NULL;
1465 }
d9e7620e 1466
8184f93e 1467 cfq_group_notify_queue_del(cfqd, cfqq->cfqg);
1da177e4
LT
1468 BUG_ON(!cfqd->busy_queues);
1469 cfqd->busy_queues--;
ef8a41df
SL
1470 if (cfq_cfqq_sync(cfqq))
1471 cfqd->busy_sync_queues--;
1da177e4
LT
1472}
1473
1474/*
1475 * rb tree support functions
1476 */
febffd61 1477static void cfq_del_rq_rb(struct request *rq)
1da177e4 1478{
5e705374 1479 struct cfq_queue *cfqq = RQ_CFQQ(rq);
5e705374 1480 const int sync = rq_is_sync(rq);
1da177e4 1481
b4878f24
JA
1482 BUG_ON(!cfqq->queued[sync]);
1483 cfqq->queued[sync]--;
1da177e4 1484
5e705374 1485 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 1486
f04a6424
VG
1487 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list)) {
1488 /*
1489 * Queue will be deleted from service tree when we actually
1490 * expire it later. Right now just remove it from prio tree
1491 * as it is empty.
1492 */
1493 if (cfqq->p_root) {
1494 rb_erase(&cfqq->p_node, cfqq->p_root);
1495 cfqq->p_root = NULL;
1496 }
1497 }
1da177e4
LT
1498}
1499
5e705374 1500static void cfq_add_rq_rb(struct request *rq)
1da177e4 1501{
5e705374 1502 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 1503 struct cfq_data *cfqd = cfqq->cfqd;
796d5116 1504 struct request *prev;
1da177e4 1505
5380a101 1506 cfqq->queued[rq_is_sync(rq)]++;
1da177e4 1507
796d5116 1508 elv_rb_add(&cfqq->sort_list, rq);
5fccbf61
JA
1509
1510 if (!cfq_cfqq_on_rr(cfqq))
1511 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
1512
1513 /*
1514 * check if this request is a better next-serve candidate
1515 */
a36e71f9 1516 prev = cfqq->next_rq;
cf7c25cf 1517 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
1518
1519 /*
1520 * adjust priority tree position, if ->next_rq changes
1521 */
1522 if (prev != cfqq->next_rq)
1523 cfq_prio_tree_add(cfqd, cfqq);
1524
5044eed4 1525 BUG_ON(!cfqq->next_rq);
1da177e4
LT
1526}
1527
febffd61 1528static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 1529{
5380a101
JA
1530 elv_rb_del(&cfqq->sort_list, rq);
1531 cfqq->queued[rq_is_sync(rq)]--;
e98ef89b
VG
1532 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1533 rq_data_dir(rq), rq_is_sync(rq));
5e705374 1534 cfq_add_rq_rb(rq);
e98ef89b 1535 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
7f1dc8a2
VG
1536 &cfqq->cfqd->serving_group->blkg, rq_data_dir(rq),
1537 rq_is_sync(rq));
1da177e4
LT
1538}
1539
206dc69b
JA
1540static struct request *
1541cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 1542{
206dc69b 1543 struct task_struct *tsk = current;
91fac317 1544 struct cfq_io_context *cic;
206dc69b 1545 struct cfq_queue *cfqq;
1da177e4 1546
4ac845a2 1547 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
1548 if (!cic)
1549 return NULL;
1550
1551 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
1552 if (cfqq) {
1553 sector_t sector = bio->bi_sector + bio_sectors(bio);
1554
21183b07 1555 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 1556 }
1da177e4 1557
1da177e4
LT
1558 return NULL;
1559}
1560
165125e1 1561static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 1562{
22e2c507 1563 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 1564
53c583d2 1565 cfqd->rq_in_driver++;
7b679138 1566 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
53c583d2 1567 cfqd->rq_in_driver);
25776e35 1568
5b93629b 1569 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
1570}
1571
165125e1 1572static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 1573{
b4878f24
JA
1574 struct cfq_data *cfqd = q->elevator->elevator_data;
1575
53c583d2
CZ
1576 WARN_ON(!cfqd->rq_in_driver);
1577 cfqd->rq_in_driver--;
7b679138 1578 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
53c583d2 1579 cfqd->rq_in_driver);
1da177e4
LT
1580}
1581
b4878f24 1582static void cfq_remove_request(struct request *rq)
1da177e4 1583{
5e705374 1584 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 1585
5e705374
JA
1586 if (cfqq->next_rq == rq)
1587 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 1588
b4878f24 1589 list_del_init(&rq->queuelist);
5e705374 1590 cfq_del_rq_rb(rq);
374f84ac 1591
45333d5a 1592 cfqq->cfqd->rq_queued--;
e98ef89b
VG
1593 cfq_blkiocg_update_io_remove_stats(&(RQ_CFQG(rq))->blkg,
1594 rq_data_dir(rq), rq_is_sync(rq));
65299a3b
CH
1595 if (rq->cmd_flags & REQ_PRIO) {
1596 WARN_ON(!cfqq->prio_pending);
1597 cfqq->prio_pending--;
b53d1ed7 1598 }
1da177e4
LT
1599}
1600
165125e1
JA
1601static int cfq_merge(struct request_queue *q, struct request **req,
1602 struct bio *bio)
1da177e4
LT
1603{
1604 struct cfq_data *cfqd = q->elevator->elevator_data;
1605 struct request *__rq;
1da177e4 1606
206dc69b 1607 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 1608 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
1609 *req = __rq;
1610 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
1611 }
1612
1613 return ELEVATOR_NO_MERGE;
1da177e4
LT
1614}
1615
165125e1 1616static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 1617 int type)
1da177e4 1618{
21183b07 1619 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 1620 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 1621
5e705374 1622 cfq_reposition_rq_rb(cfqq, req);
1da177e4 1623 }
1da177e4
LT
1624}
1625
812d4026
DS
1626static void cfq_bio_merged(struct request_queue *q, struct request *req,
1627 struct bio *bio)
1628{
e98ef89b
VG
1629 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(req))->blkg,
1630 bio_data_dir(bio), cfq_bio_sync(bio));
812d4026
DS
1631}
1632
1da177e4 1633static void
165125e1 1634cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
1635 struct request *next)
1636{
cf7c25cf 1637 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
1638 /*
1639 * reposition in fifo if next is older than rq
1640 */
1641 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 1642 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 1643 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
1644 rq_set_fifo_time(rq, rq_fifo_time(next));
1645 }
22e2c507 1646
cf7c25cf
CZ
1647 if (cfqq->next_rq == next)
1648 cfqq->next_rq = rq;
b4878f24 1649 cfq_remove_request(next);
e98ef89b
VG
1650 cfq_blkiocg_update_io_merged_stats(&(RQ_CFQG(rq))->blkg,
1651 rq_data_dir(next), rq_is_sync(next));
22e2c507
JA
1652}
1653
165125e1 1654static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
1655 struct bio *bio)
1656{
1657 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 1658 struct cfq_io_context *cic;
da775265 1659 struct cfq_queue *cfqq;
da775265
JA
1660
1661 /*
ec8acb69 1662 * Disallow merge of a sync bio into an async request.
da775265 1663 */
91fac317 1664 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 1665 return false;
da775265
JA
1666
1667 /*
f1a4f4d3
TH
1668 * Lookup the cfqq that this bio will be queued with and allow
1669 * merge only if rq is queued there. This function can be called
1670 * from plug merge without queue_lock. In such cases, ioc of @rq
1671 * and %current are guaranteed to be equal. Avoid lookup which
1672 * requires queue_lock by using @rq's cic.
1673 */
1674 if (current->io_context == RQ_CIC(rq)->ioc) {
1675 cic = RQ_CIC(rq);
1676 } else {
1677 cic = cfq_cic_lookup(cfqd, current->io_context);
1678 if (!cic)
1679 return false;
1680 }
719d3402 1681
91fac317 1682 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 1683 return cfqq == RQ_CFQQ(rq);
da775265
JA
1684}
1685
812df48d
DS
1686static inline void cfq_del_timer(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1687{
1688 del_timer(&cfqd->idle_slice_timer);
e98ef89b 1689 cfq_blkiocg_update_idle_time_stats(&cfqq->cfqg->blkg);
812df48d
DS
1690}
1691
febffd61
JA
1692static void __cfq_set_active_queue(struct cfq_data *cfqd,
1693 struct cfq_queue *cfqq)
22e2c507
JA
1694{
1695 if (cfqq) {
b1ffe737
DS
1696 cfq_log_cfqq(cfqd, cfqq, "set_active wl_prio:%d wl_type:%d",
1697 cfqd->serving_prio, cfqd->serving_type);
62a37f6b
JT
1698 cfq_blkiocg_update_avg_queue_size_stats(&cfqq->cfqg->blkg);
1699 cfqq->slice_start = 0;
1700 cfqq->dispatch_start = jiffies;
1701 cfqq->allocated_slice = 0;
1702 cfqq->slice_end = 0;
1703 cfqq->slice_dispatch = 0;
1704 cfqq->nr_sectors = 0;
1705
1706 cfq_clear_cfqq_wait_request(cfqq);
1707 cfq_clear_cfqq_must_dispatch(cfqq);
1708 cfq_clear_cfqq_must_alloc_slice(cfqq);
1709 cfq_clear_cfqq_fifo_expire(cfqq);
1710 cfq_mark_cfqq_slice_new(cfqq);
1711
1712 cfq_del_timer(cfqd, cfqq);
22e2c507
JA
1713 }
1714
1715 cfqd->active_queue = cfqq;
1716}
1717
7b14e3b5
JA
1718/*
1719 * current cfqq expired its slice (or was too idle), select new one
1720 */
1721static void
1722__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e5ff082e 1723 bool timed_out)
7b14e3b5 1724{
7b679138
JA
1725 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1726
7b14e3b5 1727 if (cfq_cfqq_wait_request(cfqq))
812df48d 1728 cfq_del_timer(cfqd, cfqq);
7b14e3b5 1729
7b14e3b5 1730 cfq_clear_cfqq_wait_request(cfqq);
f75edf2d 1731 cfq_clear_cfqq_wait_busy(cfqq);
7b14e3b5 1732
ae54abed
SL
1733 /*
1734 * If this cfqq is shared between multiple processes, check to
1735 * make sure that those processes are still issuing I/Os within
1736 * the mean seek distance. If not, it may be time to break the
1737 * queues apart again.
1738 */
1739 if (cfq_cfqq_coop(cfqq) && CFQQ_SEEKY(cfqq))
1740 cfq_mark_cfqq_split_coop(cfqq);
1741
7b14e3b5 1742 /*
6084cdda 1743 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1744 */
c553f8e3
SL
1745 if (timed_out) {
1746 if (cfq_cfqq_slice_new(cfqq))
ba5bd520 1747 cfqq->slice_resid = cfq_scaled_cfqq_slice(cfqd, cfqq);
c553f8e3
SL
1748 else
1749 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1750 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1751 }
7b14e3b5 1752
e5ff082e 1753 cfq_group_served(cfqd, cfqq->cfqg, cfqq);
dae739eb 1754
f04a6424
VG
1755 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
1756 cfq_del_cfqq_rr(cfqd, cfqq);
1757
edd75ffd 1758 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1759
1760 if (cfqq == cfqd->active_queue)
1761 cfqd->active_queue = NULL;
1762
1763 if (cfqd->active_cic) {
b2efa052 1764 put_io_context(cfqd->active_cic->ioc, cfqd->queue);
7b14e3b5
JA
1765 cfqd->active_cic = NULL;
1766 }
7b14e3b5
JA
1767}
1768
e5ff082e 1769static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1770{
1771 struct cfq_queue *cfqq = cfqd->active_queue;
1772
1773 if (cfqq)
e5ff082e 1774 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1775}
1776
498d3aa2
JA
1777/*
1778 * Get next queue for service. Unless we have a queue preemption,
1779 * we'll simply select the first cfqq in the service tree.
1780 */
6d048f53 1781static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1782{
c0324a02 1783 struct cfq_rb_root *service_tree =
cdb16e8f 1784 service_tree_for(cfqd->serving_group, cfqd->serving_prio,
65b32a57 1785 cfqd->serving_type);
d9e7620e 1786
f04a6424
VG
1787 if (!cfqd->rq_queued)
1788 return NULL;
1789
1fa8f6d6
VG
1790 /* There is nothing to dispatch */
1791 if (!service_tree)
1792 return NULL;
c0324a02
CZ
1793 if (RB_EMPTY_ROOT(&service_tree->rb))
1794 return NULL;
1795 return cfq_rb_first(service_tree);
6d048f53
JA
1796}
1797
f04a6424
VG
1798static struct cfq_queue *cfq_get_next_queue_forced(struct cfq_data *cfqd)
1799{
25fb5169 1800 struct cfq_group *cfqg;
f04a6424
VG
1801 struct cfq_queue *cfqq;
1802 int i, j;
1803 struct cfq_rb_root *st;
1804
1805 if (!cfqd->rq_queued)
1806 return NULL;
1807
25fb5169
VG
1808 cfqg = cfq_get_next_cfqg(cfqd);
1809 if (!cfqg)
1810 return NULL;
1811
f04a6424
VG
1812 for_each_cfqg_st(cfqg, i, j, st)
1813 if ((cfqq = cfq_rb_first(st)) != NULL)
1814 return cfqq;
1815 return NULL;
1816}
1817
498d3aa2
JA
1818/*
1819 * Get and set a new active queue for service.
1820 */
a36e71f9
JA
1821static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1822 struct cfq_queue *cfqq)
6d048f53 1823{
e00ef799 1824 if (!cfqq)
a36e71f9 1825 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1826
22e2c507 1827 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1828 return cfqq;
22e2c507
JA
1829}
1830
d9e7620e
JA
1831static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1832 struct request *rq)
1833{
83096ebf
TH
1834 if (blk_rq_pos(rq) >= cfqd->last_position)
1835 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1836 else
83096ebf 1837 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1838}
1839
b2c18e1e 1840static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
e9ce335d 1841 struct request *rq)
6d048f53 1842{
e9ce335d 1843 return cfq_dist_from_last(cfqd, rq) <= CFQQ_CLOSE_THR;
6d048f53
JA
1844}
1845
a36e71f9
JA
1846static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1847 struct cfq_queue *cur_cfqq)
1848{
f2d1f0ae 1849 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1850 struct rb_node *parent, *node;
1851 struct cfq_queue *__cfqq;
1852 sector_t sector = cfqd->last_position;
1853
1854 if (RB_EMPTY_ROOT(root))
1855 return NULL;
1856
1857 /*
1858 * First, if we find a request starting at the end of the last
1859 * request, choose it.
1860 */
f2d1f0ae 1861 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1862 if (__cfqq)
1863 return __cfqq;
1864
1865 /*
1866 * If the exact sector wasn't found, the parent of the NULL leaf
1867 * will contain the closest sector.
1868 */
1869 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
e9ce335d 1870 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1871 return __cfqq;
1872
2e46e8b2 1873 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1874 node = rb_next(&__cfqq->p_node);
1875 else
1876 node = rb_prev(&__cfqq->p_node);
1877 if (!node)
1878 return NULL;
1879
1880 __cfqq = rb_entry(node, struct cfq_queue, p_node);
e9ce335d 1881 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1882 return __cfqq;
1883
1884 return NULL;
1885}
1886
1887/*
1888 * cfqd - obvious
1889 * cur_cfqq - passed in so that we don't decide that the current queue is
1890 * closely cooperating with itself.
1891 *
1892 * So, basically we're assuming that that cur_cfqq has dispatched at least
1893 * one request, and that cfqd->last_position reflects a position on the disk
1894 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1895 * assumption.
1896 */
1897static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1898 struct cfq_queue *cur_cfqq)
6d048f53 1899{
a36e71f9
JA
1900 struct cfq_queue *cfqq;
1901
39c01b21
DS
1902 if (cfq_class_idle(cur_cfqq))
1903 return NULL;
e6c5bc73
JM
1904 if (!cfq_cfqq_sync(cur_cfqq))
1905 return NULL;
1906 if (CFQQ_SEEKY(cur_cfqq))
1907 return NULL;
1908
b9d8f4c7
GJ
1909 /*
1910 * Don't search priority tree if it's the only queue in the group.
1911 */
1912 if (cur_cfqq->cfqg->nr_cfqq == 1)
1913 return NULL;
1914
6d048f53 1915 /*
d9e7620e
JA
1916 * We should notice if some of the queues are cooperating, eg
1917 * working closely on the same area of the disk. In that case,
1918 * we can group them together and don't waste time idling.
6d048f53 1919 */
a36e71f9
JA
1920 cfqq = cfqq_close(cfqd, cur_cfqq);
1921 if (!cfqq)
1922 return NULL;
1923
8682e1f1
VG
1924 /* If new queue belongs to different cfq_group, don't choose it */
1925 if (cur_cfqq->cfqg != cfqq->cfqg)
1926 return NULL;
1927
df5fe3e8
JM
1928 /*
1929 * It only makes sense to merge sync queues.
1930 */
1931 if (!cfq_cfqq_sync(cfqq))
1932 return NULL;
e6c5bc73
JM
1933 if (CFQQ_SEEKY(cfqq))
1934 return NULL;
df5fe3e8 1935
c0324a02
CZ
1936 /*
1937 * Do not merge queues of different priority classes
1938 */
1939 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1940 return NULL;
1941
a36e71f9 1942 return cfqq;
6d048f53
JA
1943}
1944
a6d44e98
CZ
1945/*
1946 * Determine whether we should enforce idle window for this queue.
1947 */
1948
1949static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1950{
1951 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1952 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98 1953
f04a6424
VG
1954 BUG_ON(!service_tree);
1955 BUG_ON(!service_tree->count);
1956
b6508c16
VG
1957 if (!cfqd->cfq_slice_idle)
1958 return false;
1959
a6d44e98
CZ
1960 /* We never do for idle class queues. */
1961 if (prio == IDLE_WORKLOAD)
1962 return false;
1963
1964 /* We do for queues that were marked with idle window flag. */
3c764b7a
SL
1965 if (cfq_cfqq_idle_window(cfqq) &&
1966 !(blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag))
a6d44e98
CZ
1967 return true;
1968
1969 /*
1970 * Otherwise, we do only if they are the last ones
1971 * in their service tree.
1972 */
f5f2b6ce
SL
1973 if (service_tree->count == 1 && cfq_cfqq_sync(cfqq) &&
1974 !cfq_io_thinktime_big(cfqd, &service_tree->ttime, false))
c1e44756 1975 return true;
b1ffe737
DS
1976 cfq_log_cfqq(cfqd, cfqq, "Not idling. st->count:%d",
1977 service_tree->count);
c1e44756 1978 return false;
a6d44e98
CZ
1979}
1980
6d048f53 1981static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1982{
1792669c 1983 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1984 struct cfq_io_context *cic;
80bdf0c7 1985 unsigned long sl, group_idle = 0;
7b14e3b5 1986
a68bbddb 1987 /*
f7d7b7a7
JA
1988 * SSD device without seek penalty, disable idling. But only do so
1989 * for devices that support queuing, otherwise we still have a problem
1990 * with sync vs async workloads.
a68bbddb 1991 */
f7d7b7a7 1992 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1993 return;
1994
dd67d051 1995 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1996 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1997
1998 /*
1999 * idle is disabled, either manually or by past process history
2000 */
80bdf0c7
VG
2001 if (!cfq_should_idle(cfqd, cfqq)) {
2002 /* no queue idling. Check for group idling */
2003 if (cfqd->cfq_group_idle)
2004 group_idle = cfqd->cfq_group_idle;
2005 else
2006 return;
2007 }
6d048f53 2008
7b679138 2009 /*
8e550632 2010 * still active requests from this queue, don't idle
7b679138 2011 */
8e550632 2012 if (cfqq->dispatched)
7b679138
JA
2013 return;
2014
22e2c507
JA
2015 /*
2016 * task has exited, don't wait
2017 */
206dc69b 2018 cic = cfqd->active_cic;
66dac98e 2019 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
2020 return;
2021
355b659c
CZ
2022 /*
2023 * If our average think time is larger than the remaining time
2024 * slice, then don't idle. This avoids overrunning the allotted
2025 * time slice.
2026 */
383cd721
SL
2027 if (sample_valid(cic->ttime.ttime_samples) &&
2028 (cfqq->slice_end - jiffies < cic->ttime.ttime_mean)) {
fd16d263 2029 cfq_log_cfqq(cfqd, cfqq, "Not idling. think_time:%lu",
383cd721 2030 cic->ttime.ttime_mean);
355b659c 2031 return;
b1ffe737 2032 }
355b659c 2033
80bdf0c7
VG
2034 /* There are other queues in the group, don't do group idle */
2035 if (group_idle && cfqq->cfqg->nr_cfqq > 1)
2036 return;
2037
3b18152c 2038 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 2039
80bdf0c7
VG
2040 if (group_idle)
2041 sl = cfqd->cfq_group_idle;
2042 else
2043 sl = cfqd->cfq_slice_idle;
206dc69b 2044
7b14e3b5 2045 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
e98ef89b 2046 cfq_blkiocg_update_set_idle_time_stats(&cfqq->cfqg->blkg);
80bdf0c7
VG
2047 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu group_idle: %d", sl,
2048 group_idle ? 1 : 0);
1da177e4
LT
2049}
2050
498d3aa2
JA
2051/*
2052 * Move request from internal lists to the request queue dispatch list.
2053 */
165125e1 2054static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 2055{
3ed9a296 2056 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2057 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2058
7b679138
JA
2059 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
2060
06d21886 2061 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 2062 cfq_remove_request(rq);
6d048f53 2063 cfqq->dispatched++;
80bdf0c7 2064 (RQ_CFQG(rq))->dispatched++;
5380a101 2065 elv_dispatch_sort(q, rq);
3ed9a296 2066
53c583d2 2067 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]++;
c4e7893e 2068 cfqq->nr_sectors += blk_rq_sectors(rq);
e98ef89b 2069 cfq_blkiocg_update_dispatch_stats(&cfqq->cfqg->blkg, blk_rq_bytes(rq),
84c124da 2070 rq_data_dir(rq), rq_is_sync(rq));
1da177e4
LT
2071}
2072
2073/*
2074 * return expired entry, or NULL to just start from scratch in rbtree
2075 */
febffd61 2076static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 2077{
30996f40 2078 struct request *rq = NULL;
1da177e4 2079
3b18152c 2080 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 2081 return NULL;
cb887411
JA
2082
2083 cfq_mark_cfqq_fifo_expire(cfqq);
2084
89850f7e
JA
2085 if (list_empty(&cfqq->fifo))
2086 return NULL;
1da177e4 2087
89850f7e 2088 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 2089 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 2090 rq = NULL;
1da177e4 2091
30996f40 2092 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 2093 return rq;
1da177e4
LT
2094}
2095
22e2c507
JA
2096static inline int
2097cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2098{
2099 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 2100
22e2c507 2101 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 2102
b9f8ce05 2103 return 2 * base_rq * (IOPRIO_BE_NR - cfqq->ioprio);
1da177e4
LT
2104}
2105
df5fe3e8
JM
2106/*
2107 * Must be called with the queue_lock held.
2108 */
2109static int cfqq_process_refs(struct cfq_queue *cfqq)
2110{
2111 int process_refs, io_refs;
2112
2113 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
30d7b944 2114 process_refs = cfqq->ref - io_refs;
df5fe3e8
JM
2115 BUG_ON(process_refs < 0);
2116 return process_refs;
2117}
2118
2119static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
2120{
e6c5bc73 2121 int process_refs, new_process_refs;
df5fe3e8
JM
2122 struct cfq_queue *__cfqq;
2123
c10b61f0
JM
2124 /*
2125 * If there are no process references on the new_cfqq, then it is
2126 * unsafe to follow the ->new_cfqq chain as other cfqq's in the
2127 * chain may have dropped their last reference (not just their
2128 * last process reference).
2129 */
2130 if (!cfqq_process_refs(new_cfqq))
2131 return;
2132
df5fe3e8
JM
2133 /* Avoid a circular list and skip interim queue merges */
2134 while ((__cfqq = new_cfqq->new_cfqq)) {
2135 if (__cfqq == cfqq)
2136 return;
2137 new_cfqq = __cfqq;
2138 }
2139
2140 process_refs = cfqq_process_refs(cfqq);
c10b61f0 2141 new_process_refs = cfqq_process_refs(new_cfqq);
df5fe3e8
JM
2142 /*
2143 * If the process for the cfqq has gone away, there is no
2144 * sense in merging the queues.
2145 */
c10b61f0 2146 if (process_refs == 0 || new_process_refs == 0)
df5fe3e8
JM
2147 return;
2148
e6c5bc73
JM
2149 /*
2150 * Merge in the direction of the lesser amount of work.
2151 */
e6c5bc73
JM
2152 if (new_process_refs >= process_refs) {
2153 cfqq->new_cfqq = new_cfqq;
30d7b944 2154 new_cfqq->ref += process_refs;
e6c5bc73
JM
2155 } else {
2156 new_cfqq->new_cfqq = cfqq;
30d7b944 2157 cfqq->ref += new_process_refs;
e6c5bc73 2158 }
df5fe3e8
JM
2159}
2160
cdb16e8f 2161static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd,
65b32a57 2162 struct cfq_group *cfqg, enum wl_prio_t prio)
718eee05
CZ
2163{
2164 struct cfq_queue *queue;
2165 int i;
2166 bool key_valid = false;
2167 unsigned long lowest_key = 0;
2168 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
2169
65b32a57
VG
2170 for (i = 0; i <= SYNC_WORKLOAD; ++i) {
2171 /* select the one with lowest rb_key */
2172 queue = cfq_rb_first(service_tree_for(cfqg, prio, i));
718eee05
CZ
2173 if (queue &&
2174 (!key_valid || time_before(queue->rb_key, lowest_key))) {
2175 lowest_key = queue->rb_key;
2176 cur_best = i;
2177 key_valid = true;
2178 }
2179 }
2180
2181 return cur_best;
2182}
2183
cdb16e8f 2184static void choose_service_tree(struct cfq_data *cfqd, struct cfq_group *cfqg)
718eee05 2185{
718eee05
CZ
2186 unsigned slice;
2187 unsigned count;
cdb16e8f 2188 struct cfq_rb_root *st;
58ff82f3 2189 unsigned group_slice;
e4ea0c16 2190 enum wl_prio_t original_prio = cfqd->serving_prio;
1fa8f6d6 2191
718eee05 2192 /* Choose next priority. RT > BE > IDLE */
58ff82f3 2193 if (cfq_group_busy_queues_wl(RT_WORKLOAD, cfqd, cfqg))
718eee05 2194 cfqd->serving_prio = RT_WORKLOAD;
58ff82f3 2195 else if (cfq_group_busy_queues_wl(BE_WORKLOAD, cfqd, cfqg))
718eee05
CZ
2196 cfqd->serving_prio = BE_WORKLOAD;
2197 else {
2198 cfqd->serving_prio = IDLE_WORKLOAD;
2199 cfqd->workload_expires = jiffies + 1;
2200 return;
2201 }
2202
e4ea0c16
SL
2203 if (original_prio != cfqd->serving_prio)
2204 goto new_workload;
2205
718eee05
CZ
2206 /*
2207 * For RT and BE, we have to choose also the type
2208 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
2209 * expiration time
2210 */
65b32a57 2211 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2212 count = st->count;
718eee05
CZ
2213
2214 /*
65b32a57 2215 * check workload expiration, and that we still have other queues ready
718eee05 2216 */
65b32a57 2217 if (count && !time_after(jiffies, cfqd->workload_expires))
718eee05
CZ
2218 return;
2219
e4ea0c16 2220new_workload:
718eee05
CZ
2221 /* otherwise select new workload type */
2222 cfqd->serving_type =
65b32a57
VG
2223 cfq_choose_wl(cfqd, cfqg, cfqd->serving_prio);
2224 st = service_tree_for(cfqg, cfqd->serving_prio, cfqd->serving_type);
cdb16e8f 2225 count = st->count;
718eee05
CZ
2226
2227 /*
2228 * the workload slice is computed as a fraction of target latency
2229 * proportional to the number of queues in that workload, over
2230 * all the queues in the same priority class
2231 */
58ff82f3
VG
2232 group_slice = cfq_group_slice(cfqd, cfqg);
2233
2234 slice = group_slice * count /
2235 max_t(unsigned, cfqg->busy_queues_avg[cfqd->serving_prio],
2236 cfq_group_busy_queues_wl(cfqd->serving_prio, cfqd, cfqg));
718eee05 2237
f26bd1f0
VG
2238 if (cfqd->serving_type == ASYNC_WORKLOAD) {
2239 unsigned int tmp;
2240
2241 /*
2242 * Async queues are currently system wide. Just taking
2243 * proportion of queues with-in same group will lead to higher
2244 * async ratio system wide as generally root group is going
2245 * to have higher weight. A more accurate thing would be to
2246 * calculate system wide asnc/sync ratio.
2247 */
2248 tmp = cfq_target_latency * cfqg_busy_async_queues(cfqd, cfqg);
2249 tmp = tmp/cfqd->busy_queues;
2250 slice = min_t(unsigned, slice, tmp);
2251
718eee05
CZ
2252 /* async workload slice is scaled down according to
2253 * the sync/async slice ratio. */
2254 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
f26bd1f0 2255 } else
718eee05
CZ
2256 /* sync workload slice is at least 2 * cfq_slice_idle */
2257 slice = max(slice, 2 * cfqd->cfq_slice_idle);
2258
2259 slice = max_t(unsigned, slice, CFQ_MIN_TT);
b1ffe737 2260 cfq_log(cfqd, "workload slice:%d", slice);
718eee05
CZ
2261 cfqd->workload_expires = jiffies + slice;
2262}
2263
1fa8f6d6
VG
2264static struct cfq_group *cfq_get_next_cfqg(struct cfq_data *cfqd)
2265{
2266 struct cfq_rb_root *st = &cfqd->grp_service_tree;
25bc6b07 2267 struct cfq_group *cfqg;
1fa8f6d6
VG
2268
2269 if (RB_EMPTY_ROOT(&st->rb))
2270 return NULL;
25bc6b07 2271 cfqg = cfq_rb_first_group(st);
25bc6b07
VG
2272 update_min_vdisktime(st);
2273 return cfqg;
1fa8f6d6
VG
2274}
2275
cdb16e8f
VG
2276static void cfq_choose_cfqg(struct cfq_data *cfqd)
2277{
1fa8f6d6
VG
2278 struct cfq_group *cfqg = cfq_get_next_cfqg(cfqd);
2279
2280 cfqd->serving_group = cfqg;
dae739eb
VG
2281
2282 /* Restore the workload type data */
2283 if (cfqg->saved_workload_slice) {
2284 cfqd->workload_expires = jiffies + cfqg->saved_workload_slice;
2285 cfqd->serving_type = cfqg->saved_workload;
2286 cfqd->serving_prio = cfqg->saved_serving_prio;
66ae2919
GJ
2287 } else
2288 cfqd->workload_expires = jiffies - 1;
2289
1fa8f6d6 2290 choose_service_tree(cfqd, cfqg);
cdb16e8f
VG
2291}
2292
22e2c507 2293/*
498d3aa2
JA
2294 * Select a queue for service. If we have a current active queue,
2295 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 2296 */
1b5ed5e1 2297static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 2298{
a36e71f9 2299 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 2300
22e2c507
JA
2301 cfqq = cfqd->active_queue;
2302 if (!cfqq)
2303 goto new_queue;
1da177e4 2304
f04a6424
VG
2305 if (!cfqd->rq_queued)
2306 return NULL;
c244bb50
VG
2307
2308 /*
2309 * We were waiting for group to get backlogged. Expire the queue
2310 */
2311 if (cfq_cfqq_wait_busy(cfqq) && !RB_EMPTY_ROOT(&cfqq->sort_list))
2312 goto expire;
2313
22e2c507 2314 /*
6d048f53 2315 * The active queue has run out of time, expire it and select new.
22e2c507 2316 */
7667aa06
VG
2317 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq)) {
2318 /*
2319 * If slice had not expired at the completion of last request
2320 * we might not have turned on wait_busy flag. Don't expire
2321 * the queue yet. Allow the group to get backlogged.
2322 *
2323 * The very fact that we have used the slice, that means we
2324 * have been idling all along on this queue and it should be
2325 * ok to wait for this request to complete.
2326 */
82bbbf28
VG
2327 if (cfqq->cfqg->nr_cfqq == 1 && RB_EMPTY_ROOT(&cfqq->sort_list)
2328 && cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2329 cfqq = NULL;
7667aa06 2330 goto keep_queue;
82bbbf28 2331 } else
80bdf0c7 2332 goto check_group_idle;
7667aa06 2333 }
1da177e4 2334
22e2c507 2335 /*
6d048f53
JA
2336 * The active queue has requests and isn't expired, allow it to
2337 * dispatch.
22e2c507 2338 */
dd67d051 2339 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2340 goto keep_queue;
6d048f53 2341
a36e71f9
JA
2342 /*
2343 * If another queue has a request waiting within our mean seek
2344 * distance, let it run. The expire code will check for close
2345 * cooperators and put the close queue at the front of the service
df5fe3e8 2346 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 2347 */
b3b6d040 2348 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
2349 if (new_cfqq) {
2350 if (!cfqq->new_cfqq)
2351 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 2352 goto expire;
df5fe3e8 2353 }
a36e71f9 2354
6d048f53
JA
2355 /*
2356 * No requests pending. If the active queue still has requests in
2357 * flight or is idling for a new request, allow either of these
2358 * conditions to happen (or time out) before selecting a new queue.
2359 */
80bdf0c7
VG
2360 if (timer_pending(&cfqd->idle_slice_timer)) {
2361 cfqq = NULL;
2362 goto keep_queue;
2363 }
2364
8e1ac665
SL
2365 /*
2366 * This is a deep seek queue, but the device is much faster than
2367 * the queue can deliver, don't idle
2368 **/
2369 if (CFQQ_SEEKY(cfqq) && cfq_cfqq_idle_window(cfqq) &&
2370 (cfq_cfqq_slice_new(cfqq) ||
2371 (cfqq->slice_end - jiffies > jiffies - cfqq->slice_start))) {
2372 cfq_clear_cfqq_deep(cfqq);
2373 cfq_clear_cfqq_idle_window(cfqq);
2374 }
2375
80bdf0c7
VG
2376 if (cfqq->dispatched && cfq_should_idle(cfqd, cfqq)) {
2377 cfqq = NULL;
2378 goto keep_queue;
2379 }
2380
2381 /*
2382 * If group idle is enabled and there are requests dispatched from
2383 * this group, wait for requests to complete.
2384 */
2385check_group_idle:
7700fc4f
SL
2386 if (cfqd->cfq_group_idle && cfqq->cfqg->nr_cfqq == 1 &&
2387 cfqq->cfqg->dispatched &&
2388 !cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true)) {
caaa5f9f
JA
2389 cfqq = NULL;
2390 goto keep_queue;
22e2c507
JA
2391 }
2392
3b18152c 2393expire:
e5ff082e 2394 cfq_slice_expired(cfqd, 0);
3b18152c 2395new_queue:
718eee05
CZ
2396 /*
2397 * Current queue expired. Check if we have to switch to a new
2398 * service tree
2399 */
2400 if (!new_cfqq)
cdb16e8f 2401 cfq_choose_cfqg(cfqd);
718eee05 2402
a36e71f9 2403 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 2404keep_queue:
3b18152c 2405 return cfqq;
22e2c507
JA
2406}
2407
febffd61 2408static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
2409{
2410 int dispatched = 0;
2411
2412 while (cfqq->next_rq) {
2413 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
2414 dispatched++;
2415 }
2416
2417 BUG_ON(!list_empty(&cfqq->fifo));
f04a6424
VG
2418
2419 /* By default cfqq is not expired if it is empty. Do it explicitly */
e5ff082e 2420 __cfq_slice_expired(cfqq->cfqd, cfqq, 0);
d9e7620e
JA
2421 return dispatched;
2422}
2423
498d3aa2
JA
2424/*
2425 * Drain our current requests. Used for barriers and when switching
2426 * io schedulers on-the-fly.
2427 */
d9e7620e 2428static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 2429{
0871714e 2430 struct cfq_queue *cfqq;
d9e7620e 2431 int dispatched = 0;
cdb16e8f 2432
3440c49f 2433 /* Expire the timeslice of the current active queue first */
e5ff082e 2434 cfq_slice_expired(cfqd, 0);
3440c49f
DS
2435 while ((cfqq = cfq_get_next_queue_forced(cfqd)) != NULL) {
2436 __cfq_set_active_queue(cfqd, cfqq);
f04a6424 2437 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
3440c49f 2438 }
1b5ed5e1 2439
1b5ed5e1
TH
2440 BUG_ON(cfqd->busy_queues);
2441
6923715a 2442 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
2443 return dispatched;
2444}
2445
abc3c744
SL
2446static inline bool cfq_slice_used_soon(struct cfq_data *cfqd,
2447 struct cfq_queue *cfqq)
2448{
2449 /* the queue hasn't finished any request, can't estimate */
2450 if (cfq_cfqq_slice_new(cfqq))
c1e44756 2451 return true;
abc3c744
SL
2452 if (time_after(jiffies + cfqd->cfq_slice_idle * cfqq->dispatched,
2453 cfqq->slice_end))
c1e44756 2454 return true;
abc3c744 2455
c1e44756 2456 return false;
abc3c744
SL
2457}
2458
0b182d61 2459static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 2460{
2f5cb738 2461 unsigned int max_dispatch;
22e2c507 2462
5ad531db
JA
2463 /*
2464 * Drain async requests before we start sync IO
2465 */
53c583d2 2466 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_flight[BLK_RW_ASYNC])
0b182d61 2467 return false;
5ad531db 2468
2f5cb738
JA
2469 /*
2470 * If this is an async queue and we have sync IO in flight, let it wait
2471 */
53c583d2 2472 if (cfqd->rq_in_flight[BLK_RW_SYNC] && !cfq_cfqq_sync(cfqq))
0b182d61 2473 return false;
2f5cb738 2474
abc3c744 2475 max_dispatch = max_t(unsigned int, cfqd->cfq_quantum / 2, 1);
2f5cb738
JA
2476 if (cfq_class_idle(cfqq))
2477 max_dispatch = 1;
b4878f24 2478
2f5cb738
JA
2479 /*
2480 * Does this cfqq already have too much IO in flight?
2481 */
2482 if (cfqq->dispatched >= max_dispatch) {
ef8a41df 2483 bool promote_sync = false;
2f5cb738
JA
2484 /*
2485 * idle queue must always only have a single IO in flight
2486 */
3ed9a296 2487 if (cfq_class_idle(cfqq))
0b182d61 2488 return false;
3ed9a296 2489
ef8a41df 2490 /*
c4ade94f
LS
2491 * If there is only one sync queue
2492 * we can ignore async queue here and give the sync
ef8a41df
SL
2493 * queue no dispatch limit. The reason is a sync queue can
2494 * preempt async queue, limiting the sync queue doesn't make
2495 * sense. This is useful for aiostress test.
2496 */
c4ade94f
LS
2497 if (cfq_cfqq_sync(cfqq) && cfqd->busy_sync_queues == 1)
2498 promote_sync = true;
ef8a41df 2499
2f5cb738
JA
2500 /*
2501 * We have other queues, don't allow more IO from this one
2502 */
ef8a41df
SL
2503 if (cfqd->busy_queues > 1 && cfq_slice_used_soon(cfqd, cfqq) &&
2504 !promote_sync)
0b182d61 2505 return false;
9ede209e 2506
365722bb 2507 /*
474b18cc 2508 * Sole queue user, no limit
365722bb 2509 */
ef8a41df 2510 if (cfqd->busy_queues == 1 || promote_sync)
abc3c744
SL
2511 max_dispatch = -1;
2512 else
2513 /*
2514 * Normally we start throttling cfqq when cfq_quantum/2
2515 * requests have been dispatched. But we can drive
2516 * deeper queue depths at the beginning of slice
2517 * subjected to upper limit of cfq_quantum.
2518 * */
2519 max_dispatch = cfqd->cfq_quantum;
8e296755
JA
2520 }
2521
2522 /*
2523 * Async queues must wait a bit before being allowed dispatch.
2524 * We also ramp up the dispatch depth gradually for async IO,
2525 * based on the last sync IO we serviced
2526 */
963b72fc 2527 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
573412b2 2528 unsigned long last_sync = jiffies - cfqd->last_delayed_sync;
8e296755 2529 unsigned int depth;
365722bb 2530
61f0c1dc 2531 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
2532 if (!depth && !cfqq->dispatched)
2533 depth = 1;
8e296755
JA
2534 if (depth < max_dispatch)
2535 max_dispatch = depth;
2f5cb738 2536 }
3ed9a296 2537
0b182d61
JA
2538 /*
2539 * If we're below the current max, allow a dispatch
2540 */
2541 return cfqq->dispatched < max_dispatch;
2542}
2543
2544/*
2545 * Dispatch a request from cfqq, moving them to the request queue
2546 * dispatch list.
2547 */
2548static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2549{
2550 struct request *rq;
2551
2552 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
2553
2554 if (!cfq_may_dispatch(cfqd, cfqq))
2555 return false;
2556
2557 /*
2558 * follow expired path, else get first next available
2559 */
2560 rq = cfq_check_fifo(cfqq);
2561 if (!rq)
2562 rq = cfqq->next_rq;
2563
2564 /*
2565 * insert request into driver dispatch list
2566 */
2567 cfq_dispatch_insert(cfqd->queue, rq);
2568
2569 if (!cfqd->active_cic) {
2570 struct cfq_io_context *cic = RQ_CIC(rq);
2571
2572 atomic_long_inc(&cic->ioc->refcount);
2573 cfqd->active_cic = cic;
2574 }
2575
2576 return true;
2577}
2578
2579/*
2580 * Find the cfqq that we need to service and move a request from that to the
2581 * dispatch list
2582 */
2583static int cfq_dispatch_requests(struct request_queue *q, int force)
2584{
2585 struct cfq_data *cfqd = q->elevator->elevator_data;
2586 struct cfq_queue *cfqq;
2587
2588 if (!cfqd->busy_queues)
2589 return 0;
2590
2591 if (unlikely(force))
2592 return cfq_forced_dispatch(cfqd);
2593
2594 cfqq = cfq_select_queue(cfqd);
2595 if (!cfqq)
8e296755
JA
2596 return 0;
2597
2f5cb738 2598 /*
0b182d61 2599 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 2600 */
0b182d61
JA
2601 if (!cfq_dispatch_request(cfqd, cfqq))
2602 return 0;
2603
2f5cb738 2604 cfqq->slice_dispatch++;
b029195d 2605 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 2606
2f5cb738
JA
2607 /*
2608 * expire an async queue immediately if it has used up its slice. idle
2609 * queue always expire after 1 dispatch round.
2610 */
2611 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
2612 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
2613 cfq_class_idle(cfqq))) {
2614 cfqq->slice_end = jiffies + 1;
e5ff082e 2615 cfq_slice_expired(cfqd, 0);
1da177e4
LT
2616 }
2617
b217a903 2618 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 2619 return 1;
1da177e4
LT
2620}
2621
1da177e4 2622/*
5e705374
JA
2623 * task holds one reference to the queue, dropped when task exits. each rq
2624 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4 2625 *
b1c35769 2626 * Each cfq queue took a reference on the parent group. Drop it now.
1da177e4
LT
2627 * queue lock must be held here.
2628 */
2629static void cfq_put_queue(struct cfq_queue *cfqq)
2630{
22e2c507 2631 struct cfq_data *cfqd = cfqq->cfqd;
0bbfeb83 2632 struct cfq_group *cfqg;
22e2c507 2633
30d7b944 2634 BUG_ON(cfqq->ref <= 0);
1da177e4 2635
30d7b944
SL
2636 cfqq->ref--;
2637 if (cfqq->ref)
1da177e4
LT
2638 return;
2639
7b679138 2640 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 2641 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 2642 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
b1c35769 2643 cfqg = cfqq->cfqg;
1da177e4 2644
28f95cbc 2645 if (unlikely(cfqd->active_queue == cfqq)) {
e5ff082e 2646 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 2647 cfq_schedule_dispatch(cfqd);
28f95cbc 2648 }
22e2c507 2649
f04a6424 2650 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 2651 kmem_cache_free(cfq_pool, cfqq);
b1c35769 2652 cfq_put_cfqg(cfqg);
1da177e4
LT
2653}
2654
34e6bbf2
FC
2655static void cfq_cic_free_rcu(struct rcu_head *head)
2656{
b50b636b
TH
2657 kmem_cache_free(cfq_ioc_pool,
2658 container_of(head, struct cfq_io_context, rcu_head));
34e6bbf2 2659}
4ac845a2 2660
34e6bbf2
FC
2661static void cfq_cic_free(struct cfq_io_context *cic)
2662{
2663 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
2664}
2665
283287a5 2666static void cfq_release_cic(struct cfq_io_context *cic)
4ac845a2 2667{
283287a5 2668 struct io_context *ioc = cic->ioc;
4ac845a2 2669
1238033c 2670 radix_tree_delete(&ioc->radix_root, cic->q->id);
b50b636b 2671 hlist_del(&cic->cic_list);
34e6bbf2 2672 cfq_cic_free(cic);
4ac845a2
JA
2673}
2674
d02a2c07 2675static void cfq_put_cooperator(struct cfq_queue *cfqq)
1da177e4 2676{
df5fe3e8
JM
2677 struct cfq_queue *__cfqq, *next;
2678
df5fe3e8
JM
2679 /*
2680 * If this queue was scheduled to merge with another queue, be
2681 * sure to drop the reference taken on that queue (and others in
2682 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
2683 */
2684 __cfqq = cfqq->new_cfqq;
2685 while (__cfqq) {
2686 if (__cfqq == cfqq) {
2687 WARN(1, "cfqq->new_cfqq loop detected\n");
2688 break;
2689 }
2690 next = __cfqq->new_cfqq;
2691 cfq_put_queue(__cfqq);
2692 __cfqq = next;
2693 }
d02a2c07
SL
2694}
2695
2696static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2697{
2698 if (unlikely(cfqq == cfqd->active_queue)) {
2699 __cfq_slice_expired(cfqd, cfqq, 0);
2700 cfq_schedule_dispatch(cfqd);
2701 }
2702
2703 cfq_put_cooperator(cfqq);
df5fe3e8 2704
89850f7e
JA
2705 cfq_put_queue(cfqq);
2706}
22e2c507 2707
283287a5 2708static void cfq_exit_cic(struct cfq_io_context *cic)
89850f7e 2709{
283287a5 2710 struct cfq_data *cfqd = cic_to_cfqd(cic);
4faa3c81
FC
2711 struct io_context *ioc = cic->ioc;
2712
fc46379d 2713 list_del_init(&cic->queue_list);
4ac845a2
JA
2714
2715 /*
f1a4f4d3
TH
2716 * Both setting lookup hint to and clearing it from @cic are done
2717 * under queue_lock. If it's not pointing to @cic now, it never
2718 * will. Hint assignment itself can race safely.
4ac845a2 2719 */
f1a4f4d3 2720 if (rcu_dereference_raw(ioc->ioc_data) == cic)
4faa3c81
FC
2721 rcu_assign_pointer(ioc->ioc_data, NULL);
2722
ff6657c6
JA
2723 if (cic->cfqq[BLK_RW_ASYNC]) {
2724 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
2725 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
2726 }
2727
ff6657c6
JA
2728 if (cic->cfqq[BLK_RW_SYNC]) {
2729 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
2730 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 2731 }
89850f7e
JA
2732}
2733
22e2c507 2734static struct cfq_io_context *
8267e268 2735cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2736{
b5deef90 2737 struct cfq_io_context *cic;
1da177e4 2738
94f6030c
CL
2739 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
2740 cfqd->queue->node);
1da177e4 2741 if (cic) {
383cd721 2742 cic->ttime.last_end_request = jiffies;
553698f9 2743 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 2744 INIT_HLIST_NODE(&cic->cic_list);
b2efa052
TH
2745 cic->exit = cfq_exit_cic;
2746 cic->release = cfq_release_cic;
1da177e4
LT
2747 }
2748
2749 return cic;
2750}
2751
fd0928df 2752static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
2753{
2754 struct task_struct *tsk = current;
2755 int ioprio_class;
2756
3b18152c 2757 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
2758 return;
2759
fd0928df 2760 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 2761 switch (ioprio_class) {
fe094d98
JA
2762 default:
2763 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
2764 case IOPRIO_CLASS_NONE:
2765 /*
6d63c275 2766 * no prio set, inherit CPU scheduling settings
fe094d98
JA
2767 */
2768 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 2769 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
2770 break;
2771 case IOPRIO_CLASS_RT:
2772 cfqq->ioprio = task_ioprio(ioc);
2773 cfqq->ioprio_class = IOPRIO_CLASS_RT;
2774 break;
2775 case IOPRIO_CLASS_BE:
2776 cfqq->ioprio = task_ioprio(ioc);
2777 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2778 break;
2779 case IOPRIO_CLASS_IDLE:
2780 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
2781 cfqq->ioprio = 7;
2782 cfq_clear_cfqq_idle_window(cfqq);
2783 break;
22e2c507
JA
2784 }
2785
2786 /*
2787 * keep track of original prio settings in case we have to temporarily
2788 * elevate the priority of this queue
2789 */
2790 cfqq->org_ioprio = cfqq->ioprio;
3b18152c 2791 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
2792}
2793
dc86900e 2794static void changed_ioprio(struct cfq_io_context *cic)
22e2c507 2795{
bca4b914 2796 struct cfq_data *cfqd = cic_to_cfqd(cic);
478a82b0 2797 struct cfq_queue *cfqq;
35e6077c 2798
caaa5f9f
JA
2799 if (unlikely(!cfqd))
2800 return;
2801
ff6657c6 2802 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2803 if (cfqq) {
2804 struct cfq_queue *new_cfqq;
ff6657c6
JA
2805 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2806 GFP_ATOMIC);
caaa5f9f 2807 if (new_cfqq) {
ff6657c6 2808 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2809 cfq_put_queue(cfqq);
2810 }
22e2c507 2811 }
caaa5f9f 2812
ff6657c6 2813 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2814 if (cfqq)
2815 cfq_mark_cfqq_prio_changed(cfqq);
22e2c507
JA
2816}
2817
d5036d77 2818static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2819 pid_t pid, bool is_sync)
d5036d77
JA
2820{
2821 RB_CLEAR_NODE(&cfqq->rb_node);
2822 RB_CLEAR_NODE(&cfqq->p_node);
2823 INIT_LIST_HEAD(&cfqq->fifo);
2824
30d7b944 2825 cfqq->ref = 0;
d5036d77
JA
2826 cfqq->cfqd = cfqd;
2827
2828 cfq_mark_cfqq_prio_changed(cfqq);
2829
2830 if (is_sync) {
2831 if (!cfq_class_idle(cfqq))
2832 cfq_mark_cfqq_idle_window(cfqq);
2833 cfq_mark_cfqq_sync(cfqq);
2834 }
2835 cfqq->pid = pid;
2836}
2837
24610333 2838#ifdef CONFIG_CFQ_GROUP_IOSCHED
dc86900e 2839static void changed_cgroup(struct cfq_io_context *cic)
24610333
VG
2840{
2841 struct cfq_queue *sync_cfqq = cic_to_cfqq(cic, 1);
bca4b914 2842 struct cfq_data *cfqd = cic_to_cfqd(cic);
24610333
VG
2843 struct request_queue *q;
2844
2845 if (unlikely(!cfqd))
2846 return;
2847
2848 q = cfqd->queue;
2849
24610333
VG
2850 if (sync_cfqq) {
2851 /*
2852 * Drop reference to sync queue. A new sync queue will be
2853 * assigned in new group upon arrival of a fresh request.
2854 */
2855 cfq_log_cfqq(cfqd, sync_cfqq, "changed cgroup");
2856 cic_set_cfqq(cic, NULL, 1);
2857 cfq_put_queue(sync_cfqq);
2858 }
24610333 2859}
24610333
VG
2860#endif /* CONFIG_CFQ_GROUP_IOSCHED */
2861
22e2c507 2862static struct cfq_queue *
a6151c3a 2863cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2864 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2865{
22e2c507 2866 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2867 struct cfq_io_context *cic;
cdb16e8f 2868 struct cfq_group *cfqg;
22e2c507
JA
2869
2870retry:
3e59cf9d 2871 cfqg = cfq_get_cfqg(cfqd);
4ac845a2 2872 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2873 /* cic always exists here */
2874 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2875
6118b70b
JA
2876 /*
2877 * Always try a new alloc if we fell back to the OOM cfqq
2878 * originally, since it should just be a temporary situation.
2879 */
2880 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2881 cfqq = NULL;
22e2c507
JA
2882 if (new_cfqq) {
2883 cfqq = new_cfqq;
2884 new_cfqq = NULL;
2885 } else if (gfp_mask & __GFP_WAIT) {
2886 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2887 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2888 gfp_mask | __GFP_ZERO,
94f6030c 2889 cfqd->queue->node);
22e2c507 2890 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2891 if (new_cfqq)
2892 goto retry;
22e2c507 2893 } else {
94f6030c
CL
2894 cfqq = kmem_cache_alloc_node(cfq_pool,
2895 gfp_mask | __GFP_ZERO,
2896 cfqd->queue->node);
22e2c507
JA
2897 }
2898
6118b70b
JA
2899 if (cfqq) {
2900 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2901 cfq_init_prio_data(cfqq, ioc);
cdb16e8f 2902 cfq_link_cfqq_cfqg(cfqq, cfqg);
6118b70b
JA
2903 cfq_log_cfqq(cfqd, cfqq, "alloced");
2904 } else
2905 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2906 }
2907
2908 if (new_cfqq)
2909 kmem_cache_free(cfq_pool, new_cfqq);
2910
22e2c507
JA
2911 return cfqq;
2912}
2913
c2dea2d1
VT
2914static struct cfq_queue **
2915cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2916{
fe094d98 2917 switch (ioprio_class) {
c2dea2d1
VT
2918 case IOPRIO_CLASS_RT:
2919 return &cfqd->async_cfqq[0][ioprio];
2920 case IOPRIO_CLASS_BE:
2921 return &cfqd->async_cfqq[1][ioprio];
2922 case IOPRIO_CLASS_IDLE:
2923 return &cfqd->async_idle_cfqq;
2924 default:
2925 BUG();
2926 }
2927}
2928
15c31be4 2929static struct cfq_queue *
a6151c3a 2930cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2931 gfp_t gfp_mask)
2932{
fd0928df
JA
2933 const int ioprio = task_ioprio(ioc);
2934 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2935 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2936 struct cfq_queue *cfqq = NULL;
2937
c2dea2d1
VT
2938 if (!is_sync) {
2939 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2940 cfqq = *async_cfqq;
2941 }
2942
6118b70b 2943 if (!cfqq)
fd0928df 2944 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2945
2946 /*
2947 * pin the queue now that it's allocated, scheduler exit will prune it
2948 */
c2dea2d1 2949 if (!is_sync && !(*async_cfqq)) {
30d7b944 2950 cfqq->ref++;
c2dea2d1 2951 *async_cfqq = cfqq;
15c31be4
JA
2952 }
2953
30d7b944 2954 cfqq->ref++;
15c31be4
JA
2955 return cfqq;
2956}
2957
f1a4f4d3
TH
2958/**
2959 * cfq_cic_lookup - lookup cfq_io_context
2960 * @cfqd: the associated cfq_data
2961 * @ioc: the associated io_context
2962 *
2963 * Look up cfq_io_context associated with @cfqd - @ioc pair. Must be
2964 * called with queue_lock held.
2965 */
e2d74ac0 2966static struct cfq_io_context *
4ac845a2 2967cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2968{
1238033c 2969 struct request_queue *q = cfqd->queue;
e2d74ac0 2970 struct cfq_io_context *cic;
e2d74ac0 2971
f1a4f4d3 2972 lockdep_assert_held(cfqd->queue->queue_lock);
91fac317
VT
2973 if (unlikely(!ioc))
2974 return NULL;
2975
597bc485 2976 /*
b9a19208
TH
2977 * cic's are indexed from @ioc using radix tree and hint pointer,
2978 * both of which are protected with RCU. All removals are done
2979 * holding both q and ioc locks, and we're holding q lock - if we
2980 * find a cic which points to us, it's guaranteed to be valid.
597bc485 2981 */
b9a19208 2982 rcu_read_lock();
4ac845a2 2983 cic = rcu_dereference(ioc->ioc_data);
1238033c 2984 if (cic && cic->q == q)
f1a4f4d3 2985 goto out;
597bc485 2986
b9a19208 2987 cic = radix_tree_lookup(&ioc->radix_root, cfqd->queue->id);
1238033c 2988 if (cic && cic->q == q)
b9a19208
TH
2989 rcu_assign_pointer(ioc->ioc_data, cic); /* allowed to race */
2990 else
2991 cic = NULL;
f1a4f4d3
TH
2992out:
2993 rcu_read_unlock();
4ac845a2 2994 return cic;
e2d74ac0
JA
2995}
2996
216284c3
TH
2997/**
2998 * cfq_create_cic - create and link a cfq_io_context
2999 * @cfqd: cfqd of interest
3000 * @gfp_mask: allocation mask
3001 *
3002 * Make sure cfq_io_context linking %current->io_context and @cfqd exists.
3003 * If ioc and/or cic doesn't exist, they will be created using @gfp_mask.
4ac845a2 3004 */
216284c3 3005static int cfq_create_cic(struct cfq_data *cfqd, gfp_t gfp_mask)
e2d74ac0 3006{
216284c3
TH
3007 struct request_queue *q = cfqd->queue;
3008 struct cfq_io_context *cic = NULL;
3009 struct io_context *ioc;
3010 int ret = -ENOMEM;
3011
3012 might_sleep_if(gfp_mask & __GFP_WAIT);
3013
3014 /* allocate stuff */
f2dbd76a 3015 ioc = create_io_context(current, gfp_mask, q->node);
216284c3
TH
3016 if (!ioc)
3017 goto out;
3018
3019 cic = cfq_alloc_io_context(cfqd, gfp_mask);
3020 if (!cic)
3021 goto out;
e2d74ac0 3022
4ac845a2 3023 ret = radix_tree_preload(gfp_mask);
283287a5
TH
3024 if (ret)
3025 goto out;
e2d74ac0 3026
283287a5 3027 cic->ioc = ioc;
283287a5
TH
3028 cic->q = cfqd->queue;
3029
216284c3
TH
3030 /* lock both q and ioc and try to link @cic */
3031 spin_lock_irq(q->queue_lock);
3032 spin_lock(&ioc->lock);
4ac845a2 3033
216284c3
TH
3034 ret = radix_tree_insert(&ioc->radix_root, q->id, cic);
3035 if (likely(!ret)) {
b50b636b 3036 hlist_add_head(&cic->cic_list, &ioc->cic_list);
283287a5 3037 list_add(&cic->queue_list, &cfqd->cic_list);
216284c3
TH
3038 cic = NULL;
3039 } else if (ret == -EEXIST) {
3040 /* someone else already did it */
3041 ret = 0;
e2d74ac0 3042 }
216284c3
TH
3043
3044 spin_unlock(&ioc->lock);
3045 spin_unlock_irq(q->queue_lock);
3046
3047 radix_tree_preload_end();
283287a5 3048out:
4ac845a2
JA
3049 if (ret)
3050 printk(KERN_ERR "cfq: cic link failed!\n");
216284c3
TH
3051 if (cic)
3052 cfq_cic_free(cic);
4ac845a2 3053 return ret;
e2d74ac0
JA
3054}
3055
216284c3
TH
3056/**
3057 * cfq_get_io_context - acquire cfq_io_context and bump refcnt on io_context
3058 * @cfqd: cfqd to setup cic for
3059 * @gfp_mask: allocation mask
3060 *
3061 * Return cfq_io_context associating @cfqd and %current->io_context and
3062 * bump refcnt on io_context. If ioc or cic doesn't exist, they're created
3063 * using @gfp_mask.
3064 *
3065 * Must be called under queue_lock which may be released and re-acquired.
3066 * This function also may sleep depending on @gfp_mask.
1da177e4
LT
3067 */
3068static struct cfq_io_context *
e2d74ac0 3069cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 3070{
216284c3 3071 struct request_queue *q = cfqd->queue;
6e736be7 3072 struct cfq_io_context *cic = NULL;
216284c3
TH
3073 struct io_context *ioc;
3074 int err;
3075
3076 lockdep_assert_held(q->queue_lock);
3077
3078 while (true) {
3079 /* fast path */
3080 ioc = current->io_context;
3081 if (likely(ioc)) {
3082 cic = cfq_cic_lookup(cfqd, ioc);
3083 if (likely(cic))
3084 break;
3085 }
1da177e4 3086
216284c3
TH
3087 /* slow path - unlock, create missing ones and retry */
3088 spin_unlock_irq(q->queue_lock);
3089 err = cfq_create_cic(cfqd, gfp_mask);
3090 spin_lock_irq(q->queue_lock);
3091 if (err)
3092 return NULL;
3093 }
1da177e4 3094
216284c3 3095 /* bump @ioc's refcnt and handle changed notifications */
6e736be7
TH
3096 get_io_context(ioc);
3097
dc86900e
TH
3098 if (unlikely(cic->changed)) {
3099 if (test_and_clear_bit(CIC_IOPRIO_CHANGED, &cic->changed))
3100 changed_ioprio(cic);
24610333 3101#ifdef CONFIG_CFQ_GROUP_IOSCHED
dc86900e
TH
3102 if (test_and_clear_bit(CIC_CGROUP_CHANGED, &cic->changed))
3103 changed_cgroup(cic);
24610333 3104#endif
dc86900e
TH
3105 }
3106
1da177e4 3107 return cic;
1da177e4
LT
3108}
3109
22e2c507 3110static void
383cd721 3111__cfq_update_io_thinktime(struct cfq_ttime *ttime, unsigned long slice_idle)
1da177e4 3112{
383cd721
SL
3113 unsigned long elapsed = jiffies - ttime->last_end_request;
3114 elapsed = min(elapsed, 2UL * slice_idle);
db3b5848 3115
383cd721
SL
3116 ttime->ttime_samples = (7*ttime->ttime_samples + 256) / 8;
3117 ttime->ttime_total = (7*ttime->ttime_total + 256*elapsed) / 8;
3118 ttime->ttime_mean = (ttime->ttime_total + 128) / ttime->ttime_samples;
3119}
3120
3121static void
3122cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3123 struct cfq_io_context *cic)
3124{
f5f2b6ce 3125 if (cfq_cfqq_sync(cfqq)) {
383cd721 3126 __cfq_update_io_thinktime(&cic->ttime, cfqd->cfq_slice_idle);
f5f2b6ce
SL
3127 __cfq_update_io_thinktime(&cfqq->service_tree->ttime,
3128 cfqd->cfq_slice_idle);
3129 }
7700fc4f
SL
3130#ifdef CONFIG_CFQ_GROUP_IOSCHED
3131 __cfq_update_io_thinktime(&cfqq->cfqg->ttime, cfqd->cfq_group_idle);
3132#endif
22e2c507 3133}
1da177e4 3134
206dc69b 3135static void
b2c18e1e 3136cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 3137 struct request *rq)
206dc69b 3138{
3dde36dd 3139 sector_t sdist = 0;
41647e7a 3140 sector_t n_sec = blk_rq_sectors(rq);
3dde36dd
CZ
3141 if (cfqq->last_request_pos) {
3142 if (cfqq->last_request_pos < blk_rq_pos(rq))
3143 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
3144 else
3145 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
3146 }
206dc69b 3147
3dde36dd 3148 cfqq->seek_history <<= 1;
41647e7a
CZ
3149 if (blk_queue_nonrot(cfqd->queue))
3150 cfqq->seek_history |= (n_sec < CFQQ_SECT_THR_NONROT);
3151 else
3152 cfqq->seek_history |= (sdist > CFQQ_SEEK_THR);
206dc69b 3153}
1da177e4 3154
22e2c507
JA
3155/*
3156 * Disable idle window if the process thinks too long or seeks so much that
3157 * it doesn't matter
3158 */
3159static void
3160cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3161 struct cfq_io_context *cic)
3162{
7b679138 3163 int old_idle, enable_idle;
1be92f2f 3164
0871714e
JA
3165 /*
3166 * Don't idle for async or idle io prio class
3167 */
3168 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
3169 return;
3170
c265a7f4 3171 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 3172
76280aff
CZ
3173 if (cfqq->queued[0] + cfqq->queued[1] >= 4)
3174 cfq_mark_cfqq_deep(cfqq);
3175
749ef9f8
CZ
3176 if (cfqq->next_rq && (cfqq->next_rq->cmd_flags & REQ_NOIDLE))
3177 enable_idle = 0;
3178 else if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
3dde36dd 3179 (!cfq_cfqq_deep(cfqq) && CFQQ_SEEKY(cfqq)))
22e2c507 3180 enable_idle = 0;
383cd721
SL
3181 else if (sample_valid(cic->ttime.ttime_samples)) {
3182 if (cic->ttime.ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
3183 enable_idle = 0;
3184 else
3185 enable_idle = 1;
1da177e4
LT
3186 }
3187
7b679138
JA
3188 if (old_idle != enable_idle) {
3189 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
3190 if (enable_idle)
3191 cfq_mark_cfqq_idle_window(cfqq);
3192 else
3193 cfq_clear_cfqq_idle_window(cfqq);
3194 }
22e2c507 3195}
1da177e4 3196
22e2c507
JA
3197/*
3198 * Check if new_cfqq should preempt the currently active queue. Return 0 for
3199 * no or if we aren't sure, a 1 will cause a preempt.
3200 */
a6151c3a 3201static bool
22e2c507 3202cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 3203 struct request *rq)
22e2c507 3204{
6d048f53 3205 struct cfq_queue *cfqq;
22e2c507 3206
6d048f53
JA
3207 cfqq = cfqd->active_queue;
3208 if (!cfqq)
a6151c3a 3209 return false;
22e2c507 3210
6d048f53 3211 if (cfq_class_idle(new_cfqq))
a6151c3a 3212 return false;
22e2c507
JA
3213
3214 if (cfq_class_idle(cfqq))
a6151c3a 3215 return true;
1e3335de 3216
875feb63
DS
3217 /*
3218 * Don't allow a non-RT request to preempt an ongoing RT cfqq timeslice.
3219 */
3220 if (cfq_class_rt(cfqq) && !cfq_class_rt(new_cfqq))
3221 return false;
3222
374f84ac
JA
3223 /*
3224 * if the new request is sync, but the currently running queue is
3225 * not, let the sync request have priority.
3226 */
5e705374 3227 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 3228 return true;
1e3335de 3229
8682e1f1
VG
3230 if (new_cfqq->cfqg != cfqq->cfqg)
3231 return false;
3232
3233 if (cfq_slice_used(cfqq))
3234 return true;
3235
3236 /* Allow preemption only if we are idling on sync-noidle tree */
3237 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
3238 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
3239 new_cfqq->service_tree->count == 2 &&
3240 RB_EMPTY_ROOT(&cfqq->sort_list))
3241 return true;
3242
b53d1ed7
JA
3243 /*
3244 * So both queues are sync. Let the new request get disk time if
3245 * it's a metadata request and the current queue is doing regular IO.
3246 */
65299a3b 3247 if ((rq->cmd_flags & REQ_PRIO) && !cfqq->prio_pending)
b53d1ed7
JA
3248 return true;
3249
3a9a3f6c
DS
3250 /*
3251 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
3252 */
3253 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 3254 return true;
3a9a3f6c 3255
d2d59e18
SL
3256 /* An idle queue should not be idle now for some reason */
3257 if (RB_EMPTY_ROOT(&cfqq->sort_list) && !cfq_should_idle(cfqd, cfqq))
3258 return true;
3259
1e3335de 3260 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 3261 return false;
1e3335de
JA
3262
3263 /*
3264 * if this request is as-good as one we would expect from the
3265 * current cfqq, let it preempt
3266 */
e9ce335d 3267 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 3268 return true;
1e3335de 3269
a6151c3a 3270 return false;
22e2c507
JA
3271}
3272
3273/*
3274 * cfqq preempts the active queue. if we allowed preempt with no slice left,
3275 * let it have half of its nominal slice.
3276 */
3277static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3278{
f8ae6e3e
SL
3279 struct cfq_queue *old_cfqq = cfqd->active_queue;
3280
7b679138 3281 cfq_log_cfqq(cfqd, cfqq, "preempt");
e5ff082e 3282 cfq_slice_expired(cfqd, 1);
22e2c507 3283
f8ae6e3e
SL
3284 /*
3285 * workload type is changed, don't save slice, otherwise preempt
3286 * doesn't happen
3287 */
3288 if (cfqq_type(old_cfqq) != cfqq_type(cfqq))
3289 cfqq->cfqg->saved_workload_slice = 0;
3290
bf572256
JA
3291 /*
3292 * Put the new queue at the front of the of the current list,
3293 * so we know that it will be selected next.
3294 */
3295 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
3296
3297 cfq_service_tree_add(cfqd, cfqq, 1);
eda5e0c9 3298
62a37f6b
JT
3299 cfqq->slice_end = 0;
3300 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
3301}
3302
22e2c507 3303/*
5e705374 3304 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
3305 * something we should do about it
3306 */
3307static void
5e705374
JA
3308cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
3309 struct request *rq)
22e2c507 3310{
5e705374 3311 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 3312
45333d5a 3313 cfqd->rq_queued++;
65299a3b
CH
3314 if (rq->cmd_flags & REQ_PRIO)
3315 cfqq->prio_pending++;
374f84ac 3316
383cd721 3317 cfq_update_io_thinktime(cfqd, cfqq, cic);
b2c18e1e 3318 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
3319 cfq_update_idle_window(cfqd, cfqq, cic);
3320
b2c18e1e 3321 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
3322
3323 if (cfqq == cfqd->active_queue) {
3324 /*
b029195d
JA
3325 * Remember that we saw a request from this process, but
3326 * don't start queuing just yet. Otherwise we risk seeing lots
3327 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
3328 * and merging. If the request is already larger than a single
3329 * page, let it rip immediately. For that case we assume that
2d870722
JA
3330 * merging is already done. Ditto for a busy system that
3331 * has other work pending, don't risk delaying until the
3332 * idle timer unplug to continue working.
22e2c507 3333 */
d6ceb25e 3334 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
3335 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
3336 cfqd->busy_queues > 1) {
812df48d 3337 cfq_del_timer(cfqd, cfqq);
554554f6 3338 cfq_clear_cfqq_wait_request(cfqq);
24ecfbe2 3339 __blk_run_queue(cfqd->queue);
a11cdaa7 3340 } else {
e98ef89b 3341 cfq_blkiocg_update_idle_time_stats(
a11cdaa7 3342 &cfqq->cfqg->blkg);
bf791937 3343 cfq_mark_cfqq_must_dispatch(cfqq);
a11cdaa7 3344 }
d6ceb25e 3345 }
5e705374 3346 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
3347 /*
3348 * not the active queue - expire current slice if it is
3349 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
3350 * has some old slice time left and is of higher priority or
3351 * this new queue is RT and the current one is BE
22e2c507
JA
3352 */
3353 cfq_preempt_queue(cfqd, cfqq);
24ecfbe2 3354 __blk_run_queue(cfqd->queue);
22e2c507 3355 }
1da177e4
LT
3356}
3357
165125e1 3358static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 3359{
b4878f24 3360 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 3361 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 3362
7b679138 3363 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 3364 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 3365
30996f40 3366 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 3367 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 3368 cfq_add_rq_rb(rq);
e98ef89b 3369 cfq_blkiocg_update_io_add_stats(&(RQ_CFQG(rq))->blkg,
cdc1184c
DS
3370 &cfqd->serving_group->blkg, rq_data_dir(rq),
3371 rq_is_sync(rq));
5e705374 3372 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
3373}
3374
45333d5a
AC
3375/*
3376 * Update hw_tag based on peak queue depth over 50 samples under
3377 * sufficient load.
3378 */
3379static void cfq_update_hw_tag(struct cfq_data *cfqd)
3380{
1a1238a7
SL
3381 struct cfq_queue *cfqq = cfqd->active_queue;
3382
53c583d2
CZ
3383 if (cfqd->rq_in_driver > cfqd->hw_tag_est_depth)
3384 cfqd->hw_tag_est_depth = cfqd->rq_in_driver;
e459dd08
CZ
3385
3386 if (cfqd->hw_tag == 1)
3387 return;
45333d5a
AC
3388
3389 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
53c583d2 3390 cfqd->rq_in_driver <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3391 return;
3392
1a1238a7
SL
3393 /*
3394 * If active queue hasn't enough requests and can idle, cfq might not
3395 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
3396 * case
3397 */
3398 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
3399 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
53c583d2 3400 CFQ_HW_QUEUE_MIN && cfqd->rq_in_driver < CFQ_HW_QUEUE_MIN)
1a1238a7
SL
3401 return;
3402
45333d5a
AC
3403 if (cfqd->hw_tag_samples++ < 50)
3404 return;
3405
e459dd08 3406 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
3407 cfqd->hw_tag = 1;
3408 else
3409 cfqd->hw_tag = 0;
45333d5a
AC
3410}
3411
7667aa06
VG
3412static bool cfq_should_wait_busy(struct cfq_data *cfqd, struct cfq_queue *cfqq)
3413{
3414 struct cfq_io_context *cic = cfqd->active_cic;
3415
02a8f01b
JT
3416 /* If the queue already has requests, don't wait */
3417 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
3418 return false;
3419
7667aa06
VG
3420 /* If there are other queues in the group, don't wait */
3421 if (cfqq->cfqg->nr_cfqq > 1)
3422 return false;
3423
7700fc4f
SL
3424 /* the only queue in the group, but think time is big */
3425 if (cfq_io_thinktime_big(cfqd, &cfqq->cfqg->ttime, true))
3426 return false;
3427
7667aa06
VG
3428 if (cfq_slice_used(cfqq))
3429 return true;
3430
3431 /* if slice left is less than think time, wait busy */
383cd721
SL
3432 if (cic && sample_valid(cic->ttime.ttime_samples)
3433 && (cfqq->slice_end - jiffies < cic->ttime.ttime_mean))
7667aa06
VG
3434 return true;
3435
3436 /*
3437 * If think times is less than a jiffy than ttime_mean=0 and above
3438 * will not be true. It might happen that slice has not expired yet
3439 * but will expire soon (4-5 ns) during select_queue(). To cover the
3440 * case where think time is less than a jiffy, mark the queue wait
3441 * busy if only 1 jiffy is left in the slice.
3442 */
3443 if (cfqq->slice_end - jiffies == 1)
3444 return true;
3445
3446 return false;
3447}
3448
165125e1 3449static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 3450{
5e705374 3451 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 3452 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 3453 const int sync = rq_is_sync(rq);
b4878f24 3454 unsigned long now;
1da177e4 3455
b4878f24 3456 now = jiffies;
33659ebb
CH
3457 cfq_log_cfqq(cfqd, cfqq, "complete rqnoidle %d",
3458 !!(rq->cmd_flags & REQ_NOIDLE));
1da177e4 3459
45333d5a
AC
3460 cfq_update_hw_tag(cfqd);
3461
53c583d2 3462 WARN_ON(!cfqd->rq_in_driver);
6d048f53 3463 WARN_ON(!cfqq->dispatched);
53c583d2 3464 cfqd->rq_in_driver--;
6d048f53 3465 cfqq->dispatched--;
80bdf0c7 3466 (RQ_CFQG(rq))->dispatched--;
e98ef89b
VG
3467 cfq_blkiocg_update_completion_stats(&cfqq->cfqg->blkg,
3468 rq_start_time_ns(rq), rq_io_start_time_ns(rq),
3469 rq_data_dir(rq), rq_is_sync(rq));
1da177e4 3470
53c583d2 3471 cfqd->rq_in_flight[cfq_cfqq_sync(cfqq)]--;
3ed9a296 3472
365722bb 3473 if (sync) {
f5f2b6ce
SL
3474 struct cfq_rb_root *service_tree;
3475
383cd721 3476 RQ_CIC(rq)->ttime.last_end_request = now;
f5f2b6ce
SL
3477
3478 if (cfq_cfqq_on_rr(cfqq))
3479 service_tree = cfqq->service_tree;
3480 else
3481 service_tree = service_tree_for(cfqq->cfqg,
3482 cfqq_prio(cfqq), cfqq_type(cfqq));
3483 service_tree->ttime.last_end_request = now;
573412b2
CZ
3484 if (!time_after(rq->start_time + cfqd->cfq_fifo_expire[1], now))
3485 cfqd->last_delayed_sync = now;
365722bb 3486 }
caaa5f9f 3487
7700fc4f
SL
3488#ifdef CONFIG_CFQ_GROUP_IOSCHED
3489 cfqq->cfqg->ttime.last_end_request = now;
3490#endif
3491
caaa5f9f
JA
3492 /*
3493 * If this is the active queue, check if it needs to be expired,
3494 * or if we want to idle in case it has no pending requests.
3495 */
3496 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
3497 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
3498
44f7c160
JA
3499 if (cfq_cfqq_slice_new(cfqq)) {
3500 cfq_set_prio_slice(cfqd, cfqq);
3501 cfq_clear_cfqq_slice_new(cfqq);
3502 }
f75edf2d
VG
3503
3504 /*
7667aa06
VG
3505 * Should we wait for next request to come in before we expire
3506 * the queue.
f75edf2d 3507 */
7667aa06 3508 if (cfq_should_wait_busy(cfqd, cfqq)) {
80bdf0c7
VG
3509 unsigned long extend_sl = cfqd->cfq_slice_idle;
3510 if (!cfqd->cfq_slice_idle)
3511 extend_sl = cfqd->cfq_group_idle;
3512 cfqq->slice_end = jiffies + extend_sl;
f75edf2d 3513 cfq_mark_cfqq_wait_busy(cfqq);
b1ffe737 3514 cfq_log_cfqq(cfqd, cfqq, "will busy wait");
f75edf2d
VG
3515 }
3516
a36e71f9 3517 /*
8e550632
CZ
3518 * Idling is not enabled on:
3519 * - expired queues
3520 * - idle-priority queues
3521 * - async queues
3522 * - queues with still some requests queued
3523 * - when there is a close cooperator
a36e71f9 3524 */
0871714e 3525 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
e5ff082e 3526 cfq_slice_expired(cfqd, 1);
8e550632
CZ
3527 else if (sync && cfqq_empty &&
3528 !cfq_close_cooperator(cfqd, cfqq)) {
749ef9f8 3529 cfq_arm_slice_timer(cfqd);
8e550632 3530 }
caaa5f9f 3531 }
6d048f53 3532
53c583d2 3533 if (!cfqd->rq_in_driver)
23e018a1 3534 cfq_schedule_dispatch(cfqd);
1da177e4
LT
3535}
3536
89850f7e 3537static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 3538{
1b379d8d 3539 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 3540 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 3541 return ELV_MQUEUE_MUST;
3b18152c 3542 }
1da177e4 3543
22e2c507 3544 return ELV_MQUEUE_MAY;
22e2c507
JA
3545}
3546
165125e1 3547static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
3548{
3549 struct cfq_data *cfqd = q->elevator->elevator_data;
3550 struct task_struct *tsk = current;
91fac317 3551 struct cfq_io_context *cic;
22e2c507
JA
3552 struct cfq_queue *cfqq;
3553
3554 /*
3555 * don't force setup of a queue from here, as a call to may_queue
3556 * does not necessarily imply that a request actually will be queued.
3557 * so just lookup a possibly existing queue, or return 'may queue'
3558 * if that fails
3559 */
4ac845a2 3560 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
3561 if (!cic)
3562 return ELV_MQUEUE_MAY;
3563
b0b78f81 3564 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 3565 if (cfqq) {
fd0928df 3566 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507 3567
89850f7e 3568 return __cfq_may_queue(cfqq);
22e2c507
JA
3569 }
3570
3571 return ELV_MQUEUE_MAY;
1da177e4
LT
3572}
3573
1da177e4
LT
3574/*
3575 * queue lock held here
3576 */
bb37b94c 3577static void cfq_put_request(struct request *rq)
1da177e4 3578{
5e705374 3579 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 3580
5e705374 3581 if (cfqq) {
22e2c507 3582 const int rw = rq_data_dir(rq);
1da177e4 3583
22e2c507
JA
3584 BUG_ON(!cfqq->allocated[rw]);
3585 cfqq->allocated[rw]--;
1da177e4 3586
b2efa052 3587 put_io_context(RQ_CIC(rq)->ioc, cfqq->cfqd->queue);
1da177e4 3588
c186794d
MS
3589 rq->elevator_private[0] = NULL;
3590 rq->elevator_private[1] = NULL;
1da177e4 3591
7f1dc8a2
VG
3592 /* Put down rq reference on cfqg */
3593 cfq_put_cfqg(RQ_CFQG(rq));
c186794d 3594 rq->elevator_private[2] = NULL;
7f1dc8a2 3595
1da177e4
LT
3596 cfq_put_queue(cfqq);
3597 }
3598}
3599
df5fe3e8
JM
3600static struct cfq_queue *
3601cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
3602 struct cfq_queue *cfqq)
3603{
3604 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
3605 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 3606 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
3607 cfq_put_queue(cfqq);
3608 return cic_to_cfqq(cic, 1);
3609}
3610
e6c5bc73
JM
3611/*
3612 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
3613 * was the last process referring to said cfqq.
3614 */
3615static struct cfq_queue *
3616split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
3617{
3618 if (cfqq_process_refs(cfqq) == 1) {
e6c5bc73
JM
3619 cfqq->pid = current->pid;
3620 cfq_clear_cfqq_coop(cfqq);
ae54abed 3621 cfq_clear_cfqq_split_coop(cfqq);
e6c5bc73
JM
3622 return cfqq;
3623 }
3624
3625 cic_set_cfqq(cic, NULL, 1);
d02a2c07
SL
3626
3627 cfq_put_cooperator(cfqq);
3628
e6c5bc73
JM
3629 cfq_put_queue(cfqq);
3630 return NULL;
3631}
1da177e4 3632/*
22e2c507 3633 * Allocate cfq data structures associated with this request.
1da177e4 3634 */
22e2c507 3635static int
165125e1 3636cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
3637{
3638 struct cfq_data *cfqd = q->elevator->elevator_data;
3639 struct cfq_io_context *cic;
3640 const int rw = rq_data_dir(rq);
a6151c3a 3641 const bool is_sync = rq_is_sync(rq);
22e2c507 3642 struct cfq_queue *cfqq;
1da177e4
LT
3643
3644 might_sleep_if(gfp_mask & __GFP_WAIT);
3645
216284c3 3646 spin_lock_irq(q->queue_lock);
e2d74ac0 3647 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507
JA
3648 if (!cic)
3649 goto queue_fail;
3650
e6c5bc73 3651new_queue:
91fac317 3652 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 3653 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 3654 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 3655 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 3656 } else {
e6c5bc73
JM
3657 /*
3658 * If the queue was seeky for too long, break it apart.
3659 */
ae54abed 3660 if (cfq_cfqq_coop(cfqq) && cfq_cfqq_split_coop(cfqq)) {
e6c5bc73
JM
3661 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
3662 cfqq = split_cfqq(cic, cfqq);
3663 if (!cfqq)
3664 goto new_queue;
3665 }
3666
df5fe3e8
JM
3667 /*
3668 * Check to see if this queue is scheduled to merge with
3669 * another, closely cooperating queue. The merging of
3670 * queues happens here as it must be done in process context.
3671 * The reference on new_cfqq was taken in merge_cfqqs.
3672 */
3673 if (cfqq->new_cfqq)
3674 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 3675 }
1da177e4
LT
3676
3677 cfqq->allocated[rw]++;
1da177e4 3678
6fae9c25 3679 cfqq->ref++;
c186794d
MS
3680 rq->elevator_private[0] = cic;
3681 rq->elevator_private[1] = cfqq;
3682 rq->elevator_private[2] = cfq_ref_get_cfqg(cfqq->cfqg);
216284c3 3683 spin_unlock_irq(q->queue_lock);
5e705374 3684 return 0;
1da177e4 3685
22e2c507 3686queue_fail:
23e018a1 3687 cfq_schedule_dispatch(cfqd);
216284c3 3688 spin_unlock_irq(q->queue_lock);
7b679138 3689 cfq_log(cfqd, "set_request fail");
1da177e4
LT
3690 return 1;
3691}
3692
65f27f38 3693static void cfq_kick_queue(struct work_struct *work)
22e2c507 3694{
65f27f38 3695 struct cfq_data *cfqd =
23e018a1 3696 container_of(work, struct cfq_data, unplug_work);
165125e1 3697 struct request_queue *q = cfqd->queue;
22e2c507 3698
40bb54d1 3699 spin_lock_irq(q->queue_lock);
24ecfbe2 3700 __blk_run_queue(cfqd->queue);
40bb54d1 3701 spin_unlock_irq(q->queue_lock);
22e2c507
JA
3702}
3703
3704/*
3705 * Timer running if the active_queue is currently idling inside its time slice
3706 */
3707static void cfq_idle_slice_timer(unsigned long data)
3708{
3709 struct cfq_data *cfqd = (struct cfq_data *) data;
3710 struct cfq_queue *cfqq;
3711 unsigned long flags;
3c6bd2f8 3712 int timed_out = 1;
22e2c507 3713
7b679138
JA
3714 cfq_log(cfqd, "idle timer fired");
3715
22e2c507
JA
3716 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
3717
fe094d98
JA
3718 cfqq = cfqd->active_queue;
3719 if (cfqq) {
3c6bd2f8
JA
3720 timed_out = 0;
3721
b029195d
JA
3722 /*
3723 * We saw a request before the queue expired, let it through
3724 */
3725 if (cfq_cfqq_must_dispatch(cfqq))
3726 goto out_kick;
3727
22e2c507
JA
3728 /*
3729 * expired
3730 */
44f7c160 3731 if (cfq_slice_used(cfqq))
22e2c507
JA
3732 goto expire;
3733
3734 /*
3735 * only expire and reinvoke request handler, if there are
3736 * other queues with pending requests
3737 */
caaa5f9f 3738 if (!cfqd->busy_queues)
22e2c507 3739 goto out_cont;
22e2c507
JA
3740
3741 /*
3742 * not expired and it has a request pending, let it dispatch
3743 */
75e50984 3744 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 3745 goto out_kick;
76280aff
CZ
3746
3747 /*
3748 * Queue depth flag is reset only when the idle didn't succeed
3749 */
3750 cfq_clear_cfqq_deep(cfqq);
22e2c507
JA
3751 }
3752expire:
e5ff082e 3753 cfq_slice_expired(cfqd, timed_out);
22e2c507 3754out_kick:
23e018a1 3755 cfq_schedule_dispatch(cfqd);
22e2c507
JA
3756out_cont:
3757 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
3758}
3759
3b18152c
JA
3760static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
3761{
3762 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 3763 cancel_work_sync(&cfqd->unplug_work);
3b18152c 3764}
22e2c507 3765
c2dea2d1
VT
3766static void cfq_put_async_queues(struct cfq_data *cfqd)
3767{
3768 int i;
3769
3770 for (i = 0; i < IOPRIO_BE_NR; i++) {
3771 if (cfqd->async_cfqq[0][i])
3772 cfq_put_queue(cfqd->async_cfqq[0][i]);
3773 if (cfqd->async_cfqq[1][i])
3774 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 3775 }
2389d1ef
ON
3776
3777 if (cfqd->async_idle_cfqq)
3778 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
3779}
3780
b374d18a 3781static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 3782{
22e2c507 3783 struct cfq_data *cfqd = e->elevator_data;
165125e1 3784 struct request_queue *q = cfqd->queue;
56edf7d7 3785 bool wait = false;
22e2c507 3786
3b18152c 3787 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 3788
d9ff4187 3789 spin_lock_irq(q->queue_lock);
e2d74ac0 3790
d9ff4187 3791 if (cfqd->active_queue)
e5ff082e 3792 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
3793
3794 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
3795 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
3796 struct cfq_io_context,
3797 queue_list);
b2efa052 3798 struct io_context *ioc = cic->ioc;
89850f7e 3799
b2efa052 3800 spin_lock(&ioc->lock);
283287a5 3801 cfq_exit_cic(cic);
b2efa052
TH
3802 cfq_release_cic(cic);
3803 spin_unlock(&ioc->lock);
d9ff4187 3804 }
e2d74ac0 3805
c2dea2d1 3806 cfq_put_async_queues(cfqd);
b1c35769 3807 cfq_release_cfq_groups(cfqd);
56edf7d7
VG
3808
3809 /*
3810 * If there are groups which we could not unlink from blkcg list,
3811 * wait for a rcu period for them to be freed.
3812 */
3813 if (cfqd->nr_blkcg_linked_grps)
3814 wait = true;
15c31be4 3815
d9ff4187 3816 spin_unlock_irq(q->queue_lock);
a90d742e
AV
3817
3818 cfq_shutdown_timer_wq(cfqd);
3819
56edf7d7
VG
3820 /*
3821 * Wait for cfqg->blkg->key accessors to exit their grace periods.
3822 * Do this wait only if there are other unlinked groups out
3823 * there. This can happen if cgroup deletion path claimed the
3824 * responsibility of cleaning up a group before queue cleanup code
3825 * get to the group.
3826 *
3827 * Do not call synchronize_rcu() unconditionally as there are drivers
3828 * which create/delete request queue hundreds of times during scan/boot
3829 * and synchronize_rcu() can take significant time and slow down boot.
3830 */
3831 if (wait)
3832 synchronize_rcu();
2abae55f
VG
3833
3834#ifdef CONFIG_CFQ_GROUP_IOSCHED
3835 /* Free up per cpu stats for root group */
3836 free_percpu(cfqd->root_group.blkg.stats_cpu);
3837#endif
56edf7d7 3838 kfree(cfqd);
1da177e4
LT
3839}
3840
165125e1 3841static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
3842{
3843 struct cfq_data *cfqd;
718eee05 3844 int i, j;
cdb16e8f 3845 struct cfq_group *cfqg;
615f0259 3846 struct cfq_rb_root *st;
1da177e4 3847
94f6030c 3848 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
a73f730d 3849 if (!cfqd)
bc1c1169 3850 return NULL;
80b15c73 3851
1fa8f6d6
VG
3852 /* Init root service tree */
3853 cfqd->grp_service_tree = CFQ_RB_ROOT;
3854
cdb16e8f
VG
3855 /* Init root group */
3856 cfqg = &cfqd->root_group;
615f0259
VG
3857 for_each_cfqg_st(cfqg, i, j, st)
3858 *st = CFQ_RB_ROOT;
1fa8f6d6 3859 RB_CLEAR_NODE(&cfqg->rb_node);
26a2ac00 3860
25bc6b07
VG
3861 /* Give preference to root group over other groups */
3862 cfqg->weight = 2*BLKIO_WEIGHT_DEFAULT;
3863
25fb5169 3864#ifdef CONFIG_CFQ_GROUP_IOSCHED
b1c35769 3865 /*
56edf7d7
VG
3866 * Set root group reference to 2. One reference will be dropped when
3867 * all groups on cfqd->cfqg_list are being deleted during queue exit.
3868 * Other reference will remain there as we don't want to delete this
3869 * group as it is statically allocated and gets destroyed when
3870 * throtl_data goes away.
b1c35769 3871 */
56edf7d7 3872 cfqg->ref = 2;
5624a4e4
VG
3873
3874 if (blkio_alloc_blkg_stats(&cfqg->blkg)) {
3875 kfree(cfqg);
3876 kfree(cfqd);
3877 return NULL;
3878 }
3879
dcf097b2 3880 rcu_read_lock();
5624a4e4 3881
e98ef89b
VG
3882 cfq_blkiocg_add_blkio_group(&blkio_root_cgroup, &cfqg->blkg,
3883 (void *)cfqd, 0);
dcf097b2 3884 rcu_read_unlock();
56edf7d7
VG
3885 cfqd->nr_blkcg_linked_grps++;
3886
3887 /* Add group on cfqd->cfqg_list */
3888 hlist_add_head(&cfqg->cfqd_node, &cfqd->cfqg_list);
25fb5169 3889#endif
26a2ac00
JA
3890 /*
3891 * Not strictly needed (since RB_ROOT just clears the node and we
3892 * zeroed cfqd on alloc), but better be safe in case someone decides
3893 * to add magic to the rb code
3894 */
3895 for (i = 0; i < CFQ_PRIO_LISTS; i++)
3896 cfqd->prio_trees[i] = RB_ROOT;
3897
6118b70b
JA
3898 /*
3899 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
3900 * Grab a permanent reference to it, so that the normal code flow
3901 * will not attempt to free it.
3902 */
3903 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
30d7b944 3904 cfqd->oom_cfqq.ref++;
cdb16e8f 3905 cfq_link_cfqq_cfqg(&cfqd->oom_cfqq, &cfqd->root_group);
6118b70b 3906
d9ff4187 3907 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 3908
1da177e4 3909 cfqd->queue = q;
1da177e4 3910
22e2c507
JA
3911 init_timer(&cfqd->idle_slice_timer);
3912 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
3913 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
3914
23e018a1 3915 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 3916
1da177e4 3917 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
3918 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
3919 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
3920 cfqd->cfq_back_max = cfq_back_max;
3921 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
3922 cfqd->cfq_slice[0] = cfq_slice_async;
3923 cfqd->cfq_slice[1] = cfq_slice_sync;
3924 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
3925 cfqd->cfq_slice_idle = cfq_slice_idle;
80bdf0c7 3926 cfqd->cfq_group_idle = cfq_group_idle;
963b72fc 3927 cfqd->cfq_latency = 1;
e459dd08 3928 cfqd->hw_tag = -1;
edc71131
CZ
3929 /*
3930 * we optimistically start assuming sync ops weren't delayed in last
3931 * second, in order to have larger depth for async operations.
3932 */
573412b2 3933 cfqd->last_delayed_sync = jiffies - HZ;
bc1c1169 3934 return cfqd;
1da177e4
LT
3935}
3936
3937static void cfq_slab_kill(void)
3938{
d6de8be7
JA
3939 /*
3940 * Caller already ensured that pending RCU callbacks are completed,
3941 * so we should have no busy allocations at this point.
3942 */
1da177e4
LT
3943 if (cfq_pool)
3944 kmem_cache_destroy(cfq_pool);
3945 if (cfq_ioc_pool)
3946 kmem_cache_destroy(cfq_ioc_pool);
3947}
3948
3949static int __init cfq_slab_setup(void)
3950{
0a31bd5f 3951 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
3952 if (!cfq_pool)
3953 goto fail;
3954
34e6bbf2 3955 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
3956 if (!cfq_ioc_pool)
3957 goto fail;
3958
3959 return 0;
3960fail:
3961 cfq_slab_kill();
3962 return -ENOMEM;
3963}
3964
1da177e4
LT
3965/*
3966 * sysfs parts below -->
3967 */
1da177e4
LT
3968static ssize_t
3969cfq_var_show(unsigned int var, char *page)
3970{
3971 return sprintf(page, "%d\n", var);
3972}
3973
3974static ssize_t
3975cfq_var_store(unsigned int *var, const char *page, size_t count)
3976{
3977 char *p = (char *) page;
3978
3979 *var = simple_strtoul(p, &p, 10);
3980 return count;
3981}
3982
1da177e4 3983#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3984static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3985{ \
3d1ab40f 3986 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3987 unsigned int __data = __VAR; \
3988 if (__CONV) \
3989 __data = jiffies_to_msecs(__data); \
3990 return cfq_var_show(__data, (page)); \
3991}
3992SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3993SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3994SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3995SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3996SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507 3997SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
80bdf0c7 3998SHOW_FUNCTION(cfq_group_idle_show, cfqd->cfq_group_idle, 1);
22e2c507
JA
3999SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
4000SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
4001SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 4002SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
4003#undef SHOW_FUNCTION
4004
4005#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 4006static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 4007{ \
3d1ab40f 4008 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
4009 unsigned int __data; \
4010 int ret = cfq_var_store(&__data, (page), count); \
4011 if (__data < (MIN)) \
4012 __data = (MIN); \
4013 else if (__data > (MAX)) \
4014 __data = (MAX); \
4015 if (__CONV) \
4016 *(__PTR) = msecs_to_jiffies(__data); \
4017 else \
4018 *(__PTR) = __data; \
4019 return ret; \
4020}
4021STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
4022STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
4023 UINT_MAX, 1);
4024STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
4025 UINT_MAX, 1);
e572ec7e 4026STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
4027STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
4028 UINT_MAX, 0);
22e2c507 4029STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
80bdf0c7 4030STORE_FUNCTION(cfq_group_idle_store, &cfqd->cfq_group_idle, 0, UINT_MAX, 1);
22e2c507
JA
4031STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
4032STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
4033STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
4034 UINT_MAX, 0);
963b72fc 4035STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
4036#undef STORE_FUNCTION
4037
e572ec7e
AV
4038#define CFQ_ATTR(name) \
4039 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
4040
4041static struct elv_fs_entry cfq_attrs[] = {
4042 CFQ_ATTR(quantum),
e572ec7e
AV
4043 CFQ_ATTR(fifo_expire_sync),
4044 CFQ_ATTR(fifo_expire_async),
4045 CFQ_ATTR(back_seek_max),
4046 CFQ_ATTR(back_seek_penalty),
4047 CFQ_ATTR(slice_sync),
4048 CFQ_ATTR(slice_async),
4049 CFQ_ATTR(slice_async_rq),
4050 CFQ_ATTR(slice_idle),
80bdf0c7 4051 CFQ_ATTR(group_idle),
963b72fc 4052 CFQ_ATTR(low_latency),
e572ec7e 4053 __ATTR_NULL
1da177e4
LT
4054};
4055
1da177e4
LT
4056static struct elevator_type iosched_cfq = {
4057 .ops = {
4058 .elevator_merge_fn = cfq_merge,
4059 .elevator_merged_fn = cfq_merged_request,
4060 .elevator_merge_req_fn = cfq_merged_requests,
da775265 4061 .elevator_allow_merge_fn = cfq_allow_merge,
812d4026 4062 .elevator_bio_merged_fn = cfq_bio_merged,
b4878f24 4063 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 4064 .elevator_add_req_fn = cfq_insert_request,
b4878f24 4065 .elevator_activate_req_fn = cfq_activate_request,
1da177e4 4066 .elevator_deactivate_req_fn = cfq_deactivate_request,
1da177e4 4067 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
4068 .elevator_former_req_fn = elv_rb_former_request,
4069 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
4070 .elevator_set_req_fn = cfq_set_request,
4071 .elevator_put_req_fn = cfq_put_request,
4072 .elevator_may_queue_fn = cfq_may_queue,
4073 .elevator_init_fn = cfq_init_queue,
4074 .elevator_exit_fn = cfq_exit_queue,
4075 },
3d1ab40f 4076 .elevator_attrs = cfq_attrs,
1da177e4
LT
4077 .elevator_name = "cfq",
4078 .elevator_owner = THIS_MODULE,
4079};
4080
3e252066
VG
4081#ifdef CONFIG_CFQ_GROUP_IOSCHED
4082static struct blkio_policy_type blkio_policy_cfq = {
4083 .ops = {
4084 .blkio_unlink_group_fn = cfq_unlink_blkio_group,
4085 .blkio_update_group_weight_fn = cfq_update_blkio_group_weight,
4086 },
062a644d 4087 .plid = BLKIO_POLICY_PROP,
3e252066
VG
4088};
4089#else
4090static struct blkio_policy_type blkio_policy_cfq;
4091#endif
4092
1da177e4
LT
4093static int __init cfq_init(void)
4094{
22e2c507
JA
4095 /*
4096 * could be 0 on HZ < 1000 setups
4097 */
4098 if (!cfq_slice_async)
4099 cfq_slice_async = 1;
4100 if (!cfq_slice_idle)
4101 cfq_slice_idle = 1;
4102
80bdf0c7
VG
4103#ifdef CONFIG_CFQ_GROUP_IOSCHED
4104 if (!cfq_group_idle)
4105 cfq_group_idle = 1;
4106#else
4107 cfq_group_idle = 0;
4108#endif
1da177e4
LT
4109 if (cfq_slab_setup())
4110 return -ENOMEM;
4111
2fdd82bd 4112 elv_register(&iosched_cfq);
3e252066 4113 blkio_policy_register(&blkio_policy_cfq);
1da177e4 4114
2fdd82bd 4115 return 0;
1da177e4
LT
4116}
4117
4118static void __exit cfq_exit(void)
4119{
3e252066 4120 blkio_policy_unregister(&blkio_policy_cfq);
1da177e4 4121 elv_unregister(&iosched_cfq);
b50b636b 4122 rcu_barrier(); /* make sure all cic RCU frees are complete */
83521d3e 4123 cfq_slab_kill();
1da177e4
LT
4124}
4125
4126module_init(cfq_init);
4127module_exit(cfq_exit);
4128
4129MODULE_AUTHOR("Jens Axboe");
4130MODULE_LICENSE("GPL");
4131MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");