cfq-iosched: fix no-idle preemption logic
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / block / cfq-iosched.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * CFQ, or complete fairness queueing, disk scheduler.
3 *
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
6 *
0fe23479 7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
1da177e4 8 */
1da177e4 9#include <linux/module.h>
1cc9be68
AV
10#include <linux/blkdev.h>
11#include <linux/elevator.h>
ad5ebd2f 12#include <linux/jiffies.h>
1da177e4 13#include <linux/rbtree.h>
22e2c507 14#include <linux/ioprio.h>
7b679138 15#include <linux/blktrace_api.h>
1da177e4
LT
16
17/*
18 * tunables
19 */
fe094d98
JA
20/* max queue in one round of service */
21static const int cfq_quantum = 4;
64100099 22static const int cfq_fifo_expire[2] = { HZ / 4, HZ / 8 };
fe094d98
JA
23/* maximum backwards seek, in KiB */
24static const int cfq_back_max = 16 * 1024;
25/* penalty of a backwards seek */
26static const int cfq_back_penalty = 2;
64100099 27static const int cfq_slice_sync = HZ / 10;
3b18152c 28static int cfq_slice_async = HZ / 25;
64100099 29static const int cfq_slice_async_rq = 2;
caaa5f9f 30static int cfq_slice_idle = HZ / 125;
5db5d642
CZ
31static const int cfq_target_latency = HZ * 3/10; /* 300 ms */
32static const int cfq_hist_divisor = 4;
22e2c507 33
d9e7620e 34/*
0871714e 35 * offset from end of service tree
d9e7620e 36 */
0871714e 37#define CFQ_IDLE_DELAY (HZ / 5)
d9e7620e
JA
38
39/*
40 * below this threshold, we consider thinktime immediate
41 */
42#define CFQ_MIN_TT (2)
43
e6c5bc73
JM
44/*
45 * Allow merged cfqqs to perform this amount of seeky I/O before
46 * deciding to break the queues up again.
47 */
48#define CFQQ_COOP_TOUT (HZ)
49
22e2c507 50#define CFQ_SLICE_SCALE (5)
45333d5a 51#define CFQ_HW_QUEUE_MIN (5)
22e2c507 52
fe094d98
JA
53#define RQ_CIC(rq) \
54 ((struct cfq_io_context *) (rq)->elevator_private)
7b679138 55#define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
1da177e4 56
e18b890b
CL
57static struct kmem_cache *cfq_pool;
58static struct kmem_cache *cfq_ioc_pool;
1da177e4 59
245b2e70 60static DEFINE_PER_CPU(unsigned long, cfq_ioc_count);
334e94de 61static struct completion *ioc_gone;
9a11b4ed 62static DEFINE_SPINLOCK(ioc_gone_lock);
334e94de 63
22e2c507
JA
64#define CFQ_PRIO_LISTS IOPRIO_BE_NR
65#define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
22e2c507
JA
66#define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
67
206dc69b
JA
68#define sample_valid(samples) ((samples) > 80)
69
cc09e299
JA
70/*
71 * Most of our rbtree usage is for sorting with min extraction, so
72 * if we cache the leftmost node we don't have to walk down the tree
73 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
74 * move this into the elevator for the rq sorting as well.
75 */
76struct cfq_rb_root {
77 struct rb_root rb;
78 struct rb_node *left;
aa6f6a3d 79 unsigned count;
cc09e299 80};
aa6f6a3d 81#define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, 0, }
cc09e299 82
6118b70b
JA
83/*
84 * Per process-grouping structure
85 */
86struct cfq_queue {
87 /* reference count */
88 atomic_t ref;
89 /* various state flags, see below */
90 unsigned int flags;
91 /* parent cfq_data */
92 struct cfq_data *cfqd;
93 /* service_tree member */
94 struct rb_node rb_node;
95 /* service_tree key */
96 unsigned long rb_key;
97 /* prio tree member */
98 struct rb_node p_node;
99 /* prio tree root we belong to, if any */
100 struct rb_root *p_root;
101 /* sorted list of pending requests */
102 struct rb_root sort_list;
103 /* if fifo isn't expired, next request to serve */
104 struct request *next_rq;
105 /* requests queued in sort_list */
106 int queued[2];
107 /* currently allocated requests */
108 int allocated[2];
109 /* fifo list of requests in sort_list */
110 struct list_head fifo;
111
112 unsigned long slice_end;
113 long slice_resid;
114 unsigned int slice_dispatch;
115
116 /* pending metadata requests */
117 int meta_pending;
118 /* number of requests that are on the dispatch list or inside driver */
119 int dispatched;
120
121 /* io prio of this group */
122 unsigned short ioprio, org_ioprio;
123 unsigned short ioprio_class, org_ioprio_class;
124
b2c18e1e
JM
125 unsigned int seek_samples;
126 u64 seek_total;
127 sector_t seek_mean;
128 sector_t last_request_pos;
e6c5bc73 129 unsigned long seeky_start;
b2c18e1e 130
6118b70b 131 pid_t pid;
df5fe3e8 132
aa6f6a3d 133 struct cfq_rb_root *service_tree;
df5fe3e8 134 struct cfq_queue *new_cfqq;
6118b70b
JA
135};
136
c0324a02 137/*
718eee05 138 * First index in the service_trees.
c0324a02
CZ
139 * IDLE is handled separately, so it has negative index
140 */
141enum wl_prio_t {
142 IDLE_WORKLOAD = -1,
143 BE_WORKLOAD = 0,
144 RT_WORKLOAD = 1
145};
146
718eee05
CZ
147/*
148 * Second index in the service_trees.
149 */
150enum wl_type_t {
151 ASYNC_WORKLOAD = 0,
152 SYNC_NOIDLE_WORKLOAD = 1,
153 SYNC_WORKLOAD = 2
154};
155
156
22e2c507
JA
157/*
158 * Per block device queue structure
159 */
1da177e4 160struct cfq_data {
165125e1 161 struct request_queue *queue;
22e2c507
JA
162
163 /*
c0324a02
CZ
164 * rr lists of queues with requests, onle rr for each priority class.
165 * Counts are embedded in the cfq_rb_root
166 */
718eee05 167 struct cfq_rb_root service_trees[2][3];
c0324a02
CZ
168 struct cfq_rb_root service_tree_idle;
169 /*
170 * The priority currently being served
22e2c507 171 */
c0324a02 172 enum wl_prio_t serving_prio;
718eee05
CZ
173 enum wl_type_t serving_type;
174 unsigned long workload_expires;
a36e71f9
JA
175
176 /*
177 * Each priority tree is sorted by next_request position. These
178 * trees are used when determining if two or more queues are
179 * interleaving requests (see cfq_close_cooperator).
180 */
181 struct rb_root prio_trees[CFQ_PRIO_LISTS];
182
22e2c507 183 unsigned int busy_queues;
5db5d642 184 unsigned int busy_queues_avg[2];
22e2c507 185
5ad531db 186 int rq_in_driver[2];
3ed9a296 187 int sync_flight;
45333d5a
AC
188
189 /*
190 * queue-depth detection
191 */
192 int rq_queued;
25776e35 193 int hw_tag;
e459dd08
CZ
194 /*
195 * hw_tag can be
196 * -1 => indeterminate, (cfq will behave as if NCQ is present, to allow better detection)
197 * 1 => NCQ is present (hw_tag_est_depth is the estimated max depth)
198 * 0 => no NCQ
199 */
200 int hw_tag_est_depth;
201 unsigned int hw_tag_samples;
1da177e4 202
22e2c507
JA
203 /*
204 * idle window management
205 */
206 struct timer_list idle_slice_timer;
23e018a1 207 struct work_struct unplug_work;
1da177e4 208
22e2c507
JA
209 struct cfq_queue *active_queue;
210 struct cfq_io_context *active_cic;
22e2c507 211
c2dea2d1
VT
212 /*
213 * async queue for each priority case
214 */
215 struct cfq_queue *async_cfqq[2][IOPRIO_BE_NR];
216 struct cfq_queue *async_idle_cfqq;
15c31be4 217
6d048f53 218 sector_t last_position;
1da177e4 219
1da177e4
LT
220 /*
221 * tunables, see top of file
222 */
223 unsigned int cfq_quantum;
22e2c507 224 unsigned int cfq_fifo_expire[2];
1da177e4
LT
225 unsigned int cfq_back_penalty;
226 unsigned int cfq_back_max;
22e2c507
JA
227 unsigned int cfq_slice[2];
228 unsigned int cfq_slice_async_rq;
229 unsigned int cfq_slice_idle;
963b72fc 230 unsigned int cfq_latency;
d9ff4187
AV
231
232 struct list_head cic_list;
1da177e4 233
6118b70b
JA
234 /*
235 * Fallback dummy cfqq for extreme OOM conditions
236 */
237 struct cfq_queue oom_cfqq;
365722bb
VG
238
239 unsigned long last_end_sync_rq;
1da177e4
LT
240};
241
c0324a02 242static struct cfq_rb_root *service_tree_for(enum wl_prio_t prio,
718eee05 243 enum wl_type_t type,
c0324a02
CZ
244 struct cfq_data *cfqd)
245{
246 if (prio == IDLE_WORKLOAD)
247 return &cfqd->service_tree_idle;
248
718eee05 249 return &cfqd->service_trees[prio][type];
c0324a02
CZ
250}
251
3b18152c 252enum cfqq_state_flags {
b0b8d749
JA
253 CFQ_CFQQ_FLAG_on_rr = 0, /* on round-robin busy list */
254 CFQ_CFQQ_FLAG_wait_request, /* waiting for a request */
b029195d 255 CFQ_CFQQ_FLAG_must_dispatch, /* must be allowed a dispatch */
b0b8d749 256 CFQ_CFQQ_FLAG_must_alloc_slice, /* per-slice must_alloc flag */
b0b8d749
JA
257 CFQ_CFQQ_FLAG_fifo_expire, /* FIFO checked in this slice */
258 CFQ_CFQQ_FLAG_idle_window, /* slice idling enabled */
259 CFQ_CFQQ_FLAG_prio_changed, /* task priority has changed */
44f7c160 260 CFQ_CFQQ_FLAG_slice_new, /* no requests dispatched in slice */
91fac317 261 CFQ_CFQQ_FLAG_sync, /* synchronous queue */
b3b6d040 262 CFQ_CFQQ_FLAG_coop, /* cfqq is shared */
3b18152c
JA
263};
264
265#define CFQ_CFQQ_FNS(name) \
266static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
267{ \
fe094d98 268 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
269} \
270static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
271{ \
fe094d98 272 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
3b18152c
JA
273} \
274static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
275{ \
fe094d98 276 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
3b18152c
JA
277}
278
279CFQ_CFQQ_FNS(on_rr);
280CFQ_CFQQ_FNS(wait_request);
b029195d 281CFQ_CFQQ_FNS(must_dispatch);
3b18152c 282CFQ_CFQQ_FNS(must_alloc_slice);
3b18152c
JA
283CFQ_CFQQ_FNS(fifo_expire);
284CFQ_CFQQ_FNS(idle_window);
285CFQ_CFQQ_FNS(prio_changed);
44f7c160 286CFQ_CFQQ_FNS(slice_new);
91fac317 287CFQ_CFQQ_FNS(sync);
a36e71f9 288CFQ_CFQQ_FNS(coop);
3b18152c
JA
289#undef CFQ_CFQQ_FNS
290
7b679138
JA
291#define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
292 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
293#define cfq_log(cfqd, fmt, args...) \
294 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
295
c0324a02
CZ
296static inline enum wl_prio_t cfqq_prio(struct cfq_queue *cfqq)
297{
298 if (cfq_class_idle(cfqq))
299 return IDLE_WORKLOAD;
300 if (cfq_class_rt(cfqq))
301 return RT_WORKLOAD;
302 return BE_WORKLOAD;
303}
304
718eee05
CZ
305
306static enum wl_type_t cfqq_type(struct cfq_queue *cfqq)
307{
308 if (!cfq_cfqq_sync(cfqq))
309 return ASYNC_WORKLOAD;
310 if (!cfq_cfqq_idle_window(cfqq))
311 return SYNC_NOIDLE_WORKLOAD;
312 return SYNC_WORKLOAD;
313}
314
c0324a02
CZ
315static inline int cfq_busy_queues_wl(enum wl_prio_t wl, struct cfq_data *cfqd)
316{
317 if (wl == IDLE_WORKLOAD)
318 return cfqd->service_tree_idle.count;
319
718eee05
CZ
320 return cfqd->service_trees[wl][ASYNC_WORKLOAD].count
321 + cfqd->service_trees[wl][SYNC_NOIDLE_WORKLOAD].count
322 + cfqd->service_trees[wl][SYNC_WORKLOAD].count;
c0324a02
CZ
323}
324
165125e1 325static void cfq_dispatch_insert(struct request_queue *, struct request *);
a6151c3a 326static struct cfq_queue *cfq_get_queue(struct cfq_data *, bool,
fd0928df 327 struct io_context *, gfp_t);
4ac845a2 328static struct cfq_io_context *cfq_cic_lookup(struct cfq_data *,
91fac317
VT
329 struct io_context *);
330
5ad531db
JA
331static inline int rq_in_driver(struct cfq_data *cfqd)
332{
333 return cfqd->rq_in_driver[0] + cfqd->rq_in_driver[1];
334}
335
91fac317 336static inline struct cfq_queue *cic_to_cfqq(struct cfq_io_context *cic,
a6151c3a 337 bool is_sync)
91fac317 338{
a6151c3a 339 return cic->cfqq[is_sync];
91fac317
VT
340}
341
342static inline void cic_set_cfqq(struct cfq_io_context *cic,
a6151c3a 343 struct cfq_queue *cfqq, bool is_sync)
91fac317 344{
a6151c3a 345 cic->cfqq[is_sync] = cfqq;
91fac317
VT
346}
347
348/*
349 * We regard a request as SYNC, if it's either a read or has the SYNC bit
350 * set (in which case it could also be direct WRITE).
351 */
a6151c3a 352static inline bool cfq_bio_sync(struct bio *bio)
91fac317 353{
a6151c3a 354 return bio_data_dir(bio) == READ || bio_rw_flagged(bio, BIO_RW_SYNCIO);
91fac317 355}
1da177e4 356
99f95e52
AM
357/*
358 * scheduler run of queue, if there are requests pending and no one in the
359 * driver that will restart queueing
360 */
23e018a1 361static inline void cfq_schedule_dispatch(struct cfq_data *cfqd)
99f95e52 362{
7b679138
JA
363 if (cfqd->busy_queues) {
364 cfq_log(cfqd, "schedule dispatch");
23e018a1 365 kblockd_schedule_work(cfqd->queue, &cfqd->unplug_work);
7b679138 366 }
99f95e52
AM
367}
368
165125e1 369static int cfq_queue_empty(struct request_queue *q)
99f95e52
AM
370{
371 struct cfq_data *cfqd = q->elevator->elevator_data;
372
b4878f24 373 return !cfqd->busy_queues;
99f95e52
AM
374}
375
44f7c160
JA
376/*
377 * Scale schedule slice based on io priority. Use the sync time slice only
378 * if a queue is marked sync and has sync io queued. A sync queue with async
379 * io only, should not get full sync slice length.
380 */
a6151c3a 381static inline int cfq_prio_slice(struct cfq_data *cfqd, bool sync,
d9e7620e 382 unsigned short prio)
44f7c160 383{
d9e7620e 384 const int base_slice = cfqd->cfq_slice[sync];
44f7c160 385
d9e7620e
JA
386 WARN_ON(prio >= IOPRIO_BE_NR);
387
388 return base_slice + (base_slice/CFQ_SLICE_SCALE * (4 - prio));
389}
44f7c160 390
d9e7620e
JA
391static inline int
392cfq_prio_to_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
393{
394 return cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio);
44f7c160
JA
395}
396
5db5d642
CZ
397/*
398 * get averaged number of queues of RT/BE priority.
399 * average is updated, with a formula that gives more weight to higher numbers,
400 * to quickly follows sudden increases and decrease slowly
401 */
402
5869619c
JA
403static inline unsigned cfq_get_avg_queues(struct cfq_data *cfqd, bool rt)
404{
5db5d642
CZ
405 unsigned min_q, max_q;
406 unsigned mult = cfq_hist_divisor - 1;
407 unsigned round = cfq_hist_divisor / 2;
c0324a02 408 unsigned busy = cfq_busy_queues_wl(rt, cfqd);
5db5d642
CZ
409
410 min_q = min(cfqd->busy_queues_avg[rt], busy);
411 max_q = max(cfqd->busy_queues_avg[rt], busy);
412 cfqd->busy_queues_avg[rt] = (mult * max_q + min_q + round) /
413 cfq_hist_divisor;
414 return cfqd->busy_queues_avg[rt];
415}
416
44f7c160
JA
417static inline void
418cfq_set_prio_slice(struct cfq_data *cfqd, struct cfq_queue *cfqq)
419{
5db5d642
CZ
420 unsigned slice = cfq_prio_to_slice(cfqd, cfqq);
421 if (cfqd->cfq_latency) {
422 /* interested queues (we consider only the ones with the same
423 * priority class) */
424 unsigned iq = cfq_get_avg_queues(cfqd, cfq_class_rt(cfqq));
425 unsigned sync_slice = cfqd->cfq_slice[1];
426 unsigned expect_latency = sync_slice * iq;
427 if (expect_latency > cfq_target_latency) {
428 unsigned base_low_slice = 2 * cfqd->cfq_slice_idle;
429 /* scale low_slice according to IO priority
430 * and sync vs async */
431 unsigned low_slice =
432 min(slice, base_low_slice * slice / sync_slice);
433 /* the adapted slice value is scaled to fit all iqs
434 * into the target latency */
435 slice = max(slice * cfq_target_latency / expect_latency,
436 low_slice);
437 }
438 }
439 cfqq->slice_end = jiffies + slice;
7b679138 440 cfq_log_cfqq(cfqd, cfqq, "set_slice=%lu", cfqq->slice_end - jiffies);
44f7c160
JA
441}
442
443/*
444 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
445 * isn't valid until the first request from the dispatch is activated
446 * and the slice time set.
447 */
a6151c3a 448static inline bool cfq_slice_used(struct cfq_queue *cfqq)
44f7c160
JA
449{
450 if (cfq_cfqq_slice_new(cfqq))
451 return 0;
452 if (time_before(jiffies, cfqq->slice_end))
453 return 0;
454
455 return 1;
456}
457
1da177e4 458/*
5e705374 459 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
1da177e4 460 * We choose the request that is closest to the head right now. Distance
e8a99053 461 * behind the head is penalized and only allowed to a certain extent.
1da177e4 462 */
5e705374 463static struct request *
cf7c25cf 464cfq_choose_req(struct cfq_data *cfqd, struct request *rq1, struct request *rq2, sector_t last)
1da177e4 465{
cf7c25cf 466 sector_t s1, s2, d1 = 0, d2 = 0;
1da177e4 467 unsigned long back_max;
e8a99053
AM
468#define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
469#define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
470 unsigned wrap = 0; /* bit mask: requests behind the disk head? */
1da177e4 471
5e705374
JA
472 if (rq1 == NULL || rq1 == rq2)
473 return rq2;
474 if (rq2 == NULL)
475 return rq1;
9c2c38a1 476
5e705374
JA
477 if (rq_is_sync(rq1) && !rq_is_sync(rq2))
478 return rq1;
479 else if (rq_is_sync(rq2) && !rq_is_sync(rq1))
480 return rq2;
374f84ac
JA
481 if (rq_is_meta(rq1) && !rq_is_meta(rq2))
482 return rq1;
483 else if (rq_is_meta(rq2) && !rq_is_meta(rq1))
484 return rq2;
1da177e4 485
83096ebf
TH
486 s1 = blk_rq_pos(rq1);
487 s2 = blk_rq_pos(rq2);
1da177e4 488
1da177e4
LT
489 /*
490 * by definition, 1KiB is 2 sectors
491 */
492 back_max = cfqd->cfq_back_max * 2;
493
494 /*
495 * Strict one way elevator _except_ in the case where we allow
496 * short backward seeks which are biased as twice the cost of a
497 * similar forward seek.
498 */
499 if (s1 >= last)
500 d1 = s1 - last;
501 else if (s1 + back_max >= last)
502 d1 = (last - s1) * cfqd->cfq_back_penalty;
503 else
e8a99053 504 wrap |= CFQ_RQ1_WRAP;
1da177e4
LT
505
506 if (s2 >= last)
507 d2 = s2 - last;
508 else if (s2 + back_max >= last)
509 d2 = (last - s2) * cfqd->cfq_back_penalty;
510 else
e8a99053 511 wrap |= CFQ_RQ2_WRAP;
1da177e4
LT
512
513 /* Found required data */
e8a99053
AM
514
515 /*
516 * By doing switch() on the bit mask "wrap" we avoid having to
517 * check two variables for all permutations: --> faster!
518 */
519 switch (wrap) {
5e705374 520 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
e8a99053 521 if (d1 < d2)
5e705374 522 return rq1;
e8a99053 523 else if (d2 < d1)
5e705374 524 return rq2;
e8a99053
AM
525 else {
526 if (s1 >= s2)
5e705374 527 return rq1;
e8a99053 528 else
5e705374 529 return rq2;
e8a99053 530 }
1da177e4 531
e8a99053 532 case CFQ_RQ2_WRAP:
5e705374 533 return rq1;
e8a99053 534 case CFQ_RQ1_WRAP:
5e705374
JA
535 return rq2;
536 case (CFQ_RQ1_WRAP|CFQ_RQ2_WRAP): /* both rqs wrapped */
e8a99053
AM
537 default:
538 /*
539 * Since both rqs are wrapped,
540 * start with the one that's further behind head
541 * (--> only *one* back seek required),
542 * since back seek takes more time than forward.
543 */
544 if (s1 <= s2)
5e705374 545 return rq1;
1da177e4 546 else
5e705374 547 return rq2;
1da177e4
LT
548 }
549}
550
498d3aa2
JA
551/*
552 * The below is leftmost cache rbtree addon
553 */
0871714e 554static struct cfq_queue *cfq_rb_first(struct cfq_rb_root *root)
cc09e299
JA
555{
556 if (!root->left)
557 root->left = rb_first(&root->rb);
558
0871714e
JA
559 if (root->left)
560 return rb_entry(root->left, struct cfq_queue, rb_node);
561
562 return NULL;
cc09e299
JA
563}
564
a36e71f9
JA
565static void rb_erase_init(struct rb_node *n, struct rb_root *root)
566{
567 rb_erase(n, root);
568 RB_CLEAR_NODE(n);
569}
570
cc09e299
JA
571static void cfq_rb_erase(struct rb_node *n, struct cfq_rb_root *root)
572{
573 if (root->left == n)
574 root->left = NULL;
a36e71f9 575 rb_erase_init(n, &root->rb);
aa6f6a3d 576 --root->count;
cc09e299
JA
577}
578
1da177e4
LT
579/*
580 * would be nice to take fifo expire time into account as well
581 */
5e705374
JA
582static struct request *
583cfq_find_next_rq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
584 struct request *last)
1da177e4 585{
21183b07
JA
586 struct rb_node *rbnext = rb_next(&last->rb_node);
587 struct rb_node *rbprev = rb_prev(&last->rb_node);
5e705374 588 struct request *next = NULL, *prev = NULL;
1da177e4 589
21183b07 590 BUG_ON(RB_EMPTY_NODE(&last->rb_node));
1da177e4
LT
591
592 if (rbprev)
5e705374 593 prev = rb_entry_rq(rbprev);
1da177e4 594
21183b07 595 if (rbnext)
5e705374 596 next = rb_entry_rq(rbnext);
21183b07
JA
597 else {
598 rbnext = rb_first(&cfqq->sort_list);
599 if (rbnext && rbnext != &last->rb_node)
5e705374 600 next = rb_entry_rq(rbnext);
21183b07 601 }
1da177e4 602
cf7c25cf 603 return cfq_choose_req(cfqd, next, prev, blk_rq_pos(last));
1da177e4
LT
604}
605
d9e7620e
JA
606static unsigned long cfq_slice_offset(struct cfq_data *cfqd,
607 struct cfq_queue *cfqq)
1da177e4 608{
3586e917
GJ
609 struct cfq_rb_root *service_tree;
610
611 service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
612
d9e7620e
JA
613 /*
614 * just an approximation, should be ok.
615 */
3586e917
GJ
616 return service_tree->count * (cfq_prio_slice(cfqd, 1, 0) -
617 cfq_prio_slice(cfqd, cfq_cfqq_sync(cfqq), cfqq->ioprio));
d9e7620e
JA
618}
619
498d3aa2 620/*
c0324a02 621 * The cfqd->service_trees holds all pending cfq_queue's that have
498d3aa2
JA
622 * requests waiting to be processed. It is sorted in the order that
623 * we will service the queues.
624 */
a36e71f9 625static void cfq_service_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 626 bool add_front)
d9e7620e 627{
0871714e
JA
628 struct rb_node **p, *parent;
629 struct cfq_queue *__cfqq;
d9e7620e 630 unsigned long rb_key;
c0324a02 631 struct cfq_rb_root *service_tree;
498d3aa2 632 int left;
d9e7620e 633
718eee05 634 service_tree = service_tree_for(cfqq_prio(cfqq), cfqq_type(cfqq), cfqd);
0871714e
JA
635 if (cfq_class_idle(cfqq)) {
636 rb_key = CFQ_IDLE_DELAY;
aa6f6a3d 637 parent = rb_last(&service_tree->rb);
0871714e
JA
638 if (parent && parent != &cfqq->rb_node) {
639 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
640 rb_key += __cfqq->rb_key;
641 } else
642 rb_key += jiffies;
643 } else if (!add_front) {
b9c8946b
JA
644 /*
645 * Get our rb key offset. Subtract any residual slice
646 * value carried from last service. A negative resid
647 * count indicates slice overrun, and this should position
648 * the next service time further away in the tree.
649 */
edd75ffd 650 rb_key = cfq_slice_offset(cfqd, cfqq) + jiffies;
b9c8946b 651 rb_key -= cfqq->slice_resid;
edd75ffd 652 cfqq->slice_resid = 0;
48e025e6
CZ
653 } else {
654 rb_key = -HZ;
aa6f6a3d 655 __cfqq = cfq_rb_first(service_tree);
48e025e6
CZ
656 rb_key += __cfqq ? __cfqq->rb_key : jiffies;
657 }
1da177e4 658
d9e7620e 659 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
99f9628a 660 /*
d9e7620e 661 * same position, nothing more to do
99f9628a 662 */
c0324a02
CZ
663 if (rb_key == cfqq->rb_key &&
664 cfqq->service_tree == service_tree)
d9e7620e 665 return;
1da177e4 666
aa6f6a3d
CZ
667 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
668 cfqq->service_tree = NULL;
1da177e4 669 }
d9e7620e 670
498d3aa2 671 left = 1;
0871714e 672 parent = NULL;
aa6f6a3d
CZ
673 cfqq->service_tree = service_tree;
674 p = &service_tree->rb.rb_node;
d9e7620e 675 while (*p) {
67060e37 676 struct rb_node **n;
cc09e299 677
d9e7620e
JA
678 parent = *p;
679 __cfqq = rb_entry(parent, struct cfq_queue, rb_node);
680
0c534e0a 681 /*
c0324a02 682 * sort by key, that represents service time.
0c534e0a 683 */
c0324a02 684 if (time_before(rb_key, __cfqq->rb_key))
67060e37 685 n = &(*p)->rb_left;
c0324a02 686 else {
67060e37 687 n = &(*p)->rb_right;
cc09e299 688 left = 0;
c0324a02 689 }
67060e37
JA
690
691 p = n;
d9e7620e
JA
692 }
693
cc09e299 694 if (left)
aa6f6a3d 695 service_tree->left = &cfqq->rb_node;
cc09e299 696
d9e7620e
JA
697 cfqq->rb_key = rb_key;
698 rb_link_node(&cfqq->rb_node, parent, p);
aa6f6a3d
CZ
699 rb_insert_color(&cfqq->rb_node, &service_tree->rb);
700 service_tree->count++;
1da177e4
LT
701}
702
a36e71f9 703static struct cfq_queue *
f2d1f0ae
JA
704cfq_prio_tree_lookup(struct cfq_data *cfqd, struct rb_root *root,
705 sector_t sector, struct rb_node **ret_parent,
706 struct rb_node ***rb_link)
a36e71f9 707{
a36e71f9
JA
708 struct rb_node **p, *parent;
709 struct cfq_queue *cfqq = NULL;
710
711 parent = NULL;
712 p = &root->rb_node;
713 while (*p) {
714 struct rb_node **n;
715
716 parent = *p;
717 cfqq = rb_entry(parent, struct cfq_queue, p_node);
718
719 /*
720 * Sort strictly based on sector. Smallest to the left,
721 * largest to the right.
722 */
2e46e8b2 723 if (sector > blk_rq_pos(cfqq->next_rq))
a36e71f9 724 n = &(*p)->rb_right;
2e46e8b2 725 else if (sector < blk_rq_pos(cfqq->next_rq))
a36e71f9
JA
726 n = &(*p)->rb_left;
727 else
728 break;
729 p = n;
3ac6c9f8 730 cfqq = NULL;
a36e71f9
JA
731 }
732
733 *ret_parent = parent;
734 if (rb_link)
735 *rb_link = p;
3ac6c9f8 736 return cfqq;
a36e71f9
JA
737}
738
739static void cfq_prio_tree_add(struct cfq_data *cfqd, struct cfq_queue *cfqq)
740{
a36e71f9
JA
741 struct rb_node **p, *parent;
742 struct cfq_queue *__cfqq;
743
f2d1f0ae
JA
744 if (cfqq->p_root) {
745 rb_erase(&cfqq->p_node, cfqq->p_root);
746 cfqq->p_root = NULL;
747 }
a36e71f9
JA
748
749 if (cfq_class_idle(cfqq))
750 return;
751 if (!cfqq->next_rq)
752 return;
753
f2d1f0ae 754 cfqq->p_root = &cfqd->prio_trees[cfqq->org_ioprio];
2e46e8b2
TH
755 __cfqq = cfq_prio_tree_lookup(cfqd, cfqq->p_root,
756 blk_rq_pos(cfqq->next_rq), &parent, &p);
3ac6c9f8
JA
757 if (!__cfqq) {
758 rb_link_node(&cfqq->p_node, parent, p);
f2d1f0ae
JA
759 rb_insert_color(&cfqq->p_node, cfqq->p_root);
760 } else
761 cfqq->p_root = NULL;
a36e71f9
JA
762}
763
498d3aa2
JA
764/*
765 * Update cfqq's position in the service tree.
766 */
edd75ffd 767static void cfq_resort_rr_list(struct cfq_data *cfqd, struct cfq_queue *cfqq)
6d048f53 768{
6d048f53
JA
769 /*
770 * Resorting requires the cfqq to be on the RR list already.
771 */
a36e71f9 772 if (cfq_cfqq_on_rr(cfqq)) {
edd75ffd 773 cfq_service_tree_add(cfqd, cfqq, 0);
a36e71f9
JA
774 cfq_prio_tree_add(cfqd, cfqq);
775 }
6d048f53
JA
776}
777
1da177e4
LT
778/*
779 * add to busy list of queues for service, trying to be fair in ordering
22e2c507 780 * the pending list according to last request service
1da177e4 781 */
febffd61 782static void cfq_add_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 783{
7b679138 784 cfq_log_cfqq(cfqd, cfqq, "add_to_rr");
3b18152c
JA
785 BUG_ON(cfq_cfqq_on_rr(cfqq));
786 cfq_mark_cfqq_on_rr(cfqq);
1da177e4
LT
787 cfqd->busy_queues++;
788
edd75ffd 789 cfq_resort_rr_list(cfqd, cfqq);
1da177e4
LT
790}
791
498d3aa2
JA
792/*
793 * Called when the cfqq no longer has requests pending, remove it from
794 * the service tree.
795 */
febffd61 796static void cfq_del_cfqq_rr(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 797{
7b679138 798 cfq_log_cfqq(cfqd, cfqq, "del_from_rr");
3b18152c
JA
799 BUG_ON(!cfq_cfqq_on_rr(cfqq));
800 cfq_clear_cfqq_on_rr(cfqq);
1da177e4 801
aa6f6a3d
CZ
802 if (!RB_EMPTY_NODE(&cfqq->rb_node)) {
803 cfq_rb_erase(&cfqq->rb_node, cfqq->service_tree);
804 cfqq->service_tree = NULL;
805 }
f2d1f0ae
JA
806 if (cfqq->p_root) {
807 rb_erase(&cfqq->p_node, cfqq->p_root);
808 cfqq->p_root = NULL;
809 }
d9e7620e 810
1da177e4
LT
811 BUG_ON(!cfqd->busy_queues);
812 cfqd->busy_queues--;
813}
814
815/*
816 * rb tree support functions
817 */
febffd61 818static void cfq_del_rq_rb(struct request *rq)
1da177e4 819{
5e705374 820 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 821 struct cfq_data *cfqd = cfqq->cfqd;
5e705374 822 const int sync = rq_is_sync(rq);
1da177e4 823
b4878f24
JA
824 BUG_ON(!cfqq->queued[sync]);
825 cfqq->queued[sync]--;
1da177e4 826
5e705374 827 elv_rb_del(&cfqq->sort_list, rq);
1da177e4 828
dd67d051 829 if (cfq_cfqq_on_rr(cfqq) && RB_EMPTY_ROOT(&cfqq->sort_list))
b4878f24 830 cfq_del_cfqq_rr(cfqd, cfqq);
1da177e4
LT
831}
832
5e705374 833static void cfq_add_rq_rb(struct request *rq)
1da177e4 834{
5e705374 835 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 836 struct cfq_data *cfqd = cfqq->cfqd;
a36e71f9 837 struct request *__alias, *prev;
1da177e4 838
5380a101 839 cfqq->queued[rq_is_sync(rq)]++;
1da177e4
LT
840
841 /*
842 * looks a little odd, but the first insert might return an alias.
843 * if that happens, put the alias on the dispatch list
844 */
21183b07 845 while ((__alias = elv_rb_add(&cfqq->sort_list, rq)) != NULL)
5e705374 846 cfq_dispatch_insert(cfqd->queue, __alias);
5fccbf61
JA
847
848 if (!cfq_cfqq_on_rr(cfqq))
849 cfq_add_cfqq_rr(cfqd, cfqq);
5044eed4
JA
850
851 /*
852 * check if this request is a better next-serve candidate
853 */
a36e71f9 854 prev = cfqq->next_rq;
cf7c25cf 855 cfqq->next_rq = cfq_choose_req(cfqd, cfqq->next_rq, rq, cfqd->last_position);
a36e71f9
JA
856
857 /*
858 * adjust priority tree position, if ->next_rq changes
859 */
860 if (prev != cfqq->next_rq)
861 cfq_prio_tree_add(cfqd, cfqq);
862
5044eed4 863 BUG_ON(!cfqq->next_rq);
1da177e4
LT
864}
865
febffd61 866static void cfq_reposition_rq_rb(struct cfq_queue *cfqq, struct request *rq)
1da177e4 867{
5380a101
JA
868 elv_rb_del(&cfqq->sort_list, rq);
869 cfqq->queued[rq_is_sync(rq)]--;
5e705374 870 cfq_add_rq_rb(rq);
1da177e4
LT
871}
872
206dc69b
JA
873static struct request *
874cfq_find_rq_fmerge(struct cfq_data *cfqd, struct bio *bio)
1da177e4 875{
206dc69b 876 struct task_struct *tsk = current;
91fac317 877 struct cfq_io_context *cic;
206dc69b 878 struct cfq_queue *cfqq;
1da177e4 879
4ac845a2 880 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
881 if (!cic)
882 return NULL;
883
884 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
89850f7e
JA
885 if (cfqq) {
886 sector_t sector = bio->bi_sector + bio_sectors(bio);
887
21183b07 888 return elv_rb_find(&cfqq->sort_list, sector);
89850f7e 889 }
1da177e4 890
1da177e4
LT
891 return NULL;
892}
893
165125e1 894static void cfq_activate_request(struct request_queue *q, struct request *rq)
1da177e4 895{
22e2c507 896 struct cfq_data *cfqd = q->elevator->elevator_data;
3b18152c 897
5ad531db 898 cfqd->rq_in_driver[rq_is_sync(rq)]++;
7b679138 899 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "activate rq, drv=%d",
5ad531db 900 rq_in_driver(cfqd));
25776e35 901
5b93629b 902 cfqd->last_position = blk_rq_pos(rq) + blk_rq_sectors(rq);
1da177e4
LT
903}
904
165125e1 905static void cfq_deactivate_request(struct request_queue *q, struct request *rq)
1da177e4 906{
b4878f24 907 struct cfq_data *cfqd = q->elevator->elevator_data;
5ad531db 908 const int sync = rq_is_sync(rq);
b4878f24 909
5ad531db
JA
910 WARN_ON(!cfqd->rq_in_driver[sync]);
911 cfqd->rq_in_driver[sync]--;
7b679138 912 cfq_log_cfqq(cfqd, RQ_CFQQ(rq), "deactivate rq, drv=%d",
5ad531db 913 rq_in_driver(cfqd));
1da177e4
LT
914}
915
b4878f24 916static void cfq_remove_request(struct request *rq)
1da177e4 917{
5e705374 918 struct cfq_queue *cfqq = RQ_CFQQ(rq);
21183b07 919
5e705374
JA
920 if (cfqq->next_rq == rq)
921 cfqq->next_rq = cfq_find_next_rq(cfqq->cfqd, cfqq, rq);
1da177e4 922
b4878f24 923 list_del_init(&rq->queuelist);
5e705374 924 cfq_del_rq_rb(rq);
374f84ac 925
45333d5a 926 cfqq->cfqd->rq_queued--;
374f84ac
JA
927 if (rq_is_meta(rq)) {
928 WARN_ON(!cfqq->meta_pending);
929 cfqq->meta_pending--;
930 }
1da177e4
LT
931}
932
165125e1
JA
933static int cfq_merge(struct request_queue *q, struct request **req,
934 struct bio *bio)
1da177e4
LT
935{
936 struct cfq_data *cfqd = q->elevator->elevator_data;
937 struct request *__rq;
1da177e4 938
206dc69b 939 __rq = cfq_find_rq_fmerge(cfqd, bio);
22e2c507 940 if (__rq && elv_rq_merge_ok(__rq, bio)) {
9817064b
JA
941 *req = __rq;
942 return ELEVATOR_FRONT_MERGE;
1da177e4
LT
943 }
944
945 return ELEVATOR_NO_MERGE;
1da177e4
LT
946}
947
165125e1 948static void cfq_merged_request(struct request_queue *q, struct request *req,
21183b07 949 int type)
1da177e4 950{
21183b07 951 if (type == ELEVATOR_FRONT_MERGE) {
5e705374 952 struct cfq_queue *cfqq = RQ_CFQQ(req);
1da177e4 953
5e705374 954 cfq_reposition_rq_rb(cfqq, req);
1da177e4 955 }
1da177e4
LT
956}
957
958static void
165125e1 959cfq_merged_requests(struct request_queue *q, struct request *rq,
1da177e4
LT
960 struct request *next)
961{
cf7c25cf 962 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507
JA
963 /*
964 * reposition in fifo if next is older than rq
965 */
966 if (!list_empty(&rq->queuelist) && !list_empty(&next->queuelist) &&
30996f40 967 time_before(rq_fifo_time(next), rq_fifo_time(rq))) {
22e2c507 968 list_move(&rq->queuelist, &next->queuelist);
30996f40
JA
969 rq_set_fifo_time(rq, rq_fifo_time(next));
970 }
22e2c507 971
cf7c25cf
CZ
972 if (cfqq->next_rq == next)
973 cfqq->next_rq = rq;
b4878f24 974 cfq_remove_request(next);
22e2c507
JA
975}
976
165125e1 977static int cfq_allow_merge(struct request_queue *q, struct request *rq,
da775265
JA
978 struct bio *bio)
979{
980 struct cfq_data *cfqd = q->elevator->elevator_data;
91fac317 981 struct cfq_io_context *cic;
da775265 982 struct cfq_queue *cfqq;
da775265
JA
983
984 /*
ec8acb69 985 * Disallow merge of a sync bio into an async request.
da775265 986 */
91fac317 987 if (cfq_bio_sync(bio) && !rq_is_sync(rq))
a6151c3a 988 return false;
da775265
JA
989
990 /*
719d3402
JA
991 * Lookup the cfqq that this bio will be queued with. Allow
992 * merge only if rq is queued there.
da775265 993 */
4ac845a2 994 cic = cfq_cic_lookup(cfqd, current->io_context);
91fac317 995 if (!cic)
a6151c3a 996 return false;
719d3402 997
91fac317 998 cfqq = cic_to_cfqq(cic, cfq_bio_sync(bio));
a6151c3a 999 return cfqq == RQ_CFQQ(rq);
da775265
JA
1000}
1001
febffd61
JA
1002static void __cfq_set_active_queue(struct cfq_data *cfqd,
1003 struct cfq_queue *cfqq)
22e2c507
JA
1004{
1005 if (cfqq) {
7b679138 1006 cfq_log_cfqq(cfqd, cfqq, "set_active");
22e2c507 1007 cfqq->slice_end = 0;
2f5cb738
JA
1008 cfqq->slice_dispatch = 0;
1009
2f5cb738 1010 cfq_clear_cfqq_wait_request(cfqq);
b029195d 1011 cfq_clear_cfqq_must_dispatch(cfqq);
3b18152c
JA
1012 cfq_clear_cfqq_must_alloc_slice(cfqq);
1013 cfq_clear_cfqq_fifo_expire(cfqq);
44f7c160 1014 cfq_mark_cfqq_slice_new(cfqq);
2f5cb738
JA
1015
1016 del_timer(&cfqd->idle_slice_timer);
22e2c507
JA
1017 }
1018
1019 cfqd->active_queue = cfqq;
1020}
1021
7b14e3b5
JA
1022/*
1023 * current cfqq expired its slice (or was too idle), select new one
1024 */
1025static void
1026__cfq_slice_expired(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 1027 bool timed_out)
7b14e3b5 1028{
7b679138
JA
1029 cfq_log_cfqq(cfqd, cfqq, "slice expired t=%d", timed_out);
1030
7b14e3b5
JA
1031 if (cfq_cfqq_wait_request(cfqq))
1032 del_timer(&cfqd->idle_slice_timer);
1033
7b14e3b5
JA
1034 cfq_clear_cfqq_wait_request(cfqq);
1035
1036 /*
6084cdda 1037 * store what was left of this slice, if the queue idled/timed out
7b14e3b5 1038 */
7b679138 1039 if (timed_out && !cfq_cfqq_slice_new(cfqq)) {
c5b680f3 1040 cfqq->slice_resid = cfqq->slice_end - jiffies;
7b679138
JA
1041 cfq_log_cfqq(cfqd, cfqq, "resid=%ld", cfqq->slice_resid);
1042 }
7b14e3b5 1043
edd75ffd 1044 cfq_resort_rr_list(cfqd, cfqq);
7b14e3b5
JA
1045
1046 if (cfqq == cfqd->active_queue)
1047 cfqd->active_queue = NULL;
1048
1049 if (cfqd->active_cic) {
1050 put_io_context(cfqd->active_cic->ioc);
1051 cfqd->active_cic = NULL;
1052 }
7b14e3b5
JA
1053}
1054
a6151c3a 1055static inline void cfq_slice_expired(struct cfq_data *cfqd, bool timed_out)
7b14e3b5
JA
1056{
1057 struct cfq_queue *cfqq = cfqd->active_queue;
1058
1059 if (cfqq)
6084cdda 1060 __cfq_slice_expired(cfqd, cfqq, timed_out);
7b14e3b5
JA
1061}
1062
498d3aa2
JA
1063/*
1064 * Get next queue for service. Unless we have a queue preemption,
1065 * we'll simply select the first cfqq in the service tree.
1066 */
6d048f53 1067static struct cfq_queue *cfq_get_next_queue(struct cfq_data *cfqd)
22e2c507 1068{
c0324a02 1069 struct cfq_rb_root *service_tree =
718eee05 1070 service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd);
d9e7620e 1071
c0324a02
CZ
1072 if (RB_EMPTY_ROOT(&service_tree->rb))
1073 return NULL;
1074 return cfq_rb_first(service_tree);
6d048f53
JA
1075}
1076
498d3aa2
JA
1077/*
1078 * Get and set a new active queue for service.
1079 */
a36e71f9
JA
1080static struct cfq_queue *cfq_set_active_queue(struct cfq_data *cfqd,
1081 struct cfq_queue *cfqq)
6d048f53 1082{
e00ef799 1083 if (!cfqq)
a36e71f9 1084 cfqq = cfq_get_next_queue(cfqd);
6d048f53 1085
22e2c507 1086 __cfq_set_active_queue(cfqd, cfqq);
3b18152c 1087 return cfqq;
22e2c507
JA
1088}
1089
d9e7620e
JA
1090static inline sector_t cfq_dist_from_last(struct cfq_data *cfqd,
1091 struct request *rq)
1092{
83096ebf
TH
1093 if (blk_rq_pos(rq) >= cfqd->last_position)
1094 return blk_rq_pos(rq) - cfqd->last_position;
d9e7620e 1095 else
83096ebf 1096 return cfqd->last_position - blk_rq_pos(rq);
d9e7620e
JA
1097}
1098
b2c18e1e
JM
1099#define CFQQ_SEEK_THR 8 * 1024
1100#define CFQQ_SEEKY(cfqq) ((cfqq)->seek_mean > CFQQ_SEEK_THR)
04dc6e71 1101
b2c18e1e
JM
1102static inline int cfq_rq_close(struct cfq_data *cfqd, struct cfq_queue *cfqq,
1103 struct request *rq)
6d048f53 1104{
b2c18e1e 1105 sector_t sdist = cfqq->seek_mean;
6d048f53 1106
b2c18e1e
JM
1107 if (!sample_valid(cfqq->seek_samples))
1108 sdist = CFQQ_SEEK_THR;
6d048f53 1109
04dc6e71 1110 return cfq_dist_from_last(cfqd, rq) <= sdist;
6d048f53
JA
1111}
1112
a36e71f9
JA
1113static struct cfq_queue *cfqq_close(struct cfq_data *cfqd,
1114 struct cfq_queue *cur_cfqq)
1115{
f2d1f0ae 1116 struct rb_root *root = &cfqd->prio_trees[cur_cfqq->org_ioprio];
a36e71f9
JA
1117 struct rb_node *parent, *node;
1118 struct cfq_queue *__cfqq;
1119 sector_t sector = cfqd->last_position;
1120
1121 if (RB_EMPTY_ROOT(root))
1122 return NULL;
1123
1124 /*
1125 * First, if we find a request starting at the end of the last
1126 * request, choose it.
1127 */
f2d1f0ae 1128 __cfqq = cfq_prio_tree_lookup(cfqd, root, sector, &parent, NULL);
a36e71f9
JA
1129 if (__cfqq)
1130 return __cfqq;
1131
1132 /*
1133 * If the exact sector wasn't found, the parent of the NULL leaf
1134 * will contain the closest sector.
1135 */
1136 __cfqq = rb_entry(parent, struct cfq_queue, p_node);
b2c18e1e 1137 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1138 return __cfqq;
1139
2e46e8b2 1140 if (blk_rq_pos(__cfqq->next_rq) < sector)
a36e71f9
JA
1141 node = rb_next(&__cfqq->p_node);
1142 else
1143 node = rb_prev(&__cfqq->p_node);
1144 if (!node)
1145 return NULL;
1146
1147 __cfqq = rb_entry(node, struct cfq_queue, p_node);
b2c18e1e 1148 if (cfq_rq_close(cfqd, cur_cfqq, __cfqq->next_rq))
a36e71f9
JA
1149 return __cfqq;
1150
1151 return NULL;
1152}
1153
1154/*
1155 * cfqd - obvious
1156 * cur_cfqq - passed in so that we don't decide that the current queue is
1157 * closely cooperating with itself.
1158 *
1159 * So, basically we're assuming that that cur_cfqq has dispatched at least
1160 * one request, and that cfqd->last_position reflects a position on the disk
1161 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1162 * assumption.
1163 */
1164static struct cfq_queue *cfq_close_cooperator(struct cfq_data *cfqd,
b3b6d040 1165 struct cfq_queue *cur_cfqq)
6d048f53 1166{
a36e71f9
JA
1167 struct cfq_queue *cfqq;
1168
e6c5bc73
JM
1169 if (!cfq_cfqq_sync(cur_cfqq))
1170 return NULL;
1171 if (CFQQ_SEEKY(cur_cfqq))
1172 return NULL;
1173
6d048f53 1174 /*
d9e7620e
JA
1175 * We should notice if some of the queues are cooperating, eg
1176 * working closely on the same area of the disk. In that case,
1177 * we can group them together and don't waste time idling.
6d048f53 1178 */
a36e71f9
JA
1179 cfqq = cfqq_close(cfqd, cur_cfqq);
1180 if (!cfqq)
1181 return NULL;
1182
df5fe3e8
JM
1183 /*
1184 * It only makes sense to merge sync queues.
1185 */
1186 if (!cfq_cfqq_sync(cfqq))
1187 return NULL;
e6c5bc73
JM
1188 if (CFQQ_SEEKY(cfqq))
1189 return NULL;
df5fe3e8 1190
c0324a02
CZ
1191 /*
1192 * Do not merge queues of different priority classes
1193 */
1194 if (cfq_class_rt(cfqq) != cfq_class_rt(cur_cfqq))
1195 return NULL;
1196
a36e71f9 1197 return cfqq;
6d048f53
JA
1198}
1199
a6d44e98
CZ
1200/*
1201 * Determine whether we should enforce idle window for this queue.
1202 */
1203
1204static bool cfq_should_idle(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1205{
1206 enum wl_prio_t prio = cfqq_prio(cfqq);
718eee05 1207 struct cfq_rb_root *service_tree = cfqq->service_tree;
a6d44e98
CZ
1208
1209 /* We never do for idle class queues. */
1210 if (prio == IDLE_WORKLOAD)
1211 return false;
1212
1213 /* We do for queues that were marked with idle window flag. */
1214 if (cfq_cfqq_idle_window(cfqq))
1215 return true;
1216
1217 /*
1218 * Otherwise, we do only if they are the last ones
1219 * in their service tree.
1220 */
718eee05
CZ
1221 if (!service_tree)
1222 service_tree = service_tree_for(prio, cfqq_type(cfqq), cfqd);
1223
a6d44e98
CZ
1224 if (service_tree->count == 0)
1225 return true;
1226
1227 return (service_tree->count == 1 && cfq_rb_first(service_tree) == cfqq);
1228}
1229
6d048f53 1230static void cfq_arm_slice_timer(struct cfq_data *cfqd)
22e2c507 1231{
1792669c 1232 struct cfq_queue *cfqq = cfqd->active_queue;
206dc69b 1233 struct cfq_io_context *cic;
7b14e3b5
JA
1234 unsigned long sl;
1235
a68bbddb 1236 /*
f7d7b7a7
JA
1237 * SSD device without seek penalty, disable idling. But only do so
1238 * for devices that support queuing, otherwise we still have a problem
1239 * with sync vs async workloads.
a68bbddb 1240 */
f7d7b7a7 1241 if (blk_queue_nonrot(cfqd->queue) && cfqd->hw_tag)
a68bbddb
JA
1242 return;
1243
dd67d051 1244 WARN_ON(!RB_EMPTY_ROOT(&cfqq->sort_list));
6d048f53 1245 WARN_ON(cfq_cfqq_slice_new(cfqq));
22e2c507
JA
1246
1247 /*
1248 * idle is disabled, either manually or by past process history
1249 */
a6d44e98 1250 if (!cfqd->cfq_slice_idle || !cfq_should_idle(cfqd, cfqq))
6d048f53
JA
1251 return;
1252
7b679138
JA
1253 /*
1254 * still requests with the driver, don't idle
1255 */
5ad531db 1256 if (rq_in_driver(cfqd))
7b679138
JA
1257 return;
1258
22e2c507
JA
1259 /*
1260 * task has exited, don't wait
1261 */
206dc69b 1262 cic = cfqd->active_cic;
66dac98e 1263 if (!cic || !atomic_read(&cic->ioc->nr_tasks))
6d048f53
JA
1264 return;
1265
355b659c
CZ
1266 /*
1267 * If our average think time is larger than the remaining time
1268 * slice, then don't idle. This avoids overrunning the allotted
1269 * time slice.
1270 */
1271 if (sample_valid(cic->ttime_samples) &&
1272 (cfqq->slice_end - jiffies < cic->ttime_mean))
1273 return;
1274
3b18152c 1275 cfq_mark_cfqq_wait_request(cfqq);
22e2c507 1276
6d048f53 1277 sl = cfqd->cfq_slice_idle;
206dc69b 1278
7b14e3b5 1279 mod_timer(&cfqd->idle_slice_timer, jiffies + sl);
9481ffdc 1280 cfq_log_cfqq(cfqd, cfqq, "arm_idle: %lu", sl);
1da177e4
LT
1281}
1282
498d3aa2
JA
1283/*
1284 * Move request from internal lists to the request queue dispatch list.
1285 */
165125e1 1286static void cfq_dispatch_insert(struct request_queue *q, struct request *rq)
1da177e4 1287{
3ed9a296 1288 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 1289 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 1290
7b679138
JA
1291 cfq_log_cfqq(cfqd, cfqq, "dispatch_insert");
1292
06d21886 1293 cfqq->next_rq = cfq_find_next_rq(cfqd, cfqq, rq);
5380a101 1294 cfq_remove_request(rq);
6d048f53 1295 cfqq->dispatched++;
5380a101 1296 elv_dispatch_sort(q, rq);
3ed9a296
JA
1297
1298 if (cfq_cfqq_sync(cfqq))
1299 cfqd->sync_flight++;
1da177e4
LT
1300}
1301
1302/*
1303 * return expired entry, or NULL to just start from scratch in rbtree
1304 */
febffd61 1305static struct request *cfq_check_fifo(struct cfq_queue *cfqq)
1da177e4 1306{
30996f40 1307 struct request *rq = NULL;
1da177e4 1308
3b18152c 1309 if (cfq_cfqq_fifo_expire(cfqq))
1da177e4 1310 return NULL;
cb887411
JA
1311
1312 cfq_mark_cfqq_fifo_expire(cfqq);
1313
89850f7e
JA
1314 if (list_empty(&cfqq->fifo))
1315 return NULL;
1da177e4 1316
89850f7e 1317 rq = rq_entry_fifo(cfqq->fifo.next);
30996f40 1318 if (time_before(jiffies, rq_fifo_time(rq)))
7b679138 1319 rq = NULL;
1da177e4 1320
30996f40 1321 cfq_log_cfqq(cfqq->cfqd, cfqq, "fifo=%p", rq);
6d048f53 1322 return rq;
1da177e4
LT
1323}
1324
22e2c507
JA
1325static inline int
1326cfq_prio_to_maxrq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1327{
1328 const int base_rq = cfqd->cfq_slice_async_rq;
1da177e4 1329
22e2c507 1330 WARN_ON(cfqq->ioprio >= IOPRIO_BE_NR);
1da177e4 1331
22e2c507 1332 return 2 * (base_rq + base_rq * (CFQ_PRIO_LISTS - 1 - cfqq->ioprio));
1da177e4
LT
1333}
1334
df5fe3e8
JM
1335/*
1336 * Must be called with the queue_lock held.
1337 */
1338static int cfqq_process_refs(struct cfq_queue *cfqq)
1339{
1340 int process_refs, io_refs;
1341
1342 io_refs = cfqq->allocated[READ] + cfqq->allocated[WRITE];
1343 process_refs = atomic_read(&cfqq->ref) - io_refs;
1344 BUG_ON(process_refs < 0);
1345 return process_refs;
1346}
1347
1348static void cfq_setup_merge(struct cfq_queue *cfqq, struct cfq_queue *new_cfqq)
1349{
e6c5bc73 1350 int process_refs, new_process_refs;
df5fe3e8
JM
1351 struct cfq_queue *__cfqq;
1352
1353 /* Avoid a circular list and skip interim queue merges */
1354 while ((__cfqq = new_cfqq->new_cfqq)) {
1355 if (__cfqq == cfqq)
1356 return;
1357 new_cfqq = __cfqq;
1358 }
1359
1360 process_refs = cfqq_process_refs(cfqq);
1361 /*
1362 * If the process for the cfqq has gone away, there is no
1363 * sense in merging the queues.
1364 */
1365 if (process_refs == 0)
1366 return;
1367
e6c5bc73
JM
1368 /*
1369 * Merge in the direction of the lesser amount of work.
1370 */
1371 new_process_refs = cfqq_process_refs(new_cfqq);
1372 if (new_process_refs >= process_refs) {
1373 cfqq->new_cfqq = new_cfqq;
1374 atomic_add(process_refs, &new_cfqq->ref);
1375 } else {
1376 new_cfqq->new_cfqq = cfqq;
1377 atomic_add(new_process_refs, &cfqq->ref);
1378 }
df5fe3e8
JM
1379}
1380
718eee05
CZ
1381static enum wl_type_t cfq_choose_wl(struct cfq_data *cfqd, enum wl_prio_t prio,
1382 bool prio_changed)
1383{
1384 struct cfq_queue *queue;
1385 int i;
1386 bool key_valid = false;
1387 unsigned long lowest_key = 0;
1388 enum wl_type_t cur_best = SYNC_NOIDLE_WORKLOAD;
1389
1390 if (prio_changed) {
1391 /*
1392 * When priorities switched, we prefer starting
1393 * from SYNC_NOIDLE (first choice), or just SYNC
1394 * over ASYNC
1395 */
1396 if (service_tree_for(prio, cur_best, cfqd)->count)
1397 return cur_best;
1398 cur_best = SYNC_WORKLOAD;
1399 if (service_tree_for(prio, cur_best, cfqd)->count)
1400 return cur_best;
1401
1402 return ASYNC_WORKLOAD;
1403 }
1404
1405 for (i = 0; i < 3; ++i) {
1406 /* otherwise, select the one with lowest rb_key */
1407 queue = cfq_rb_first(service_tree_for(prio, i, cfqd));
1408 if (queue &&
1409 (!key_valid || time_before(queue->rb_key, lowest_key))) {
1410 lowest_key = queue->rb_key;
1411 cur_best = i;
1412 key_valid = true;
1413 }
1414 }
1415
1416 return cur_best;
1417}
1418
1419static void choose_service_tree(struct cfq_data *cfqd)
1420{
1421 enum wl_prio_t previous_prio = cfqd->serving_prio;
1422 bool prio_changed;
1423 unsigned slice;
1424 unsigned count;
1425
1426 /* Choose next priority. RT > BE > IDLE */
1427 if (cfq_busy_queues_wl(RT_WORKLOAD, cfqd))
1428 cfqd->serving_prio = RT_WORKLOAD;
1429 else if (cfq_busy_queues_wl(BE_WORKLOAD, cfqd))
1430 cfqd->serving_prio = BE_WORKLOAD;
1431 else {
1432 cfqd->serving_prio = IDLE_WORKLOAD;
1433 cfqd->workload_expires = jiffies + 1;
1434 return;
1435 }
1436
1437 /*
1438 * For RT and BE, we have to choose also the type
1439 * (SYNC, SYNC_NOIDLE, ASYNC), and to compute a workload
1440 * expiration time
1441 */
1442 prio_changed = (cfqd->serving_prio != previous_prio);
1443 count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1444 ->count;
1445
1446 /*
1447 * If priority didn't change, check workload expiration,
1448 * and that we still have other queues ready
1449 */
1450 if (!prio_changed && count &&
1451 !time_after(jiffies, cfqd->workload_expires))
1452 return;
1453
1454 /* otherwise select new workload type */
1455 cfqd->serving_type =
1456 cfq_choose_wl(cfqd, cfqd->serving_prio, prio_changed);
1457 count = service_tree_for(cfqd->serving_prio, cfqd->serving_type, cfqd)
1458 ->count;
1459
1460 /*
1461 * the workload slice is computed as a fraction of target latency
1462 * proportional to the number of queues in that workload, over
1463 * all the queues in the same priority class
1464 */
1465 slice = cfq_target_latency * count /
1466 max_t(unsigned, cfqd->busy_queues_avg[cfqd->serving_prio],
1467 cfq_busy_queues_wl(cfqd->serving_prio, cfqd));
1468
1469 if (cfqd->serving_type == ASYNC_WORKLOAD)
1470 /* async workload slice is scaled down according to
1471 * the sync/async slice ratio. */
1472 slice = slice * cfqd->cfq_slice[0] / cfqd->cfq_slice[1];
1473 else
1474 /* sync workload slice is at least 2 * cfq_slice_idle */
1475 slice = max(slice, 2 * cfqd->cfq_slice_idle);
1476
1477 slice = max_t(unsigned, slice, CFQ_MIN_TT);
1478 cfqd->workload_expires = jiffies + slice;
1479}
1480
22e2c507 1481/*
498d3aa2
JA
1482 * Select a queue for service. If we have a current active queue,
1483 * check whether to continue servicing it, or retrieve and set a new one.
22e2c507 1484 */
1b5ed5e1 1485static struct cfq_queue *cfq_select_queue(struct cfq_data *cfqd)
1da177e4 1486{
a36e71f9 1487 struct cfq_queue *cfqq, *new_cfqq = NULL;
1da177e4 1488
22e2c507
JA
1489 cfqq = cfqd->active_queue;
1490 if (!cfqq)
1491 goto new_queue;
1da177e4 1492
22e2c507 1493 /*
6d048f53 1494 * The active queue has run out of time, expire it and select new.
22e2c507 1495 */
b029195d 1496 if (cfq_slice_used(cfqq) && !cfq_cfqq_must_dispatch(cfqq))
3b18152c 1497 goto expire;
1da177e4 1498
22e2c507 1499 /*
6d048f53
JA
1500 * The active queue has requests and isn't expired, allow it to
1501 * dispatch.
22e2c507 1502 */
dd67d051 1503 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 1504 goto keep_queue;
6d048f53 1505
a36e71f9
JA
1506 /*
1507 * If another queue has a request waiting within our mean seek
1508 * distance, let it run. The expire code will check for close
1509 * cooperators and put the close queue at the front of the service
df5fe3e8 1510 * tree. If possible, merge the expiring queue with the new cfqq.
a36e71f9 1511 */
b3b6d040 1512 new_cfqq = cfq_close_cooperator(cfqd, cfqq);
df5fe3e8
JM
1513 if (new_cfqq) {
1514 if (!cfqq->new_cfqq)
1515 cfq_setup_merge(cfqq, new_cfqq);
a36e71f9 1516 goto expire;
df5fe3e8 1517 }
a36e71f9 1518
6d048f53
JA
1519 /*
1520 * No requests pending. If the active queue still has requests in
1521 * flight or is idling for a new request, allow either of these
1522 * conditions to happen (or time out) before selecting a new queue.
1523 */
cc197479 1524 if (timer_pending(&cfqd->idle_slice_timer) ||
a6d44e98 1525 (cfqq->dispatched && cfq_should_idle(cfqd, cfqq))) {
caaa5f9f
JA
1526 cfqq = NULL;
1527 goto keep_queue;
22e2c507
JA
1528 }
1529
3b18152c 1530expire:
6084cdda 1531 cfq_slice_expired(cfqd, 0);
3b18152c 1532new_queue:
718eee05
CZ
1533 /*
1534 * Current queue expired. Check if we have to switch to a new
1535 * service tree
1536 */
1537 if (!new_cfqq)
1538 choose_service_tree(cfqd);
1539
a36e71f9 1540 cfqq = cfq_set_active_queue(cfqd, new_cfqq);
22e2c507 1541keep_queue:
3b18152c 1542 return cfqq;
22e2c507
JA
1543}
1544
febffd61 1545static int __cfq_forced_dispatch_cfqq(struct cfq_queue *cfqq)
d9e7620e
JA
1546{
1547 int dispatched = 0;
1548
1549 while (cfqq->next_rq) {
1550 cfq_dispatch_insert(cfqq->cfqd->queue, cfqq->next_rq);
1551 dispatched++;
1552 }
1553
1554 BUG_ON(!list_empty(&cfqq->fifo));
1555 return dispatched;
1556}
1557
498d3aa2
JA
1558/*
1559 * Drain our current requests. Used for barriers and when switching
1560 * io schedulers on-the-fly.
1561 */
d9e7620e 1562static int cfq_forced_dispatch(struct cfq_data *cfqd)
1b5ed5e1 1563{
0871714e 1564 struct cfq_queue *cfqq;
d9e7620e 1565 int dispatched = 0;
718eee05 1566 int i, j;
c0324a02 1567 for (i = 0; i < 2; ++i)
718eee05
CZ
1568 for (j = 0; j < 3; ++j)
1569 while ((cfqq = cfq_rb_first(&cfqd->service_trees[i][j]))
1570 != NULL)
1571 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1572
c0324a02 1573 while ((cfqq = cfq_rb_first(&cfqd->service_tree_idle)) != NULL)
d9e7620e 1574 dispatched += __cfq_forced_dispatch_cfqq(cfqq);
1b5ed5e1 1575
6084cdda 1576 cfq_slice_expired(cfqd, 0);
1b5ed5e1
TH
1577
1578 BUG_ON(cfqd->busy_queues);
1579
6923715a 1580 cfq_log(cfqd, "forced_dispatch=%d", dispatched);
1b5ed5e1
TH
1581 return dispatched;
1582}
1583
0b182d61 1584static bool cfq_may_dispatch(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2f5cb738 1585{
2f5cb738 1586 unsigned int max_dispatch;
22e2c507 1587
5ad531db
JA
1588 /*
1589 * Drain async requests before we start sync IO
1590 */
a6d44e98 1591 if (cfq_should_idle(cfqd, cfqq) && cfqd->rq_in_driver[BLK_RW_ASYNC])
0b182d61 1592 return false;
5ad531db 1593
2f5cb738
JA
1594 /*
1595 * If this is an async queue and we have sync IO in flight, let it wait
1596 */
1597 if (cfqd->sync_flight && !cfq_cfqq_sync(cfqq))
0b182d61 1598 return false;
2f5cb738
JA
1599
1600 max_dispatch = cfqd->cfq_quantum;
1601 if (cfq_class_idle(cfqq))
1602 max_dispatch = 1;
b4878f24 1603
2f5cb738
JA
1604 /*
1605 * Does this cfqq already have too much IO in flight?
1606 */
1607 if (cfqq->dispatched >= max_dispatch) {
1608 /*
1609 * idle queue must always only have a single IO in flight
1610 */
3ed9a296 1611 if (cfq_class_idle(cfqq))
0b182d61 1612 return false;
3ed9a296 1613
2f5cb738
JA
1614 /*
1615 * We have other queues, don't allow more IO from this one
1616 */
1617 if (cfqd->busy_queues > 1)
0b182d61 1618 return false;
9ede209e 1619
365722bb 1620 /*
8e296755 1621 * Sole queue user, allow bigger slice
365722bb 1622 */
8e296755
JA
1623 max_dispatch *= 4;
1624 }
1625
1626 /*
1627 * Async queues must wait a bit before being allowed dispatch.
1628 * We also ramp up the dispatch depth gradually for async IO,
1629 * based on the last sync IO we serviced
1630 */
963b72fc 1631 if (!cfq_cfqq_sync(cfqq) && cfqd->cfq_latency) {
8e296755
JA
1632 unsigned long last_sync = jiffies - cfqd->last_end_sync_rq;
1633 unsigned int depth;
365722bb 1634
61f0c1dc 1635 depth = last_sync / cfqd->cfq_slice[1];
e00c54c3
JA
1636 if (!depth && !cfqq->dispatched)
1637 depth = 1;
8e296755
JA
1638 if (depth < max_dispatch)
1639 max_dispatch = depth;
2f5cb738 1640 }
3ed9a296 1641
0b182d61
JA
1642 /*
1643 * If we're below the current max, allow a dispatch
1644 */
1645 return cfqq->dispatched < max_dispatch;
1646}
1647
1648/*
1649 * Dispatch a request from cfqq, moving them to the request queue
1650 * dispatch list.
1651 */
1652static bool cfq_dispatch_request(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1653{
1654 struct request *rq;
1655
1656 BUG_ON(RB_EMPTY_ROOT(&cfqq->sort_list));
1657
1658 if (!cfq_may_dispatch(cfqd, cfqq))
1659 return false;
1660
1661 /*
1662 * follow expired path, else get first next available
1663 */
1664 rq = cfq_check_fifo(cfqq);
1665 if (!rq)
1666 rq = cfqq->next_rq;
1667
1668 /*
1669 * insert request into driver dispatch list
1670 */
1671 cfq_dispatch_insert(cfqd->queue, rq);
1672
1673 if (!cfqd->active_cic) {
1674 struct cfq_io_context *cic = RQ_CIC(rq);
1675
1676 atomic_long_inc(&cic->ioc->refcount);
1677 cfqd->active_cic = cic;
1678 }
1679
1680 return true;
1681}
1682
1683/*
1684 * Find the cfqq that we need to service and move a request from that to the
1685 * dispatch list
1686 */
1687static int cfq_dispatch_requests(struct request_queue *q, int force)
1688{
1689 struct cfq_data *cfqd = q->elevator->elevator_data;
1690 struct cfq_queue *cfqq;
1691
1692 if (!cfqd->busy_queues)
1693 return 0;
1694
1695 if (unlikely(force))
1696 return cfq_forced_dispatch(cfqd);
1697
1698 cfqq = cfq_select_queue(cfqd);
1699 if (!cfqq)
8e296755
JA
1700 return 0;
1701
2f5cb738 1702 /*
0b182d61 1703 * Dispatch a request from this cfqq, if it is allowed
2f5cb738 1704 */
0b182d61
JA
1705 if (!cfq_dispatch_request(cfqd, cfqq))
1706 return 0;
1707
2f5cb738 1708 cfqq->slice_dispatch++;
b029195d 1709 cfq_clear_cfqq_must_dispatch(cfqq);
22e2c507 1710
2f5cb738
JA
1711 /*
1712 * expire an async queue immediately if it has used up its slice. idle
1713 * queue always expire after 1 dispatch round.
1714 */
1715 if (cfqd->busy_queues > 1 && ((!cfq_cfqq_sync(cfqq) &&
1716 cfqq->slice_dispatch >= cfq_prio_to_maxrq(cfqd, cfqq)) ||
1717 cfq_class_idle(cfqq))) {
1718 cfqq->slice_end = jiffies + 1;
1719 cfq_slice_expired(cfqd, 0);
1da177e4
LT
1720 }
1721
b217a903 1722 cfq_log_cfqq(cfqd, cfqq, "dispatched a request");
2f5cb738 1723 return 1;
1da177e4
LT
1724}
1725
1da177e4 1726/*
5e705374
JA
1727 * task holds one reference to the queue, dropped when task exits. each rq
1728 * in-flight on this queue also holds a reference, dropped when rq is freed.
1da177e4
LT
1729 *
1730 * queue lock must be held here.
1731 */
1732static void cfq_put_queue(struct cfq_queue *cfqq)
1733{
22e2c507
JA
1734 struct cfq_data *cfqd = cfqq->cfqd;
1735
1736 BUG_ON(atomic_read(&cfqq->ref) <= 0);
1da177e4
LT
1737
1738 if (!atomic_dec_and_test(&cfqq->ref))
1739 return;
1740
7b679138 1741 cfq_log_cfqq(cfqd, cfqq, "put_queue");
1da177e4 1742 BUG_ON(rb_first(&cfqq->sort_list));
22e2c507 1743 BUG_ON(cfqq->allocated[READ] + cfqq->allocated[WRITE]);
3b18152c 1744 BUG_ON(cfq_cfqq_on_rr(cfqq));
1da177e4 1745
28f95cbc 1746 if (unlikely(cfqd->active_queue == cfqq)) {
6084cdda 1747 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1748 cfq_schedule_dispatch(cfqd);
28f95cbc 1749 }
22e2c507 1750
1da177e4
LT
1751 kmem_cache_free(cfq_pool, cfqq);
1752}
1753
d6de8be7
JA
1754/*
1755 * Must always be called with the rcu_read_lock() held
1756 */
07416d29
JA
1757static void
1758__call_for_each_cic(struct io_context *ioc,
1759 void (*func)(struct io_context *, struct cfq_io_context *))
1760{
1761 struct cfq_io_context *cic;
1762 struct hlist_node *n;
1763
1764 hlist_for_each_entry_rcu(cic, n, &ioc->cic_list, cic_list)
1765 func(ioc, cic);
1766}
1767
4ac845a2 1768/*
34e6bbf2 1769 * Call func for each cic attached to this ioc.
4ac845a2 1770 */
34e6bbf2 1771static void
4ac845a2
JA
1772call_for_each_cic(struct io_context *ioc,
1773 void (*func)(struct io_context *, struct cfq_io_context *))
1da177e4 1774{
4ac845a2 1775 rcu_read_lock();
07416d29 1776 __call_for_each_cic(ioc, func);
4ac845a2 1777 rcu_read_unlock();
34e6bbf2
FC
1778}
1779
1780static void cfq_cic_free_rcu(struct rcu_head *head)
1781{
1782 struct cfq_io_context *cic;
1783
1784 cic = container_of(head, struct cfq_io_context, rcu_head);
1785
1786 kmem_cache_free(cfq_ioc_pool, cic);
245b2e70 1787 elv_ioc_count_dec(cfq_ioc_count);
34e6bbf2 1788
9a11b4ed
JA
1789 if (ioc_gone) {
1790 /*
1791 * CFQ scheduler is exiting, grab exit lock and check
1792 * the pending io context count. If it hits zero,
1793 * complete ioc_gone and set it back to NULL
1794 */
1795 spin_lock(&ioc_gone_lock);
245b2e70 1796 if (ioc_gone && !elv_ioc_count_read(cfq_ioc_count)) {
9a11b4ed
JA
1797 complete(ioc_gone);
1798 ioc_gone = NULL;
1799 }
1800 spin_unlock(&ioc_gone_lock);
1801 }
34e6bbf2 1802}
4ac845a2 1803
34e6bbf2
FC
1804static void cfq_cic_free(struct cfq_io_context *cic)
1805{
1806 call_rcu(&cic->rcu_head, cfq_cic_free_rcu);
4ac845a2
JA
1807}
1808
1809static void cic_free_func(struct io_context *ioc, struct cfq_io_context *cic)
1810{
1811 unsigned long flags;
1812
1813 BUG_ON(!cic->dead_key);
1814
1815 spin_lock_irqsave(&ioc->lock, flags);
1816 radix_tree_delete(&ioc->radix_root, cic->dead_key);
ffc4e759 1817 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
1818 spin_unlock_irqrestore(&ioc->lock, flags);
1819
34e6bbf2 1820 cfq_cic_free(cic);
4ac845a2
JA
1821}
1822
d6de8be7
JA
1823/*
1824 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1825 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1826 * and ->trim() which is called with the task lock held
1827 */
4ac845a2
JA
1828static void cfq_free_io_context(struct io_context *ioc)
1829{
4ac845a2 1830 /*
34e6bbf2
FC
1831 * ioc->refcount is zero here, or we are called from elv_unregister(),
1832 * so no more cic's are allowed to be linked into this ioc. So it
1833 * should be ok to iterate over the known list, we will see all cic's
1834 * since no new ones are added.
4ac845a2 1835 */
07416d29 1836 __call_for_each_cic(ioc, cic_free_func);
1da177e4
LT
1837}
1838
89850f7e 1839static void cfq_exit_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq)
1da177e4 1840{
df5fe3e8
JM
1841 struct cfq_queue *__cfqq, *next;
1842
28f95cbc 1843 if (unlikely(cfqq == cfqd->active_queue)) {
6084cdda 1844 __cfq_slice_expired(cfqd, cfqq, 0);
23e018a1 1845 cfq_schedule_dispatch(cfqd);
28f95cbc 1846 }
22e2c507 1847
df5fe3e8
JM
1848 /*
1849 * If this queue was scheduled to merge with another queue, be
1850 * sure to drop the reference taken on that queue (and others in
1851 * the merge chain). See cfq_setup_merge and cfq_merge_cfqqs.
1852 */
1853 __cfqq = cfqq->new_cfqq;
1854 while (__cfqq) {
1855 if (__cfqq == cfqq) {
1856 WARN(1, "cfqq->new_cfqq loop detected\n");
1857 break;
1858 }
1859 next = __cfqq->new_cfqq;
1860 cfq_put_queue(__cfqq);
1861 __cfqq = next;
1862 }
1863
89850f7e
JA
1864 cfq_put_queue(cfqq);
1865}
22e2c507 1866
89850f7e
JA
1867static void __cfq_exit_single_io_context(struct cfq_data *cfqd,
1868 struct cfq_io_context *cic)
1869{
4faa3c81
FC
1870 struct io_context *ioc = cic->ioc;
1871
fc46379d 1872 list_del_init(&cic->queue_list);
4ac845a2
JA
1873
1874 /*
1875 * Make sure key == NULL is seen for dead queues
1876 */
fc46379d 1877 smp_wmb();
4ac845a2 1878 cic->dead_key = (unsigned long) cic->key;
fc46379d
JA
1879 cic->key = NULL;
1880
4faa3c81
FC
1881 if (ioc->ioc_data == cic)
1882 rcu_assign_pointer(ioc->ioc_data, NULL);
1883
ff6657c6
JA
1884 if (cic->cfqq[BLK_RW_ASYNC]) {
1885 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_ASYNC]);
1886 cic->cfqq[BLK_RW_ASYNC] = NULL;
12a05732
AV
1887 }
1888
ff6657c6
JA
1889 if (cic->cfqq[BLK_RW_SYNC]) {
1890 cfq_exit_cfqq(cfqd, cic->cfqq[BLK_RW_SYNC]);
1891 cic->cfqq[BLK_RW_SYNC] = NULL;
12a05732 1892 }
89850f7e
JA
1893}
1894
4ac845a2
JA
1895static void cfq_exit_single_io_context(struct io_context *ioc,
1896 struct cfq_io_context *cic)
89850f7e
JA
1897{
1898 struct cfq_data *cfqd = cic->key;
1899
89850f7e 1900 if (cfqd) {
165125e1 1901 struct request_queue *q = cfqd->queue;
4ac845a2 1902 unsigned long flags;
89850f7e 1903
4ac845a2 1904 spin_lock_irqsave(q->queue_lock, flags);
62c1fe9d
JA
1905
1906 /*
1907 * Ensure we get a fresh copy of the ->key to prevent
1908 * race between exiting task and queue
1909 */
1910 smp_read_barrier_depends();
1911 if (cic->key)
1912 __cfq_exit_single_io_context(cfqd, cic);
1913
4ac845a2 1914 spin_unlock_irqrestore(q->queue_lock, flags);
89850f7e 1915 }
1da177e4
LT
1916}
1917
498d3aa2
JA
1918/*
1919 * The process that ioc belongs to has exited, we need to clean up
1920 * and put the internal structures we have that belongs to that process.
1921 */
e2d74ac0 1922static void cfq_exit_io_context(struct io_context *ioc)
1da177e4 1923{
4ac845a2 1924 call_for_each_cic(ioc, cfq_exit_single_io_context);
1da177e4
LT
1925}
1926
22e2c507 1927static struct cfq_io_context *
8267e268 1928cfq_alloc_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 1929{
b5deef90 1930 struct cfq_io_context *cic;
1da177e4 1931
94f6030c
CL
1932 cic = kmem_cache_alloc_node(cfq_ioc_pool, gfp_mask | __GFP_ZERO,
1933 cfqd->queue->node);
1da177e4 1934 if (cic) {
22e2c507 1935 cic->last_end_request = jiffies;
553698f9 1936 INIT_LIST_HEAD(&cic->queue_list);
ffc4e759 1937 INIT_HLIST_NODE(&cic->cic_list);
22e2c507
JA
1938 cic->dtor = cfq_free_io_context;
1939 cic->exit = cfq_exit_io_context;
245b2e70 1940 elv_ioc_count_inc(cfq_ioc_count);
1da177e4
LT
1941 }
1942
1943 return cic;
1944}
1945
fd0928df 1946static void cfq_init_prio_data(struct cfq_queue *cfqq, struct io_context *ioc)
22e2c507
JA
1947{
1948 struct task_struct *tsk = current;
1949 int ioprio_class;
1950
3b18152c 1951 if (!cfq_cfqq_prio_changed(cfqq))
22e2c507
JA
1952 return;
1953
fd0928df 1954 ioprio_class = IOPRIO_PRIO_CLASS(ioc->ioprio);
22e2c507 1955 switch (ioprio_class) {
fe094d98
JA
1956 default:
1957 printk(KERN_ERR "cfq: bad prio %x\n", ioprio_class);
1958 case IOPRIO_CLASS_NONE:
1959 /*
6d63c275 1960 * no prio set, inherit CPU scheduling settings
fe094d98
JA
1961 */
1962 cfqq->ioprio = task_nice_ioprio(tsk);
6d63c275 1963 cfqq->ioprio_class = task_nice_ioclass(tsk);
fe094d98
JA
1964 break;
1965 case IOPRIO_CLASS_RT:
1966 cfqq->ioprio = task_ioprio(ioc);
1967 cfqq->ioprio_class = IOPRIO_CLASS_RT;
1968 break;
1969 case IOPRIO_CLASS_BE:
1970 cfqq->ioprio = task_ioprio(ioc);
1971 cfqq->ioprio_class = IOPRIO_CLASS_BE;
1972 break;
1973 case IOPRIO_CLASS_IDLE:
1974 cfqq->ioprio_class = IOPRIO_CLASS_IDLE;
1975 cfqq->ioprio = 7;
1976 cfq_clear_cfqq_idle_window(cfqq);
1977 break;
22e2c507
JA
1978 }
1979
1980 /*
1981 * keep track of original prio settings in case we have to temporarily
1982 * elevate the priority of this queue
1983 */
1984 cfqq->org_ioprio = cfqq->ioprio;
1985 cfqq->org_ioprio_class = cfqq->ioprio_class;
3b18152c 1986 cfq_clear_cfqq_prio_changed(cfqq);
22e2c507
JA
1987}
1988
febffd61 1989static void changed_ioprio(struct io_context *ioc, struct cfq_io_context *cic)
22e2c507 1990{
478a82b0
AV
1991 struct cfq_data *cfqd = cic->key;
1992 struct cfq_queue *cfqq;
c1b707d2 1993 unsigned long flags;
35e6077c 1994
caaa5f9f
JA
1995 if (unlikely(!cfqd))
1996 return;
1997
c1b707d2 1998 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
caaa5f9f 1999
ff6657c6 2000 cfqq = cic->cfqq[BLK_RW_ASYNC];
caaa5f9f
JA
2001 if (cfqq) {
2002 struct cfq_queue *new_cfqq;
ff6657c6
JA
2003 new_cfqq = cfq_get_queue(cfqd, BLK_RW_ASYNC, cic->ioc,
2004 GFP_ATOMIC);
caaa5f9f 2005 if (new_cfqq) {
ff6657c6 2006 cic->cfqq[BLK_RW_ASYNC] = new_cfqq;
caaa5f9f
JA
2007 cfq_put_queue(cfqq);
2008 }
22e2c507 2009 }
caaa5f9f 2010
ff6657c6 2011 cfqq = cic->cfqq[BLK_RW_SYNC];
caaa5f9f
JA
2012 if (cfqq)
2013 cfq_mark_cfqq_prio_changed(cfqq);
2014
c1b707d2 2015 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
22e2c507
JA
2016}
2017
fc46379d 2018static void cfq_ioc_set_ioprio(struct io_context *ioc)
22e2c507 2019{
4ac845a2 2020 call_for_each_cic(ioc, changed_ioprio);
fc46379d 2021 ioc->ioprio_changed = 0;
22e2c507
JA
2022}
2023
d5036d77 2024static void cfq_init_cfqq(struct cfq_data *cfqd, struct cfq_queue *cfqq,
a6151c3a 2025 pid_t pid, bool is_sync)
d5036d77
JA
2026{
2027 RB_CLEAR_NODE(&cfqq->rb_node);
2028 RB_CLEAR_NODE(&cfqq->p_node);
2029 INIT_LIST_HEAD(&cfqq->fifo);
2030
2031 atomic_set(&cfqq->ref, 0);
2032 cfqq->cfqd = cfqd;
2033
2034 cfq_mark_cfqq_prio_changed(cfqq);
2035
2036 if (is_sync) {
2037 if (!cfq_class_idle(cfqq))
2038 cfq_mark_cfqq_idle_window(cfqq);
2039 cfq_mark_cfqq_sync(cfqq);
2040 }
2041 cfqq->pid = pid;
2042}
2043
22e2c507 2044static struct cfq_queue *
a6151c3a 2045cfq_find_alloc_queue(struct cfq_data *cfqd, bool is_sync,
fd0928df 2046 struct io_context *ioc, gfp_t gfp_mask)
22e2c507 2047{
22e2c507 2048 struct cfq_queue *cfqq, *new_cfqq = NULL;
91fac317 2049 struct cfq_io_context *cic;
22e2c507
JA
2050
2051retry:
4ac845a2 2052 cic = cfq_cic_lookup(cfqd, ioc);
91fac317
VT
2053 /* cic always exists here */
2054 cfqq = cic_to_cfqq(cic, is_sync);
22e2c507 2055
6118b70b
JA
2056 /*
2057 * Always try a new alloc if we fell back to the OOM cfqq
2058 * originally, since it should just be a temporary situation.
2059 */
2060 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
2061 cfqq = NULL;
22e2c507
JA
2062 if (new_cfqq) {
2063 cfqq = new_cfqq;
2064 new_cfqq = NULL;
2065 } else if (gfp_mask & __GFP_WAIT) {
2066 spin_unlock_irq(cfqd->queue->queue_lock);
94f6030c 2067 new_cfqq = kmem_cache_alloc_node(cfq_pool,
6118b70b 2068 gfp_mask | __GFP_ZERO,
94f6030c 2069 cfqd->queue->node);
22e2c507 2070 spin_lock_irq(cfqd->queue->queue_lock);
6118b70b
JA
2071 if (new_cfqq)
2072 goto retry;
22e2c507 2073 } else {
94f6030c
CL
2074 cfqq = kmem_cache_alloc_node(cfq_pool,
2075 gfp_mask | __GFP_ZERO,
2076 cfqd->queue->node);
22e2c507
JA
2077 }
2078
6118b70b
JA
2079 if (cfqq) {
2080 cfq_init_cfqq(cfqd, cfqq, current->pid, is_sync);
2081 cfq_init_prio_data(cfqq, ioc);
2082 cfq_log_cfqq(cfqd, cfqq, "alloced");
2083 } else
2084 cfqq = &cfqd->oom_cfqq;
22e2c507
JA
2085 }
2086
2087 if (new_cfqq)
2088 kmem_cache_free(cfq_pool, new_cfqq);
2089
22e2c507
JA
2090 return cfqq;
2091}
2092
c2dea2d1
VT
2093static struct cfq_queue **
2094cfq_async_queue_prio(struct cfq_data *cfqd, int ioprio_class, int ioprio)
2095{
fe094d98 2096 switch (ioprio_class) {
c2dea2d1
VT
2097 case IOPRIO_CLASS_RT:
2098 return &cfqd->async_cfqq[0][ioprio];
2099 case IOPRIO_CLASS_BE:
2100 return &cfqd->async_cfqq[1][ioprio];
2101 case IOPRIO_CLASS_IDLE:
2102 return &cfqd->async_idle_cfqq;
2103 default:
2104 BUG();
2105 }
2106}
2107
15c31be4 2108static struct cfq_queue *
a6151c3a 2109cfq_get_queue(struct cfq_data *cfqd, bool is_sync, struct io_context *ioc,
15c31be4
JA
2110 gfp_t gfp_mask)
2111{
fd0928df
JA
2112 const int ioprio = task_ioprio(ioc);
2113 const int ioprio_class = task_ioprio_class(ioc);
c2dea2d1 2114 struct cfq_queue **async_cfqq = NULL;
15c31be4
JA
2115 struct cfq_queue *cfqq = NULL;
2116
c2dea2d1
VT
2117 if (!is_sync) {
2118 async_cfqq = cfq_async_queue_prio(cfqd, ioprio_class, ioprio);
2119 cfqq = *async_cfqq;
2120 }
2121
6118b70b 2122 if (!cfqq)
fd0928df 2123 cfqq = cfq_find_alloc_queue(cfqd, is_sync, ioc, gfp_mask);
15c31be4
JA
2124
2125 /*
2126 * pin the queue now that it's allocated, scheduler exit will prune it
2127 */
c2dea2d1 2128 if (!is_sync && !(*async_cfqq)) {
15c31be4 2129 atomic_inc(&cfqq->ref);
c2dea2d1 2130 *async_cfqq = cfqq;
15c31be4
JA
2131 }
2132
2133 atomic_inc(&cfqq->ref);
2134 return cfqq;
2135}
2136
498d3aa2
JA
2137/*
2138 * We drop cfq io contexts lazily, so we may find a dead one.
2139 */
dbecf3ab 2140static void
4ac845a2
JA
2141cfq_drop_dead_cic(struct cfq_data *cfqd, struct io_context *ioc,
2142 struct cfq_io_context *cic)
dbecf3ab 2143{
4ac845a2
JA
2144 unsigned long flags;
2145
fc46379d 2146 WARN_ON(!list_empty(&cic->queue_list));
597bc485 2147
4ac845a2
JA
2148 spin_lock_irqsave(&ioc->lock, flags);
2149
4faa3c81 2150 BUG_ON(ioc->ioc_data == cic);
597bc485 2151
4ac845a2 2152 radix_tree_delete(&ioc->radix_root, (unsigned long) cfqd);
ffc4e759 2153 hlist_del_rcu(&cic->cic_list);
4ac845a2
JA
2154 spin_unlock_irqrestore(&ioc->lock, flags);
2155
2156 cfq_cic_free(cic);
dbecf3ab
OH
2157}
2158
e2d74ac0 2159static struct cfq_io_context *
4ac845a2 2160cfq_cic_lookup(struct cfq_data *cfqd, struct io_context *ioc)
e2d74ac0 2161{
e2d74ac0 2162 struct cfq_io_context *cic;
d6de8be7 2163 unsigned long flags;
4ac845a2 2164 void *k;
e2d74ac0 2165
91fac317
VT
2166 if (unlikely(!ioc))
2167 return NULL;
2168
d6de8be7
JA
2169 rcu_read_lock();
2170
597bc485
JA
2171 /*
2172 * we maintain a last-hit cache, to avoid browsing over the tree
2173 */
4ac845a2 2174 cic = rcu_dereference(ioc->ioc_data);
d6de8be7
JA
2175 if (cic && cic->key == cfqd) {
2176 rcu_read_unlock();
597bc485 2177 return cic;
d6de8be7 2178 }
597bc485 2179
4ac845a2 2180 do {
4ac845a2
JA
2181 cic = radix_tree_lookup(&ioc->radix_root, (unsigned long) cfqd);
2182 rcu_read_unlock();
2183 if (!cic)
2184 break;
be3b0753
OH
2185 /* ->key must be copied to avoid race with cfq_exit_queue() */
2186 k = cic->key;
2187 if (unlikely(!k)) {
4ac845a2 2188 cfq_drop_dead_cic(cfqd, ioc, cic);
d6de8be7 2189 rcu_read_lock();
4ac845a2 2190 continue;
dbecf3ab 2191 }
e2d74ac0 2192
d6de8be7 2193 spin_lock_irqsave(&ioc->lock, flags);
4ac845a2 2194 rcu_assign_pointer(ioc->ioc_data, cic);
d6de8be7 2195 spin_unlock_irqrestore(&ioc->lock, flags);
4ac845a2
JA
2196 break;
2197 } while (1);
e2d74ac0 2198
4ac845a2 2199 return cic;
e2d74ac0
JA
2200}
2201
4ac845a2
JA
2202/*
2203 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
2204 * the process specific cfq io context when entered from the block layer.
2205 * Also adds the cic to a per-cfqd list, used when this queue is removed.
2206 */
febffd61
JA
2207static int cfq_cic_link(struct cfq_data *cfqd, struct io_context *ioc,
2208 struct cfq_io_context *cic, gfp_t gfp_mask)
e2d74ac0 2209{
0261d688 2210 unsigned long flags;
4ac845a2 2211 int ret;
e2d74ac0 2212
4ac845a2
JA
2213 ret = radix_tree_preload(gfp_mask);
2214 if (!ret) {
2215 cic->ioc = ioc;
2216 cic->key = cfqd;
e2d74ac0 2217
4ac845a2
JA
2218 spin_lock_irqsave(&ioc->lock, flags);
2219 ret = radix_tree_insert(&ioc->radix_root,
2220 (unsigned long) cfqd, cic);
ffc4e759
JA
2221 if (!ret)
2222 hlist_add_head_rcu(&cic->cic_list, &ioc->cic_list);
4ac845a2 2223 spin_unlock_irqrestore(&ioc->lock, flags);
e2d74ac0 2224
4ac845a2
JA
2225 radix_tree_preload_end();
2226
2227 if (!ret) {
2228 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2229 list_add(&cic->queue_list, &cfqd->cic_list);
2230 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2231 }
e2d74ac0
JA
2232 }
2233
4ac845a2
JA
2234 if (ret)
2235 printk(KERN_ERR "cfq: cic link failed!\n");
fc46379d 2236
4ac845a2 2237 return ret;
e2d74ac0
JA
2238}
2239
1da177e4
LT
2240/*
2241 * Setup general io context and cfq io context. There can be several cfq
2242 * io contexts per general io context, if this process is doing io to more
e2d74ac0 2243 * than one device managed by cfq.
1da177e4
LT
2244 */
2245static struct cfq_io_context *
e2d74ac0 2246cfq_get_io_context(struct cfq_data *cfqd, gfp_t gfp_mask)
1da177e4 2247{
22e2c507 2248 struct io_context *ioc = NULL;
1da177e4 2249 struct cfq_io_context *cic;
1da177e4 2250
22e2c507 2251 might_sleep_if(gfp_mask & __GFP_WAIT);
1da177e4 2252
b5deef90 2253 ioc = get_io_context(gfp_mask, cfqd->queue->node);
1da177e4
LT
2254 if (!ioc)
2255 return NULL;
2256
4ac845a2 2257 cic = cfq_cic_lookup(cfqd, ioc);
e2d74ac0
JA
2258 if (cic)
2259 goto out;
1da177e4 2260
e2d74ac0
JA
2261 cic = cfq_alloc_io_context(cfqd, gfp_mask);
2262 if (cic == NULL)
2263 goto err;
1da177e4 2264
4ac845a2
JA
2265 if (cfq_cic_link(cfqd, ioc, cic, gfp_mask))
2266 goto err_free;
2267
1da177e4 2268out:
fc46379d
JA
2269 smp_read_barrier_depends();
2270 if (unlikely(ioc->ioprio_changed))
2271 cfq_ioc_set_ioprio(ioc);
2272
1da177e4 2273 return cic;
4ac845a2
JA
2274err_free:
2275 cfq_cic_free(cic);
1da177e4
LT
2276err:
2277 put_io_context(ioc);
2278 return NULL;
2279}
2280
22e2c507
JA
2281static void
2282cfq_update_io_thinktime(struct cfq_data *cfqd, struct cfq_io_context *cic)
1da177e4 2283{
aaf1228d
JA
2284 unsigned long elapsed = jiffies - cic->last_end_request;
2285 unsigned long ttime = min(elapsed, 2UL * cfqd->cfq_slice_idle);
db3b5848 2286
22e2c507
JA
2287 cic->ttime_samples = (7*cic->ttime_samples + 256) / 8;
2288 cic->ttime_total = (7*cic->ttime_total + 256*ttime) / 8;
2289 cic->ttime_mean = (cic->ttime_total + 128) / cic->ttime_samples;
2290}
1da177e4 2291
206dc69b 2292static void
b2c18e1e 2293cfq_update_io_seektime(struct cfq_data *cfqd, struct cfq_queue *cfqq,
6d048f53 2294 struct request *rq)
206dc69b
JA
2295{
2296 sector_t sdist;
2297 u64 total;
2298
b2c18e1e 2299 if (!cfqq->last_request_pos)
4d00aa47 2300 sdist = 0;
b2c18e1e
JM
2301 else if (cfqq->last_request_pos < blk_rq_pos(rq))
2302 sdist = blk_rq_pos(rq) - cfqq->last_request_pos;
206dc69b 2303 else
b2c18e1e 2304 sdist = cfqq->last_request_pos - blk_rq_pos(rq);
206dc69b
JA
2305
2306 /*
2307 * Don't allow the seek distance to get too large from the
2308 * odd fragment, pagein, etc
2309 */
b2c18e1e
JM
2310 if (cfqq->seek_samples <= 60) /* second&third seek */
2311 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*1024);
206dc69b 2312 else
b2c18e1e 2313 sdist = min(sdist, (cfqq->seek_mean * 4) + 2*1024*64);
206dc69b 2314
b2c18e1e
JM
2315 cfqq->seek_samples = (7*cfqq->seek_samples + 256) / 8;
2316 cfqq->seek_total = (7*cfqq->seek_total + (u64)256*sdist) / 8;
2317 total = cfqq->seek_total + (cfqq->seek_samples/2);
2318 do_div(total, cfqq->seek_samples);
2319 cfqq->seek_mean = (sector_t)total;
e6c5bc73
JM
2320
2321 /*
2322 * If this cfqq is shared between multiple processes, check to
2323 * make sure that those processes are still issuing I/Os within
2324 * the mean seek distance. If not, it may be time to break the
2325 * queues apart again.
2326 */
2327 if (cfq_cfqq_coop(cfqq)) {
2328 if (CFQQ_SEEKY(cfqq) && !cfqq->seeky_start)
2329 cfqq->seeky_start = jiffies;
2330 else if (!CFQQ_SEEKY(cfqq))
2331 cfqq->seeky_start = 0;
2332 }
206dc69b 2333}
1da177e4 2334
22e2c507
JA
2335/*
2336 * Disable idle window if the process thinks too long or seeks so much that
2337 * it doesn't matter
2338 */
2339static void
2340cfq_update_idle_window(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2341 struct cfq_io_context *cic)
2342{
7b679138 2343 int old_idle, enable_idle;
1be92f2f 2344
0871714e
JA
2345 /*
2346 * Don't idle for async or idle io prio class
2347 */
2348 if (!cfq_cfqq_sync(cfqq) || cfq_class_idle(cfqq))
1be92f2f
JA
2349 return;
2350
c265a7f4 2351 enable_idle = old_idle = cfq_cfqq_idle_window(cfqq);
1da177e4 2352
66dac98e 2353 if (!atomic_read(&cic->ioc->nr_tasks) || !cfqd->cfq_slice_idle ||
718eee05 2354 (sample_valid(cfqq->seek_samples) && CFQQ_SEEKY(cfqq)))
22e2c507
JA
2355 enable_idle = 0;
2356 else if (sample_valid(cic->ttime_samples)) {
718eee05 2357 if (cic->ttime_mean > cfqd->cfq_slice_idle)
22e2c507
JA
2358 enable_idle = 0;
2359 else
2360 enable_idle = 1;
1da177e4
LT
2361 }
2362
7b679138
JA
2363 if (old_idle != enable_idle) {
2364 cfq_log_cfqq(cfqd, cfqq, "idle=%d", enable_idle);
2365 if (enable_idle)
2366 cfq_mark_cfqq_idle_window(cfqq);
2367 else
2368 cfq_clear_cfqq_idle_window(cfqq);
2369 }
22e2c507 2370}
1da177e4 2371
22e2c507
JA
2372/*
2373 * Check if new_cfqq should preempt the currently active queue. Return 0 for
2374 * no or if we aren't sure, a 1 will cause a preempt.
2375 */
a6151c3a 2376static bool
22e2c507 2377cfq_should_preempt(struct cfq_data *cfqd, struct cfq_queue *new_cfqq,
5e705374 2378 struct request *rq)
22e2c507 2379{
6d048f53 2380 struct cfq_queue *cfqq;
22e2c507 2381
6d048f53
JA
2382 cfqq = cfqd->active_queue;
2383 if (!cfqq)
a6151c3a 2384 return false;
22e2c507 2385
6d048f53 2386 if (cfq_slice_used(cfqq))
a6151c3a 2387 return true;
6d048f53
JA
2388
2389 if (cfq_class_idle(new_cfqq))
a6151c3a 2390 return false;
22e2c507
JA
2391
2392 if (cfq_class_idle(cfqq))
a6151c3a 2393 return true;
1e3335de 2394
e4a22919
CZ
2395 if (cfqd->serving_type == SYNC_NOIDLE_WORKLOAD &&
2396 cfqq_type(new_cfqq) == SYNC_NOIDLE_WORKLOAD &&
2397 new_cfqq->service_tree->count == 1)
718eee05
CZ
2398 return true;
2399
374f84ac
JA
2400 /*
2401 * if the new request is sync, but the currently running queue is
2402 * not, let the sync request have priority.
2403 */
5e705374 2404 if (rq_is_sync(rq) && !cfq_cfqq_sync(cfqq))
a6151c3a 2405 return true;
1e3335de 2406
374f84ac
JA
2407 /*
2408 * So both queues are sync. Let the new request get disk time if
2409 * it's a metadata request and the current queue is doing regular IO.
2410 */
2411 if (rq_is_meta(rq) && !cfqq->meta_pending)
e6ec4fe2 2412 return true;
22e2c507 2413
3a9a3f6c
DS
2414 /*
2415 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2416 */
2417 if (cfq_class_rt(new_cfqq) && !cfq_class_rt(cfqq))
a6151c3a 2418 return true;
3a9a3f6c 2419
1e3335de 2420 if (!cfqd->active_cic || !cfq_cfqq_wait_request(cfqq))
a6151c3a 2421 return false;
1e3335de
JA
2422
2423 /*
2424 * if this request is as-good as one we would expect from the
2425 * current cfqq, let it preempt
2426 */
e00ef799 2427 if (cfq_rq_close(cfqd, cfqq, rq))
a6151c3a 2428 return true;
1e3335de 2429
a6151c3a 2430 return false;
22e2c507
JA
2431}
2432
2433/*
2434 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2435 * let it have half of its nominal slice.
2436 */
2437static void cfq_preempt_queue(struct cfq_data *cfqd, struct cfq_queue *cfqq)
2438{
7b679138 2439 cfq_log_cfqq(cfqd, cfqq, "preempt");
6084cdda 2440 cfq_slice_expired(cfqd, 1);
22e2c507 2441
bf572256
JA
2442 /*
2443 * Put the new queue at the front of the of the current list,
2444 * so we know that it will be selected next.
2445 */
2446 BUG_ON(!cfq_cfqq_on_rr(cfqq));
edd75ffd
JA
2447
2448 cfq_service_tree_add(cfqd, cfqq, 1);
bf572256 2449
44f7c160
JA
2450 cfqq->slice_end = 0;
2451 cfq_mark_cfqq_slice_new(cfqq);
22e2c507
JA
2452}
2453
22e2c507 2454/*
5e705374 2455 * Called when a new fs request (rq) is added (to cfqq). Check if there's
22e2c507
JA
2456 * something we should do about it
2457 */
2458static void
5e705374
JA
2459cfq_rq_enqueued(struct cfq_data *cfqd, struct cfq_queue *cfqq,
2460 struct request *rq)
22e2c507 2461{
5e705374 2462 struct cfq_io_context *cic = RQ_CIC(rq);
12e9fddd 2463
45333d5a 2464 cfqd->rq_queued++;
374f84ac
JA
2465 if (rq_is_meta(rq))
2466 cfqq->meta_pending++;
2467
9c2c38a1 2468 cfq_update_io_thinktime(cfqd, cic);
b2c18e1e 2469 cfq_update_io_seektime(cfqd, cfqq, rq);
9c2c38a1
JA
2470 cfq_update_idle_window(cfqd, cfqq, cic);
2471
b2c18e1e 2472 cfqq->last_request_pos = blk_rq_pos(rq) + blk_rq_sectors(rq);
22e2c507
JA
2473
2474 if (cfqq == cfqd->active_queue) {
2475 /*
b029195d
JA
2476 * Remember that we saw a request from this process, but
2477 * don't start queuing just yet. Otherwise we risk seeing lots
2478 * of tiny requests, because we disrupt the normal plugging
d6ceb25e
JA
2479 * and merging. If the request is already larger than a single
2480 * page, let it rip immediately. For that case we assume that
2d870722
JA
2481 * merging is already done. Ditto for a busy system that
2482 * has other work pending, don't risk delaying until the
2483 * idle timer unplug to continue working.
22e2c507 2484 */
d6ceb25e 2485 if (cfq_cfqq_wait_request(cfqq)) {
2d870722
JA
2486 if (blk_rq_bytes(rq) > PAGE_CACHE_SIZE ||
2487 cfqd->busy_queues > 1) {
d6ceb25e 2488 del_timer(&cfqd->idle_slice_timer);
a7f55792 2489 __blk_run_queue(cfqd->queue);
d6ceb25e 2490 }
b029195d 2491 cfq_mark_cfqq_must_dispatch(cfqq);
d6ceb25e 2492 }
5e705374 2493 } else if (cfq_should_preempt(cfqd, cfqq, rq)) {
22e2c507
JA
2494 /*
2495 * not the active queue - expire current slice if it is
2496 * idle and has expired it's mean thinktime or this new queue
3a9a3f6c
DS
2497 * has some old slice time left and is of higher priority or
2498 * this new queue is RT and the current one is BE
22e2c507
JA
2499 */
2500 cfq_preempt_queue(cfqd, cfqq);
a7f55792 2501 __blk_run_queue(cfqd->queue);
22e2c507 2502 }
1da177e4
LT
2503}
2504
165125e1 2505static void cfq_insert_request(struct request_queue *q, struct request *rq)
1da177e4 2506{
b4878f24 2507 struct cfq_data *cfqd = q->elevator->elevator_data;
5e705374 2508 struct cfq_queue *cfqq = RQ_CFQQ(rq);
22e2c507 2509
7b679138 2510 cfq_log_cfqq(cfqd, cfqq, "insert_request");
fd0928df 2511 cfq_init_prio_data(cfqq, RQ_CIC(rq)->ioc);
1da177e4 2512
30996f40 2513 rq_set_fifo_time(rq, jiffies + cfqd->cfq_fifo_expire[rq_is_sync(rq)]);
22e2c507 2514 list_add_tail(&rq->queuelist, &cfqq->fifo);
aa6f6a3d 2515 cfq_add_rq_rb(rq);
22e2c507 2516
5e705374 2517 cfq_rq_enqueued(cfqd, cfqq, rq);
1da177e4
LT
2518}
2519
45333d5a
AC
2520/*
2521 * Update hw_tag based on peak queue depth over 50 samples under
2522 * sufficient load.
2523 */
2524static void cfq_update_hw_tag(struct cfq_data *cfqd)
2525{
1a1238a7
SL
2526 struct cfq_queue *cfqq = cfqd->active_queue;
2527
e459dd08
CZ
2528 if (rq_in_driver(cfqd) > cfqd->hw_tag_est_depth)
2529 cfqd->hw_tag_est_depth = rq_in_driver(cfqd);
2530
2531 if (cfqd->hw_tag == 1)
2532 return;
45333d5a
AC
2533
2534 if (cfqd->rq_queued <= CFQ_HW_QUEUE_MIN &&
5ad531db 2535 rq_in_driver(cfqd) <= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2536 return;
2537
1a1238a7
SL
2538 /*
2539 * If active queue hasn't enough requests and can idle, cfq might not
2540 * dispatch sufficient requests to hardware. Don't zero hw_tag in this
2541 * case
2542 */
2543 if (cfqq && cfq_cfqq_idle_window(cfqq) &&
2544 cfqq->dispatched + cfqq->queued[0] + cfqq->queued[1] <
2545 CFQ_HW_QUEUE_MIN && rq_in_driver(cfqd) < CFQ_HW_QUEUE_MIN)
2546 return;
2547
45333d5a
AC
2548 if (cfqd->hw_tag_samples++ < 50)
2549 return;
2550
e459dd08 2551 if (cfqd->hw_tag_est_depth >= CFQ_HW_QUEUE_MIN)
45333d5a
AC
2552 cfqd->hw_tag = 1;
2553 else
2554 cfqd->hw_tag = 0;
45333d5a
AC
2555}
2556
165125e1 2557static void cfq_completed_request(struct request_queue *q, struct request *rq)
1da177e4 2558{
5e705374 2559 struct cfq_queue *cfqq = RQ_CFQQ(rq);
b4878f24 2560 struct cfq_data *cfqd = cfqq->cfqd;
5380a101 2561 const int sync = rq_is_sync(rq);
b4878f24 2562 unsigned long now;
1da177e4 2563
b4878f24 2564 now = jiffies;
7b679138 2565 cfq_log_cfqq(cfqd, cfqq, "complete");
1da177e4 2566
45333d5a
AC
2567 cfq_update_hw_tag(cfqd);
2568
5ad531db 2569 WARN_ON(!cfqd->rq_in_driver[sync]);
6d048f53 2570 WARN_ON(!cfqq->dispatched);
5ad531db 2571 cfqd->rq_in_driver[sync]--;
6d048f53 2572 cfqq->dispatched--;
1da177e4 2573
3ed9a296
JA
2574 if (cfq_cfqq_sync(cfqq))
2575 cfqd->sync_flight--;
2576
365722bb 2577 if (sync) {
5e705374 2578 RQ_CIC(rq)->last_end_request = now;
365722bb
VG
2579 cfqd->last_end_sync_rq = now;
2580 }
caaa5f9f
JA
2581
2582 /*
2583 * If this is the active queue, check if it needs to be expired,
2584 * or if we want to idle in case it has no pending requests.
2585 */
2586 if (cfqd->active_queue == cfqq) {
a36e71f9
JA
2587 const bool cfqq_empty = RB_EMPTY_ROOT(&cfqq->sort_list);
2588
44f7c160
JA
2589 if (cfq_cfqq_slice_new(cfqq)) {
2590 cfq_set_prio_slice(cfqd, cfqq);
2591 cfq_clear_cfqq_slice_new(cfqq);
2592 }
a36e71f9
JA
2593 /*
2594 * If there are no requests waiting in this queue, and
2595 * there are other queues ready to issue requests, AND
2596 * those other queues are issuing requests within our
2597 * mean seek distance, give them a chance to run instead
2598 * of idling.
2599 */
0871714e 2600 if (cfq_slice_used(cfqq) || cfq_class_idle(cfqq))
6084cdda 2601 cfq_slice_expired(cfqd, 1);
b3b6d040 2602 else if (cfqq_empty && !cfq_close_cooperator(cfqd, cfqq) &&
a36e71f9 2603 sync && !rq_noidle(rq))
6d048f53 2604 cfq_arm_slice_timer(cfqd);
caaa5f9f 2605 }
6d048f53 2606
5ad531db 2607 if (!rq_in_driver(cfqd))
23e018a1 2608 cfq_schedule_dispatch(cfqd);
1da177e4
LT
2609}
2610
22e2c507
JA
2611/*
2612 * we temporarily boost lower priority queues if they are holding fs exclusive
2613 * resources. they are boosted to normal prio (CLASS_BE/4)
2614 */
2615static void cfq_prio_boost(struct cfq_queue *cfqq)
1da177e4 2616{
22e2c507
JA
2617 if (has_fs_excl()) {
2618 /*
2619 * boost idle prio on transactions that would lock out other
2620 * users of the filesystem
2621 */
2622 if (cfq_class_idle(cfqq))
2623 cfqq->ioprio_class = IOPRIO_CLASS_BE;
2624 if (cfqq->ioprio > IOPRIO_NORM)
2625 cfqq->ioprio = IOPRIO_NORM;
2626 } else {
2627 /*
dddb7451 2628 * unboost the queue (if needed)
22e2c507 2629 */
dddb7451
CZ
2630 cfqq->ioprio_class = cfqq->org_ioprio_class;
2631 cfqq->ioprio = cfqq->org_ioprio;
22e2c507 2632 }
22e2c507 2633}
1da177e4 2634
89850f7e 2635static inline int __cfq_may_queue(struct cfq_queue *cfqq)
22e2c507 2636{
1b379d8d 2637 if (cfq_cfqq_wait_request(cfqq) && !cfq_cfqq_must_alloc_slice(cfqq)) {
3b18152c 2638 cfq_mark_cfqq_must_alloc_slice(cfqq);
22e2c507 2639 return ELV_MQUEUE_MUST;
3b18152c 2640 }
1da177e4 2641
22e2c507 2642 return ELV_MQUEUE_MAY;
22e2c507
JA
2643}
2644
165125e1 2645static int cfq_may_queue(struct request_queue *q, int rw)
22e2c507
JA
2646{
2647 struct cfq_data *cfqd = q->elevator->elevator_data;
2648 struct task_struct *tsk = current;
91fac317 2649 struct cfq_io_context *cic;
22e2c507
JA
2650 struct cfq_queue *cfqq;
2651
2652 /*
2653 * don't force setup of a queue from here, as a call to may_queue
2654 * does not necessarily imply that a request actually will be queued.
2655 * so just lookup a possibly existing queue, or return 'may queue'
2656 * if that fails
2657 */
4ac845a2 2658 cic = cfq_cic_lookup(cfqd, tsk->io_context);
91fac317
VT
2659 if (!cic)
2660 return ELV_MQUEUE_MAY;
2661
b0b78f81 2662 cfqq = cic_to_cfqq(cic, rw_is_sync(rw));
22e2c507 2663 if (cfqq) {
fd0928df 2664 cfq_init_prio_data(cfqq, cic->ioc);
22e2c507
JA
2665 cfq_prio_boost(cfqq);
2666
89850f7e 2667 return __cfq_may_queue(cfqq);
22e2c507
JA
2668 }
2669
2670 return ELV_MQUEUE_MAY;
1da177e4
LT
2671}
2672
1da177e4
LT
2673/*
2674 * queue lock held here
2675 */
bb37b94c 2676static void cfq_put_request(struct request *rq)
1da177e4 2677{
5e705374 2678 struct cfq_queue *cfqq = RQ_CFQQ(rq);
1da177e4 2679
5e705374 2680 if (cfqq) {
22e2c507 2681 const int rw = rq_data_dir(rq);
1da177e4 2682
22e2c507
JA
2683 BUG_ON(!cfqq->allocated[rw]);
2684 cfqq->allocated[rw]--;
1da177e4 2685
5e705374 2686 put_io_context(RQ_CIC(rq)->ioc);
1da177e4 2687
1da177e4 2688 rq->elevator_private = NULL;
5e705374 2689 rq->elevator_private2 = NULL;
1da177e4 2690
1da177e4
LT
2691 cfq_put_queue(cfqq);
2692 }
2693}
2694
df5fe3e8
JM
2695static struct cfq_queue *
2696cfq_merge_cfqqs(struct cfq_data *cfqd, struct cfq_io_context *cic,
2697 struct cfq_queue *cfqq)
2698{
2699 cfq_log_cfqq(cfqd, cfqq, "merging with queue %p", cfqq->new_cfqq);
2700 cic_set_cfqq(cic, cfqq->new_cfqq, 1);
b3b6d040 2701 cfq_mark_cfqq_coop(cfqq->new_cfqq);
df5fe3e8
JM
2702 cfq_put_queue(cfqq);
2703 return cic_to_cfqq(cic, 1);
2704}
2705
e6c5bc73
JM
2706static int should_split_cfqq(struct cfq_queue *cfqq)
2707{
2708 if (cfqq->seeky_start &&
2709 time_after(jiffies, cfqq->seeky_start + CFQQ_COOP_TOUT))
2710 return 1;
2711 return 0;
2712}
2713
2714/*
2715 * Returns NULL if a new cfqq should be allocated, or the old cfqq if this
2716 * was the last process referring to said cfqq.
2717 */
2718static struct cfq_queue *
2719split_cfqq(struct cfq_io_context *cic, struct cfq_queue *cfqq)
2720{
2721 if (cfqq_process_refs(cfqq) == 1) {
2722 cfqq->seeky_start = 0;
2723 cfqq->pid = current->pid;
2724 cfq_clear_cfqq_coop(cfqq);
2725 return cfqq;
2726 }
2727
2728 cic_set_cfqq(cic, NULL, 1);
2729 cfq_put_queue(cfqq);
2730 return NULL;
2731}
1da177e4 2732/*
22e2c507 2733 * Allocate cfq data structures associated with this request.
1da177e4 2734 */
22e2c507 2735static int
165125e1 2736cfq_set_request(struct request_queue *q, struct request *rq, gfp_t gfp_mask)
1da177e4
LT
2737{
2738 struct cfq_data *cfqd = q->elevator->elevator_data;
2739 struct cfq_io_context *cic;
2740 const int rw = rq_data_dir(rq);
a6151c3a 2741 const bool is_sync = rq_is_sync(rq);
22e2c507 2742 struct cfq_queue *cfqq;
1da177e4
LT
2743 unsigned long flags;
2744
2745 might_sleep_if(gfp_mask & __GFP_WAIT);
2746
e2d74ac0 2747 cic = cfq_get_io_context(cfqd, gfp_mask);
22e2c507 2748
1da177e4
LT
2749 spin_lock_irqsave(q->queue_lock, flags);
2750
22e2c507
JA
2751 if (!cic)
2752 goto queue_fail;
2753
e6c5bc73 2754new_queue:
91fac317 2755 cfqq = cic_to_cfqq(cic, is_sync);
32f2e807 2756 if (!cfqq || cfqq == &cfqd->oom_cfqq) {
fd0928df 2757 cfqq = cfq_get_queue(cfqd, is_sync, cic->ioc, gfp_mask);
91fac317 2758 cic_set_cfqq(cic, cfqq, is_sync);
df5fe3e8 2759 } else {
e6c5bc73
JM
2760 /*
2761 * If the queue was seeky for too long, break it apart.
2762 */
2763 if (cfq_cfqq_coop(cfqq) && should_split_cfqq(cfqq)) {
2764 cfq_log_cfqq(cfqd, cfqq, "breaking apart cfqq");
2765 cfqq = split_cfqq(cic, cfqq);
2766 if (!cfqq)
2767 goto new_queue;
2768 }
2769
df5fe3e8
JM
2770 /*
2771 * Check to see if this queue is scheduled to merge with
2772 * another, closely cooperating queue. The merging of
2773 * queues happens here as it must be done in process context.
2774 * The reference on new_cfqq was taken in merge_cfqqs.
2775 */
2776 if (cfqq->new_cfqq)
2777 cfqq = cfq_merge_cfqqs(cfqd, cic, cfqq);
91fac317 2778 }
1da177e4
LT
2779
2780 cfqq->allocated[rw]++;
22e2c507 2781 atomic_inc(&cfqq->ref);
1da177e4 2782
5e705374 2783 spin_unlock_irqrestore(q->queue_lock, flags);
3b18152c 2784
5e705374
JA
2785 rq->elevator_private = cic;
2786 rq->elevator_private2 = cfqq;
2787 return 0;
1da177e4 2788
22e2c507
JA
2789queue_fail:
2790 if (cic)
2791 put_io_context(cic->ioc);
89850f7e 2792
23e018a1 2793 cfq_schedule_dispatch(cfqd);
1da177e4 2794 spin_unlock_irqrestore(q->queue_lock, flags);
7b679138 2795 cfq_log(cfqd, "set_request fail");
1da177e4
LT
2796 return 1;
2797}
2798
65f27f38 2799static void cfq_kick_queue(struct work_struct *work)
22e2c507 2800{
65f27f38 2801 struct cfq_data *cfqd =
23e018a1 2802 container_of(work, struct cfq_data, unplug_work);
165125e1 2803 struct request_queue *q = cfqd->queue;
22e2c507 2804
40bb54d1 2805 spin_lock_irq(q->queue_lock);
a7f55792 2806 __blk_run_queue(cfqd->queue);
40bb54d1 2807 spin_unlock_irq(q->queue_lock);
22e2c507
JA
2808}
2809
2810/*
2811 * Timer running if the active_queue is currently idling inside its time slice
2812 */
2813static void cfq_idle_slice_timer(unsigned long data)
2814{
2815 struct cfq_data *cfqd = (struct cfq_data *) data;
2816 struct cfq_queue *cfqq;
2817 unsigned long flags;
3c6bd2f8 2818 int timed_out = 1;
22e2c507 2819
7b679138
JA
2820 cfq_log(cfqd, "idle timer fired");
2821
22e2c507
JA
2822 spin_lock_irqsave(cfqd->queue->queue_lock, flags);
2823
fe094d98
JA
2824 cfqq = cfqd->active_queue;
2825 if (cfqq) {
3c6bd2f8
JA
2826 timed_out = 0;
2827
b029195d
JA
2828 /*
2829 * We saw a request before the queue expired, let it through
2830 */
2831 if (cfq_cfqq_must_dispatch(cfqq))
2832 goto out_kick;
2833
22e2c507
JA
2834 /*
2835 * expired
2836 */
44f7c160 2837 if (cfq_slice_used(cfqq))
22e2c507
JA
2838 goto expire;
2839
2840 /*
2841 * only expire and reinvoke request handler, if there are
2842 * other queues with pending requests
2843 */
caaa5f9f 2844 if (!cfqd->busy_queues)
22e2c507 2845 goto out_cont;
22e2c507
JA
2846
2847 /*
2848 * not expired and it has a request pending, let it dispatch
2849 */
75e50984 2850 if (!RB_EMPTY_ROOT(&cfqq->sort_list))
22e2c507 2851 goto out_kick;
22e2c507
JA
2852 }
2853expire:
6084cdda 2854 cfq_slice_expired(cfqd, timed_out);
22e2c507 2855out_kick:
23e018a1 2856 cfq_schedule_dispatch(cfqd);
22e2c507
JA
2857out_cont:
2858 spin_unlock_irqrestore(cfqd->queue->queue_lock, flags);
2859}
2860
3b18152c
JA
2861static void cfq_shutdown_timer_wq(struct cfq_data *cfqd)
2862{
2863 del_timer_sync(&cfqd->idle_slice_timer);
23e018a1 2864 cancel_work_sync(&cfqd->unplug_work);
3b18152c 2865}
22e2c507 2866
c2dea2d1
VT
2867static void cfq_put_async_queues(struct cfq_data *cfqd)
2868{
2869 int i;
2870
2871 for (i = 0; i < IOPRIO_BE_NR; i++) {
2872 if (cfqd->async_cfqq[0][i])
2873 cfq_put_queue(cfqd->async_cfqq[0][i]);
2874 if (cfqd->async_cfqq[1][i])
2875 cfq_put_queue(cfqd->async_cfqq[1][i]);
c2dea2d1 2876 }
2389d1ef
ON
2877
2878 if (cfqd->async_idle_cfqq)
2879 cfq_put_queue(cfqd->async_idle_cfqq);
c2dea2d1
VT
2880}
2881
b374d18a 2882static void cfq_exit_queue(struct elevator_queue *e)
1da177e4 2883{
22e2c507 2884 struct cfq_data *cfqd = e->elevator_data;
165125e1 2885 struct request_queue *q = cfqd->queue;
22e2c507 2886
3b18152c 2887 cfq_shutdown_timer_wq(cfqd);
e2d74ac0 2888
d9ff4187 2889 spin_lock_irq(q->queue_lock);
e2d74ac0 2890
d9ff4187 2891 if (cfqd->active_queue)
6084cdda 2892 __cfq_slice_expired(cfqd, cfqd->active_queue, 0);
e2d74ac0
JA
2893
2894 while (!list_empty(&cfqd->cic_list)) {
d9ff4187
AV
2895 struct cfq_io_context *cic = list_entry(cfqd->cic_list.next,
2896 struct cfq_io_context,
2897 queue_list);
89850f7e
JA
2898
2899 __cfq_exit_single_io_context(cfqd, cic);
d9ff4187 2900 }
e2d74ac0 2901
c2dea2d1 2902 cfq_put_async_queues(cfqd);
15c31be4 2903
d9ff4187 2904 spin_unlock_irq(q->queue_lock);
a90d742e
AV
2905
2906 cfq_shutdown_timer_wq(cfqd);
2907
a90d742e 2908 kfree(cfqd);
1da177e4
LT
2909}
2910
165125e1 2911static void *cfq_init_queue(struct request_queue *q)
1da177e4
LT
2912{
2913 struct cfq_data *cfqd;
718eee05 2914 int i, j;
1da177e4 2915
94f6030c 2916 cfqd = kmalloc_node(sizeof(*cfqd), GFP_KERNEL | __GFP_ZERO, q->node);
1da177e4 2917 if (!cfqd)
bc1c1169 2918 return NULL;
1da177e4 2919
c0324a02 2920 for (i = 0; i < 2; ++i)
718eee05
CZ
2921 for (j = 0; j < 3; ++j)
2922 cfqd->service_trees[i][j] = CFQ_RB_ROOT;
c0324a02 2923 cfqd->service_tree_idle = CFQ_RB_ROOT;
26a2ac00
JA
2924
2925 /*
2926 * Not strictly needed (since RB_ROOT just clears the node and we
2927 * zeroed cfqd on alloc), but better be safe in case someone decides
2928 * to add magic to the rb code
2929 */
2930 for (i = 0; i < CFQ_PRIO_LISTS; i++)
2931 cfqd->prio_trees[i] = RB_ROOT;
2932
6118b70b
JA
2933 /*
2934 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2935 * Grab a permanent reference to it, so that the normal code flow
2936 * will not attempt to free it.
2937 */
2938 cfq_init_cfqq(cfqd, &cfqd->oom_cfqq, 1, 0);
2939 atomic_inc(&cfqd->oom_cfqq.ref);
2940
d9ff4187 2941 INIT_LIST_HEAD(&cfqd->cic_list);
1da177e4 2942
1da177e4 2943 cfqd->queue = q;
1da177e4 2944
22e2c507
JA
2945 init_timer(&cfqd->idle_slice_timer);
2946 cfqd->idle_slice_timer.function = cfq_idle_slice_timer;
2947 cfqd->idle_slice_timer.data = (unsigned long) cfqd;
2948
23e018a1 2949 INIT_WORK(&cfqd->unplug_work, cfq_kick_queue);
22e2c507 2950
1da177e4 2951 cfqd->cfq_quantum = cfq_quantum;
22e2c507
JA
2952 cfqd->cfq_fifo_expire[0] = cfq_fifo_expire[0];
2953 cfqd->cfq_fifo_expire[1] = cfq_fifo_expire[1];
1da177e4
LT
2954 cfqd->cfq_back_max = cfq_back_max;
2955 cfqd->cfq_back_penalty = cfq_back_penalty;
22e2c507
JA
2956 cfqd->cfq_slice[0] = cfq_slice_async;
2957 cfqd->cfq_slice[1] = cfq_slice_sync;
2958 cfqd->cfq_slice_async_rq = cfq_slice_async_rq;
2959 cfqd->cfq_slice_idle = cfq_slice_idle;
963b72fc 2960 cfqd->cfq_latency = 1;
e459dd08 2961 cfqd->hw_tag = -1;
365722bb 2962 cfqd->last_end_sync_rq = jiffies;
bc1c1169 2963 return cfqd;
1da177e4
LT
2964}
2965
2966static void cfq_slab_kill(void)
2967{
d6de8be7
JA
2968 /*
2969 * Caller already ensured that pending RCU callbacks are completed,
2970 * so we should have no busy allocations at this point.
2971 */
1da177e4
LT
2972 if (cfq_pool)
2973 kmem_cache_destroy(cfq_pool);
2974 if (cfq_ioc_pool)
2975 kmem_cache_destroy(cfq_ioc_pool);
2976}
2977
2978static int __init cfq_slab_setup(void)
2979{
0a31bd5f 2980 cfq_pool = KMEM_CACHE(cfq_queue, 0);
1da177e4
LT
2981 if (!cfq_pool)
2982 goto fail;
2983
34e6bbf2 2984 cfq_ioc_pool = KMEM_CACHE(cfq_io_context, 0);
1da177e4
LT
2985 if (!cfq_ioc_pool)
2986 goto fail;
2987
2988 return 0;
2989fail:
2990 cfq_slab_kill();
2991 return -ENOMEM;
2992}
2993
1da177e4
LT
2994/*
2995 * sysfs parts below -->
2996 */
1da177e4
LT
2997static ssize_t
2998cfq_var_show(unsigned int var, char *page)
2999{
3000 return sprintf(page, "%d\n", var);
3001}
3002
3003static ssize_t
3004cfq_var_store(unsigned int *var, const char *page, size_t count)
3005{
3006 char *p = (char *) page;
3007
3008 *var = simple_strtoul(p, &p, 10);
3009 return count;
3010}
3011
1da177e4 3012#define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
b374d18a 3013static ssize_t __FUNC(struct elevator_queue *e, char *page) \
1da177e4 3014{ \
3d1ab40f 3015 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3016 unsigned int __data = __VAR; \
3017 if (__CONV) \
3018 __data = jiffies_to_msecs(__data); \
3019 return cfq_var_show(__data, (page)); \
3020}
3021SHOW_FUNCTION(cfq_quantum_show, cfqd->cfq_quantum, 0);
22e2c507
JA
3022SHOW_FUNCTION(cfq_fifo_expire_sync_show, cfqd->cfq_fifo_expire[1], 1);
3023SHOW_FUNCTION(cfq_fifo_expire_async_show, cfqd->cfq_fifo_expire[0], 1);
e572ec7e
AV
3024SHOW_FUNCTION(cfq_back_seek_max_show, cfqd->cfq_back_max, 0);
3025SHOW_FUNCTION(cfq_back_seek_penalty_show, cfqd->cfq_back_penalty, 0);
22e2c507
JA
3026SHOW_FUNCTION(cfq_slice_idle_show, cfqd->cfq_slice_idle, 1);
3027SHOW_FUNCTION(cfq_slice_sync_show, cfqd->cfq_slice[1], 1);
3028SHOW_FUNCTION(cfq_slice_async_show, cfqd->cfq_slice[0], 1);
3029SHOW_FUNCTION(cfq_slice_async_rq_show, cfqd->cfq_slice_async_rq, 0);
963b72fc 3030SHOW_FUNCTION(cfq_low_latency_show, cfqd->cfq_latency, 0);
1da177e4
LT
3031#undef SHOW_FUNCTION
3032
3033#define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
b374d18a 3034static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
1da177e4 3035{ \
3d1ab40f 3036 struct cfq_data *cfqd = e->elevator_data; \
1da177e4
LT
3037 unsigned int __data; \
3038 int ret = cfq_var_store(&__data, (page), count); \
3039 if (__data < (MIN)) \
3040 __data = (MIN); \
3041 else if (__data > (MAX)) \
3042 __data = (MAX); \
3043 if (__CONV) \
3044 *(__PTR) = msecs_to_jiffies(__data); \
3045 else \
3046 *(__PTR) = __data; \
3047 return ret; \
3048}
3049STORE_FUNCTION(cfq_quantum_store, &cfqd->cfq_quantum, 1, UINT_MAX, 0);
fe094d98
JA
3050STORE_FUNCTION(cfq_fifo_expire_sync_store, &cfqd->cfq_fifo_expire[1], 1,
3051 UINT_MAX, 1);
3052STORE_FUNCTION(cfq_fifo_expire_async_store, &cfqd->cfq_fifo_expire[0], 1,
3053 UINT_MAX, 1);
e572ec7e 3054STORE_FUNCTION(cfq_back_seek_max_store, &cfqd->cfq_back_max, 0, UINT_MAX, 0);
fe094d98
JA
3055STORE_FUNCTION(cfq_back_seek_penalty_store, &cfqd->cfq_back_penalty, 1,
3056 UINT_MAX, 0);
22e2c507
JA
3057STORE_FUNCTION(cfq_slice_idle_store, &cfqd->cfq_slice_idle, 0, UINT_MAX, 1);
3058STORE_FUNCTION(cfq_slice_sync_store, &cfqd->cfq_slice[1], 1, UINT_MAX, 1);
3059STORE_FUNCTION(cfq_slice_async_store, &cfqd->cfq_slice[0], 1, UINT_MAX, 1);
fe094d98
JA
3060STORE_FUNCTION(cfq_slice_async_rq_store, &cfqd->cfq_slice_async_rq, 1,
3061 UINT_MAX, 0);
963b72fc 3062STORE_FUNCTION(cfq_low_latency_store, &cfqd->cfq_latency, 0, 1, 0);
1da177e4
LT
3063#undef STORE_FUNCTION
3064
e572ec7e
AV
3065#define CFQ_ATTR(name) \
3066 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
3067
3068static struct elv_fs_entry cfq_attrs[] = {
3069 CFQ_ATTR(quantum),
e572ec7e
AV
3070 CFQ_ATTR(fifo_expire_sync),
3071 CFQ_ATTR(fifo_expire_async),
3072 CFQ_ATTR(back_seek_max),
3073 CFQ_ATTR(back_seek_penalty),
3074 CFQ_ATTR(slice_sync),
3075 CFQ_ATTR(slice_async),
3076 CFQ_ATTR(slice_async_rq),
3077 CFQ_ATTR(slice_idle),
963b72fc 3078 CFQ_ATTR(low_latency),
e572ec7e 3079 __ATTR_NULL
1da177e4
LT
3080};
3081
1da177e4
LT
3082static struct elevator_type iosched_cfq = {
3083 .ops = {
3084 .elevator_merge_fn = cfq_merge,
3085 .elevator_merged_fn = cfq_merged_request,
3086 .elevator_merge_req_fn = cfq_merged_requests,
da775265 3087 .elevator_allow_merge_fn = cfq_allow_merge,
b4878f24 3088 .elevator_dispatch_fn = cfq_dispatch_requests,
1da177e4 3089 .elevator_add_req_fn = cfq_insert_request,
b4878f24 3090 .elevator_activate_req_fn = cfq_activate_request,
1da177e4
LT
3091 .elevator_deactivate_req_fn = cfq_deactivate_request,
3092 .elevator_queue_empty_fn = cfq_queue_empty,
3093 .elevator_completed_req_fn = cfq_completed_request,
21183b07
JA
3094 .elevator_former_req_fn = elv_rb_former_request,
3095 .elevator_latter_req_fn = elv_rb_latter_request,
1da177e4
LT
3096 .elevator_set_req_fn = cfq_set_request,
3097 .elevator_put_req_fn = cfq_put_request,
3098 .elevator_may_queue_fn = cfq_may_queue,
3099 .elevator_init_fn = cfq_init_queue,
3100 .elevator_exit_fn = cfq_exit_queue,
fc46379d 3101 .trim = cfq_free_io_context,
1da177e4 3102 },
3d1ab40f 3103 .elevator_attrs = cfq_attrs,
1da177e4
LT
3104 .elevator_name = "cfq",
3105 .elevator_owner = THIS_MODULE,
3106};
3107
3108static int __init cfq_init(void)
3109{
22e2c507
JA
3110 /*
3111 * could be 0 on HZ < 1000 setups
3112 */
3113 if (!cfq_slice_async)
3114 cfq_slice_async = 1;
3115 if (!cfq_slice_idle)
3116 cfq_slice_idle = 1;
3117
1da177e4
LT
3118 if (cfq_slab_setup())
3119 return -ENOMEM;
3120
2fdd82bd 3121 elv_register(&iosched_cfq);
1da177e4 3122
2fdd82bd 3123 return 0;
1da177e4
LT
3124}
3125
3126static void __exit cfq_exit(void)
3127{
6e9a4738 3128 DECLARE_COMPLETION_ONSTACK(all_gone);
1da177e4 3129 elv_unregister(&iosched_cfq);
334e94de 3130 ioc_gone = &all_gone;
fba82272
OH
3131 /* ioc_gone's update must be visible before reading ioc_count */
3132 smp_wmb();
d6de8be7
JA
3133
3134 /*
3135 * this also protects us from entering cfq_slab_kill() with
3136 * pending RCU callbacks
3137 */
245b2e70 3138 if (elv_ioc_count_read(cfq_ioc_count))
9a11b4ed 3139 wait_for_completion(&all_gone);
83521d3e 3140 cfq_slab_kill();
1da177e4
LT
3141}
3142
3143module_init(cfq_init);
3144module_exit(cfq_exit);
3145
3146MODULE_AUTHOR("Jens Axboe");
3147MODULE_LICENSE("GPL");
3148MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");