powerpc: VPHN topology change updates all siblings
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / mm / numa.c
CommitLineData
1da177e4
LT
1/*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/threads.h>
12#include <linux/bootmem.h>
13#include <linux/init.h>
14#include <linux/mm.h>
15#include <linux/mmzone.h>
4b16f8e2 16#include <linux/export.h>
1da177e4
LT
17#include <linux/nodemask.h>
18#include <linux/cpu.h>
19#include <linux/notifier.h>
95f72d1e 20#include <linux/memblock.h>
6df1646e 21#include <linux/of.h>
06eccea6 22#include <linux/pfn.h>
9eff1a38
JL
23#include <linux/cpuset.h>
24#include <linux/node.h>
30c05350 25#include <linux/stop_machine.h>
e04fa612
NF
26#include <linux/proc_fs.h>
27#include <linux/seq_file.h>
28#include <linux/uaccess.h>
191a7120 29#include <linux/slab.h>
02779870 30#include <asm/cputhreads.h>
45fb6cea 31#include <asm/sparsemem.h>
d9b2b2a2 32#include <asm/prom.h>
2249ca9d 33#include <asm/smp.h>
9eff1a38
JL
34#include <asm/firmware.h>
35#include <asm/paca.h>
39bf990e 36#include <asm/hvcall.h>
ae3a197e 37#include <asm/setup.h>
176bbf14 38#include <asm/vdso.h>
1da177e4
LT
39
40static int numa_enabled = 1;
41
1daa6d08
BS
42static char *cmdline __initdata;
43
1da177e4
LT
44static int numa_debug;
45#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
46
45fb6cea 47int numa_cpu_lookup_table[NR_CPUS];
25863de0 48cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
1da177e4 49struct pglist_data *node_data[MAX_NUMNODES];
45fb6cea
AB
50
51EXPORT_SYMBOL(numa_cpu_lookup_table);
25863de0 52EXPORT_SYMBOL(node_to_cpumask_map);
45fb6cea
AB
53EXPORT_SYMBOL(node_data);
54
1da177e4 55static int min_common_depth;
237a0989 56static int n_mem_addr_cells, n_mem_size_cells;
41eab6f8
AB
57static int form1_affinity;
58
59#define MAX_DISTANCE_REF_POINTS 4
60static int distance_ref_points_depth;
61static const unsigned int *distance_ref_points;
62static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
1da177e4 63
25863de0
AB
64/*
65 * Allocate node_to_cpumask_map based on number of available nodes
66 * Requires node_possible_map to be valid.
67 *
9512938b 68 * Note: cpumask_of_node() is not valid until after this is done.
25863de0
AB
69 */
70static void __init setup_node_to_cpumask_map(void)
71{
f9d531b8 72 unsigned int node;
25863de0
AB
73
74 /* setup nr_node_ids if not done yet */
f9d531b8
CS
75 if (nr_node_ids == MAX_NUMNODES)
76 setup_nr_node_ids();
25863de0
AB
77
78 /* allocate the map */
79 for (node = 0; node < nr_node_ids; node++)
80 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
81
82 /* cpumask_of_node() will now work */
83 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
84}
85
55671f3c 86static int __init fake_numa_create_new_node(unsigned long end_pfn,
1daa6d08
BS
87 unsigned int *nid)
88{
89 unsigned long long mem;
90 char *p = cmdline;
91 static unsigned int fake_nid;
92 static unsigned long long curr_boundary;
93
94 /*
95 * Modify node id, iff we started creating NUMA nodes
96 * We want to continue from where we left of the last time
97 */
98 if (fake_nid)
99 *nid = fake_nid;
100 /*
101 * In case there are no more arguments to parse, the
102 * node_id should be the same as the last fake node id
103 * (we've handled this above).
104 */
105 if (!p)
106 return 0;
107
108 mem = memparse(p, &p);
109 if (!mem)
110 return 0;
111
112 if (mem < curr_boundary)
113 return 0;
114
115 curr_boundary = mem;
116
117 if ((end_pfn << PAGE_SHIFT) > mem) {
118 /*
119 * Skip commas and spaces
120 */
121 while (*p == ',' || *p == ' ' || *p == '\t')
122 p++;
123
124 cmdline = p;
125 fake_nid++;
126 *nid = fake_nid;
127 dbg("created new fake_node with id %d\n", fake_nid);
128 return 1;
129 }
130 return 0;
131}
132
8f64e1f2 133/*
5dfe8660 134 * get_node_active_region - Return active region containing pfn
e8170372 135 * Active range returned is empty if none found.
5dfe8660
TH
136 * @pfn: The page to return the region for
137 * @node_ar: Returned set to the active region containing @pfn
8f64e1f2 138 */
5dfe8660
TH
139static void __init get_node_active_region(unsigned long pfn,
140 struct node_active_region *node_ar)
8f64e1f2 141{
5dfe8660
TH
142 unsigned long start_pfn, end_pfn;
143 int i, nid;
144
145 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
146 if (pfn >= start_pfn && pfn < end_pfn) {
147 node_ar->nid = nid;
148 node_ar->start_pfn = start_pfn;
149 node_ar->end_pfn = end_pfn;
150 break;
151 }
152 }
8f64e1f2
JT
153}
154
39bf990e 155static void map_cpu_to_node(int cpu, int node)
1da177e4
LT
156{
157 numa_cpu_lookup_table[cpu] = node;
45fb6cea 158
bf4b85b0
NL
159 dbg("adding cpu %d to node %d\n", cpu, node);
160
25863de0
AB
161 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
162 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
163}
164
39bf990e 165#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
1da177e4
LT
166static void unmap_cpu_from_node(unsigned long cpu)
167{
168 int node = numa_cpu_lookup_table[cpu];
169
170 dbg("removing cpu %lu from node %d\n", cpu, node);
171
25863de0 172 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
429f4d8d 173 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
174 } else {
175 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
176 cpu, node);
177 }
178}
39bf990e 179#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
1da177e4 180
1da177e4 181/* must hold reference to node during call */
a7f67bdf 182static const int *of_get_associativity(struct device_node *dev)
1da177e4 183{
e2eb6392 184 return of_get_property(dev, "ibm,associativity", NULL);
1da177e4
LT
185}
186
cf00085d
C
187/*
188 * Returns the property linux,drconf-usable-memory if
189 * it exists (the property exists only in kexec/kdump kernels,
190 * added by kexec-tools)
191 */
192static const u32 *of_get_usable_memory(struct device_node *memory)
193{
194 const u32 *prop;
195 u32 len;
196 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
197 if (!prop || len < sizeof(unsigned int))
198 return 0;
199 return prop;
200}
201
41eab6f8
AB
202int __node_distance(int a, int b)
203{
204 int i;
205 int distance = LOCAL_DISTANCE;
206
207 if (!form1_affinity)
7122beee 208 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
41eab6f8
AB
209
210 for (i = 0; i < distance_ref_points_depth; i++) {
211 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
212 break;
213
214 /* Double the distance for each NUMA level */
215 distance *= 2;
216 }
217
218 return distance;
219}
220
221static void initialize_distance_lookup_table(int nid,
222 const unsigned int *associativity)
223{
224 int i;
225
226 if (!form1_affinity)
227 return;
228
229 for (i = 0; i < distance_ref_points_depth; i++) {
230 distance_lookup_table[nid][i] =
231 associativity[distance_ref_points[i]];
232 }
233}
234
482ec7c4
NL
235/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
236 * info is found.
237 */
9eff1a38 238static int associativity_to_nid(const unsigned int *associativity)
1da177e4 239{
482ec7c4 240 int nid = -1;
1da177e4
LT
241
242 if (min_common_depth == -1)
482ec7c4 243 goto out;
1da177e4 244
9eff1a38
JL
245 if (associativity[0] >= min_common_depth)
246 nid = associativity[min_common_depth];
bc16a759
NL
247
248 /* POWER4 LPAR uses 0xffff as invalid node */
482ec7c4
NL
249 if (nid == 0xffff || nid >= MAX_NUMNODES)
250 nid = -1;
41eab6f8 251
9eff1a38
JL
252 if (nid > 0 && associativity[0] >= distance_ref_points_depth)
253 initialize_distance_lookup_table(nid, associativity);
41eab6f8 254
482ec7c4 255out:
cf950b7a 256 return nid;
1da177e4
LT
257}
258
9eff1a38
JL
259/* Returns the nid associated with the given device tree node,
260 * or -1 if not found.
261 */
262static int of_node_to_nid_single(struct device_node *device)
263{
264 int nid = -1;
265 const unsigned int *tmp;
266
267 tmp = of_get_associativity(device);
268 if (tmp)
269 nid = associativity_to_nid(tmp);
270 return nid;
271}
272
953039c8
JK
273/* Walk the device tree upwards, looking for an associativity id */
274int of_node_to_nid(struct device_node *device)
275{
276 struct device_node *tmp;
277 int nid = -1;
278
279 of_node_get(device);
280 while (device) {
281 nid = of_node_to_nid_single(device);
282 if (nid != -1)
283 break;
284
285 tmp = device;
286 device = of_get_parent(tmp);
287 of_node_put(tmp);
288 }
289 of_node_put(device);
290
291 return nid;
292}
293EXPORT_SYMBOL_GPL(of_node_to_nid);
294
1da177e4
LT
295static int __init find_min_common_depth(void)
296{
41eab6f8 297 int depth;
e70606eb 298 struct device_node *root;
1da177e4 299
1c8ee733
DS
300 if (firmware_has_feature(FW_FEATURE_OPAL))
301 root = of_find_node_by_path("/ibm,opal");
302 else
303 root = of_find_node_by_path("/rtas");
e70606eb
ME
304 if (!root)
305 root = of_find_node_by_path("/");
1da177e4
LT
306
307 /*
41eab6f8
AB
308 * This property is a set of 32-bit integers, each representing
309 * an index into the ibm,associativity nodes.
310 *
311 * With form 0 affinity the first integer is for an SMP configuration
312 * (should be all 0's) and the second is for a normal NUMA
313 * configuration. We have only one level of NUMA.
314 *
315 * With form 1 affinity the first integer is the most significant
316 * NUMA boundary and the following are progressively less significant
317 * boundaries. There can be more than one level of NUMA.
1da177e4 318 */
e70606eb 319 distance_ref_points = of_get_property(root,
41eab6f8
AB
320 "ibm,associativity-reference-points",
321 &distance_ref_points_depth);
322
323 if (!distance_ref_points) {
324 dbg("NUMA: ibm,associativity-reference-points not found.\n");
325 goto err;
326 }
327
328 distance_ref_points_depth /= sizeof(int);
1da177e4 329
8002b0c5
NF
330 if (firmware_has_feature(FW_FEATURE_OPAL) ||
331 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
332 dbg("Using form 1 affinity\n");
1c8ee733 333 form1_affinity = 1;
4b83c330
AB
334 }
335
41eab6f8
AB
336 if (form1_affinity) {
337 depth = distance_ref_points[0];
1da177e4 338 } else {
41eab6f8
AB
339 if (distance_ref_points_depth < 2) {
340 printk(KERN_WARNING "NUMA: "
341 "short ibm,associativity-reference-points\n");
342 goto err;
343 }
344
345 depth = distance_ref_points[1];
1da177e4 346 }
1da177e4 347
41eab6f8
AB
348 /*
349 * Warn and cap if the hardware supports more than
350 * MAX_DISTANCE_REF_POINTS domains.
351 */
352 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
353 printk(KERN_WARNING "NUMA: distance array capped at "
354 "%d entries\n", MAX_DISTANCE_REF_POINTS);
355 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
356 }
357
e70606eb 358 of_node_put(root);
1da177e4 359 return depth;
41eab6f8
AB
360
361err:
e70606eb 362 of_node_put(root);
41eab6f8 363 return -1;
1da177e4
LT
364}
365
84c9fdd1 366static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
1da177e4
LT
367{
368 struct device_node *memory = NULL;
1da177e4
LT
369
370 memory = of_find_node_by_type(memory, "memory");
54c23310 371 if (!memory)
84c9fdd1 372 panic("numa.c: No memory nodes found!");
54c23310 373
a8bda5dd 374 *n_addr_cells = of_n_addr_cells(memory);
9213feea 375 *n_size_cells = of_n_size_cells(memory);
84c9fdd1 376 of_node_put(memory);
1da177e4
LT
377}
378
2011b1d0 379static unsigned long read_n_cells(int n, const unsigned int **buf)
1da177e4
LT
380{
381 unsigned long result = 0;
382
383 while (n--) {
384 result = (result << 32) | **buf;
385 (*buf)++;
386 }
387 return result;
388}
389
8342681d 390/*
95f72d1e 391 * Read the next memblock list entry from the ibm,dynamic-memory property
8342681d
NF
392 * and return the information in the provided of_drconf_cell structure.
393 */
394static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
395{
396 const u32 *cp;
397
398 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
399
400 cp = *cellp;
401 drmem->drc_index = cp[0];
402 drmem->reserved = cp[1];
403 drmem->aa_index = cp[2];
404 drmem->flags = cp[3];
405
406 *cellp = cp + 4;
407}
408
409/*
25985edc 410 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
8342681d 411 *
95f72d1e
YL
412 * The layout of the ibm,dynamic-memory property is a number N of memblock
413 * list entries followed by N memblock list entries. Each memblock list entry
25985edc 414 * contains information as laid out in the of_drconf_cell struct above.
8342681d
NF
415 */
416static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
417{
418 const u32 *prop;
419 u32 len, entries;
420
421 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
422 if (!prop || len < sizeof(unsigned int))
423 return 0;
424
425 entries = *prop++;
426
427 /* Now that we know the number of entries, revalidate the size
428 * of the property read in to ensure we have everything
429 */
430 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
431 return 0;
432
433 *dm = prop;
434 return entries;
435}
436
437/*
25985edc 438 * Retrieve and validate the ibm,lmb-size property for drconf memory
8342681d
NF
439 * from the device tree.
440 */
3fdfd990 441static u64 of_get_lmb_size(struct device_node *memory)
8342681d
NF
442{
443 const u32 *prop;
444 u32 len;
445
3fdfd990 446 prop = of_get_property(memory, "ibm,lmb-size", &len);
8342681d
NF
447 if (!prop || len < sizeof(unsigned int))
448 return 0;
449
450 return read_n_cells(n_mem_size_cells, &prop);
451}
452
453struct assoc_arrays {
454 u32 n_arrays;
455 u32 array_sz;
456 const u32 *arrays;
457};
458
459/*
25985edc 460 * Retrieve and validate the list of associativity arrays for drconf
8342681d
NF
461 * memory from the ibm,associativity-lookup-arrays property of the
462 * device tree..
463 *
464 * The layout of the ibm,associativity-lookup-arrays property is a number N
465 * indicating the number of associativity arrays, followed by a number M
466 * indicating the size of each associativity array, followed by a list
467 * of N associativity arrays.
468 */
469static int of_get_assoc_arrays(struct device_node *memory,
470 struct assoc_arrays *aa)
471{
472 const u32 *prop;
473 u32 len;
474
475 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
476 if (!prop || len < 2 * sizeof(unsigned int))
477 return -1;
478
479 aa->n_arrays = *prop++;
480 aa->array_sz = *prop++;
481
42b2aa86 482 /* Now that we know the number of arrays and size of each array,
8342681d
NF
483 * revalidate the size of the property read in.
484 */
485 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
486 return -1;
487
488 aa->arrays = prop;
489 return 0;
490}
491
492/*
493 * This is like of_node_to_nid_single() for memory represented in the
494 * ibm,dynamic-reconfiguration-memory node.
495 */
496static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
497 struct assoc_arrays *aa)
498{
499 int default_nid = 0;
500 int nid = default_nid;
501 int index;
502
503 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
504 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
505 drmem->aa_index < aa->n_arrays) {
506 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
507 nid = aa->arrays[index];
508
509 if (nid == 0xffff || nid >= MAX_NUMNODES)
510 nid = default_nid;
511 }
512
513 return nid;
514}
515
1da177e4
LT
516/*
517 * Figure out to which domain a cpu belongs and stick it there.
518 * Return the id of the domain used.
519 */
2e5ce39d 520static int __cpuinit numa_setup_cpu(unsigned long lcpu)
1da177e4 521{
cf950b7a 522 int nid = 0;
8b16cd23 523 struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
1da177e4
LT
524
525 if (!cpu) {
526 WARN_ON(1);
527 goto out;
528 }
529
953039c8 530 nid = of_node_to_nid_single(cpu);
1da177e4 531
482ec7c4 532 if (nid < 0 || !node_online(nid))
72c33688 533 nid = first_online_node;
1da177e4 534out:
cf950b7a 535 map_cpu_to_node(lcpu, nid);
1da177e4
LT
536
537 of_node_put(cpu);
538
cf950b7a 539 return nid;
1da177e4
LT
540}
541
74b85f37 542static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
1da177e4
LT
543 unsigned long action,
544 void *hcpu)
545{
546 unsigned long lcpu = (unsigned long)hcpu;
547 int ret = NOTIFY_DONE;
548
549 switch (action) {
550 case CPU_UP_PREPARE:
8bb78442 551 case CPU_UP_PREPARE_FROZEN:
2b261227 552 numa_setup_cpu(lcpu);
1da177e4
LT
553 ret = NOTIFY_OK;
554 break;
555#ifdef CONFIG_HOTPLUG_CPU
556 case CPU_DEAD:
8bb78442 557 case CPU_DEAD_FROZEN:
1da177e4 558 case CPU_UP_CANCELED:
8bb78442 559 case CPU_UP_CANCELED_FROZEN:
1da177e4
LT
560 unmap_cpu_from_node(lcpu);
561 break;
562 ret = NOTIFY_OK;
563#endif
564 }
565 return ret;
566}
567
568/*
569 * Check and possibly modify a memory region to enforce the memory limit.
570 *
571 * Returns the size the region should have to enforce the memory limit.
572 * This will either be the original value of size, a truncated value,
573 * or zero. If the returned value of size is 0 the region should be
25985edc 574 * discarded as it lies wholly above the memory limit.
1da177e4 575 */
45fb6cea
AB
576static unsigned long __init numa_enforce_memory_limit(unsigned long start,
577 unsigned long size)
1da177e4
LT
578{
579 /*
95f72d1e 580 * We use memblock_end_of_DRAM() in here instead of memory_limit because
1da177e4 581 * we've already adjusted it for the limit and it takes care of
fe55249d
MM
582 * having memory holes below the limit. Also, in the case of
583 * iommu_is_off, memory_limit is not set but is implicitly enforced.
1da177e4 584 */
1da177e4 585
95f72d1e 586 if (start + size <= memblock_end_of_DRAM())
1da177e4
LT
587 return size;
588
95f72d1e 589 if (start >= memblock_end_of_DRAM())
1da177e4
LT
590 return 0;
591
95f72d1e 592 return memblock_end_of_DRAM() - start;
1da177e4
LT
593}
594
cf00085d
C
595/*
596 * Reads the counter for a given entry in
597 * linux,drconf-usable-memory property
598 */
599static inline int __init read_usm_ranges(const u32 **usm)
600{
601 /*
3fdfd990 602 * For each lmb in ibm,dynamic-memory a corresponding
cf00085d
C
603 * entry in linux,drconf-usable-memory property contains
604 * a counter followed by that many (base, size) duple.
605 * read the counter from linux,drconf-usable-memory
606 */
607 return read_n_cells(n_mem_size_cells, usm);
608}
609
0204568a
PM
610/*
611 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
612 * node. This assumes n_mem_{addr,size}_cells have been set.
613 */
614static void __init parse_drconf_memory(struct device_node *memory)
615{
82b2521d 616 const u32 *uninitialized_var(dm), *usm;
cf00085d 617 unsigned int n, rc, ranges, is_kexec_kdump = 0;
3fdfd990 618 unsigned long lmb_size, base, size, sz;
8342681d 619 int nid;
aa709f3b 620 struct assoc_arrays aa = { .arrays = NULL };
8342681d
NF
621
622 n = of_get_drconf_memory(memory, &dm);
623 if (!n)
0204568a
PM
624 return;
625
3fdfd990
BH
626 lmb_size = of_get_lmb_size(memory);
627 if (!lmb_size)
8342681d
NF
628 return;
629
630 rc = of_get_assoc_arrays(memory, &aa);
631 if (rc)
0204568a
PM
632 return;
633
cf00085d
C
634 /* check if this is a kexec/kdump kernel */
635 usm = of_get_usable_memory(memory);
636 if (usm != NULL)
637 is_kexec_kdump = 1;
638
0204568a 639 for (; n != 0; --n) {
8342681d
NF
640 struct of_drconf_cell drmem;
641
642 read_drconf_cell(&drmem, &dm);
643
644 /* skip this block if the reserved bit is set in flags (0x80)
645 or if the block is not assigned to this partition (0x8) */
646 if ((drmem.flags & DRCONF_MEM_RESERVED)
647 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
0204568a 648 continue;
1daa6d08 649
cf00085d 650 base = drmem.base_addr;
3fdfd990 651 size = lmb_size;
cf00085d 652 ranges = 1;
8342681d 653
cf00085d
C
654 if (is_kexec_kdump) {
655 ranges = read_usm_ranges(&usm);
656 if (!ranges) /* there are no (base, size) duple */
657 continue;
658 }
659 do {
660 if (is_kexec_kdump) {
661 base = read_n_cells(n_mem_addr_cells, &usm);
662 size = read_n_cells(n_mem_size_cells, &usm);
663 }
664 nid = of_drconf_to_nid_single(&drmem, &aa);
665 fake_numa_create_new_node(
666 ((base + size) >> PAGE_SHIFT),
8342681d 667 &nid);
cf00085d
C
668 node_set_online(nid);
669 sz = numa_enforce_memory_limit(base, size);
670 if (sz)
1d7cfe18 671 memblock_set_node(base, sz, nid);
cf00085d 672 } while (--ranges);
0204568a
PM
673 }
674}
675
1da177e4
LT
676static int __init parse_numa_properties(void)
677{
94db7c5e 678 struct device_node *memory;
482ec7c4 679 int default_nid = 0;
1da177e4
LT
680 unsigned long i;
681
682 if (numa_enabled == 0) {
683 printk(KERN_WARNING "NUMA disabled by user\n");
684 return -1;
685 }
686
1da177e4
LT
687 min_common_depth = find_min_common_depth();
688
1da177e4
LT
689 if (min_common_depth < 0)
690 return min_common_depth;
691
bf4b85b0
NL
692 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
693
1da177e4 694 /*
482ec7c4
NL
695 * Even though we connect cpus to numa domains later in SMP
696 * init, we need to know the node ids now. This is because
697 * each node to be onlined must have NODE_DATA etc backing it.
1da177e4 698 */
482ec7c4 699 for_each_present_cpu(i) {
dfbe93a2 700 struct device_node *cpu;
cf950b7a 701 int nid;
1da177e4 702
8b16cd23 703 cpu = of_get_cpu_node(i, NULL);
482ec7c4 704 BUG_ON(!cpu);
953039c8 705 nid = of_node_to_nid_single(cpu);
482ec7c4 706 of_node_put(cpu);
1da177e4 707
482ec7c4
NL
708 /*
709 * Don't fall back to default_nid yet -- we will plug
710 * cpus into nodes once the memory scan has discovered
711 * the topology.
712 */
713 if (nid < 0)
714 continue;
715 node_set_online(nid);
1da177e4
LT
716 }
717
237a0989 718 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
94db7c5e
AB
719
720 for_each_node_by_type(memory, "memory") {
1da177e4
LT
721 unsigned long start;
722 unsigned long size;
cf950b7a 723 int nid;
1da177e4 724 int ranges;
a7f67bdf 725 const unsigned int *memcell_buf;
1da177e4
LT
726 unsigned int len;
727
e2eb6392 728 memcell_buf = of_get_property(memory,
ba759485
ME
729 "linux,usable-memory", &len);
730 if (!memcell_buf || len <= 0)
e2eb6392 731 memcell_buf = of_get_property(memory, "reg", &len);
1da177e4
LT
732 if (!memcell_buf || len <= 0)
733 continue;
734
cc5d0189
BH
735 /* ranges in cell */
736 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1da177e4
LT
737new_range:
738 /* these are order-sensitive, and modify the buffer pointer */
237a0989
MK
739 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
740 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1da177e4 741
482ec7c4
NL
742 /*
743 * Assumption: either all memory nodes or none will
744 * have associativity properties. If none, then
745 * everything goes to default_nid.
746 */
953039c8 747 nid = of_node_to_nid_single(memory);
482ec7c4
NL
748 if (nid < 0)
749 nid = default_nid;
1daa6d08
BS
750
751 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
482ec7c4 752 node_set_online(nid);
1da177e4 753
45fb6cea 754 if (!(size = numa_enforce_memory_limit(start, size))) {
1da177e4
LT
755 if (--ranges)
756 goto new_range;
757 else
758 continue;
759 }
760
1d7cfe18 761 memblock_set_node(start, size, nid);
1da177e4
LT
762
763 if (--ranges)
764 goto new_range;
765 }
766
0204568a 767 /*
dfbe93a2
AB
768 * Now do the same thing for each MEMBLOCK listed in the
769 * ibm,dynamic-memory property in the
770 * ibm,dynamic-reconfiguration-memory node.
0204568a
PM
771 */
772 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
773 if (memory)
774 parse_drconf_memory(memory);
775
1da177e4
LT
776 return 0;
777}
778
779static void __init setup_nonnuma(void)
780{
95f72d1e
YL
781 unsigned long top_of_ram = memblock_end_of_DRAM();
782 unsigned long total_ram = memblock_phys_mem_size();
c67c3cb4 783 unsigned long start_pfn, end_pfn;
28be7072
BH
784 unsigned int nid = 0;
785 struct memblock_region *reg;
1da177e4 786
e110b281 787 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1da177e4 788 top_of_ram, total_ram);
e110b281 789 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
1da177e4
LT
790 (top_of_ram - total_ram) >> 20);
791
28be7072 792 for_each_memblock(memory, reg) {
c7fc2de0
YL
793 start_pfn = memblock_region_memory_base_pfn(reg);
794 end_pfn = memblock_region_memory_end_pfn(reg);
1daa6d08
BS
795
796 fake_numa_create_new_node(end_pfn, &nid);
1d7cfe18
TH
797 memblock_set_node(PFN_PHYS(start_pfn),
798 PFN_PHYS(end_pfn - start_pfn), nid);
1daa6d08 799 node_set_online(nid);
c67c3cb4 800 }
1da177e4
LT
801}
802
4b703a23
AB
803void __init dump_numa_cpu_topology(void)
804{
805 unsigned int node;
806 unsigned int cpu, count;
807
808 if (min_common_depth == -1 || !numa_enabled)
809 return;
810
811 for_each_online_node(node) {
e110b281 812 printk(KERN_DEBUG "Node %d CPUs:", node);
4b703a23
AB
813
814 count = 0;
815 /*
816 * If we used a CPU iterator here we would miss printing
817 * the holes in the cpumap.
818 */
25863de0
AB
819 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
820 if (cpumask_test_cpu(cpu,
821 node_to_cpumask_map[node])) {
4b703a23
AB
822 if (count == 0)
823 printk(" %u", cpu);
824 ++count;
825 } else {
826 if (count > 1)
827 printk("-%u", cpu - 1);
828 count = 0;
829 }
830 }
831
832 if (count > 1)
25863de0 833 printk("-%u", nr_cpu_ids - 1);
4b703a23
AB
834 printk("\n");
835 }
836}
837
838static void __init dump_numa_memory_topology(void)
1da177e4
LT
839{
840 unsigned int node;
841 unsigned int count;
842
843 if (min_common_depth == -1 || !numa_enabled)
844 return;
845
846 for_each_online_node(node) {
847 unsigned long i;
848
e110b281 849 printk(KERN_DEBUG "Node %d Memory:", node);
1da177e4
LT
850
851 count = 0;
852
95f72d1e 853 for (i = 0; i < memblock_end_of_DRAM();
45fb6cea
AB
854 i += (1 << SECTION_SIZE_BITS)) {
855 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
1da177e4
LT
856 if (count == 0)
857 printk(" 0x%lx", i);
858 ++count;
859 } else {
860 if (count > 0)
861 printk("-0x%lx", i);
862 count = 0;
863 }
864 }
865
866 if (count > 0)
867 printk("-0x%lx", i);
868 printk("\n");
869 }
1da177e4
LT
870}
871
872/*
95f72d1e 873 * Allocate some memory, satisfying the memblock or bootmem allocator where
1da177e4
LT
874 * required. nid is the preferred node and end is the physical address of
875 * the highest address in the node.
876 *
0be210fd 877 * Returns the virtual address of the memory.
1da177e4 878 */
893473df 879static void __init *careful_zallocation(int nid, unsigned long size,
45fb6cea
AB
880 unsigned long align,
881 unsigned long end_pfn)
1da177e4 882{
0be210fd 883 void *ret;
45fb6cea 884 int new_nid;
0be210fd
DH
885 unsigned long ret_paddr;
886
95f72d1e 887 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
1da177e4
LT
888
889 /* retry over all memory */
0be210fd 890 if (!ret_paddr)
95f72d1e 891 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
1da177e4 892
0be210fd 893 if (!ret_paddr)
5d21ea2b 894 panic("numa.c: cannot allocate %lu bytes for node %d",
1da177e4
LT
895 size, nid);
896
0be210fd
DH
897 ret = __va(ret_paddr);
898
1da177e4 899 /*
c555e520 900 * We initialize the nodes in numeric order: 0, 1, 2...
95f72d1e 901 * and hand over control from the MEMBLOCK allocator to the
c555e520
DH
902 * bootmem allocator. If this function is called for
903 * node 5, then we know that all nodes <5 are using the
95f72d1e 904 * bootmem allocator instead of the MEMBLOCK allocator.
c555e520
DH
905 *
906 * So, check the nid from which this allocation came
907 * and double check to see if we need to use bootmem
95f72d1e 908 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
c555e520 909 * since it would be useless.
1da177e4 910 */
0be210fd 911 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
45fb6cea 912 if (new_nid < nid) {
0be210fd 913 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
1da177e4
LT
914 size, align, 0);
915
0be210fd 916 dbg("alloc_bootmem %p %lx\n", ret, size);
1da177e4
LT
917 }
918
893473df 919 memset(ret, 0, size);
0be210fd 920 return ret;
1da177e4
LT
921}
922
74b85f37
CS
923static struct notifier_block __cpuinitdata ppc64_numa_nb = {
924 .notifier_call = cpu_numa_callback,
925 .priority = 1 /* Must run before sched domains notifier. */
926};
927
28e86bdb 928static void __init mark_reserved_regions_for_nid(int nid)
4a618669
DH
929{
930 struct pglist_data *node = NODE_DATA(nid);
28be7072 931 struct memblock_region *reg;
4a618669 932
28be7072
BH
933 for_each_memblock(reserved, reg) {
934 unsigned long physbase = reg->base;
935 unsigned long size = reg->size;
4a618669 936 unsigned long start_pfn = physbase >> PAGE_SHIFT;
06eccea6 937 unsigned long end_pfn = PFN_UP(physbase + size);
4a618669
DH
938 struct node_active_region node_ar;
939 unsigned long node_end_pfn = node->node_start_pfn +
940 node->node_spanned_pages;
941
942 /*
95f72d1e 943 * Check to make sure that this memblock.reserved area is
4a618669
DH
944 * within the bounds of the node that we care about.
945 * Checking the nid of the start and end points is not
946 * sufficient because the reserved area could span the
947 * entire node.
948 */
949 if (end_pfn <= node->node_start_pfn ||
950 start_pfn >= node_end_pfn)
951 continue;
952
953 get_node_active_region(start_pfn, &node_ar);
954 while (start_pfn < end_pfn &&
955 node_ar.start_pfn < node_ar.end_pfn) {
956 unsigned long reserve_size = size;
957 /*
958 * if reserved region extends past active region
959 * then trim size to active region
960 */
961 if (end_pfn > node_ar.end_pfn)
962 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
06eccea6 963 - physbase;
a4c74ddd
DH
964 /*
965 * Only worry about *this* node, others may not
966 * yet have valid NODE_DATA().
967 */
968 if (node_ar.nid == nid) {
969 dbg("reserve_bootmem %lx %lx nid=%d\n",
970 physbase, reserve_size, node_ar.nid);
971 reserve_bootmem_node(NODE_DATA(node_ar.nid),
972 physbase, reserve_size,
973 BOOTMEM_DEFAULT);
974 }
4a618669
DH
975 /*
976 * if reserved region is contained in the active region
977 * then done.
978 */
979 if (end_pfn <= node_ar.end_pfn)
980 break;
981
982 /*
983 * reserved region extends past the active region
984 * get next active region that contains this
985 * reserved region
986 */
987 start_pfn = node_ar.end_pfn;
988 physbase = start_pfn << PAGE_SHIFT;
989 size = size - reserve_size;
990 get_node_active_region(start_pfn, &node_ar);
991 }
992 }
993}
994
995
1da177e4
LT
996void __init do_init_bootmem(void)
997{
998 int nid;
1da177e4
LT
999
1000 min_low_pfn = 0;
95f72d1e 1001 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1da177e4
LT
1002 max_pfn = max_low_pfn;
1003
1004 if (parse_numa_properties())
1005 setup_nonnuma();
1006 else
4b703a23 1007 dump_numa_memory_topology();
1da177e4 1008
1da177e4 1009 for_each_online_node(nid) {
c67c3cb4 1010 unsigned long start_pfn, end_pfn;
0be210fd 1011 void *bootmem_vaddr;
1da177e4
LT
1012 unsigned long bootmap_pages;
1013
c67c3cb4 1014 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1da177e4 1015
4a618669
DH
1016 /*
1017 * Allocate the node structure node local if possible
1018 *
1019 * Be careful moving this around, as it relies on all
1020 * previous nodes' bootmem to be initialized and have
1021 * all reserved areas marked.
1022 */
893473df 1023 NODE_DATA(nid) = careful_zallocation(nid,
1da177e4 1024 sizeof(struct pglist_data),
45fb6cea 1025 SMP_CACHE_BYTES, end_pfn);
1da177e4
LT
1026
1027 dbg("node %d\n", nid);
1028 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1029
b61bfa3c 1030 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
45fb6cea
AB
1031 NODE_DATA(nid)->node_start_pfn = start_pfn;
1032 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1da177e4
LT
1033
1034 if (NODE_DATA(nid)->node_spanned_pages == 0)
1035 continue;
1036
45fb6cea
AB
1037 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1038 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1da177e4 1039
45fb6cea 1040 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
893473df 1041 bootmem_vaddr = careful_zallocation(nid,
45fb6cea
AB
1042 bootmap_pages << PAGE_SHIFT,
1043 PAGE_SIZE, end_pfn);
1da177e4 1044
0be210fd 1045 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1da177e4 1046
0be210fd
DH
1047 init_bootmem_node(NODE_DATA(nid),
1048 __pa(bootmem_vaddr) >> PAGE_SHIFT,
45fb6cea 1049 start_pfn, end_pfn);
1da177e4 1050
c67c3cb4 1051 free_bootmem_with_active_regions(nid, end_pfn);
4a618669
DH
1052 /*
1053 * Be very careful about moving this around. Future
893473df 1054 * calls to careful_zallocation() depend on this getting
4a618669
DH
1055 * done correctly.
1056 */
1057 mark_reserved_regions_for_nid(nid);
8f64e1f2 1058 sparse_memory_present_with_active_regions(nid);
4a618669 1059 }
d3f6204a
BH
1060
1061 init_bootmem_done = 1;
25863de0
AB
1062
1063 /*
1064 * Now bootmem is initialised we can create the node to cpumask
1065 * lookup tables and setup the cpu callback to populate them.
1066 */
1067 setup_node_to_cpumask_map();
1068
1069 register_cpu_notifier(&ppc64_numa_nb);
1070 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1071 (void *)(unsigned long)boot_cpuid);
1da177e4
LT
1072}
1073
1074void __init paging_init(void)
1075{
6391af17
MG
1076 unsigned long max_zone_pfns[MAX_NR_ZONES];
1077 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
95f72d1e 1078 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
c67c3cb4 1079 free_area_init_nodes(max_zone_pfns);
1da177e4
LT
1080}
1081
1082static int __init early_numa(char *p)
1083{
1084 if (!p)
1085 return 0;
1086
1087 if (strstr(p, "off"))
1088 numa_enabled = 0;
1089
1090 if (strstr(p, "debug"))
1091 numa_debug = 1;
1092
1daa6d08
BS
1093 p = strstr(p, "fake=");
1094 if (p)
1095 cmdline = p + strlen("fake=");
1096
1da177e4
LT
1097 return 0;
1098}
1099early_param("numa", early_numa);
237a0989
MK
1100
1101#ifdef CONFIG_MEMORY_HOTPLUG
0db9360a 1102/*
0f16ef7f
NF
1103 * Find the node associated with a hot added memory section for
1104 * memory represented in the device tree by the property
1105 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
0db9360a
NF
1106 */
1107static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1108 unsigned long scn_addr)
1109{
1110 const u32 *dm;
0f16ef7f 1111 unsigned int drconf_cell_cnt, rc;
3fdfd990 1112 unsigned long lmb_size;
0db9360a 1113 struct assoc_arrays aa;
0f16ef7f 1114 int nid = -1;
0db9360a 1115
0f16ef7f
NF
1116 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1117 if (!drconf_cell_cnt)
1118 return -1;
0db9360a 1119
3fdfd990
BH
1120 lmb_size = of_get_lmb_size(memory);
1121 if (!lmb_size)
0f16ef7f 1122 return -1;
0db9360a
NF
1123
1124 rc = of_get_assoc_arrays(memory, &aa);
1125 if (rc)
0f16ef7f 1126 return -1;
0db9360a 1127
0f16ef7f 1128 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
0db9360a
NF
1129 struct of_drconf_cell drmem;
1130
1131 read_drconf_cell(&drmem, &dm);
1132
1133 /* skip this block if it is reserved or not assigned to
1134 * this partition */
1135 if ((drmem.flags & DRCONF_MEM_RESERVED)
1136 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1137 continue;
1138
0f16ef7f 1139 if ((scn_addr < drmem.base_addr)
3fdfd990 1140 || (scn_addr >= (drmem.base_addr + lmb_size)))
0f16ef7f
NF
1141 continue;
1142
0db9360a 1143 nid = of_drconf_to_nid_single(&drmem, &aa);
0f16ef7f
NF
1144 break;
1145 }
1146
1147 return nid;
1148}
1149
1150/*
1151 * Find the node associated with a hot added memory section for memory
1152 * represented in the device tree as a node (i.e. memory@XXXX) for
95f72d1e 1153 * each memblock.
0f16ef7f
NF
1154 */
1155int hot_add_node_scn_to_nid(unsigned long scn_addr)
1156{
94db7c5e 1157 struct device_node *memory;
0f16ef7f
NF
1158 int nid = -1;
1159
94db7c5e 1160 for_each_node_by_type(memory, "memory") {
0f16ef7f
NF
1161 unsigned long start, size;
1162 int ranges;
1163 const unsigned int *memcell_buf;
1164 unsigned int len;
1165
1166 memcell_buf = of_get_property(memory, "reg", &len);
1167 if (!memcell_buf || len <= 0)
1168 continue;
1169
1170 /* ranges in cell */
1171 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1172
1173 while (ranges--) {
1174 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1175 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1176
1177 if ((scn_addr < start) || (scn_addr >= (start + size)))
1178 continue;
1179
1180 nid = of_node_to_nid_single(memory);
1181 break;
1182 }
0db9360a 1183
0f16ef7f
NF
1184 if (nid >= 0)
1185 break;
0db9360a
NF
1186 }
1187
60831842
AB
1188 of_node_put(memory);
1189
0f16ef7f 1190 return nid;
0db9360a
NF
1191}
1192
237a0989
MK
1193/*
1194 * Find the node associated with a hot added memory section. Section
95f72d1e
YL
1195 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1196 * sections are fully contained within a single MEMBLOCK.
237a0989
MK
1197 */
1198int hot_add_scn_to_nid(unsigned long scn_addr)
1199{
1200 struct device_node *memory = NULL;
0f16ef7f 1201 int nid, found = 0;
237a0989
MK
1202
1203 if (!numa_enabled || (min_common_depth < 0))
72c33688 1204 return first_online_node;
0db9360a
NF
1205
1206 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1207 if (memory) {
1208 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1209 of_node_put(memory);
0f16ef7f
NF
1210 } else {
1211 nid = hot_add_node_scn_to_nid(scn_addr);
0db9360a 1212 }
237a0989 1213
0f16ef7f 1214 if (nid < 0 || !node_online(nid))
72c33688 1215 nid = first_online_node;
237a0989 1216
0f16ef7f
NF
1217 if (NODE_DATA(nid)->node_spanned_pages)
1218 return nid;
237a0989 1219
0f16ef7f
NF
1220 for_each_online_node(nid) {
1221 if (NODE_DATA(nid)->node_spanned_pages) {
1222 found = 1;
1223 break;
237a0989 1224 }
237a0989 1225 }
0f16ef7f
NF
1226
1227 BUG_ON(!found);
1228 return nid;
237a0989 1229}
0f16ef7f 1230
cd34206e
NA
1231static u64 hot_add_drconf_memory_max(void)
1232{
1233 struct device_node *memory = NULL;
1234 unsigned int drconf_cell_cnt = 0;
1235 u64 lmb_size = 0;
1236 const u32 *dm = 0;
1237
1238 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1239 if (memory) {
1240 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1241 lmb_size = of_get_lmb_size(memory);
1242 of_node_put(memory);
1243 }
1244 return lmb_size * drconf_cell_cnt;
1245}
1246
1247/*
1248 * memory_hotplug_max - return max address of memory that may be added
1249 *
1250 * This is currently only used on systems that support drconfig memory
1251 * hotplug.
1252 */
1253u64 memory_hotplug_max(void)
1254{
1255 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1256}
237a0989 1257#endif /* CONFIG_MEMORY_HOTPLUG */
9eff1a38 1258
bd03403a 1259/* Virtual Processor Home Node (VPHN) support */
39bf990e 1260#ifdef CONFIG_PPC_SPLPAR
30c05350
NF
1261struct topology_update_data {
1262 struct topology_update_data *next;
1263 unsigned int cpu;
1264 int old_nid;
1265 int new_nid;
1266};
1267
5de16699 1268static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
9eff1a38
JL
1269static cpumask_t cpu_associativity_changes_mask;
1270static int vphn_enabled;
5d88aa85
JL
1271static int prrn_enabled;
1272static void reset_topology_timer(void);
9eff1a38
JL
1273
1274/*
1275 * Store the current values of the associativity change counters in the
1276 * hypervisor.
1277 */
1278static void setup_cpu_associativity_change_counters(void)
1279{
cd9d6cc7 1280 int cpu;
9eff1a38 1281
5de16699
AB
1282 /* The VPHN feature supports a maximum of 8 reference points */
1283 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1284
9eff1a38 1285 for_each_possible_cpu(cpu) {
cd9d6cc7 1286 int i;
9eff1a38
JL
1287 u8 *counts = vphn_cpu_change_counts[cpu];
1288 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1289
5de16699 1290 for (i = 0; i < distance_ref_points_depth; i++)
9eff1a38 1291 counts[i] = hypervisor_counts[i];
9eff1a38
JL
1292 }
1293}
1294
1295/*
1296 * The hypervisor maintains a set of 8 associativity change counters in
1297 * the VPA of each cpu that correspond to the associativity levels in the
1298 * ibm,associativity-reference-points property. When an associativity
1299 * level changes, the corresponding counter is incremented.
1300 *
1301 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1302 * node associativity levels have changed.
1303 *
1304 * Returns the number of cpus with unhandled associativity changes.
1305 */
1306static int update_cpu_associativity_changes_mask(void)
1307{
5d88aa85 1308 int cpu;
9eff1a38
JL
1309 cpumask_t *changes = &cpu_associativity_changes_mask;
1310
9eff1a38
JL
1311 for_each_possible_cpu(cpu) {
1312 int i, changed = 0;
1313 u8 *counts = vphn_cpu_change_counts[cpu];
1314 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1315
5de16699 1316 for (i = 0; i < distance_ref_points_depth; i++) {
d69043e8 1317 if (hypervisor_counts[i] != counts[i]) {
9eff1a38
JL
1318 counts[i] = hypervisor_counts[i];
1319 changed = 1;
1320 }
1321 }
1322 if (changed) {
02779870
RJ
1323 cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1324 cpu = cpu_last_thread_sibling(cpu);
9eff1a38
JL
1325 }
1326 }
1327
5d88aa85 1328 return cpumask_weight(changes);
9eff1a38
JL
1329}
1330
c0e5e46f
AB
1331/*
1332 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1333 * the complete property we have to add the length in the first cell.
1334 */
1335#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
9eff1a38
JL
1336
1337/*
1338 * Convert the associativity domain numbers returned from the hypervisor
1339 * to the sequence they would appear in the ibm,associativity property.
1340 */
1341static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1342{
cd9d6cc7 1343 int i, nr_assoc_doms = 0;
9eff1a38
JL
1344 const u16 *field = (const u16*) packed;
1345
1346#define VPHN_FIELD_UNUSED (0xffff)
1347#define VPHN_FIELD_MSB (0x8000)
1348#define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1349
c0e5e46f 1350 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
9eff1a38
JL
1351 if (*field == VPHN_FIELD_UNUSED) {
1352 /* All significant fields processed, and remaining
1353 * fields contain the reserved value of all 1's.
1354 * Just store them.
1355 */
1356 unpacked[i] = *((u32*)field);
1357 field += 2;
7639adaa 1358 } else if (*field & VPHN_FIELD_MSB) {
9eff1a38
JL
1359 /* Data is in the lower 15 bits of this field */
1360 unpacked[i] = *field & VPHN_FIELD_MASK;
1361 field++;
1362 nr_assoc_doms++;
7639adaa 1363 } else {
9eff1a38
JL
1364 /* Data is in the lower 15 bits of this field
1365 * concatenated with the next 16 bit field
1366 */
1367 unpacked[i] = *((u32*)field);
1368 field += 2;
1369 nr_assoc_doms++;
1370 }
1371 }
1372
c0e5e46f
AB
1373 /* The first cell contains the length of the property */
1374 unpacked[0] = nr_assoc_doms;
1375
9eff1a38
JL
1376 return nr_assoc_doms;
1377}
1378
1379/*
1380 * Retrieve the new associativity information for a virtual processor's
1381 * home node.
1382 */
1383static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1384{
cd9d6cc7 1385 long rc;
9eff1a38
JL
1386 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1387 u64 flags = 1;
1388 int hwcpu = get_hard_smp_processor_id(cpu);
1389
1390 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1391 vphn_unpack_associativity(retbuf, associativity);
1392
1393 return rc;
1394}
1395
1396static long vphn_get_associativity(unsigned long cpu,
1397 unsigned int *associativity)
1398{
cd9d6cc7 1399 long rc;
9eff1a38
JL
1400
1401 rc = hcall_vphn(cpu, associativity);
1402
1403 switch (rc) {
1404 case H_FUNCTION:
1405 printk(KERN_INFO
1406 "VPHN is not supported. Disabling polling...\n");
1407 stop_topology_update();
1408 break;
1409 case H_HARDWARE:
1410 printk(KERN_ERR
1411 "hcall_vphn() experienced a hardware fault "
1412 "preventing VPHN. Disabling polling...\n");
1413 stop_topology_update();
1414 }
1415
1416 return rc;
1417}
1418
30c05350
NF
1419/*
1420 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1421 * characteristics change. This function doesn't perform any locking and is
1422 * only safe to call from stop_machine().
1423 */
1424static int update_cpu_topology(void *data)
1425{
1426 struct topology_update_data *update;
1427 unsigned long cpu;
1428
1429 if (!data)
1430 return -EINVAL;
1431
02779870 1432 cpu = smp_processor_id();
30c05350
NF
1433
1434 for (update = data; update; update = update->next) {
1435 if (cpu != update->cpu)
1436 continue;
1437
30c05350
NF
1438 unmap_cpu_from_node(update->cpu);
1439 map_cpu_to_node(update->cpu, update->new_nid);
176bbf14 1440 vdso_getcpu_init();
30c05350
NF
1441 }
1442
1443 return 0;
1444}
1445
9eff1a38
JL
1446/*
1447 * Update the node maps and sysfs entries for each cpu whose home node
79c5fceb 1448 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
9eff1a38
JL
1449 */
1450int arch_update_cpu_topology(void)
1451{
02779870 1452 unsigned int cpu, sibling, changed = 0;
30c05350 1453 struct topology_update_data *updates, *ud;
9eff1a38 1454 unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
176bbf14 1455 cpumask_t updated_cpus;
8a25a2fd 1456 struct device *dev;
02779870 1457 int weight, new_nid, i = 0;
9eff1a38 1458
30c05350
NF
1459 weight = cpumask_weight(&cpu_associativity_changes_mask);
1460 if (!weight)
1461 return 0;
1462
1463 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1464 if (!updates)
1465 return 0;
9eff1a38 1466
176bbf14
JL
1467 cpumask_clear(&updated_cpus);
1468
5d88aa85 1469 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
02779870
RJ
1470 /*
1471 * If siblings aren't flagged for changes, updates list
1472 * will be too short. Skip on this update and set for next
1473 * update.
1474 */
1475 if (!cpumask_subset(cpu_sibling_mask(cpu),
1476 &cpu_associativity_changes_mask)) {
1477 pr_info("Sibling bits not set for associativity "
1478 "change, cpu%d\n", cpu);
1479 cpumask_or(&cpu_associativity_changes_mask,
1480 &cpu_associativity_changes_mask,
1481 cpu_sibling_mask(cpu));
1482 cpu = cpu_last_thread_sibling(cpu);
1483 continue;
1484 }
9eff1a38 1485
02779870
RJ
1486 /* Use associativity from first thread for all siblings */
1487 vphn_get_associativity(cpu, associativity);
1488 new_nid = associativity_to_nid(associativity);
1489 if (new_nid < 0 || !node_online(new_nid))
1490 new_nid = first_online_node;
1491
1492 if (new_nid == numa_cpu_lookup_table[cpu]) {
1493 cpumask_andnot(&cpu_associativity_changes_mask,
1494 &cpu_associativity_changes_mask,
1495 cpu_sibling_mask(cpu));
1496 cpu = cpu_last_thread_sibling(cpu);
1497 continue;
1498 }
9eff1a38 1499
02779870
RJ
1500 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1501 ud = &updates[i++];
1502 ud->cpu = sibling;
1503 ud->new_nid = new_nid;
1504 ud->old_nid = numa_cpu_lookup_table[sibling];
1505 cpumask_set_cpu(sibling, &updated_cpus);
1506 if (i < weight)
1507 ud->next = &updates[i];
1508 }
1509 cpu = cpu_last_thread_sibling(cpu);
30c05350
NF
1510 }
1511
176bbf14 1512 stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
30c05350
NF
1513
1514 for (ud = &updates[0]; ud; ud = ud->next) {
910a1658
NF
1515 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1516 register_cpu_under_node(ud->cpu, ud->new_nid);
1517
30c05350 1518 dev = get_cpu_device(ud->cpu);
8a25a2fd
KS
1519 if (dev)
1520 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
30c05350 1521 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
79c5fceb 1522 changed = 1;
9eff1a38
JL
1523 }
1524
30c05350 1525 kfree(updates);
79c5fceb 1526 return changed;
9eff1a38
JL
1527}
1528
1529static void topology_work_fn(struct work_struct *work)
1530{
1531 rebuild_sched_domains();
1532}
1533static DECLARE_WORK(topology_work, topology_work_fn);
1534
1535void topology_schedule_update(void)
1536{
1537 schedule_work(&topology_work);
1538}
1539
1540static void topology_timer_fn(unsigned long ignored)
1541{
5d88aa85 1542 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
9eff1a38 1543 topology_schedule_update();
5d88aa85
JL
1544 else if (vphn_enabled) {
1545 if (update_cpu_associativity_changes_mask() > 0)
1546 topology_schedule_update();
1547 reset_topology_timer();
1548 }
9eff1a38
JL
1549}
1550static struct timer_list topology_timer =
1551 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1552
5d88aa85 1553static void reset_topology_timer(void)
9eff1a38
JL
1554{
1555 topology_timer.data = 0;
1556 topology_timer.expires = jiffies + 60 * HZ;
5d88aa85 1557 mod_timer(&topology_timer, topology_timer.expires);
9eff1a38
JL
1558}
1559
601abdc3
NF
1560#ifdef CONFIG_SMP
1561
5d88aa85
JL
1562static void stage_topology_update(int core_id)
1563{
1564 cpumask_or(&cpu_associativity_changes_mask,
1565 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1566 reset_topology_timer();
1567}
1568
1569static int dt_update_callback(struct notifier_block *nb,
1570 unsigned long action, void *data)
1571{
1572 struct of_prop_reconfig *update;
1573 int rc = NOTIFY_DONE;
1574
1575 switch (action) {
5d88aa85
JL
1576 case OF_RECONFIG_UPDATE_PROPERTY:
1577 update = (struct of_prop_reconfig *)data;
30c05350
NF
1578 if (!of_prop_cmp(update->dn->type, "cpu") &&
1579 !of_prop_cmp(update->prop->name, "ibm,associativity")) {
5d88aa85
JL
1580 u32 core_id;
1581 of_property_read_u32(update->dn, "reg", &core_id);
1582 stage_topology_update(core_id);
1583 rc = NOTIFY_OK;
1584 }
1585 break;
1586 }
1587
1588 return rc;
9eff1a38
JL
1589}
1590
5d88aa85
JL
1591static struct notifier_block dt_update_nb = {
1592 .notifier_call = dt_update_callback,
1593};
1594
601abdc3
NF
1595#endif
1596
9eff1a38 1597/*
5d88aa85 1598 * Start polling for associativity changes.
9eff1a38
JL
1599 */
1600int start_topology_update(void)
1601{
1602 int rc = 0;
1603
5d88aa85
JL
1604 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1605 if (!prrn_enabled) {
1606 prrn_enabled = 1;
1607 vphn_enabled = 0;
601abdc3 1608#ifdef CONFIG_SMP
5d88aa85 1609 rc = of_reconfig_notifier_register(&dt_update_nb);
601abdc3 1610#endif
5d88aa85 1611 }
b7abef04 1612 } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
5d88aa85 1613 get_lppaca()->shared_proc) {
5d88aa85
JL
1614 if (!vphn_enabled) {
1615 prrn_enabled = 0;
1616 vphn_enabled = 1;
1617 setup_cpu_associativity_change_counters();
1618 init_timer_deferrable(&topology_timer);
1619 reset_topology_timer();
1620 }
9eff1a38
JL
1621 }
1622
1623 return rc;
1624}
9eff1a38
JL
1625
1626/*
1627 * Disable polling for VPHN associativity changes.
1628 */
1629int stop_topology_update(void)
1630{
5d88aa85
JL
1631 int rc = 0;
1632
1633 if (prrn_enabled) {
1634 prrn_enabled = 0;
601abdc3 1635#ifdef CONFIG_SMP
5d88aa85 1636 rc = of_reconfig_notifier_unregister(&dt_update_nb);
601abdc3 1637#endif
5d88aa85
JL
1638 } else if (vphn_enabled) {
1639 vphn_enabled = 0;
1640 rc = del_timer_sync(&topology_timer);
1641 }
1642
1643 return rc;
9eff1a38 1644}
e04fa612
NF
1645
1646int prrn_is_enabled(void)
1647{
1648 return prrn_enabled;
1649}
1650
1651static int topology_read(struct seq_file *file, void *v)
1652{
1653 if (vphn_enabled || prrn_enabled)
1654 seq_puts(file, "on\n");
1655 else
1656 seq_puts(file, "off\n");
1657
1658 return 0;
1659}
1660
1661static int topology_open(struct inode *inode, struct file *file)
1662{
1663 return single_open(file, topology_read, NULL);
1664}
1665
1666static ssize_t topology_write(struct file *file, const char __user *buf,
1667 size_t count, loff_t *off)
1668{
1669 char kbuf[4]; /* "on" or "off" plus null. */
1670 int read_len;
1671
1672 read_len = count < 3 ? count : 3;
1673 if (copy_from_user(kbuf, buf, read_len))
1674 return -EINVAL;
1675
1676 kbuf[read_len] = '\0';
1677
1678 if (!strncmp(kbuf, "on", 2))
1679 start_topology_update();
1680 else if (!strncmp(kbuf, "off", 3))
1681 stop_topology_update();
1682 else
1683 return -EINVAL;
1684
1685 return count;
1686}
1687
1688static const struct file_operations topology_ops = {
1689 .read = seq_read,
1690 .write = topology_write,
1691 .open = topology_open,
1692 .release = single_release
1693};
1694
1695static int topology_update_init(void)
1696{
1697 start_topology_update();
1698 proc_create("powerpc/topology_updates", 644, NULL, &topology_ops);
1699
1700 return 0;
9eff1a38 1701}
e04fa612 1702device_initcall(topology_update_init);
39bf990e 1703#endif /* CONFIG_PPC_SPLPAR */