powerpc/booke: Remove obsolete macro FINISH_EXCEPTION
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / arch / powerpc / mm / numa.c
CommitLineData
1da177e4
LT
1/*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11#include <linux/threads.h>
12#include <linux/bootmem.h>
13#include <linux/init.h>
14#include <linux/mm.h>
15#include <linux/mmzone.h>
4b16f8e2 16#include <linux/export.h>
1da177e4
LT
17#include <linux/nodemask.h>
18#include <linux/cpu.h>
19#include <linux/notifier.h>
95f72d1e 20#include <linux/memblock.h>
6df1646e 21#include <linux/of.h>
06eccea6 22#include <linux/pfn.h>
9eff1a38
JL
23#include <linux/cpuset.h>
24#include <linux/node.h>
30c05350 25#include <linux/stop_machine.h>
e04fa612
NF
26#include <linux/proc_fs.h>
27#include <linux/seq_file.h>
28#include <linux/uaccess.h>
9f3a90e8 29#include <linux/slab.h>
45fb6cea 30#include <asm/sparsemem.h>
d9b2b2a2 31#include <asm/prom.h>
2249ca9d 32#include <asm/smp.h>
9eff1a38
JL
33#include <asm/firmware.h>
34#include <asm/paca.h>
39bf990e 35#include <asm/hvcall.h>
ae3a197e 36#include <asm/setup.h>
176bbf14 37#include <asm/vdso.h>
1da177e4
LT
38
39static int numa_enabled = 1;
40
1daa6d08
BS
41static char *cmdline __initdata;
42
1da177e4
LT
43static int numa_debug;
44#define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
45
45fb6cea 46int numa_cpu_lookup_table[NR_CPUS];
25863de0 47cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
1da177e4 48struct pglist_data *node_data[MAX_NUMNODES];
45fb6cea
AB
49
50EXPORT_SYMBOL(numa_cpu_lookup_table);
25863de0 51EXPORT_SYMBOL(node_to_cpumask_map);
45fb6cea
AB
52EXPORT_SYMBOL(node_data);
53
1da177e4 54static int min_common_depth;
237a0989 55static int n_mem_addr_cells, n_mem_size_cells;
41eab6f8
AB
56static int form1_affinity;
57
58#define MAX_DISTANCE_REF_POINTS 4
59static int distance_ref_points_depth;
60static const unsigned int *distance_ref_points;
61static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
1da177e4 62
25863de0
AB
63/*
64 * Allocate node_to_cpumask_map based on number of available nodes
65 * Requires node_possible_map to be valid.
66 *
9512938b 67 * Note: cpumask_of_node() is not valid until after this is done.
25863de0
AB
68 */
69static void __init setup_node_to_cpumask_map(void)
70{
71 unsigned int node, num = 0;
72
73 /* setup nr_node_ids if not done yet */
74 if (nr_node_ids == MAX_NUMNODES) {
75 for_each_node_mask(node, node_possible_map)
76 num = node;
77 nr_node_ids = num + 1;
78 }
79
80 /* allocate the map */
81 for (node = 0; node < nr_node_ids; node++)
82 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
83
84 /* cpumask_of_node() will now work */
85 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
86}
87
55671f3c 88static int __init fake_numa_create_new_node(unsigned long end_pfn,
1daa6d08
BS
89 unsigned int *nid)
90{
91 unsigned long long mem;
92 char *p = cmdline;
93 static unsigned int fake_nid;
94 static unsigned long long curr_boundary;
95
96 /*
97 * Modify node id, iff we started creating NUMA nodes
98 * We want to continue from where we left of the last time
99 */
100 if (fake_nid)
101 *nid = fake_nid;
102 /*
103 * In case there are no more arguments to parse, the
104 * node_id should be the same as the last fake node id
105 * (we've handled this above).
106 */
107 if (!p)
108 return 0;
109
110 mem = memparse(p, &p);
111 if (!mem)
112 return 0;
113
114 if (mem < curr_boundary)
115 return 0;
116
117 curr_boundary = mem;
118
119 if ((end_pfn << PAGE_SHIFT) > mem) {
120 /*
121 * Skip commas and spaces
122 */
123 while (*p == ',' || *p == ' ' || *p == '\t')
124 p++;
125
126 cmdline = p;
127 fake_nid++;
128 *nid = fake_nid;
129 dbg("created new fake_node with id %d\n", fake_nid);
130 return 1;
131 }
132 return 0;
133}
134
8f64e1f2 135/*
5dfe8660 136 * get_node_active_region - Return active region containing pfn
e8170372 137 * Active range returned is empty if none found.
5dfe8660
TH
138 * @pfn: The page to return the region for
139 * @node_ar: Returned set to the active region containing @pfn
8f64e1f2 140 */
5dfe8660
TH
141static void __init get_node_active_region(unsigned long pfn,
142 struct node_active_region *node_ar)
8f64e1f2 143{
5dfe8660
TH
144 unsigned long start_pfn, end_pfn;
145 int i, nid;
146
147 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
148 if (pfn >= start_pfn && pfn < end_pfn) {
149 node_ar->nid = nid;
150 node_ar->start_pfn = start_pfn;
151 node_ar->end_pfn = end_pfn;
152 break;
153 }
154 }
8f64e1f2
JT
155}
156
39bf990e 157static void map_cpu_to_node(int cpu, int node)
1da177e4
LT
158{
159 numa_cpu_lookup_table[cpu] = node;
45fb6cea 160
bf4b85b0
NL
161 dbg("adding cpu %d to node %d\n", cpu, node);
162
25863de0
AB
163 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
164 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
165}
166
39bf990e 167#if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
1da177e4
LT
168static void unmap_cpu_from_node(unsigned long cpu)
169{
170 int node = numa_cpu_lookup_table[cpu];
171
172 dbg("removing cpu %lu from node %d\n", cpu, node);
173
25863de0 174 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
429f4d8d 175 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
1da177e4
LT
176 } else {
177 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
178 cpu, node);
179 }
180}
39bf990e 181#endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
1da177e4 182
1da177e4 183/* must hold reference to node during call */
a7f67bdf 184static const int *of_get_associativity(struct device_node *dev)
1da177e4 185{
e2eb6392 186 return of_get_property(dev, "ibm,associativity", NULL);
1da177e4
LT
187}
188
cf00085d
C
189/*
190 * Returns the property linux,drconf-usable-memory if
191 * it exists (the property exists only in kexec/kdump kernels,
192 * added by kexec-tools)
193 */
194static const u32 *of_get_usable_memory(struct device_node *memory)
195{
196 const u32 *prop;
197 u32 len;
198 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
199 if (!prop || len < sizeof(unsigned int))
200 return 0;
201 return prop;
202}
203
41eab6f8
AB
204int __node_distance(int a, int b)
205{
206 int i;
207 int distance = LOCAL_DISTANCE;
208
209 if (!form1_affinity)
7122beee 210 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
41eab6f8
AB
211
212 for (i = 0; i < distance_ref_points_depth; i++) {
213 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
214 break;
215
216 /* Double the distance for each NUMA level */
217 distance *= 2;
218 }
219
220 return distance;
221}
222
223static void initialize_distance_lookup_table(int nid,
224 const unsigned int *associativity)
225{
226 int i;
227
228 if (!form1_affinity)
229 return;
230
231 for (i = 0; i < distance_ref_points_depth; i++) {
232 distance_lookup_table[nid][i] =
233 associativity[distance_ref_points[i]];
234 }
235}
236
482ec7c4
NL
237/* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
238 * info is found.
239 */
9eff1a38 240static int associativity_to_nid(const unsigned int *associativity)
1da177e4 241{
482ec7c4 242 int nid = -1;
1da177e4
LT
243
244 if (min_common_depth == -1)
482ec7c4 245 goto out;
1da177e4 246
9eff1a38
JL
247 if (associativity[0] >= min_common_depth)
248 nid = associativity[min_common_depth];
bc16a759
NL
249
250 /* POWER4 LPAR uses 0xffff as invalid node */
482ec7c4
NL
251 if (nid == 0xffff || nid >= MAX_NUMNODES)
252 nid = -1;
41eab6f8 253
9eff1a38
JL
254 if (nid > 0 && associativity[0] >= distance_ref_points_depth)
255 initialize_distance_lookup_table(nid, associativity);
41eab6f8 256
482ec7c4 257out:
cf950b7a 258 return nid;
1da177e4
LT
259}
260
9eff1a38
JL
261/* Returns the nid associated with the given device tree node,
262 * or -1 if not found.
263 */
264static int of_node_to_nid_single(struct device_node *device)
265{
266 int nid = -1;
267 const unsigned int *tmp;
268
269 tmp = of_get_associativity(device);
270 if (tmp)
271 nid = associativity_to_nid(tmp);
272 return nid;
273}
274
953039c8
JK
275/* Walk the device tree upwards, looking for an associativity id */
276int of_node_to_nid(struct device_node *device)
277{
278 struct device_node *tmp;
279 int nid = -1;
280
281 of_node_get(device);
282 while (device) {
283 nid = of_node_to_nid_single(device);
284 if (nid != -1)
285 break;
286
287 tmp = device;
288 device = of_get_parent(tmp);
289 of_node_put(tmp);
290 }
291 of_node_put(device);
292
293 return nid;
294}
295EXPORT_SYMBOL_GPL(of_node_to_nid);
296
1da177e4
LT
297static int __init find_min_common_depth(void)
298{
41eab6f8 299 int depth;
e70606eb 300 struct device_node *root;
1da177e4 301
1c8ee733
DS
302 if (firmware_has_feature(FW_FEATURE_OPAL))
303 root = of_find_node_by_path("/ibm,opal");
304 else
305 root = of_find_node_by_path("/rtas");
e70606eb
ME
306 if (!root)
307 root = of_find_node_by_path("/");
1da177e4
LT
308
309 /*
41eab6f8
AB
310 * This property is a set of 32-bit integers, each representing
311 * an index into the ibm,associativity nodes.
312 *
313 * With form 0 affinity the first integer is for an SMP configuration
314 * (should be all 0's) and the second is for a normal NUMA
315 * configuration. We have only one level of NUMA.
316 *
317 * With form 1 affinity the first integer is the most significant
318 * NUMA boundary and the following are progressively less significant
319 * boundaries. There can be more than one level of NUMA.
1da177e4 320 */
e70606eb 321 distance_ref_points = of_get_property(root,
41eab6f8
AB
322 "ibm,associativity-reference-points",
323 &distance_ref_points_depth);
324
325 if (!distance_ref_points) {
326 dbg("NUMA: ibm,associativity-reference-points not found.\n");
327 goto err;
328 }
329
330 distance_ref_points_depth /= sizeof(int);
1da177e4 331
8002b0c5
NF
332 if (firmware_has_feature(FW_FEATURE_OPAL) ||
333 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
334 dbg("Using form 1 affinity\n");
1c8ee733 335 form1_affinity = 1;
4b83c330
AB
336 }
337
41eab6f8
AB
338 if (form1_affinity) {
339 depth = distance_ref_points[0];
1da177e4 340 } else {
41eab6f8
AB
341 if (distance_ref_points_depth < 2) {
342 printk(KERN_WARNING "NUMA: "
343 "short ibm,associativity-reference-points\n");
344 goto err;
345 }
346
347 depth = distance_ref_points[1];
1da177e4 348 }
1da177e4 349
41eab6f8
AB
350 /*
351 * Warn and cap if the hardware supports more than
352 * MAX_DISTANCE_REF_POINTS domains.
353 */
354 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
355 printk(KERN_WARNING "NUMA: distance array capped at "
356 "%d entries\n", MAX_DISTANCE_REF_POINTS);
357 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
358 }
359
e70606eb 360 of_node_put(root);
1da177e4 361 return depth;
41eab6f8
AB
362
363err:
e70606eb 364 of_node_put(root);
41eab6f8 365 return -1;
1da177e4
LT
366}
367
84c9fdd1 368static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
1da177e4
LT
369{
370 struct device_node *memory = NULL;
1da177e4
LT
371
372 memory = of_find_node_by_type(memory, "memory");
54c23310 373 if (!memory)
84c9fdd1 374 panic("numa.c: No memory nodes found!");
54c23310 375
a8bda5dd 376 *n_addr_cells = of_n_addr_cells(memory);
9213feea 377 *n_size_cells = of_n_size_cells(memory);
84c9fdd1 378 of_node_put(memory);
1da177e4
LT
379}
380
2011b1d0 381static unsigned long read_n_cells(int n, const unsigned int **buf)
1da177e4
LT
382{
383 unsigned long result = 0;
384
385 while (n--) {
386 result = (result << 32) | **buf;
387 (*buf)++;
388 }
389 return result;
390}
391
8342681d 392/*
95f72d1e 393 * Read the next memblock list entry from the ibm,dynamic-memory property
8342681d
NF
394 * and return the information in the provided of_drconf_cell structure.
395 */
396static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
397{
398 const u32 *cp;
399
400 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
401
402 cp = *cellp;
403 drmem->drc_index = cp[0];
404 drmem->reserved = cp[1];
405 drmem->aa_index = cp[2];
406 drmem->flags = cp[3];
407
408 *cellp = cp + 4;
409}
410
411/*
25985edc 412 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
8342681d 413 *
95f72d1e
YL
414 * The layout of the ibm,dynamic-memory property is a number N of memblock
415 * list entries followed by N memblock list entries. Each memblock list entry
25985edc 416 * contains information as laid out in the of_drconf_cell struct above.
8342681d
NF
417 */
418static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
419{
420 const u32 *prop;
421 u32 len, entries;
422
423 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
424 if (!prop || len < sizeof(unsigned int))
425 return 0;
426
427 entries = *prop++;
428
429 /* Now that we know the number of entries, revalidate the size
430 * of the property read in to ensure we have everything
431 */
432 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
433 return 0;
434
435 *dm = prop;
436 return entries;
437}
438
439/*
25985edc 440 * Retrieve and validate the ibm,lmb-size property for drconf memory
8342681d
NF
441 * from the device tree.
442 */
3fdfd990 443static u64 of_get_lmb_size(struct device_node *memory)
8342681d
NF
444{
445 const u32 *prop;
446 u32 len;
447
3fdfd990 448 prop = of_get_property(memory, "ibm,lmb-size", &len);
8342681d
NF
449 if (!prop || len < sizeof(unsigned int))
450 return 0;
451
452 return read_n_cells(n_mem_size_cells, &prop);
453}
454
455struct assoc_arrays {
456 u32 n_arrays;
457 u32 array_sz;
458 const u32 *arrays;
459};
460
461/*
25985edc 462 * Retrieve and validate the list of associativity arrays for drconf
8342681d
NF
463 * memory from the ibm,associativity-lookup-arrays property of the
464 * device tree..
465 *
466 * The layout of the ibm,associativity-lookup-arrays property is a number N
467 * indicating the number of associativity arrays, followed by a number M
468 * indicating the size of each associativity array, followed by a list
469 * of N associativity arrays.
470 */
471static int of_get_assoc_arrays(struct device_node *memory,
472 struct assoc_arrays *aa)
473{
474 const u32 *prop;
475 u32 len;
476
477 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
478 if (!prop || len < 2 * sizeof(unsigned int))
479 return -1;
480
481 aa->n_arrays = *prop++;
482 aa->array_sz = *prop++;
483
42b2aa86 484 /* Now that we know the number of arrays and size of each array,
8342681d
NF
485 * revalidate the size of the property read in.
486 */
487 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
488 return -1;
489
490 aa->arrays = prop;
491 return 0;
492}
493
494/*
495 * This is like of_node_to_nid_single() for memory represented in the
496 * ibm,dynamic-reconfiguration-memory node.
497 */
498static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
499 struct assoc_arrays *aa)
500{
501 int default_nid = 0;
502 int nid = default_nid;
503 int index;
504
505 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
506 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
507 drmem->aa_index < aa->n_arrays) {
508 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
509 nid = aa->arrays[index];
510
511 if (nid == 0xffff || nid >= MAX_NUMNODES)
512 nid = default_nid;
513 }
514
515 return nid;
516}
517
1da177e4
LT
518/*
519 * Figure out to which domain a cpu belongs and stick it there.
520 * Return the id of the domain used.
521 */
2e5ce39d 522static int __cpuinit numa_setup_cpu(unsigned long lcpu)
1da177e4 523{
cf950b7a 524 int nid = 0;
8b16cd23 525 struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
1da177e4
LT
526
527 if (!cpu) {
528 WARN_ON(1);
529 goto out;
530 }
531
953039c8 532 nid = of_node_to_nid_single(cpu);
1da177e4 533
482ec7c4 534 if (nid < 0 || !node_online(nid))
72c33688 535 nid = first_online_node;
1da177e4 536out:
cf950b7a 537 map_cpu_to_node(lcpu, nid);
1da177e4
LT
538
539 of_node_put(cpu);
540
cf950b7a 541 return nid;
1da177e4
LT
542}
543
74b85f37 544static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
1da177e4
LT
545 unsigned long action,
546 void *hcpu)
547{
548 unsigned long lcpu = (unsigned long)hcpu;
549 int ret = NOTIFY_DONE;
550
551 switch (action) {
552 case CPU_UP_PREPARE:
8bb78442 553 case CPU_UP_PREPARE_FROZEN:
2b261227 554 numa_setup_cpu(lcpu);
1da177e4
LT
555 ret = NOTIFY_OK;
556 break;
557#ifdef CONFIG_HOTPLUG_CPU
558 case CPU_DEAD:
8bb78442 559 case CPU_DEAD_FROZEN:
1da177e4 560 case CPU_UP_CANCELED:
8bb78442 561 case CPU_UP_CANCELED_FROZEN:
1da177e4
LT
562 unmap_cpu_from_node(lcpu);
563 break;
564 ret = NOTIFY_OK;
565#endif
566 }
567 return ret;
568}
569
570/*
571 * Check and possibly modify a memory region to enforce the memory limit.
572 *
573 * Returns the size the region should have to enforce the memory limit.
574 * This will either be the original value of size, a truncated value,
575 * or zero. If the returned value of size is 0 the region should be
25985edc 576 * discarded as it lies wholly above the memory limit.
1da177e4 577 */
45fb6cea
AB
578static unsigned long __init numa_enforce_memory_limit(unsigned long start,
579 unsigned long size)
1da177e4
LT
580{
581 /*
95f72d1e 582 * We use memblock_end_of_DRAM() in here instead of memory_limit because
1da177e4 583 * we've already adjusted it for the limit and it takes care of
fe55249d
MM
584 * having memory holes below the limit. Also, in the case of
585 * iommu_is_off, memory_limit is not set but is implicitly enforced.
1da177e4 586 */
1da177e4 587
95f72d1e 588 if (start + size <= memblock_end_of_DRAM())
1da177e4
LT
589 return size;
590
95f72d1e 591 if (start >= memblock_end_of_DRAM())
1da177e4
LT
592 return 0;
593
95f72d1e 594 return memblock_end_of_DRAM() - start;
1da177e4
LT
595}
596
cf00085d
C
597/*
598 * Reads the counter for a given entry in
599 * linux,drconf-usable-memory property
600 */
601static inline int __init read_usm_ranges(const u32 **usm)
602{
603 /*
3fdfd990 604 * For each lmb in ibm,dynamic-memory a corresponding
cf00085d
C
605 * entry in linux,drconf-usable-memory property contains
606 * a counter followed by that many (base, size) duple.
607 * read the counter from linux,drconf-usable-memory
608 */
609 return read_n_cells(n_mem_size_cells, usm);
610}
611
0204568a
PM
612/*
613 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
614 * node. This assumes n_mem_{addr,size}_cells have been set.
615 */
616static void __init parse_drconf_memory(struct device_node *memory)
617{
82b2521d 618 const u32 *uninitialized_var(dm), *usm;
cf00085d 619 unsigned int n, rc, ranges, is_kexec_kdump = 0;
3fdfd990 620 unsigned long lmb_size, base, size, sz;
8342681d 621 int nid;
aa709f3b 622 struct assoc_arrays aa = { .arrays = NULL };
8342681d
NF
623
624 n = of_get_drconf_memory(memory, &dm);
625 if (!n)
0204568a
PM
626 return;
627
3fdfd990
BH
628 lmb_size = of_get_lmb_size(memory);
629 if (!lmb_size)
8342681d
NF
630 return;
631
632 rc = of_get_assoc_arrays(memory, &aa);
633 if (rc)
0204568a
PM
634 return;
635
cf00085d
C
636 /* check if this is a kexec/kdump kernel */
637 usm = of_get_usable_memory(memory);
638 if (usm != NULL)
639 is_kexec_kdump = 1;
640
0204568a 641 for (; n != 0; --n) {
8342681d
NF
642 struct of_drconf_cell drmem;
643
644 read_drconf_cell(&drmem, &dm);
645
646 /* skip this block if the reserved bit is set in flags (0x80)
647 or if the block is not assigned to this partition (0x8) */
648 if ((drmem.flags & DRCONF_MEM_RESERVED)
649 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
0204568a 650 continue;
1daa6d08 651
cf00085d 652 base = drmem.base_addr;
3fdfd990 653 size = lmb_size;
cf00085d 654 ranges = 1;
8342681d 655
cf00085d
C
656 if (is_kexec_kdump) {
657 ranges = read_usm_ranges(&usm);
658 if (!ranges) /* there are no (base, size) duple */
659 continue;
660 }
661 do {
662 if (is_kexec_kdump) {
663 base = read_n_cells(n_mem_addr_cells, &usm);
664 size = read_n_cells(n_mem_size_cells, &usm);
665 }
666 nid = of_drconf_to_nid_single(&drmem, &aa);
667 fake_numa_create_new_node(
668 ((base + size) >> PAGE_SHIFT),
8342681d 669 &nid);
cf00085d
C
670 node_set_online(nid);
671 sz = numa_enforce_memory_limit(base, size);
672 if (sz)
1d7cfe18 673 memblock_set_node(base, sz, nid);
cf00085d 674 } while (--ranges);
0204568a
PM
675 }
676}
677
1da177e4
LT
678static int __init parse_numa_properties(void)
679{
94db7c5e 680 struct device_node *memory;
482ec7c4 681 int default_nid = 0;
1da177e4
LT
682 unsigned long i;
683
684 if (numa_enabled == 0) {
685 printk(KERN_WARNING "NUMA disabled by user\n");
686 return -1;
687 }
688
1da177e4
LT
689 min_common_depth = find_min_common_depth();
690
1da177e4
LT
691 if (min_common_depth < 0)
692 return min_common_depth;
693
bf4b85b0
NL
694 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
695
1da177e4 696 /*
482ec7c4
NL
697 * Even though we connect cpus to numa domains later in SMP
698 * init, we need to know the node ids now. This is because
699 * each node to be onlined must have NODE_DATA etc backing it.
1da177e4 700 */
482ec7c4 701 for_each_present_cpu(i) {
dfbe93a2 702 struct device_node *cpu;
cf950b7a 703 int nid;
1da177e4 704
8b16cd23 705 cpu = of_get_cpu_node(i, NULL);
482ec7c4 706 BUG_ON(!cpu);
953039c8 707 nid = of_node_to_nid_single(cpu);
482ec7c4 708 of_node_put(cpu);
1da177e4 709
482ec7c4
NL
710 /*
711 * Don't fall back to default_nid yet -- we will plug
712 * cpus into nodes once the memory scan has discovered
713 * the topology.
714 */
715 if (nid < 0)
716 continue;
717 node_set_online(nid);
1da177e4
LT
718 }
719
237a0989 720 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
94db7c5e
AB
721
722 for_each_node_by_type(memory, "memory") {
1da177e4
LT
723 unsigned long start;
724 unsigned long size;
cf950b7a 725 int nid;
1da177e4 726 int ranges;
a7f67bdf 727 const unsigned int *memcell_buf;
1da177e4
LT
728 unsigned int len;
729
e2eb6392 730 memcell_buf = of_get_property(memory,
ba759485
ME
731 "linux,usable-memory", &len);
732 if (!memcell_buf || len <= 0)
e2eb6392 733 memcell_buf = of_get_property(memory, "reg", &len);
1da177e4
LT
734 if (!memcell_buf || len <= 0)
735 continue;
736
cc5d0189
BH
737 /* ranges in cell */
738 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1da177e4
LT
739new_range:
740 /* these are order-sensitive, and modify the buffer pointer */
237a0989
MK
741 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
742 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1da177e4 743
482ec7c4
NL
744 /*
745 * Assumption: either all memory nodes or none will
746 * have associativity properties. If none, then
747 * everything goes to default_nid.
748 */
953039c8 749 nid = of_node_to_nid_single(memory);
482ec7c4
NL
750 if (nid < 0)
751 nid = default_nid;
1daa6d08
BS
752
753 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
482ec7c4 754 node_set_online(nid);
1da177e4 755
45fb6cea 756 if (!(size = numa_enforce_memory_limit(start, size))) {
1da177e4
LT
757 if (--ranges)
758 goto new_range;
759 else
760 continue;
761 }
762
1d7cfe18 763 memblock_set_node(start, size, nid);
1da177e4
LT
764
765 if (--ranges)
766 goto new_range;
767 }
768
0204568a 769 /*
dfbe93a2
AB
770 * Now do the same thing for each MEMBLOCK listed in the
771 * ibm,dynamic-memory property in the
772 * ibm,dynamic-reconfiguration-memory node.
0204568a
PM
773 */
774 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
775 if (memory)
776 parse_drconf_memory(memory);
777
1da177e4
LT
778 return 0;
779}
780
781static void __init setup_nonnuma(void)
782{
95f72d1e
YL
783 unsigned long top_of_ram = memblock_end_of_DRAM();
784 unsigned long total_ram = memblock_phys_mem_size();
c67c3cb4 785 unsigned long start_pfn, end_pfn;
28be7072
BH
786 unsigned int nid = 0;
787 struct memblock_region *reg;
1da177e4 788
e110b281 789 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
1da177e4 790 top_of_ram, total_ram);
e110b281 791 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
1da177e4
LT
792 (top_of_ram - total_ram) >> 20);
793
28be7072 794 for_each_memblock(memory, reg) {
c7fc2de0
YL
795 start_pfn = memblock_region_memory_base_pfn(reg);
796 end_pfn = memblock_region_memory_end_pfn(reg);
1daa6d08
BS
797
798 fake_numa_create_new_node(end_pfn, &nid);
1d7cfe18
TH
799 memblock_set_node(PFN_PHYS(start_pfn),
800 PFN_PHYS(end_pfn - start_pfn), nid);
1daa6d08 801 node_set_online(nid);
c67c3cb4 802 }
1da177e4
LT
803}
804
4b703a23
AB
805void __init dump_numa_cpu_topology(void)
806{
807 unsigned int node;
808 unsigned int cpu, count;
809
810 if (min_common_depth == -1 || !numa_enabled)
811 return;
812
813 for_each_online_node(node) {
e110b281 814 printk(KERN_DEBUG "Node %d CPUs:", node);
4b703a23
AB
815
816 count = 0;
817 /*
818 * If we used a CPU iterator here we would miss printing
819 * the holes in the cpumap.
820 */
25863de0
AB
821 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
822 if (cpumask_test_cpu(cpu,
823 node_to_cpumask_map[node])) {
4b703a23
AB
824 if (count == 0)
825 printk(" %u", cpu);
826 ++count;
827 } else {
828 if (count > 1)
829 printk("-%u", cpu - 1);
830 count = 0;
831 }
832 }
833
834 if (count > 1)
25863de0 835 printk("-%u", nr_cpu_ids - 1);
4b703a23
AB
836 printk("\n");
837 }
838}
839
840static void __init dump_numa_memory_topology(void)
1da177e4
LT
841{
842 unsigned int node;
843 unsigned int count;
844
845 if (min_common_depth == -1 || !numa_enabled)
846 return;
847
848 for_each_online_node(node) {
849 unsigned long i;
850
e110b281 851 printk(KERN_DEBUG "Node %d Memory:", node);
1da177e4
LT
852
853 count = 0;
854
95f72d1e 855 for (i = 0; i < memblock_end_of_DRAM();
45fb6cea
AB
856 i += (1 << SECTION_SIZE_BITS)) {
857 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
1da177e4
LT
858 if (count == 0)
859 printk(" 0x%lx", i);
860 ++count;
861 } else {
862 if (count > 0)
863 printk("-0x%lx", i);
864 count = 0;
865 }
866 }
867
868 if (count > 0)
869 printk("-0x%lx", i);
870 printk("\n");
871 }
1da177e4
LT
872}
873
874/*
95f72d1e 875 * Allocate some memory, satisfying the memblock or bootmem allocator where
1da177e4
LT
876 * required. nid is the preferred node and end is the physical address of
877 * the highest address in the node.
878 *
0be210fd 879 * Returns the virtual address of the memory.
1da177e4 880 */
893473df 881static void __init *careful_zallocation(int nid, unsigned long size,
45fb6cea
AB
882 unsigned long align,
883 unsigned long end_pfn)
1da177e4 884{
0be210fd 885 void *ret;
45fb6cea 886 int new_nid;
0be210fd
DH
887 unsigned long ret_paddr;
888
95f72d1e 889 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
1da177e4
LT
890
891 /* retry over all memory */
0be210fd 892 if (!ret_paddr)
95f72d1e 893 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
1da177e4 894
0be210fd 895 if (!ret_paddr)
5d21ea2b 896 panic("numa.c: cannot allocate %lu bytes for node %d",
1da177e4
LT
897 size, nid);
898
0be210fd
DH
899 ret = __va(ret_paddr);
900
1da177e4 901 /*
c555e520 902 * We initialize the nodes in numeric order: 0, 1, 2...
95f72d1e 903 * and hand over control from the MEMBLOCK allocator to the
c555e520
DH
904 * bootmem allocator. If this function is called for
905 * node 5, then we know that all nodes <5 are using the
95f72d1e 906 * bootmem allocator instead of the MEMBLOCK allocator.
c555e520
DH
907 *
908 * So, check the nid from which this allocation came
909 * and double check to see if we need to use bootmem
95f72d1e 910 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
c555e520 911 * since it would be useless.
1da177e4 912 */
0be210fd 913 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
45fb6cea 914 if (new_nid < nid) {
0be210fd 915 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
1da177e4
LT
916 size, align, 0);
917
0be210fd 918 dbg("alloc_bootmem %p %lx\n", ret, size);
1da177e4
LT
919 }
920
893473df 921 memset(ret, 0, size);
0be210fd 922 return ret;
1da177e4
LT
923}
924
74b85f37
CS
925static struct notifier_block __cpuinitdata ppc64_numa_nb = {
926 .notifier_call = cpu_numa_callback,
927 .priority = 1 /* Must run before sched domains notifier. */
928};
929
28e86bdb 930static void __init mark_reserved_regions_for_nid(int nid)
4a618669
DH
931{
932 struct pglist_data *node = NODE_DATA(nid);
28be7072 933 struct memblock_region *reg;
4a618669 934
28be7072
BH
935 for_each_memblock(reserved, reg) {
936 unsigned long physbase = reg->base;
937 unsigned long size = reg->size;
4a618669 938 unsigned long start_pfn = physbase >> PAGE_SHIFT;
06eccea6 939 unsigned long end_pfn = PFN_UP(physbase + size);
4a618669
DH
940 struct node_active_region node_ar;
941 unsigned long node_end_pfn = node->node_start_pfn +
942 node->node_spanned_pages;
943
944 /*
95f72d1e 945 * Check to make sure that this memblock.reserved area is
4a618669
DH
946 * within the bounds of the node that we care about.
947 * Checking the nid of the start and end points is not
948 * sufficient because the reserved area could span the
949 * entire node.
950 */
951 if (end_pfn <= node->node_start_pfn ||
952 start_pfn >= node_end_pfn)
953 continue;
954
955 get_node_active_region(start_pfn, &node_ar);
956 while (start_pfn < end_pfn &&
957 node_ar.start_pfn < node_ar.end_pfn) {
958 unsigned long reserve_size = size;
959 /*
960 * if reserved region extends past active region
961 * then trim size to active region
962 */
963 if (end_pfn > node_ar.end_pfn)
964 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
06eccea6 965 - physbase;
a4c74ddd
DH
966 /*
967 * Only worry about *this* node, others may not
968 * yet have valid NODE_DATA().
969 */
970 if (node_ar.nid == nid) {
971 dbg("reserve_bootmem %lx %lx nid=%d\n",
972 physbase, reserve_size, node_ar.nid);
973 reserve_bootmem_node(NODE_DATA(node_ar.nid),
974 physbase, reserve_size,
975 BOOTMEM_DEFAULT);
976 }
4a618669
DH
977 /*
978 * if reserved region is contained in the active region
979 * then done.
980 */
981 if (end_pfn <= node_ar.end_pfn)
982 break;
983
984 /*
985 * reserved region extends past the active region
986 * get next active region that contains this
987 * reserved region
988 */
989 start_pfn = node_ar.end_pfn;
990 physbase = start_pfn << PAGE_SHIFT;
991 size = size - reserve_size;
992 get_node_active_region(start_pfn, &node_ar);
993 }
994 }
995}
996
997
1da177e4
LT
998void __init do_init_bootmem(void)
999{
1000 int nid;
1da177e4
LT
1001
1002 min_low_pfn = 0;
95f72d1e 1003 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1da177e4
LT
1004 max_pfn = max_low_pfn;
1005
1006 if (parse_numa_properties())
1007 setup_nonnuma();
1008 else
4b703a23 1009 dump_numa_memory_topology();
1da177e4 1010
1da177e4 1011 for_each_online_node(nid) {
c67c3cb4 1012 unsigned long start_pfn, end_pfn;
0be210fd 1013 void *bootmem_vaddr;
1da177e4
LT
1014 unsigned long bootmap_pages;
1015
c67c3cb4 1016 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1da177e4 1017
4a618669
DH
1018 /*
1019 * Allocate the node structure node local if possible
1020 *
1021 * Be careful moving this around, as it relies on all
1022 * previous nodes' bootmem to be initialized and have
1023 * all reserved areas marked.
1024 */
893473df 1025 NODE_DATA(nid) = careful_zallocation(nid,
1da177e4 1026 sizeof(struct pglist_data),
45fb6cea 1027 SMP_CACHE_BYTES, end_pfn);
1da177e4
LT
1028
1029 dbg("node %d\n", nid);
1030 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1031
b61bfa3c 1032 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
45fb6cea
AB
1033 NODE_DATA(nid)->node_start_pfn = start_pfn;
1034 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1da177e4
LT
1035
1036 if (NODE_DATA(nid)->node_spanned_pages == 0)
1037 continue;
1038
45fb6cea
AB
1039 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1040 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1da177e4 1041
45fb6cea 1042 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
893473df 1043 bootmem_vaddr = careful_zallocation(nid,
45fb6cea
AB
1044 bootmap_pages << PAGE_SHIFT,
1045 PAGE_SIZE, end_pfn);
1da177e4 1046
0be210fd 1047 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1da177e4 1048
0be210fd
DH
1049 init_bootmem_node(NODE_DATA(nid),
1050 __pa(bootmem_vaddr) >> PAGE_SHIFT,
45fb6cea 1051 start_pfn, end_pfn);
1da177e4 1052
c67c3cb4 1053 free_bootmem_with_active_regions(nid, end_pfn);
4a618669
DH
1054 /*
1055 * Be very careful about moving this around. Future
893473df 1056 * calls to careful_zallocation() depend on this getting
4a618669
DH
1057 * done correctly.
1058 */
1059 mark_reserved_regions_for_nid(nid);
8f64e1f2 1060 sparse_memory_present_with_active_regions(nid);
4a618669 1061 }
d3f6204a
BH
1062
1063 init_bootmem_done = 1;
25863de0
AB
1064
1065 /*
1066 * Now bootmem is initialised we can create the node to cpumask
1067 * lookup tables and setup the cpu callback to populate them.
1068 */
1069 setup_node_to_cpumask_map();
1070
1071 register_cpu_notifier(&ppc64_numa_nb);
1072 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1073 (void *)(unsigned long)boot_cpuid);
1da177e4
LT
1074}
1075
1076void __init paging_init(void)
1077{
6391af17
MG
1078 unsigned long max_zone_pfns[MAX_NR_ZONES];
1079 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
95f72d1e 1080 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
c67c3cb4 1081 free_area_init_nodes(max_zone_pfns);
1da177e4
LT
1082}
1083
1084static int __init early_numa(char *p)
1085{
1086 if (!p)
1087 return 0;
1088
1089 if (strstr(p, "off"))
1090 numa_enabled = 0;
1091
1092 if (strstr(p, "debug"))
1093 numa_debug = 1;
1094
1daa6d08
BS
1095 p = strstr(p, "fake=");
1096 if (p)
1097 cmdline = p + strlen("fake=");
1098
1da177e4
LT
1099 return 0;
1100}
1101early_param("numa", early_numa);
237a0989
MK
1102
1103#ifdef CONFIG_MEMORY_HOTPLUG
0db9360a 1104/*
0f16ef7f
NF
1105 * Find the node associated with a hot added memory section for
1106 * memory represented in the device tree by the property
1107 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
0db9360a
NF
1108 */
1109static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1110 unsigned long scn_addr)
1111{
1112 const u32 *dm;
0f16ef7f 1113 unsigned int drconf_cell_cnt, rc;
3fdfd990 1114 unsigned long lmb_size;
0db9360a 1115 struct assoc_arrays aa;
0f16ef7f 1116 int nid = -1;
0db9360a 1117
0f16ef7f
NF
1118 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1119 if (!drconf_cell_cnt)
1120 return -1;
0db9360a 1121
3fdfd990
BH
1122 lmb_size = of_get_lmb_size(memory);
1123 if (!lmb_size)
0f16ef7f 1124 return -1;
0db9360a
NF
1125
1126 rc = of_get_assoc_arrays(memory, &aa);
1127 if (rc)
0f16ef7f 1128 return -1;
0db9360a 1129
0f16ef7f 1130 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
0db9360a
NF
1131 struct of_drconf_cell drmem;
1132
1133 read_drconf_cell(&drmem, &dm);
1134
1135 /* skip this block if it is reserved or not assigned to
1136 * this partition */
1137 if ((drmem.flags & DRCONF_MEM_RESERVED)
1138 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1139 continue;
1140
0f16ef7f 1141 if ((scn_addr < drmem.base_addr)
3fdfd990 1142 || (scn_addr >= (drmem.base_addr + lmb_size)))
0f16ef7f
NF
1143 continue;
1144
0db9360a 1145 nid = of_drconf_to_nid_single(&drmem, &aa);
0f16ef7f
NF
1146 break;
1147 }
1148
1149 return nid;
1150}
1151
1152/*
1153 * Find the node associated with a hot added memory section for memory
1154 * represented in the device tree as a node (i.e. memory@XXXX) for
95f72d1e 1155 * each memblock.
0f16ef7f
NF
1156 */
1157int hot_add_node_scn_to_nid(unsigned long scn_addr)
1158{
94db7c5e 1159 struct device_node *memory;
0f16ef7f
NF
1160 int nid = -1;
1161
94db7c5e 1162 for_each_node_by_type(memory, "memory") {
0f16ef7f
NF
1163 unsigned long start, size;
1164 int ranges;
1165 const unsigned int *memcell_buf;
1166 unsigned int len;
1167
1168 memcell_buf = of_get_property(memory, "reg", &len);
1169 if (!memcell_buf || len <= 0)
1170 continue;
1171
1172 /* ranges in cell */
1173 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1174
1175 while (ranges--) {
1176 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1177 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1178
1179 if ((scn_addr < start) || (scn_addr >= (start + size)))
1180 continue;
1181
1182 nid = of_node_to_nid_single(memory);
1183 break;
1184 }
0db9360a 1185
0f16ef7f
NF
1186 if (nid >= 0)
1187 break;
0db9360a
NF
1188 }
1189
60831842
AB
1190 of_node_put(memory);
1191
0f16ef7f 1192 return nid;
0db9360a
NF
1193}
1194
237a0989
MK
1195/*
1196 * Find the node associated with a hot added memory section. Section
95f72d1e
YL
1197 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1198 * sections are fully contained within a single MEMBLOCK.
237a0989
MK
1199 */
1200int hot_add_scn_to_nid(unsigned long scn_addr)
1201{
1202 struct device_node *memory = NULL;
0f16ef7f 1203 int nid, found = 0;
237a0989
MK
1204
1205 if (!numa_enabled || (min_common_depth < 0))
72c33688 1206 return first_online_node;
0db9360a
NF
1207
1208 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1209 if (memory) {
1210 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1211 of_node_put(memory);
0f16ef7f
NF
1212 } else {
1213 nid = hot_add_node_scn_to_nid(scn_addr);
0db9360a 1214 }
237a0989 1215
0f16ef7f 1216 if (nid < 0 || !node_online(nid))
72c33688 1217 nid = first_online_node;
237a0989 1218
0f16ef7f
NF
1219 if (NODE_DATA(nid)->node_spanned_pages)
1220 return nid;
237a0989 1221
0f16ef7f
NF
1222 for_each_online_node(nid) {
1223 if (NODE_DATA(nid)->node_spanned_pages) {
1224 found = 1;
1225 break;
237a0989 1226 }
237a0989 1227 }
0f16ef7f
NF
1228
1229 BUG_ON(!found);
1230 return nid;
237a0989 1231}
0f16ef7f 1232
cd34206e
NA
1233static u64 hot_add_drconf_memory_max(void)
1234{
1235 struct device_node *memory = NULL;
1236 unsigned int drconf_cell_cnt = 0;
1237 u64 lmb_size = 0;
1238 const u32 *dm = 0;
1239
1240 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1241 if (memory) {
1242 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1243 lmb_size = of_get_lmb_size(memory);
1244 of_node_put(memory);
1245 }
1246 return lmb_size * drconf_cell_cnt;
1247}
1248
1249/*
1250 * memory_hotplug_max - return max address of memory that may be added
1251 *
1252 * This is currently only used on systems that support drconfig memory
1253 * hotplug.
1254 */
1255u64 memory_hotplug_max(void)
1256{
1257 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1258}
237a0989 1259#endif /* CONFIG_MEMORY_HOTPLUG */
9eff1a38 1260
bd03403a 1261/* Virtual Processor Home Node (VPHN) support */
39bf990e 1262#ifdef CONFIG_PPC_SPLPAR
30c05350
NF
1263struct topology_update_data {
1264 struct topology_update_data *next;
1265 unsigned int cpu;
1266 int old_nid;
1267 int new_nid;
1268};
1269
5de16699 1270static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
9eff1a38
JL
1271static cpumask_t cpu_associativity_changes_mask;
1272static int vphn_enabled;
5d88aa85
JL
1273static int prrn_enabled;
1274static void reset_topology_timer(void);
9eff1a38
JL
1275
1276/*
1277 * Store the current values of the associativity change counters in the
1278 * hypervisor.
1279 */
1280static void setup_cpu_associativity_change_counters(void)
1281{
cd9d6cc7 1282 int cpu;
9eff1a38 1283
5de16699
AB
1284 /* The VPHN feature supports a maximum of 8 reference points */
1285 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1286
9eff1a38 1287 for_each_possible_cpu(cpu) {
cd9d6cc7 1288 int i;
9eff1a38
JL
1289 u8 *counts = vphn_cpu_change_counts[cpu];
1290 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1291
5de16699 1292 for (i = 0; i < distance_ref_points_depth; i++)
9eff1a38 1293 counts[i] = hypervisor_counts[i];
9eff1a38
JL
1294 }
1295}
1296
1297/*
1298 * The hypervisor maintains a set of 8 associativity change counters in
1299 * the VPA of each cpu that correspond to the associativity levels in the
1300 * ibm,associativity-reference-points property. When an associativity
1301 * level changes, the corresponding counter is incremented.
1302 *
1303 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1304 * node associativity levels have changed.
1305 *
1306 * Returns the number of cpus with unhandled associativity changes.
1307 */
1308static int update_cpu_associativity_changes_mask(void)
1309{
5d88aa85 1310 int cpu;
9eff1a38
JL
1311 cpumask_t *changes = &cpu_associativity_changes_mask;
1312
9eff1a38
JL
1313 for_each_possible_cpu(cpu) {
1314 int i, changed = 0;
1315 u8 *counts = vphn_cpu_change_counts[cpu];
1316 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1317
5de16699 1318 for (i = 0; i < distance_ref_points_depth; i++) {
d69043e8 1319 if (hypervisor_counts[i] != counts[i]) {
9eff1a38
JL
1320 counts[i] = hypervisor_counts[i];
1321 changed = 1;
1322 }
1323 }
1324 if (changed) {
1325 cpumask_set_cpu(cpu, changes);
9eff1a38
JL
1326 }
1327 }
1328
5d88aa85 1329 return cpumask_weight(changes);
9eff1a38
JL
1330}
1331
c0e5e46f
AB
1332/*
1333 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1334 * the complete property we have to add the length in the first cell.
1335 */
1336#define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
9eff1a38
JL
1337
1338/*
1339 * Convert the associativity domain numbers returned from the hypervisor
1340 * to the sequence they would appear in the ibm,associativity property.
1341 */
1342static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1343{
cd9d6cc7 1344 int i, nr_assoc_doms = 0;
9eff1a38
JL
1345 const u16 *field = (const u16*) packed;
1346
1347#define VPHN_FIELD_UNUSED (0xffff)
1348#define VPHN_FIELD_MSB (0x8000)
1349#define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1350
c0e5e46f 1351 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
9eff1a38
JL
1352 if (*field == VPHN_FIELD_UNUSED) {
1353 /* All significant fields processed, and remaining
1354 * fields contain the reserved value of all 1's.
1355 * Just store them.
1356 */
1357 unpacked[i] = *((u32*)field);
1358 field += 2;
7639adaa 1359 } else if (*field & VPHN_FIELD_MSB) {
9eff1a38
JL
1360 /* Data is in the lower 15 bits of this field */
1361 unpacked[i] = *field & VPHN_FIELD_MASK;
1362 field++;
1363 nr_assoc_doms++;
7639adaa 1364 } else {
9eff1a38
JL
1365 /* Data is in the lower 15 bits of this field
1366 * concatenated with the next 16 bit field
1367 */
1368 unpacked[i] = *((u32*)field);
1369 field += 2;
1370 nr_assoc_doms++;
1371 }
1372 }
1373
c0e5e46f
AB
1374 /* The first cell contains the length of the property */
1375 unpacked[0] = nr_assoc_doms;
1376
9eff1a38
JL
1377 return nr_assoc_doms;
1378}
1379
1380/*
1381 * Retrieve the new associativity information for a virtual processor's
1382 * home node.
1383 */
1384static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1385{
cd9d6cc7 1386 long rc;
9eff1a38
JL
1387 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1388 u64 flags = 1;
1389 int hwcpu = get_hard_smp_processor_id(cpu);
1390
1391 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1392 vphn_unpack_associativity(retbuf, associativity);
1393
1394 return rc;
1395}
1396
1397static long vphn_get_associativity(unsigned long cpu,
1398 unsigned int *associativity)
1399{
cd9d6cc7 1400 long rc;
9eff1a38
JL
1401
1402 rc = hcall_vphn(cpu, associativity);
1403
1404 switch (rc) {
1405 case H_FUNCTION:
1406 printk(KERN_INFO
1407 "VPHN is not supported. Disabling polling...\n");
1408 stop_topology_update();
1409 break;
1410 case H_HARDWARE:
1411 printk(KERN_ERR
1412 "hcall_vphn() experienced a hardware fault "
1413 "preventing VPHN. Disabling polling...\n");
1414 stop_topology_update();
1415 }
1416
1417 return rc;
1418}
1419
30c05350
NF
1420/*
1421 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1422 * characteristics change. This function doesn't perform any locking and is
1423 * only safe to call from stop_machine().
1424 */
1425static int update_cpu_topology(void *data)
1426{
1427 struct topology_update_data *update;
1428 unsigned long cpu;
1429
1430 if (!data)
1431 return -EINVAL;
1432
1433 cpu = get_cpu();
1434
1435 for (update = data; update; update = update->next) {
1436 if (cpu != update->cpu)
1437 continue;
1438
1439 unregister_cpu_under_node(update->cpu, update->old_nid);
1440 unmap_cpu_from_node(update->cpu);
1441 map_cpu_to_node(update->cpu, update->new_nid);
176bbf14 1442 vdso_getcpu_init();
30c05350
NF
1443 register_cpu_under_node(update->cpu, update->new_nid);
1444 }
1445
1446 return 0;
1447}
1448
9eff1a38
JL
1449/*
1450 * Update the node maps and sysfs entries for each cpu whose home node
79c5fceb 1451 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
9eff1a38
JL
1452 */
1453int arch_update_cpu_topology(void)
1454{
30c05350
NF
1455 unsigned int cpu, changed = 0;
1456 struct topology_update_data *updates, *ud;
9eff1a38 1457 unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
176bbf14 1458 cpumask_t updated_cpus;
8a25a2fd 1459 struct device *dev;
30c05350
NF
1460 int weight, i = 0;
1461
1462 weight = cpumask_weight(&cpu_associativity_changes_mask);
1463 if (!weight)
1464 return 0;
1465
1466 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1467 if (!updates)
1468 return 0;
9eff1a38 1469
176bbf14
JL
1470 cpumask_clear(&updated_cpus);
1471
5d88aa85 1472 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
30c05350
NF
1473 ud = &updates[i++];
1474 ud->cpu = cpu;
9eff1a38 1475 vphn_get_associativity(cpu, associativity);
30c05350 1476 ud->new_nid = associativity_to_nid(associativity);
9eff1a38 1477
30c05350
NF
1478 if (ud->new_nid < 0 || !node_online(ud->new_nid))
1479 ud->new_nid = first_online_node;
9eff1a38 1480
30c05350 1481 ud->old_nid = numa_cpu_lookup_table[cpu];
176bbf14 1482 cpumask_set_cpu(cpu, &updated_cpus);
9eff1a38 1483
30c05350
NF
1484 if (i < weight)
1485 ud->next = &updates[i];
1486 }
1487
176bbf14 1488 stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
30c05350
NF
1489
1490 for (ud = &updates[0]; ud; ud = ud->next) {
1491 dev = get_cpu_device(ud->cpu);
8a25a2fd
KS
1492 if (dev)
1493 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
30c05350 1494 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
79c5fceb 1495 changed = 1;
9eff1a38
JL
1496 }
1497
30c05350 1498 kfree(updates);
79c5fceb 1499 return changed;
9eff1a38
JL
1500}
1501
1502static void topology_work_fn(struct work_struct *work)
1503{
1504 rebuild_sched_domains();
1505}
1506static DECLARE_WORK(topology_work, topology_work_fn);
1507
1508void topology_schedule_update(void)
1509{
1510 schedule_work(&topology_work);
1511}
1512
1513static void topology_timer_fn(unsigned long ignored)
1514{
5d88aa85 1515 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
9eff1a38 1516 topology_schedule_update();
5d88aa85
JL
1517 else if (vphn_enabled) {
1518 if (update_cpu_associativity_changes_mask() > 0)
1519 topology_schedule_update();
1520 reset_topology_timer();
1521 }
9eff1a38
JL
1522}
1523static struct timer_list topology_timer =
1524 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1525
5d88aa85 1526static void reset_topology_timer(void)
9eff1a38
JL
1527{
1528 topology_timer.data = 0;
1529 topology_timer.expires = jiffies + 60 * HZ;
5d88aa85
JL
1530 mod_timer(&topology_timer, topology_timer.expires);
1531}
1532
1533static void stage_topology_update(int core_id)
1534{
1535 cpumask_or(&cpu_associativity_changes_mask,
1536 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1537 reset_topology_timer();
1538}
1539
1540static int dt_update_callback(struct notifier_block *nb,
1541 unsigned long action, void *data)
1542{
1543 struct of_prop_reconfig *update;
1544 int rc = NOTIFY_DONE;
1545
1546 switch (action) {
5d88aa85
JL
1547 case OF_RECONFIG_UPDATE_PROPERTY:
1548 update = (struct of_prop_reconfig *)data;
30c05350
NF
1549 if (!of_prop_cmp(update->dn->type, "cpu") &&
1550 !of_prop_cmp(update->prop->name, "ibm,associativity")) {
5d88aa85
JL
1551 u32 core_id;
1552 of_property_read_u32(update->dn, "reg", &core_id);
1553 stage_topology_update(core_id);
1554 rc = NOTIFY_OK;
1555 }
1556 break;
1557 }
1558
1559 return rc;
9eff1a38
JL
1560}
1561
5d88aa85
JL
1562static struct notifier_block dt_update_nb = {
1563 .notifier_call = dt_update_callback,
1564};
1565
9eff1a38 1566/*
5d88aa85 1567 * Start polling for associativity changes.
9eff1a38
JL
1568 */
1569int start_topology_update(void)
1570{
1571 int rc = 0;
1572
5d88aa85
JL
1573 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1574 if (!prrn_enabled) {
1575 prrn_enabled = 1;
1576 vphn_enabled = 0;
1577 rc = of_reconfig_notifier_register(&dt_update_nb);
1578 }
b7abef04 1579 } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
5d88aa85 1580 get_lppaca()->shared_proc) {
5d88aa85
JL
1581 if (!vphn_enabled) {
1582 prrn_enabled = 0;
1583 vphn_enabled = 1;
1584 setup_cpu_associativity_change_counters();
1585 init_timer_deferrable(&topology_timer);
1586 reset_topology_timer();
1587 }
9eff1a38
JL
1588 }
1589
1590 return rc;
1591}
9eff1a38
JL
1592
1593/*
1594 * Disable polling for VPHN associativity changes.
1595 */
1596int stop_topology_update(void)
1597{
5d88aa85
JL
1598 int rc = 0;
1599
1600 if (prrn_enabled) {
1601 prrn_enabled = 0;
1602 rc = of_reconfig_notifier_unregister(&dt_update_nb);
1603 } else if (vphn_enabled) {
1604 vphn_enabled = 0;
1605 rc = del_timer_sync(&topology_timer);
1606 }
1607
1608 return rc;
9eff1a38 1609}
e04fa612
NF
1610
1611int prrn_is_enabled(void)
1612{
1613 return prrn_enabled;
1614}
1615
1616static int topology_read(struct seq_file *file, void *v)
1617{
1618 if (vphn_enabled || prrn_enabled)
1619 seq_puts(file, "on\n");
1620 else
1621 seq_puts(file, "off\n");
1622
1623 return 0;
1624}
1625
1626static int topology_open(struct inode *inode, struct file *file)
1627{
1628 return single_open(file, topology_read, NULL);
1629}
1630
1631static ssize_t topology_write(struct file *file, const char __user *buf,
1632 size_t count, loff_t *off)
1633{
1634 char kbuf[4]; /* "on" or "off" plus null. */
1635 int read_len;
1636
1637 read_len = count < 3 ? count : 3;
1638 if (copy_from_user(kbuf, buf, read_len))
1639 return -EINVAL;
1640
1641 kbuf[read_len] = '\0';
1642
1643 if (!strncmp(kbuf, "on", 2))
1644 start_topology_update();
1645 else if (!strncmp(kbuf, "off", 3))
1646 stop_topology_update();
1647 else
1648 return -EINVAL;
1649
1650 return count;
1651}
1652
1653static const struct file_operations topology_ops = {
1654 .read = seq_read,
1655 .write = topology_write,
1656 .open = topology_open,
1657 .release = single_release
1658};
1659
1660static int topology_update_init(void)
1661{
1662 start_topology_update();
1663 proc_create("powerpc/topology_updates", 644, NULL, &topology_ops);
1664
1665 return 0;
1666}
1667device_initcall(topology_update_init);
39bf990e 1668#endif /* CONFIG_PPC_SPLPAR */