Merge tag 'trace-v4.14-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / net / socket.c
1 /*
2 * NET An implementation of the SOCKET network access protocol.
3 *
4 * Version: @(#)socket.c 1.1.93 18/02/95
5 *
6 * Authors: Orest Zborowski, <obz@Kodak.COM>
7 * Ross Biro
8 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
9 *
10 * Fixes:
11 * Anonymous : NOTSOCK/BADF cleanup. Error fix in
12 * shutdown()
13 * Alan Cox : verify_area() fixes
14 * Alan Cox : Removed DDI
15 * Jonathan Kamens : SOCK_DGRAM reconnect bug
16 * Alan Cox : Moved a load of checks to the very
17 * top level.
18 * Alan Cox : Move address structures to/from user
19 * mode above the protocol layers.
20 * Rob Janssen : Allow 0 length sends.
21 * Alan Cox : Asynchronous I/O support (cribbed from the
22 * tty drivers).
23 * Niibe Yutaka : Asynchronous I/O for writes (4.4BSD style)
24 * Jeff Uphoff : Made max number of sockets command-line
25 * configurable.
26 * Matti Aarnio : Made the number of sockets dynamic,
27 * to be allocated when needed, and mr.
28 * Uphoff's max is used as max to be
29 * allowed to allocate.
30 * Linus : Argh. removed all the socket allocation
31 * altogether: it's in the inode now.
32 * Alan Cox : Made sock_alloc()/sock_release() public
33 * for NetROM and future kernel nfsd type
34 * stuff.
35 * Alan Cox : sendmsg/recvmsg basics.
36 * Tom Dyas : Export net symbols.
37 * Marcin Dalecki : Fixed problems with CONFIG_NET="n".
38 * Alan Cox : Added thread locking to sys_* calls
39 * for sockets. May have errors at the
40 * moment.
41 * Kevin Buhr : Fixed the dumb errors in the above.
42 * Andi Kleen : Some small cleanups, optimizations,
43 * and fixed a copy_from_user() bug.
44 * Tigran Aivazian : sys_send(args) calls sys_sendto(args, NULL, 0)
45 * Tigran Aivazian : Made listen(2) backlog sanity checks
46 * protocol-independent
47 *
48 *
49 * This program is free software; you can redistribute it and/or
50 * modify it under the terms of the GNU General Public License
51 * as published by the Free Software Foundation; either version
52 * 2 of the License, or (at your option) any later version.
53 *
54 *
55 * This module is effectively the top level interface to the BSD socket
56 * paradigm.
57 *
58 * Based upon Swansea University Computer Society NET3.039
59 */
60
61 #include <linux/mm.h>
62 #include <linux/socket.h>
63 #include <linux/file.h>
64 #include <linux/net.h>
65 #include <linux/interrupt.h>
66 #include <linux/thread_info.h>
67 #include <linux/rcupdate.h>
68 #include <linux/netdevice.h>
69 #include <linux/proc_fs.h>
70 #include <linux/seq_file.h>
71 #include <linux/mutex.h>
72 #include <linux/if_bridge.h>
73 #include <linux/if_frad.h>
74 #include <linux/if_vlan.h>
75 #include <linux/ptp_classify.h>
76 #include <linux/init.h>
77 #include <linux/poll.h>
78 #include <linux/cache.h>
79 #include <linux/module.h>
80 #include <linux/highmem.h>
81 #include <linux/mount.h>
82 #include <linux/security.h>
83 #include <linux/syscalls.h>
84 #include <linux/compat.h>
85 #include <linux/kmod.h>
86 #include <linux/audit.h>
87 #include <linux/wireless.h>
88 #include <linux/nsproxy.h>
89 #include <linux/magic.h>
90 #include <linux/slab.h>
91 #include <linux/xattr.h>
92
93 #include <linux/uaccess.h>
94 #include <asm/unistd.h>
95
96 #include <net/compat.h>
97 #include <net/wext.h>
98 #include <net/cls_cgroup.h>
99
100 #include <net/sock.h>
101 #include <linux/netfilter.h>
102
103 #include <linux/if_tun.h>
104 #include <linux/ipv6_route.h>
105 #include <linux/route.h>
106 #include <linux/sockios.h>
107 #include <linux/atalk.h>
108 #include <net/busy_poll.h>
109 #include <linux/errqueue.h>
110
111 #ifdef CONFIG_NET_RX_BUSY_POLL
112 unsigned int sysctl_net_busy_read __read_mostly;
113 unsigned int sysctl_net_busy_poll __read_mostly;
114 #endif
115
116 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to);
117 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from);
118 static int sock_mmap(struct file *file, struct vm_area_struct *vma);
119
120 static int sock_close(struct inode *inode, struct file *file);
121 static unsigned int sock_poll(struct file *file,
122 struct poll_table_struct *wait);
123 static long sock_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
124 #ifdef CONFIG_COMPAT
125 static long compat_sock_ioctl(struct file *file,
126 unsigned int cmd, unsigned long arg);
127 #endif
128 static int sock_fasync(int fd, struct file *filp, int on);
129 static ssize_t sock_sendpage(struct file *file, struct page *page,
130 int offset, size_t size, loff_t *ppos, int more);
131 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
132 struct pipe_inode_info *pipe, size_t len,
133 unsigned int flags);
134
135 /*
136 * Socket files have a set of 'special' operations as well as the generic file ones. These don't appear
137 * in the operation structures but are done directly via the socketcall() multiplexor.
138 */
139
140 static const struct file_operations socket_file_ops = {
141 .owner = THIS_MODULE,
142 .llseek = no_llseek,
143 .read_iter = sock_read_iter,
144 .write_iter = sock_write_iter,
145 .poll = sock_poll,
146 .unlocked_ioctl = sock_ioctl,
147 #ifdef CONFIG_COMPAT
148 .compat_ioctl = compat_sock_ioctl,
149 #endif
150 .mmap = sock_mmap,
151 .release = sock_close,
152 .fasync = sock_fasync,
153 .sendpage = sock_sendpage,
154 .splice_write = generic_splice_sendpage,
155 .splice_read = sock_splice_read,
156 };
157
158 /*
159 * The protocol list. Each protocol is registered in here.
160 */
161
162 static DEFINE_SPINLOCK(net_family_lock);
163 static const struct net_proto_family __rcu *net_families[NPROTO] __read_mostly;
164
165 /*
166 * Statistics counters of the socket lists
167 */
168
169 static DEFINE_PER_CPU(int, sockets_in_use);
170
171 /*
172 * Support routines.
173 * Move socket addresses back and forth across the kernel/user
174 * divide and look after the messy bits.
175 */
176
177 /**
178 * move_addr_to_kernel - copy a socket address into kernel space
179 * @uaddr: Address in user space
180 * @kaddr: Address in kernel space
181 * @ulen: Length in user space
182 *
183 * The address is copied into kernel space. If the provided address is
184 * too long an error code of -EINVAL is returned. If the copy gives
185 * invalid addresses -EFAULT is returned. On a success 0 is returned.
186 */
187
188 int move_addr_to_kernel(void __user *uaddr, int ulen, struct sockaddr_storage *kaddr)
189 {
190 if (ulen < 0 || ulen > sizeof(struct sockaddr_storage))
191 return -EINVAL;
192 if (ulen == 0)
193 return 0;
194 if (copy_from_user(kaddr, uaddr, ulen))
195 return -EFAULT;
196 return audit_sockaddr(ulen, kaddr);
197 }
198
199 /**
200 * move_addr_to_user - copy an address to user space
201 * @kaddr: kernel space address
202 * @klen: length of address in kernel
203 * @uaddr: user space address
204 * @ulen: pointer to user length field
205 *
206 * The value pointed to by ulen on entry is the buffer length available.
207 * This is overwritten with the buffer space used. -EINVAL is returned
208 * if an overlong buffer is specified or a negative buffer size. -EFAULT
209 * is returned if either the buffer or the length field are not
210 * accessible.
211 * After copying the data up to the limit the user specifies, the true
212 * length of the data is written over the length limit the user
213 * specified. Zero is returned for a success.
214 */
215
216 static int move_addr_to_user(struct sockaddr_storage *kaddr, int klen,
217 void __user *uaddr, int __user *ulen)
218 {
219 int err;
220 int len;
221
222 BUG_ON(klen > sizeof(struct sockaddr_storage));
223 err = get_user(len, ulen);
224 if (err)
225 return err;
226 if (len > klen)
227 len = klen;
228 if (len < 0)
229 return -EINVAL;
230 if (len) {
231 if (audit_sockaddr(klen, kaddr))
232 return -ENOMEM;
233 if (copy_to_user(uaddr, kaddr, len))
234 return -EFAULT;
235 }
236 /*
237 * "fromlen shall refer to the value before truncation.."
238 * 1003.1g
239 */
240 return __put_user(klen, ulen);
241 }
242
243 static struct kmem_cache *sock_inode_cachep __read_mostly;
244
245 static struct inode *sock_alloc_inode(struct super_block *sb)
246 {
247 struct socket_alloc *ei;
248 struct socket_wq *wq;
249
250 ei = kmem_cache_alloc(sock_inode_cachep, GFP_KERNEL);
251 if (!ei)
252 return NULL;
253 wq = kmalloc(sizeof(*wq), GFP_KERNEL);
254 if (!wq) {
255 kmem_cache_free(sock_inode_cachep, ei);
256 return NULL;
257 }
258 init_waitqueue_head(&wq->wait);
259 wq->fasync_list = NULL;
260 wq->flags = 0;
261 RCU_INIT_POINTER(ei->socket.wq, wq);
262
263 ei->socket.state = SS_UNCONNECTED;
264 ei->socket.flags = 0;
265 ei->socket.ops = NULL;
266 ei->socket.sk = NULL;
267 ei->socket.file = NULL;
268
269 return &ei->vfs_inode;
270 }
271
272 static void sock_destroy_inode(struct inode *inode)
273 {
274 struct socket_alloc *ei;
275 struct socket_wq *wq;
276
277 ei = container_of(inode, struct socket_alloc, vfs_inode);
278 wq = rcu_dereference_protected(ei->socket.wq, 1);
279 kfree_rcu(wq, rcu);
280 kmem_cache_free(sock_inode_cachep, ei);
281 }
282
283 static void init_once(void *foo)
284 {
285 struct socket_alloc *ei = (struct socket_alloc *)foo;
286
287 inode_init_once(&ei->vfs_inode);
288 }
289
290 static void init_inodecache(void)
291 {
292 sock_inode_cachep = kmem_cache_create("sock_inode_cache",
293 sizeof(struct socket_alloc),
294 0,
295 (SLAB_HWCACHE_ALIGN |
296 SLAB_RECLAIM_ACCOUNT |
297 SLAB_MEM_SPREAD | SLAB_ACCOUNT),
298 init_once);
299 BUG_ON(sock_inode_cachep == NULL);
300 }
301
302 static const struct super_operations sockfs_ops = {
303 .alloc_inode = sock_alloc_inode,
304 .destroy_inode = sock_destroy_inode,
305 .statfs = simple_statfs,
306 };
307
308 /*
309 * sockfs_dname() is called from d_path().
310 */
311 static char *sockfs_dname(struct dentry *dentry, char *buffer, int buflen)
312 {
313 return dynamic_dname(dentry, buffer, buflen, "socket:[%lu]",
314 d_inode(dentry)->i_ino);
315 }
316
317 static const struct dentry_operations sockfs_dentry_operations = {
318 .d_dname = sockfs_dname,
319 };
320
321 static int sockfs_xattr_get(const struct xattr_handler *handler,
322 struct dentry *dentry, struct inode *inode,
323 const char *suffix, void *value, size_t size)
324 {
325 if (value) {
326 if (dentry->d_name.len + 1 > size)
327 return -ERANGE;
328 memcpy(value, dentry->d_name.name, dentry->d_name.len + 1);
329 }
330 return dentry->d_name.len + 1;
331 }
332
333 #define XATTR_SOCKPROTONAME_SUFFIX "sockprotoname"
334 #define XATTR_NAME_SOCKPROTONAME (XATTR_SYSTEM_PREFIX XATTR_SOCKPROTONAME_SUFFIX)
335 #define XATTR_NAME_SOCKPROTONAME_LEN (sizeof(XATTR_NAME_SOCKPROTONAME)-1)
336
337 static const struct xattr_handler sockfs_xattr_handler = {
338 .name = XATTR_NAME_SOCKPROTONAME,
339 .get = sockfs_xattr_get,
340 };
341
342 static int sockfs_security_xattr_set(const struct xattr_handler *handler,
343 struct dentry *dentry, struct inode *inode,
344 const char *suffix, const void *value,
345 size_t size, int flags)
346 {
347 /* Handled by LSM. */
348 return -EAGAIN;
349 }
350
351 static const struct xattr_handler sockfs_security_xattr_handler = {
352 .prefix = XATTR_SECURITY_PREFIX,
353 .set = sockfs_security_xattr_set,
354 };
355
356 static const struct xattr_handler *sockfs_xattr_handlers[] = {
357 &sockfs_xattr_handler,
358 &sockfs_security_xattr_handler,
359 NULL
360 };
361
362 static struct dentry *sockfs_mount(struct file_system_type *fs_type,
363 int flags, const char *dev_name, void *data)
364 {
365 return mount_pseudo_xattr(fs_type, "socket:", &sockfs_ops,
366 sockfs_xattr_handlers,
367 &sockfs_dentry_operations, SOCKFS_MAGIC);
368 }
369
370 static struct vfsmount *sock_mnt __read_mostly;
371
372 static struct file_system_type sock_fs_type = {
373 .name = "sockfs",
374 .mount = sockfs_mount,
375 .kill_sb = kill_anon_super,
376 };
377
378 /*
379 * Obtains the first available file descriptor and sets it up for use.
380 *
381 * These functions create file structures and maps them to fd space
382 * of the current process. On success it returns file descriptor
383 * and file struct implicitly stored in sock->file.
384 * Note that another thread may close file descriptor before we return
385 * from this function. We use the fact that now we do not refer
386 * to socket after mapping. If one day we will need it, this
387 * function will increment ref. count on file by 1.
388 *
389 * In any case returned fd MAY BE not valid!
390 * This race condition is unavoidable
391 * with shared fd spaces, we cannot solve it inside kernel,
392 * but we take care of internal coherence yet.
393 */
394
395 struct file *sock_alloc_file(struct socket *sock, int flags, const char *dname)
396 {
397 struct qstr name = { .name = "" };
398 struct path path;
399 struct file *file;
400
401 if (dname) {
402 name.name = dname;
403 name.len = strlen(name.name);
404 } else if (sock->sk) {
405 name.name = sock->sk->sk_prot_creator->name;
406 name.len = strlen(name.name);
407 }
408 path.dentry = d_alloc_pseudo(sock_mnt->mnt_sb, &name);
409 if (unlikely(!path.dentry))
410 return ERR_PTR(-ENOMEM);
411 path.mnt = mntget(sock_mnt);
412
413 d_instantiate(path.dentry, SOCK_INODE(sock));
414
415 file = alloc_file(&path, FMODE_READ | FMODE_WRITE,
416 &socket_file_ops);
417 if (IS_ERR(file)) {
418 /* drop dentry, keep inode */
419 ihold(d_inode(path.dentry));
420 path_put(&path);
421 return file;
422 }
423
424 sock->file = file;
425 file->f_flags = O_RDWR | (flags & O_NONBLOCK);
426 file->private_data = sock;
427 return file;
428 }
429 EXPORT_SYMBOL(sock_alloc_file);
430
431 static int sock_map_fd(struct socket *sock, int flags)
432 {
433 struct file *newfile;
434 int fd = get_unused_fd_flags(flags);
435 if (unlikely(fd < 0))
436 return fd;
437
438 newfile = sock_alloc_file(sock, flags, NULL);
439 if (likely(!IS_ERR(newfile))) {
440 fd_install(fd, newfile);
441 return fd;
442 }
443
444 put_unused_fd(fd);
445 return PTR_ERR(newfile);
446 }
447
448 struct socket *sock_from_file(struct file *file, int *err)
449 {
450 if (file->f_op == &socket_file_ops)
451 return file->private_data; /* set in sock_map_fd */
452
453 *err = -ENOTSOCK;
454 return NULL;
455 }
456 EXPORT_SYMBOL(sock_from_file);
457
458 /**
459 * sockfd_lookup - Go from a file number to its socket slot
460 * @fd: file handle
461 * @err: pointer to an error code return
462 *
463 * The file handle passed in is locked and the socket it is bound
464 * to is returned. If an error occurs the err pointer is overwritten
465 * with a negative errno code and NULL is returned. The function checks
466 * for both invalid handles and passing a handle which is not a socket.
467 *
468 * On a success the socket object pointer is returned.
469 */
470
471 struct socket *sockfd_lookup(int fd, int *err)
472 {
473 struct file *file;
474 struct socket *sock;
475
476 file = fget(fd);
477 if (!file) {
478 *err = -EBADF;
479 return NULL;
480 }
481
482 sock = sock_from_file(file, err);
483 if (!sock)
484 fput(file);
485 return sock;
486 }
487 EXPORT_SYMBOL(sockfd_lookup);
488
489 static struct socket *sockfd_lookup_light(int fd, int *err, int *fput_needed)
490 {
491 struct fd f = fdget(fd);
492 struct socket *sock;
493
494 *err = -EBADF;
495 if (f.file) {
496 sock = sock_from_file(f.file, err);
497 if (likely(sock)) {
498 *fput_needed = f.flags;
499 return sock;
500 }
501 fdput(f);
502 }
503 return NULL;
504 }
505
506 static ssize_t sockfs_listxattr(struct dentry *dentry, char *buffer,
507 size_t size)
508 {
509 ssize_t len;
510 ssize_t used = 0;
511
512 len = security_inode_listsecurity(d_inode(dentry), buffer, size);
513 if (len < 0)
514 return len;
515 used += len;
516 if (buffer) {
517 if (size < used)
518 return -ERANGE;
519 buffer += len;
520 }
521
522 len = (XATTR_NAME_SOCKPROTONAME_LEN + 1);
523 used += len;
524 if (buffer) {
525 if (size < used)
526 return -ERANGE;
527 memcpy(buffer, XATTR_NAME_SOCKPROTONAME, len);
528 buffer += len;
529 }
530
531 return used;
532 }
533
534 static int sockfs_setattr(struct dentry *dentry, struct iattr *iattr)
535 {
536 int err = simple_setattr(dentry, iattr);
537
538 if (!err && (iattr->ia_valid & ATTR_UID)) {
539 struct socket *sock = SOCKET_I(d_inode(dentry));
540
541 sock->sk->sk_uid = iattr->ia_uid;
542 }
543
544 return err;
545 }
546
547 static const struct inode_operations sockfs_inode_ops = {
548 .listxattr = sockfs_listxattr,
549 .setattr = sockfs_setattr,
550 };
551
552 /**
553 * sock_alloc - allocate a socket
554 *
555 * Allocate a new inode and socket object. The two are bound together
556 * and initialised. The socket is then returned. If we are out of inodes
557 * NULL is returned.
558 */
559
560 struct socket *sock_alloc(void)
561 {
562 struct inode *inode;
563 struct socket *sock;
564
565 inode = new_inode_pseudo(sock_mnt->mnt_sb);
566 if (!inode)
567 return NULL;
568
569 sock = SOCKET_I(inode);
570
571 kmemcheck_annotate_bitfield(sock, type);
572 inode->i_ino = get_next_ino();
573 inode->i_mode = S_IFSOCK | S_IRWXUGO;
574 inode->i_uid = current_fsuid();
575 inode->i_gid = current_fsgid();
576 inode->i_op = &sockfs_inode_ops;
577
578 this_cpu_add(sockets_in_use, 1);
579 return sock;
580 }
581 EXPORT_SYMBOL(sock_alloc);
582
583 /**
584 * sock_release - close a socket
585 * @sock: socket to close
586 *
587 * The socket is released from the protocol stack if it has a release
588 * callback, and the inode is then released if the socket is bound to
589 * an inode not a file.
590 */
591
592 void sock_release(struct socket *sock)
593 {
594 if (sock->ops) {
595 struct module *owner = sock->ops->owner;
596
597 sock->ops->release(sock);
598 sock->ops = NULL;
599 module_put(owner);
600 }
601
602 if (rcu_dereference_protected(sock->wq, 1)->fasync_list)
603 pr_err("%s: fasync list not empty!\n", __func__);
604
605 this_cpu_sub(sockets_in_use, 1);
606 if (!sock->file) {
607 iput(SOCK_INODE(sock));
608 return;
609 }
610 sock->file = NULL;
611 }
612 EXPORT_SYMBOL(sock_release);
613
614 void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags)
615 {
616 u8 flags = *tx_flags;
617
618 if (tsflags & SOF_TIMESTAMPING_TX_HARDWARE)
619 flags |= SKBTX_HW_TSTAMP;
620
621 if (tsflags & SOF_TIMESTAMPING_TX_SOFTWARE)
622 flags |= SKBTX_SW_TSTAMP;
623
624 if (tsflags & SOF_TIMESTAMPING_TX_SCHED)
625 flags |= SKBTX_SCHED_TSTAMP;
626
627 *tx_flags = flags;
628 }
629 EXPORT_SYMBOL(__sock_tx_timestamp);
630
631 static inline int sock_sendmsg_nosec(struct socket *sock, struct msghdr *msg)
632 {
633 int ret = sock->ops->sendmsg(sock, msg, msg_data_left(msg));
634 BUG_ON(ret == -EIOCBQUEUED);
635 return ret;
636 }
637
638 int sock_sendmsg(struct socket *sock, struct msghdr *msg)
639 {
640 int err = security_socket_sendmsg(sock, msg,
641 msg_data_left(msg));
642
643 return err ?: sock_sendmsg_nosec(sock, msg);
644 }
645 EXPORT_SYMBOL(sock_sendmsg);
646
647 int kernel_sendmsg(struct socket *sock, struct msghdr *msg,
648 struct kvec *vec, size_t num, size_t size)
649 {
650 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
651 return sock_sendmsg(sock, msg);
652 }
653 EXPORT_SYMBOL(kernel_sendmsg);
654
655 int kernel_sendmsg_locked(struct sock *sk, struct msghdr *msg,
656 struct kvec *vec, size_t num, size_t size)
657 {
658 struct socket *sock = sk->sk_socket;
659
660 if (!sock->ops->sendmsg_locked)
661 return sock_no_sendmsg_locked(sk, msg, size);
662
663 iov_iter_kvec(&msg->msg_iter, WRITE | ITER_KVEC, vec, num, size);
664
665 return sock->ops->sendmsg_locked(sk, msg, msg_data_left(msg));
666 }
667 EXPORT_SYMBOL(kernel_sendmsg_locked);
668
669 static bool skb_is_err_queue(const struct sk_buff *skb)
670 {
671 /* pkt_type of skbs enqueued on the error queue are set to
672 * PACKET_OUTGOING in skb_set_err_queue(). This is only safe to do
673 * in recvmsg, since skbs received on a local socket will never
674 * have a pkt_type of PACKET_OUTGOING.
675 */
676 return skb->pkt_type == PACKET_OUTGOING;
677 }
678
679 /* On transmit, software and hardware timestamps are returned independently.
680 * As the two skb clones share the hardware timestamp, which may be updated
681 * before the software timestamp is received, a hardware TX timestamp may be
682 * returned only if there is no software TX timestamp. Ignore false software
683 * timestamps, which may be made in the __sock_recv_timestamp() call when the
684 * option SO_TIMESTAMP(NS) is enabled on the socket, even when the skb has a
685 * hardware timestamp.
686 */
687 static bool skb_is_swtx_tstamp(const struct sk_buff *skb, int false_tstamp)
688 {
689 return skb->tstamp && !false_tstamp && skb_is_err_queue(skb);
690 }
691
692 static void put_ts_pktinfo(struct msghdr *msg, struct sk_buff *skb)
693 {
694 struct scm_ts_pktinfo ts_pktinfo;
695 struct net_device *orig_dev;
696
697 if (!skb_mac_header_was_set(skb))
698 return;
699
700 memset(&ts_pktinfo, 0, sizeof(ts_pktinfo));
701
702 rcu_read_lock();
703 orig_dev = dev_get_by_napi_id(skb_napi_id(skb));
704 if (orig_dev)
705 ts_pktinfo.if_index = orig_dev->ifindex;
706 rcu_read_unlock();
707
708 ts_pktinfo.pkt_length = skb->len - skb_mac_offset(skb);
709 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_PKTINFO,
710 sizeof(ts_pktinfo), &ts_pktinfo);
711 }
712
713 /*
714 * called from sock_recv_timestamp() if sock_flag(sk, SOCK_RCVTSTAMP)
715 */
716 void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
717 struct sk_buff *skb)
718 {
719 int need_software_tstamp = sock_flag(sk, SOCK_RCVTSTAMP);
720 struct scm_timestamping tss;
721 int empty = 1, false_tstamp = 0;
722 struct skb_shared_hwtstamps *shhwtstamps =
723 skb_hwtstamps(skb);
724
725 /* Race occurred between timestamp enabling and packet
726 receiving. Fill in the current time for now. */
727 if (need_software_tstamp && skb->tstamp == 0) {
728 __net_timestamp(skb);
729 false_tstamp = 1;
730 }
731
732 if (need_software_tstamp) {
733 if (!sock_flag(sk, SOCK_RCVTSTAMPNS)) {
734 struct timeval tv;
735 skb_get_timestamp(skb, &tv);
736 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMP,
737 sizeof(tv), &tv);
738 } else {
739 struct timespec ts;
740 skb_get_timestampns(skb, &ts);
741 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPNS,
742 sizeof(ts), &ts);
743 }
744 }
745
746 memset(&tss, 0, sizeof(tss));
747 if ((sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) &&
748 ktime_to_timespec_cond(skb->tstamp, tss.ts + 0))
749 empty = 0;
750 if (shhwtstamps &&
751 (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE) &&
752 !skb_is_swtx_tstamp(skb, false_tstamp) &&
753 ktime_to_timespec_cond(shhwtstamps->hwtstamp, tss.ts + 2)) {
754 empty = 0;
755 if ((sk->sk_tsflags & SOF_TIMESTAMPING_OPT_PKTINFO) &&
756 !skb_is_err_queue(skb))
757 put_ts_pktinfo(msg, skb);
758 }
759 if (!empty) {
760 put_cmsg(msg, SOL_SOCKET,
761 SCM_TIMESTAMPING, sizeof(tss), &tss);
762
763 if (skb_is_err_queue(skb) && skb->len &&
764 SKB_EXT_ERR(skb)->opt_stats)
765 put_cmsg(msg, SOL_SOCKET, SCM_TIMESTAMPING_OPT_STATS,
766 skb->len, skb->data);
767 }
768 }
769 EXPORT_SYMBOL_GPL(__sock_recv_timestamp);
770
771 void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
772 struct sk_buff *skb)
773 {
774 int ack;
775
776 if (!sock_flag(sk, SOCK_WIFI_STATUS))
777 return;
778 if (!skb->wifi_acked_valid)
779 return;
780
781 ack = skb->wifi_acked;
782
783 put_cmsg(msg, SOL_SOCKET, SCM_WIFI_STATUS, sizeof(ack), &ack);
784 }
785 EXPORT_SYMBOL_GPL(__sock_recv_wifi_status);
786
787 static inline void sock_recv_drops(struct msghdr *msg, struct sock *sk,
788 struct sk_buff *skb)
789 {
790 if (sock_flag(sk, SOCK_RXQ_OVFL) && skb && SOCK_SKB_CB(skb)->dropcount)
791 put_cmsg(msg, SOL_SOCKET, SO_RXQ_OVFL,
792 sizeof(__u32), &SOCK_SKB_CB(skb)->dropcount);
793 }
794
795 void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
796 struct sk_buff *skb)
797 {
798 sock_recv_timestamp(msg, sk, skb);
799 sock_recv_drops(msg, sk, skb);
800 }
801 EXPORT_SYMBOL_GPL(__sock_recv_ts_and_drops);
802
803 static inline int sock_recvmsg_nosec(struct socket *sock, struct msghdr *msg,
804 int flags)
805 {
806 return sock->ops->recvmsg(sock, msg, msg_data_left(msg), flags);
807 }
808
809 int sock_recvmsg(struct socket *sock, struct msghdr *msg, int flags)
810 {
811 int err = security_socket_recvmsg(sock, msg, msg_data_left(msg), flags);
812
813 return err ?: sock_recvmsg_nosec(sock, msg, flags);
814 }
815 EXPORT_SYMBOL(sock_recvmsg);
816
817 /**
818 * kernel_recvmsg - Receive a message from a socket (kernel space)
819 * @sock: The socket to receive the message from
820 * @msg: Received message
821 * @vec: Input s/g array for message data
822 * @num: Size of input s/g array
823 * @size: Number of bytes to read
824 * @flags: Message flags (MSG_DONTWAIT, etc...)
825 *
826 * On return the msg structure contains the scatter/gather array passed in the
827 * vec argument. The array is modified so that it consists of the unfilled
828 * portion of the original array.
829 *
830 * The returned value is the total number of bytes received, or an error.
831 */
832 int kernel_recvmsg(struct socket *sock, struct msghdr *msg,
833 struct kvec *vec, size_t num, size_t size, int flags)
834 {
835 mm_segment_t oldfs = get_fs();
836 int result;
837
838 iov_iter_kvec(&msg->msg_iter, READ | ITER_KVEC, vec, num, size);
839 set_fs(KERNEL_DS);
840 result = sock_recvmsg(sock, msg, flags);
841 set_fs(oldfs);
842 return result;
843 }
844 EXPORT_SYMBOL(kernel_recvmsg);
845
846 static ssize_t sock_sendpage(struct file *file, struct page *page,
847 int offset, size_t size, loff_t *ppos, int more)
848 {
849 struct socket *sock;
850 int flags;
851
852 sock = file->private_data;
853
854 flags = (file->f_flags & O_NONBLOCK) ? MSG_DONTWAIT : 0;
855 /* more is a combination of MSG_MORE and MSG_SENDPAGE_NOTLAST */
856 flags |= more;
857
858 return kernel_sendpage(sock, page, offset, size, flags);
859 }
860
861 static ssize_t sock_splice_read(struct file *file, loff_t *ppos,
862 struct pipe_inode_info *pipe, size_t len,
863 unsigned int flags)
864 {
865 struct socket *sock = file->private_data;
866
867 if (unlikely(!sock->ops->splice_read))
868 return -EINVAL;
869
870 return sock->ops->splice_read(sock, ppos, pipe, len, flags);
871 }
872
873 static ssize_t sock_read_iter(struct kiocb *iocb, struct iov_iter *to)
874 {
875 struct file *file = iocb->ki_filp;
876 struct socket *sock = file->private_data;
877 struct msghdr msg = {.msg_iter = *to,
878 .msg_iocb = iocb};
879 ssize_t res;
880
881 if (file->f_flags & O_NONBLOCK)
882 msg.msg_flags = MSG_DONTWAIT;
883
884 if (iocb->ki_pos != 0)
885 return -ESPIPE;
886
887 if (!iov_iter_count(to)) /* Match SYS5 behaviour */
888 return 0;
889
890 res = sock_recvmsg(sock, &msg, msg.msg_flags);
891 *to = msg.msg_iter;
892 return res;
893 }
894
895 static ssize_t sock_write_iter(struct kiocb *iocb, struct iov_iter *from)
896 {
897 struct file *file = iocb->ki_filp;
898 struct socket *sock = file->private_data;
899 struct msghdr msg = {.msg_iter = *from,
900 .msg_iocb = iocb};
901 ssize_t res;
902
903 if (iocb->ki_pos != 0)
904 return -ESPIPE;
905
906 if (file->f_flags & O_NONBLOCK)
907 msg.msg_flags = MSG_DONTWAIT;
908
909 if (sock->type == SOCK_SEQPACKET)
910 msg.msg_flags |= MSG_EOR;
911
912 res = sock_sendmsg(sock, &msg);
913 *from = msg.msg_iter;
914 return res;
915 }
916
917 /*
918 * Atomic setting of ioctl hooks to avoid race
919 * with module unload.
920 */
921
922 static DEFINE_MUTEX(br_ioctl_mutex);
923 static int (*br_ioctl_hook) (struct net *, unsigned int cmd, void __user *arg);
924
925 void brioctl_set(int (*hook) (struct net *, unsigned int, void __user *))
926 {
927 mutex_lock(&br_ioctl_mutex);
928 br_ioctl_hook = hook;
929 mutex_unlock(&br_ioctl_mutex);
930 }
931 EXPORT_SYMBOL(brioctl_set);
932
933 static DEFINE_MUTEX(vlan_ioctl_mutex);
934 static int (*vlan_ioctl_hook) (struct net *, void __user *arg);
935
936 void vlan_ioctl_set(int (*hook) (struct net *, void __user *))
937 {
938 mutex_lock(&vlan_ioctl_mutex);
939 vlan_ioctl_hook = hook;
940 mutex_unlock(&vlan_ioctl_mutex);
941 }
942 EXPORT_SYMBOL(vlan_ioctl_set);
943
944 static DEFINE_MUTEX(dlci_ioctl_mutex);
945 static int (*dlci_ioctl_hook) (unsigned int, void __user *);
946
947 void dlci_ioctl_set(int (*hook) (unsigned int, void __user *))
948 {
949 mutex_lock(&dlci_ioctl_mutex);
950 dlci_ioctl_hook = hook;
951 mutex_unlock(&dlci_ioctl_mutex);
952 }
953 EXPORT_SYMBOL(dlci_ioctl_set);
954
955 static long sock_do_ioctl(struct net *net, struct socket *sock,
956 unsigned int cmd, unsigned long arg)
957 {
958 int err;
959 void __user *argp = (void __user *)arg;
960
961 err = sock->ops->ioctl(sock, cmd, arg);
962
963 /*
964 * If this ioctl is unknown try to hand it down
965 * to the NIC driver.
966 */
967 if (err == -ENOIOCTLCMD)
968 err = dev_ioctl(net, cmd, argp);
969
970 return err;
971 }
972
973 /*
974 * With an ioctl, arg may well be a user mode pointer, but we don't know
975 * what to do with it - that's up to the protocol still.
976 */
977
978 static struct ns_common *get_net_ns(struct ns_common *ns)
979 {
980 return &get_net(container_of(ns, struct net, ns))->ns;
981 }
982
983 static long sock_ioctl(struct file *file, unsigned cmd, unsigned long arg)
984 {
985 struct socket *sock;
986 struct sock *sk;
987 void __user *argp = (void __user *)arg;
988 int pid, err;
989 struct net *net;
990
991 sock = file->private_data;
992 sk = sock->sk;
993 net = sock_net(sk);
994 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15)) {
995 err = dev_ioctl(net, cmd, argp);
996 } else
997 #ifdef CONFIG_WEXT_CORE
998 if (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST) {
999 err = dev_ioctl(net, cmd, argp);
1000 } else
1001 #endif
1002 switch (cmd) {
1003 case FIOSETOWN:
1004 case SIOCSPGRP:
1005 err = -EFAULT;
1006 if (get_user(pid, (int __user *)argp))
1007 break;
1008 err = f_setown(sock->file, pid, 1);
1009 break;
1010 case FIOGETOWN:
1011 case SIOCGPGRP:
1012 err = put_user(f_getown(sock->file),
1013 (int __user *)argp);
1014 break;
1015 case SIOCGIFBR:
1016 case SIOCSIFBR:
1017 case SIOCBRADDBR:
1018 case SIOCBRDELBR:
1019 err = -ENOPKG;
1020 if (!br_ioctl_hook)
1021 request_module("bridge");
1022
1023 mutex_lock(&br_ioctl_mutex);
1024 if (br_ioctl_hook)
1025 err = br_ioctl_hook(net, cmd, argp);
1026 mutex_unlock(&br_ioctl_mutex);
1027 break;
1028 case SIOCGIFVLAN:
1029 case SIOCSIFVLAN:
1030 err = -ENOPKG;
1031 if (!vlan_ioctl_hook)
1032 request_module("8021q");
1033
1034 mutex_lock(&vlan_ioctl_mutex);
1035 if (vlan_ioctl_hook)
1036 err = vlan_ioctl_hook(net, argp);
1037 mutex_unlock(&vlan_ioctl_mutex);
1038 break;
1039 case SIOCADDDLCI:
1040 case SIOCDELDLCI:
1041 err = -ENOPKG;
1042 if (!dlci_ioctl_hook)
1043 request_module("dlci");
1044
1045 mutex_lock(&dlci_ioctl_mutex);
1046 if (dlci_ioctl_hook)
1047 err = dlci_ioctl_hook(cmd, argp);
1048 mutex_unlock(&dlci_ioctl_mutex);
1049 break;
1050 case SIOCGSKNS:
1051 err = -EPERM;
1052 if (!ns_capable(net->user_ns, CAP_NET_ADMIN))
1053 break;
1054
1055 err = open_related_ns(&net->ns, get_net_ns);
1056 break;
1057 default:
1058 err = sock_do_ioctl(net, sock, cmd, arg);
1059 break;
1060 }
1061 return err;
1062 }
1063
1064 int sock_create_lite(int family, int type, int protocol, struct socket **res)
1065 {
1066 int err;
1067 struct socket *sock = NULL;
1068
1069 err = security_socket_create(family, type, protocol, 1);
1070 if (err)
1071 goto out;
1072
1073 sock = sock_alloc();
1074 if (!sock) {
1075 err = -ENOMEM;
1076 goto out;
1077 }
1078
1079 sock->type = type;
1080 err = security_socket_post_create(sock, family, type, protocol, 1);
1081 if (err)
1082 goto out_release;
1083
1084 out:
1085 *res = sock;
1086 return err;
1087 out_release:
1088 sock_release(sock);
1089 sock = NULL;
1090 goto out;
1091 }
1092 EXPORT_SYMBOL(sock_create_lite);
1093
1094 /* No kernel lock held - perfect */
1095 static unsigned int sock_poll(struct file *file, poll_table *wait)
1096 {
1097 unsigned int busy_flag = 0;
1098 struct socket *sock;
1099
1100 /*
1101 * We can't return errors to poll, so it's either yes or no.
1102 */
1103 sock = file->private_data;
1104
1105 if (sk_can_busy_loop(sock->sk)) {
1106 /* this socket can poll_ll so tell the system call */
1107 busy_flag = POLL_BUSY_LOOP;
1108
1109 /* once, only if requested by syscall */
1110 if (wait && (wait->_key & POLL_BUSY_LOOP))
1111 sk_busy_loop(sock->sk, 1);
1112 }
1113
1114 return busy_flag | sock->ops->poll(file, sock, wait);
1115 }
1116
1117 static int sock_mmap(struct file *file, struct vm_area_struct *vma)
1118 {
1119 struct socket *sock = file->private_data;
1120
1121 return sock->ops->mmap(file, sock, vma);
1122 }
1123
1124 static int sock_close(struct inode *inode, struct file *filp)
1125 {
1126 sock_release(SOCKET_I(inode));
1127 return 0;
1128 }
1129
1130 /*
1131 * Update the socket async list
1132 *
1133 * Fasync_list locking strategy.
1134 *
1135 * 1. fasync_list is modified only under process context socket lock
1136 * i.e. under semaphore.
1137 * 2. fasync_list is used under read_lock(&sk->sk_callback_lock)
1138 * or under socket lock
1139 */
1140
1141 static int sock_fasync(int fd, struct file *filp, int on)
1142 {
1143 struct socket *sock = filp->private_data;
1144 struct sock *sk = sock->sk;
1145 struct socket_wq *wq;
1146
1147 if (sk == NULL)
1148 return -EINVAL;
1149
1150 lock_sock(sk);
1151 wq = rcu_dereference_protected(sock->wq, lockdep_sock_is_held(sk));
1152 fasync_helper(fd, filp, on, &wq->fasync_list);
1153
1154 if (!wq->fasync_list)
1155 sock_reset_flag(sk, SOCK_FASYNC);
1156 else
1157 sock_set_flag(sk, SOCK_FASYNC);
1158
1159 release_sock(sk);
1160 return 0;
1161 }
1162
1163 /* This function may be called only under rcu_lock */
1164
1165 int sock_wake_async(struct socket_wq *wq, int how, int band)
1166 {
1167 if (!wq || !wq->fasync_list)
1168 return -1;
1169
1170 switch (how) {
1171 case SOCK_WAKE_WAITD:
1172 if (test_bit(SOCKWQ_ASYNC_WAITDATA, &wq->flags))
1173 break;
1174 goto call_kill;
1175 case SOCK_WAKE_SPACE:
1176 if (!test_and_clear_bit(SOCKWQ_ASYNC_NOSPACE, &wq->flags))
1177 break;
1178 /* fall through */
1179 case SOCK_WAKE_IO:
1180 call_kill:
1181 kill_fasync(&wq->fasync_list, SIGIO, band);
1182 break;
1183 case SOCK_WAKE_URG:
1184 kill_fasync(&wq->fasync_list, SIGURG, band);
1185 }
1186
1187 return 0;
1188 }
1189 EXPORT_SYMBOL(sock_wake_async);
1190
1191 int __sock_create(struct net *net, int family, int type, int protocol,
1192 struct socket **res, int kern)
1193 {
1194 int err;
1195 struct socket *sock;
1196 const struct net_proto_family *pf;
1197
1198 /*
1199 * Check protocol is in range
1200 */
1201 if (family < 0 || family >= NPROTO)
1202 return -EAFNOSUPPORT;
1203 if (type < 0 || type >= SOCK_MAX)
1204 return -EINVAL;
1205
1206 /* Compatibility.
1207
1208 This uglymoron is moved from INET layer to here to avoid
1209 deadlock in module load.
1210 */
1211 if (family == PF_INET && type == SOCK_PACKET) {
1212 pr_info_once("%s uses obsolete (PF_INET,SOCK_PACKET)\n",
1213 current->comm);
1214 family = PF_PACKET;
1215 }
1216
1217 err = security_socket_create(family, type, protocol, kern);
1218 if (err)
1219 return err;
1220
1221 /*
1222 * Allocate the socket and allow the family to set things up. if
1223 * the protocol is 0, the family is instructed to select an appropriate
1224 * default.
1225 */
1226 sock = sock_alloc();
1227 if (!sock) {
1228 net_warn_ratelimited("socket: no more sockets\n");
1229 return -ENFILE; /* Not exactly a match, but its the
1230 closest posix thing */
1231 }
1232
1233 sock->type = type;
1234
1235 #ifdef CONFIG_MODULES
1236 /* Attempt to load a protocol module if the find failed.
1237 *
1238 * 12/09/1996 Marcin: But! this makes REALLY only sense, if the user
1239 * requested real, full-featured networking support upon configuration.
1240 * Otherwise module support will break!
1241 */
1242 if (rcu_access_pointer(net_families[family]) == NULL)
1243 request_module("net-pf-%d", family);
1244 #endif
1245
1246 rcu_read_lock();
1247 pf = rcu_dereference(net_families[family]);
1248 err = -EAFNOSUPPORT;
1249 if (!pf)
1250 goto out_release;
1251
1252 /*
1253 * We will call the ->create function, that possibly is in a loadable
1254 * module, so we have to bump that loadable module refcnt first.
1255 */
1256 if (!try_module_get(pf->owner))
1257 goto out_release;
1258
1259 /* Now protected by module ref count */
1260 rcu_read_unlock();
1261
1262 err = pf->create(net, sock, protocol, kern);
1263 if (err < 0)
1264 goto out_module_put;
1265
1266 /*
1267 * Now to bump the refcnt of the [loadable] module that owns this
1268 * socket at sock_release time we decrement its refcnt.
1269 */
1270 if (!try_module_get(sock->ops->owner))
1271 goto out_module_busy;
1272
1273 /*
1274 * Now that we're done with the ->create function, the [loadable]
1275 * module can have its refcnt decremented
1276 */
1277 module_put(pf->owner);
1278 err = security_socket_post_create(sock, family, type, protocol, kern);
1279 if (err)
1280 goto out_sock_release;
1281 *res = sock;
1282
1283 return 0;
1284
1285 out_module_busy:
1286 err = -EAFNOSUPPORT;
1287 out_module_put:
1288 sock->ops = NULL;
1289 module_put(pf->owner);
1290 out_sock_release:
1291 sock_release(sock);
1292 return err;
1293
1294 out_release:
1295 rcu_read_unlock();
1296 goto out_sock_release;
1297 }
1298 EXPORT_SYMBOL(__sock_create);
1299
1300 int sock_create(int family, int type, int protocol, struct socket **res)
1301 {
1302 return __sock_create(current->nsproxy->net_ns, family, type, protocol, res, 0);
1303 }
1304 EXPORT_SYMBOL(sock_create);
1305
1306 int sock_create_kern(struct net *net, int family, int type, int protocol, struct socket **res)
1307 {
1308 return __sock_create(net, family, type, protocol, res, 1);
1309 }
1310 EXPORT_SYMBOL(sock_create_kern);
1311
1312 SYSCALL_DEFINE3(socket, int, family, int, type, int, protocol)
1313 {
1314 int retval;
1315 struct socket *sock;
1316 int flags;
1317
1318 /* Check the SOCK_* constants for consistency. */
1319 BUILD_BUG_ON(SOCK_CLOEXEC != O_CLOEXEC);
1320 BUILD_BUG_ON((SOCK_MAX | SOCK_TYPE_MASK) != SOCK_TYPE_MASK);
1321 BUILD_BUG_ON(SOCK_CLOEXEC & SOCK_TYPE_MASK);
1322 BUILD_BUG_ON(SOCK_NONBLOCK & SOCK_TYPE_MASK);
1323
1324 flags = type & ~SOCK_TYPE_MASK;
1325 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1326 return -EINVAL;
1327 type &= SOCK_TYPE_MASK;
1328
1329 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1330 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1331
1332 retval = sock_create(family, type, protocol, &sock);
1333 if (retval < 0)
1334 goto out;
1335
1336 retval = sock_map_fd(sock, flags & (O_CLOEXEC | O_NONBLOCK));
1337 if (retval < 0)
1338 goto out_release;
1339
1340 out:
1341 /* It may be already another descriptor 8) Not kernel problem. */
1342 return retval;
1343
1344 out_release:
1345 sock_release(sock);
1346 return retval;
1347 }
1348
1349 /*
1350 * Create a pair of connected sockets.
1351 */
1352
1353 SYSCALL_DEFINE4(socketpair, int, family, int, type, int, protocol,
1354 int __user *, usockvec)
1355 {
1356 struct socket *sock1, *sock2;
1357 int fd1, fd2, err;
1358 struct file *newfile1, *newfile2;
1359 int flags;
1360
1361 flags = type & ~SOCK_TYPE_MASK;
1362 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1363 return -EINVAL;
1364 type &= SOCK_TYPE_MASK;
1365
1366 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1367 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1368
1369 /*
1370 * Obtain the first socket and check if the underlying protocol
1371 * supports the socketpair call.
1372 */
1373
1374 err = sock_create(family, type, protocol, &sock1);
1375 if (err < 0)
1376 goto out;
1377
1378 err = sock_create(family, type, protocol, &sock2);
1379 if (err < 0)
1380 goto out_release_1;
1381
1382 err = sock1->ops->socketpair(sock1, sock2);
1383 if (err < 0)
1384 goto out_release_both;
1385
1386 fd1 = get_unused_fd_flags(flags);
1387 if (unlikely(fd1 < 0)) {
1388 err = fd1;
1389 goto out_release_both;
1390 }
1391
1392 fd2 = get_unused_fd_flags(flags);
1393 if (unlikely(fd2 < 0)) {
1394 err = fd2;
1395 goto out_put_unused_1;
1396 }
1397
1398 newfile1 = sock_alloc_file(sock1, flags, NULL);
1399 if (IS_ERR(newfile1)) {
1400 err = PTR_ERR(newfile1);
1401 goto out_put_unused_both;
1402 }
1403
1404 newfile2 = sock_alloc_file(sock2, flags, NULL);
1405 if (IS_ERR(newfile2)) {
1406 err = PTR_ERR(newfile2);
1407 goto out_fput_1;
1408 }
1409
1410 err = put_user(fd1, &usockvec[0]);
1411 if (err)
1412 goto out_fput_both;
1413
1414 err = put_user(fd2, &usockvec[1]);
1415 if (err)
1416 goto out_fput_both;
1417
1418 audit_fd_pair(fd1, fd2);
1419
1420 fd_install(fd1, newfile1);
1421 fd_install(fd2, newfile2);
1422 /* fd1 and fd2 may be already another descriptors.
1423 * Not kernel problem.
1424 */
1425
1426 return 0;
1427
1428 out_fput_both:
1429 fput(newfile2);
1430 fput(newfile1);
1431 put_unused_fd(fd2);
1432 put_unused_fd(fd1);
1433 goto out;
1434
1435 out_fput_1:
1436 fput(newfile1);
1437 put_unused_fd(fd2);
1438 put_unused_fd(fd1);
1439 sock_release(sock2);
1440 goto out;
1441
1442 out_put_unused_both:
1443 put_unused_fd(fd2);
1444 out_put_unused_1:
1445 put_unused_fd(fd1);
1446 out_release_both:
1447 sock_release(sock2);
1448 out_release_1:
1449 sock_release(sock1);
1450 out:
1451 return err;
1452 }
1453
1454 /*
1455 * Bind a name to a socket. Nothing much to do here since it's
1456 * the protocol's responsibility to handle the local address.
1457 *
1458 * We move the socket address to kernel space before we call
1459 * the protocol layer (having also checked the address is ok).
1460 */
1461
1462 SYSCALL_DEFINE3(bind, int, fd, struct sockaddr __user *, umyaddr, int, addrlen)
1463 {
1464 struct socket *sock;
1465 struct sockaddr_storage address;
1466 int err, fput_needed;
1467
1468 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1469 if (sock) {
1470 err = move_addr_to_kernel(umyaddr, addrlen, &address);
1471 if (err >= 0) {
1472 err = security_socket_bind(sock,
1473 (struct sockaddr *)&address,
1474 addrlen);
1475 if (!err)
1476 err = sock->ops->bind(sock,
1477 (struct sockaddr *)
1478 &address, addrlen);
1479 }
1480 fput_light(sock->file, fput_needed);
1481 }
1482 return err;
1483 }
1484
1485 /*
1486 * Perform a listen. Basically, we allow the protocol to do anything
1487 * necessary for a listen, and if that works, we mark the socket as
1488 * ready for listening.
1489 */
1490
1491 SYSCALL_DEFINE2(listen, int, fd, int, backlog)
1492 {
1493 struct socket *sock;
1494 int err, fput_needed;
1495 int somaxconn;
1496
1497 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1498 if (sock) {
1499 somaxconn = sock_net(sock->sk)->core.sysctl_somaxconn;
1500 if ((unsigned int)backlog > somaxconn)
1501 backlog = somaxconn;
1502
1503 err = security_socket_listen(sock, backlog);
1504 if (!err)
1505 err = sock->ops->listen(sock, backlog);
1506
1507 fput_light(sock->file, fput_needed);
1508 }
1509 return err;
1510 }
1511
1512 /*
1513 * For accept, we attempt to create a new socket, set up the link
1514 * with the client, wake up the client, then return the new
1515 * connected fd. We collect the address of the connector in kernel
1516 * space and move it to user at the very end. This is unclean because
1517 * we open the socket then return an error.
1518 *
1519 * 1003.1g adds the ability to recvmsg() to query connection pending
1520 * status to recvmsg. We need to add that support in a way thats
1521 * clean when we restucture accept also.
1522 */
1523
1524 SYSCALL_DEFINE4(accept4, int, fd, struct sockaddr __user *, upeer_sockaddr,
1525 int __user *, upeer_addrlen, int, flags)
1526 {
1527 struct socket *sock, *newsock;
1528 struct file *newfile;
1529 int err, len, newfd, fput_needed;
1530 struct sockaddr_storage address;
1531
1532 if (flags & ~(SOCK_CLOEXEC | SOCK_NONBLOCK))
1533 return -EINVAL;
1534
1535 if (SOCK_NONBLOCK != O_NONBLOCK && (flags & SOCK_NONBLOCK))
1536 flags = (flags & ~SOCK_NONBLOCK) | O_NONBLOCK;
1537
1538 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1539 if (!sock)
1540 goto out;
1541
1542 err = -ENFILE;
1543 newsock = sock_alloc();
1544 if (!newsock)
1545 goto out_put;
1546
1547 newsock->type = sock->type;
1548 newsock->ops = sock->ops;
1549
1550 /*
1551 * We don't need try_module_get here, as the listening socket (sock)
1552 * has the protocol module (sock->ops->owner) held.
1553 */
1554 __module_get(newsock->ops->owner);
1555
1556 newfd = get_unused_fd_flags(flags);
1557 if (unlikely(newfd < 0)) {
1558 err = newfd;
1559 sock_release(newsock);
1560 goto out_put;
1561 }
1562 newfile = sock_alloc_file(newsock, flags, sock->sk->sk_prot_creator->name);
1563 if (IS_ERR(newfile)) {
1564 err = PTR_ERR(newfile);
1565 put_unused_fd(newfd);
1566 sock_release(newsock);
1567 goto out_put;
1568 }
1569
1570 err = security_socket_accept(sock, newsock);
1571 if (err)
1572 goto out_fd;
1573
1574 err = sock->ops->accept(sock, newsock, sock->file->f_flags, false);
1575 if (err < 0)
1576 goto out_fd;
1577
1578 if (upeer_sockaddr) {
1579 if (newsock->ops->getname(newsock, (struct sockaddr *)&address,
1580 &len, 2) < 0) {
1581 err = -ECONNABORTED;
1582 goto out_fd;
1583 }
1584 err = move_addr_to_user(&address,
1585 len, upeer_sockaddr, upeer_addrlen);
1586 if (err < 0)
1587 goto out_fd;
1588 }
1589
1590 /* File flags are not inherited via accept() unlike another OSes. */
1591
1592 fd_install(newfd, newfile);
1593 err = newfd;
1594
1595 out_put:
1596 fput_light(sock->file, fput_needed);
1597 out:
1598 return err;
1599 out_fd:
1600 fput(newfile);
1601 put_unused_fd(newfd);
1602 goto out_put;
1603 }
1604
1605 SYSCALL_DEFINE3(accept, int, fd, struct sockaddr __user *, upeer_sockaddr,
1606 int __user *, upeer_addrlen)
1607 {
1608 return sys_accept4(fd, upeer_sockaddr, upeer_addrlen, 0);
1609 }
1610
1611 /*
1612 * Attempt to connect to a socket with the server address. The address
1613 * is in user space so we verify it is OK and move it to kernel space.
1614 *
1615 * For 1003.1g we need to add clean support for a bind to AF_UNSPEC to
1616 * break bindings
1617 *
1618 * NOTE: 1003.1g draft 6.3 is broken with respect to AX.25/NetROM and
1619 * other SEQPACKET protocols that take time to connect() as it doesn't
1620 * include the -EINPROGRESS status for such sockets.
1621 */
1622
1623 SYSCALL_DEFINE3(connect, int, fd, struct sockaddr __user *, uservaddr,
1624 int, addrlen)
1625 {
1626 struct socket *sock;
1627 struct sockaddr_storage address;
1628 int err, fput_needed;
1629
1630 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1631 if (!sock)
1632 goto out;
1633 err = move_addr_to_kernel(uservaddr, addrlen, &address);
1634 if (err < 0)
1635 goto out_put;
1636
1637 err =
1638 security_socket_connect(sock, (struct sockaddr *)&address, addrlen);
1639 if (err)
1640 goto out_put;
1641
1642 err = sock->ops->connect(sock, (struct sockaddr *)&address, addrlen,
1643 sock->file->f_flags);
1644 out_put:
1645 fput_light(sock->file, fput_needed);
1646 out:
1647 return err;
1648 }
1649
1650 /*
1651 * Get the local address ('name') of a socket object. Move the obtained
1652 * name to user space.
1653 */
1654
1655 SYSCALL_DEFINE3(getsockname, int, fd, struct sockaddr __user *, usockaddr,
1656 int __user *, usockaddr_len)
1657 {
1658 struct socket *sock;
1659 struct sockaddr_storage address;
1660 int len, err, fput_needed;
1661
1662 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1663 if (!sock)
1664 goto out;
1665
1666 err = security_socket_getsockname(sock);
1667 if (err)
1668 goto out_put;
1669
1670 err = sock->ops->getname(sock, (struct sockaddr *)&address, &len, 0);
1671 if (err)
1672 goto out_put;
1673 err = move_addr_to_user(&address, len, usockaddr, usockaddr_len);
1674
1675 out_put:
1676 fput_light(sock->file, fput_needed);
1677 out:
1678 return err;
1679 }
1680
1681 /*
1682 * Get the remote address ('name') of a socket object. Move the obtained
1683 * name to user space.
1684 */
1685
1686 SYSCALL_DEFINE3(getpeername, int, fd, struct sockaddr __user *, usockaddr,
1687 int __user *, usockaddr_len)
1688 {
1689 struct socket *sock;
1690 struct sockaddr_storage address;
1691 int len, err, fput_needed;
1692
1693 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1694 if (sock != NULL) {
1695 err = security_socket_getpeername(sock);
1696 if (err) {
1697 fput_light(sock->file, fput_needed);
1698 return err;
1699 }
1700
1701 err =
1702 sock->ops->getname(sock, (struct sockaddr *)&address, &len,
1703 1);
1704 if (!err)
1705 err = move_addr_to_user(&address, len, usockaddr,
1706 usockaddr_len);
1707 fput_light(sock->file, fput_needed);
1708 }
1709 return err;
1710 }
1711
1712 /*
1713 * Send a datagram to a given address. We move the address into kernel
1714 * space and check the user space data area is readable before invoking
1715 * the protocol.
1716 */
1717
1718 SYSCALL_DEFINE6(sendto, int, fd, void __user *, buff, size_t, len,
1719 unsigned int, flags, struct sockaddr __user *, addr,
1720 int, addr_len)
1721 {
1722 struct socket *sock;
1723 struct sockaddr_storage address;
1724 int err;
1725 struct msghdr msg;
1726 struct iovec iov;
1727 int fput_needed;
1728
1729 err = import_single_range(WRITE, buff, len, &iov, &msg.msg_iter);
1730 if (unlikely(err))
1731 return err;
1732 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1733 if (!sock)
1734 goto out;
1735
1736 msg.msg_name = NULL;
1737 msg.msg_control = NULL;
1738 msg.msg_controllen = 0;
1739 msg.msg_namelen = 0;
1740 if (addr) {
1741 err = move_addr_to_kernel(addr, addr_len, &address);
1742 if (err < 0)
1743 goto out_put;
1744 msg.msg_name = (struct sockaddr *)&address;
1745 msg.msg_namelen = addr_len;
1746 }
1747 if (sock->file->f_flags & O_NONBLOCK)
1748 flags |= MSG_DONTWAIT;
1749 msg.msg_flags = flags;
1750 err = sock_sendmsg(sock, &msg);
1751
1752 out_put:
1753 fput_light(sock->file, fput_needed);
1754 out:
1755 return err;
1756 }
1757
1758 /*
1759 * Send a datagram down a socket.
1760 */
1761
1762 SYSCALL_DEFINE4(send, int, fd, void __user *, buff, size_t, len,
1763 unsigned int, flags)
1764 {
1765 return sys_sendto(fd, buff, len, flags, NULL, 0);
1766 }
1767
1768 /*
1769 * Receive a frame from the socket and optionally record the address of the
1770 * sender. We verify the buffers are writable and if needed move the
1771 * sender address from kernel to user space.
1772 */
1773
1774 SYSCALL_DEFINE6(recvfrom, int, fd, void __user *, ubuf, size_t, size,
1775 unsigned int, flags, struct sockaddr __user *, addr,
1776 int __user *, addr_len)
1777 {
1778 struct socket *sock;
1779 struct iovec iov;
1780 struct msghdr msg;
1781 struct sockaddr_storage address;
1782 int err, err2;
1783 int fput_needed;
1784
1785 err = import_single_range(READ, ubuf, size, &iov, &msg.msg_iter);
1786 if (unlikely(err))
1787 return err;
1788 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1789 if (!sock)
1790 goto out;
1791
1792 msg.msg_control = NULL;
1793 msg.msg_controllen = 0;
1794 /* Save some cycles and don't copy the address if not needed */
1795 msg.msg_name = addr ? (struct sockaddr *)&address : NULL;
1796 /* We assume all kernel code knows the size of sockaddr_storage */
1797 msg.msg_namelen = 0;
1798 msg.msg_iocb = NULL;
1799 msg.msg_flags = 0;
1800 if (sock->file->f_flags & O_NONBLOCK)
1801 flags |= MSG_DONTWAIT;
1802 err = sock_recvmsg(sock, &msg, flags);
1803
1804 if (err >= 0 && addr != NULL) {
1805 err2 = move_addr_to_user(&address,
1806 msg.msg_namelen, addr, addr_len);
1807 if (err2 < 0)
1808 err = err2;
1809 }
1810
1811 fput_light(sock->file, fput_needed);
1812 out:
1813 return err;
1814 }
1815
1816 /*
1817 * Receive a datagram from a socket.
1818 */
1819
1820 SYSCALL_DEFINE4(recv, int, fd, void __user *, ubuf, size_t, size,
1821 unsigned int, flags)
1822 {
1823 return sys_recvfrom(fd, ubuf, size, flags, NULL, NULL);
1824 }
1825
1826 /*
1827 * Set a socket option. Because we don't know the option lengths we have
1828 * to pass the user mode parameter for the protocols to sort out.
1829 */
1830
1831 SYSCALL_DEFINE5(setsockopt, int, fd, int, level, int, optname,
1832 char __user *, optval, int, optlen)
1833 {
1834 int err, fput_needed;
1835 struct socket *sock;
1836
1837 if (optlen < 0)
1838 return -EINVAL;
1839
1840 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1841 if (sock != NULL) {
1842 err = security_socket_setsockopt(sock, level, optname);
1843 if (err)
1844 goto out_put;
1845
1846 if (level == SOL_SOCKET)
1847 err =
1848 sock_setsockopt(sock, level, optname, optval,
1849 optlen);
1850 else
1851 err =
1852 sock->ops->setsockopt(sock, level, optname, optval,
1853 optlen);
1854 out_put:
1855 fput_light(sock->file, fput_needed);
1856 }
1857 return err;
1858 }
1859
1860 /*
1861 * Get a socket option. Because we don't know the option lengths we have
1862 * to pass a user mode parameter for the protocols to sort out.
1863 */
1864
1865 SYSCALL_DEFINE5(getsockopt, int, fd, int, level, int, optname,
1866 char __user *, optval, int __user *, optlen)
1867 {
1868 int err, fput_needed;
1869 struct socket *sock;
1870
1871 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1872 if (sock != NULL) {
1873 err = security_socket_getsockopt(sock, level, optname);
1874 if (err)
1875 goto out_put;
1876
1877 if (level == SOL_SOCKET)
1878 err =
1879 sock_getsockopt(sock, level, optname, optval,
1880 optlen);
1881 else
1882 err =
1883 sock->ops->getsockopt(sock, level, optname, optval,
1884 optlen);
1885 out_put:
1886 fput_light(sock->file, fput_needed);
1887 }
1888 return err;
1889 }
1890
1891 /*
1892 * Shutdown a socket.
1893 */
1894
1895 SYSCALL_DEFINE2(shutdown, int, fd, int, how)
1896 {
1897 int err, fput_needed;
1898 struct socket *sock;
1899
1900 sock = sockfd_lookup_light(fd, &err, &fput_needed);
1901 if (sock != NULL) {
1902 err = security_socket_shutdown(sock, how);
1903 if (!err)
1904 err = sock->ops->shutdown(sock, how);
1905 fput_light(sock->file, fput_needed);
1906 }
1907 return err;
1908 }
1909
1910 /* A couple of helpful macros for getting the address of the 32/64 bit
1911 * fields which are the same type (int / unsigned) on our platforms.
1912 */
1913 #define COMPAT_MSG(msg, member) ((MSG_CMSG_COMPAT & flags) ? &msg##_compat->member : &msg->member)
1914 #define COMPAT_NAMELEN(msg) COMPAT_MSG(msg, msg_namelen)
1915 #define COMPAT_FLAGS(msg) COMPAT_MSG(msg, msg_flags)
1916
1917 struct used_address {
1918 struct sockaddr_storage name;
1919 unsigned int name_len;
1920 };
1921
1922 static int copy_msghdr_from_user(struct msghdr *kmsg,
1923 struct user_msghdr __user *umsg,
1924 struct sockaddr __user **save_addr,
1925 struct iovec **iov)
1926 {
1927 struct user_msghdr msg;
1928 ssize_t err;
1929
1930 if (copy_from_user(&msg, umsg, sizeof(*umsg)))
1931 return -EFAULT;
1932
1933 kmsg->msg_control = (void __force *)msg.msg_control;
1934 kmsg->msg_controllen = msg.msg_controllen;
1935 kmsg->msg_flags = msg.msg_flags;
1936
1937 kmsg->msg_namelen = msg.msg_namelen;
1938 if (!msg.msg_name)
1939 kmsg->msg_namelen = 0;
1940
1941 if (kmsg->msg_namelen < 0)
1942 return -EINVAL;
1943
1944 if (kmsg->msg_namelen > sizeof(struct sockaddr_storage))
1945 kmsg->msg_namelen = sizeof(struct sockaddr_storage);
1946
1947 if (save_addr)
1948 *save_addr = msg.msg_name;
1949
1950 if (msg.msg_name && kmsg->msg_namelen) {
1951 if (!save_addr) {
1952 err = move_addr_to_kernel(msg.msg_name,
1953 kmsg->msg_namelen,
1954 kmsg->msg_name);
1955 if (err < 0)
1956 return err;
1957 }
1958 } else {
1959 kmsg->msg_name = NULL;
1960 kmsg->msg_namelen = 0;
1961 }
1962
1963 if (msg.msg_iovlen > UIO_MAXIOV)
1964 return -EMSGSIZE;
1965
1966 kmsg->msg_iocb = NULL;
1967
1968 return import_iovec(save_addr ? READ : WRITE,
1969 msg.msg_iov, msg.msg_iovlen,
1970 UIO_FASTIOV, iov, &kmsg->msg_iter);
1971 }
1972
1973 static int ___sys_sendmsg(struct socket *sock, struct user_msghdr __user *msg,
1974 struct msghdr *msg_sys, unsigned int flags,
1975 struct used_address *used_address,
1976 unsigned int allowed_msghdr_flags)
1977 {
1978 struct compat_msghdr __user *msg_compat =
1979 (struct compat_msghdr __user *)msg;
1980 struct sockaddr_storage address;
1981 struct iovec iovstack[UIO_FASTIOV], *iov = iovstack;
1982 unsigned char ctl[sizeof(struct cmsghdr) + 20]
1983 __aligned(sizeof(__kernel_size_t));
1984 /* 20 is size of ipv6_pktinfo */
1985 unsigned char *ctl_buf = ctl;
1986 int ctl_len;
1987 ssize_t err;
1988
1989 msg_sys->msg_name = &address;
1990
1991 if (MSG_CMSG_COMPAT & flags)
1992 err = get_compat_msghdr(msg_sys, msg_compat, NULL, &iov);
1993 else
1994 err = copy_msghdr_from_user(msg_sys, msg, NULL, &iov);
1995 if (err < 0)
1996 return err;
1997
1998 err = -ENOBUFS;
1999
2000 if (msg_sys->msg_controllen > INT_MAX)
2001 goto out_freeiov;
2002 flags |= (msg_sys->msg_flags & allowed_msghdr_flags);
2003 ctl_len = msg_sys->msg_controllen;
2004 if ((MSG_CMSG_COMPAT & flags) && ctl_len) {
2005 err =
2006 cmsghdr_from_user_compat_to_kern(msg_sys, sock->sk, ctl,
2007 sizeof(ctl));
2008 if (err)
2009 goto out_freeiov;
2010 ctl_buf = msg_sys->msg_control;
2011 ctl_len = msg_sys->msg_controllen;
2012 } else if (ctl_len) {
2013 BUILD_BUG_ON(sizeof(struct cmsghdr) !=
2014 CMSG_ALIGN(sizeof(struct cmsghdr)));
2015 if (ctl_len > sizeof(ctl)) {
2016 ctl_buf = sock_kmalloc(sock->sk, ctl_len, GFP_KERNEL);
2017 if (ctl_buf == NULL)
2018 goto out_freeiov;
2019 }
2020 err = -EFAULT;
2021 /*
2022 * Careful! Before this, msg_sys->msg_control contains a user pointer.
2023 * Afterwards, it will be a kernel pointer. Thus the compiler-assisted
2024 * checking falls down on this.
2025 */
2026 if (copy_from_user(ctl_buf,
2027 (void __user __force *)msg_sys->msg_control,
2028 ctl_len))
2029 goto out_freectl;
2030 msg_sys->msg_control = ctl_buf;
2031 }
2032 msg_sys->msg_flags = flags;
2033
2034 if (sock->file->f_flags & O_NONBLOCK)
2035 msg_sys->msg_flags |= MSG_DONTWAIT;
2036 /*
2037 * If this is sendmmsg() and current destination address is same as
2038 * previously succeeded address, omit asking LSM's decision.
2039 * used_address->name_len is initialized to UINT_MAX so that the first
2040 * destination address never matches.
2041 */
2042 if (used_address && msg_sys->msg_name &&
2043 used_address->name_len == msg_sys->msg_namelen &&
2044 !memcmp(&used_address->name, msg_sys->msg_name,
2045 used_address->name_len)) {
2046 err = sock_sendmsg_nosec(sock, msg_sys);
2047 goto out_freectl;
2048 }
2049 err = sock_sendmsg(sock, msg_sys);
2050 /*
2051 * If this is sendmmsg() and sending to current destination address was
2052 * successful, remember it.
2053 */
2054 if (used_address && err >= 0) {
2055 used_address->name_len = msg_sys->msg_namelen;
2056 if (msg_sys->msg_name)
2057 memcpy(&used_address->name, msg_sys->msg_name,
2058 used_address->name_len);
2059 }
2060
2061 out_freectl:
2062 if (ctl_buf != ctl)
2063 sock_kfree_s(sock->sk, ctl_buf, ctl_len);
2064 out_freeiov:
2065 kfree(iov);
2066 return err;
2067 }
2068
2069 /*
2070 * BSD sendmsg interface
2071 */
2072
2073 long __sys_sendmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2074 {
2075 int fput_needed, err;
2076 struct msghdr msg_sys;
2077 struct socket *sock;
2078
2079 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2080 if (!sock)
2081 goto out;
2082
2083 err = ___sys_sendmsg(sock, msg, &msg_sys, flags, NULL, 0);
2084
2085 fput_light(sock->file, fput_needed);
2086 out:
2087 return err;
2088 }
2089
2090 SYSCALL_DEFINE3(sendmsg, int, fd, struct user_msghdr __user *, msg, unsigned int, flags)
2091 {
2092 if (flags & MSG_CMSG_COMPAT)
2093 return -EINVAL;
2094 return __sys_sendmsg(fd, msg, flags);
2095 }
2096
2097 /*
2098 * Linux sendmmsg interface
2099 */
2100
2101 int __sys_sendmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2102 unsigned int flags)
2103 {
2104 int fput_needed, err, datagrams;
2105 struct socket *sock;
2106 struct mmsghdr __user *entry;
2107 struct compat_mmsghdr __user *compat_entry;
2108 struct msghdr msg_sys;
2109 struct used_address used_address;
2110 unsigned int oflags = flags;
2111
2112 if (vlen > UIO_MAXIOV)
2113 vlen = UIO_MAXIOV;
2114
2115 datagrams = 0;
2116
2117 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2118 if (!sock)
2119 return err;
2120
2121 used_address.name_len = UINT_MAX;
2122 entry = mmsg;
2123 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2124 err = 0;
2125 flags |= MSG_BATCH;
2126
2127 while (datagrams < vlen) {
2128 if (datagrams == vlen - 1)
2129 flags = oflags;
2130
2131 if (MSG_CMSG_COMPAT & flags) {
2132 err = ___sys_sendmsg(sock, (struct user_msghdr __user *)compat_entry,
2133 &msg_sys, flags, &used_address, MSG_EOR);
2134 if (err < 0)
2135 break;
2136 err = __put_user(err, &compat_entry->msg_len);
2137 ++compat_entry;
2138 } else {
2139 err = ___sys_sendmsg(sock,
2140 (struct user_msghdr __user *)entry,
2141 &msg_sys, flags, &used_address, MSG_EOR);
2142 if (err < 0)
2143 break;
2144 err = put_user(err, &entry->msg_len);
2145 ++entry;
2146 }
2147
2148 if (err)
2149 break;
2150 ++datagrams;
2151 if (msg_data_left(&msg_sys))
2152 break;
2153 cond_resched();
2154 }
2155
2156 fput_light(sock->file, fput_needed);
2157
2158 /* We only return an error if no datagrams were able to be sent */
2159 if (datagrams != 0)
2160 return datagrams;
2161
2162 return err;
2163 }
2164
2165 SYSCALL_DEFINE4(sendmmsg, int, fd, struct mmsghdr __user *, mmsg,
2166 unsigned int, vlen, unsigned int, flags)
2167 {
2168 if (flags & MSG_CMSG_COMPAT)
2169 return -EINVAL;
2170 return __sys_sendmmsg(fd, mmsg, vlen, flags);
2171 }
2172
2173 static int ___sys_recvmsg(struct socket *sock, struct user_msghdr __user *msg,
2174 struct msghdr *msg_sys, unsigned int flags, int nosec)
2175 {
2176 struct compat_msghdr __user *msg_compat =
2177 (struct compat_msghdr __user *)msg;
2178 struct iovec iovstack[UIO_FASTIOV];
2179 struct iovec *iov = iovstack;
2180 unsigned long cmsg_ptr;
2181 int len;
2182 ssize_t err;
2183
2184 /* kernel mode address */
2185 struct sockaddr_storage addr;
2186
2187 /* user mode address pointers */
2188 struct sockaddr __user *uaddr;
2189 int __user *uaddr_len = COMPAT_NAMELEN(msg);
2190
2191 msg_sys->msg_name = &addr;
2192
2193 if (MSG_CMSG_COMPAT & flags)
2194 err = get_compat_msghdr(msg_sys, msg_compat, &uaddr, &iov);
2195 else
2196 err = copy_msghdr_from_user(msg_sys, msg, &uaddr, &iov);
2197 if (err < 0)
2198 return err;
2199
2200 cmsg_ptr = (unsigned long)msg_sys->msg_control;
2201 msg_sys->msg_flags = flags & (MSG_CMSG_CLOEXEC|MSG_CMSG_COMPAT);
2202
2203 /* We assume all kernel code knows the size of sockaddr_storage */
2204 msg_sys->msg_namelen = 0;
2205
2206 if (sock->file->f_flags & O_NONBLOCK)
2207 flags |= MSG_DONTWAIT;
2208 err = (nosec ? sock_recvmsg_nosec : sock_recvmsg)(sock, msg_sys, flags);
2209 if (err < 0)
2210 goto out_freeiov;
2211 len = err;
2212
2213 if (uaddr != NULL) {
2214 err = move_addr_to_user(&addr,
2215 msg_sys->msg_namelen, uaddr,
2216 uaddr_len);
2217 if (err < 0)
2218 goto out_freeiov;
2219 }
2220 err = __put_user((msg_sys->msg_flags & ~MSG_CMSG_COMPAT),
2221 COMPAT_FLAGS(msg));
2222 if (err)
2223 goto out_freeiov;
2224 if (MSG_CMSG_COMPAT & flags)
2225 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2226 &msg_compat->msg_controllen);
2227 else
2228 err = __put_user((unsigned long)msg_sys->msg_control - cmsg_ptr,
2229 &msg->msg_controllen);
2230 if (err)
2231 goto out_freeiov;
2232 err = len;
2233
2234 out_freeiov:
2235 kfree(iov);
2236 return err;
2237 }
2238
2239 /*
2240 * BSD recvmsg interface
2241 */
2242
2243 long __sys_recvmsg(int fd, struct user_msghdr __user *msg, unsigned flags)
2244 {
2245 int fput_needed, err;
2246 struct msghdr msg_sys;
2247 struct socket *sock;
2248
2249 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2250 if (!sock)
2251 goto out;
2252
2253 err = ___sys_recvmsg(sock, msg, &msg_sys, flags, 0);
2254
2255 fput_light(sock->file, fput_needed);
2256 out:
2257 return err;
2258 }
2259
2260 SYSCALL_DEFINE3(recvmsg, int, fd, struct user_msghdr __user *, msg,
2261 unsigned int, flags)
2262 {
2263 if (flags & MSG_CMSG_COMPAT)
2264 return -EINVAL;
2265 return __sys_recvmsg(fd, msg, flags);
2266 }
2267
2268 /*
2269 * Linux recvmmsg interface
2270 */
2271
2272 int __sys_recvmmsg(int fd, struct mmsghdr __user *mmsg, unsigned int vlen,
2273 unsigned int flags, struct timespec *timeout)
2274 {
2275 int fput_needed, err, datagrams;
2276 struct socket *sock;
2277 struct mmsghdr __user *entry;
2278 struct compat_mmsghdr __user *compat_entry;
2279 struct msghdr msg_sys;
2280 struct timespec64 end_time;
2281 struct timespec64 timeout64;
2282
2283 if (timeout &&
2284 poll_select_set_timeout(&end_time, timeout->tv_sec,
2285 timeout->tv_nsec))
2286 return -EINVAL;
2287
2288 datagrams = 0;
2289
2290 sock = sockfd_lookup_light(fd, &err, &fput_needed);
2291 if (!sock)
2292 return err;
2293
2294 err = sock_error(sock->sk);
2295 if (err) {
2296 datagrams = err;
2297 goto out_put;
2298 }
2299
2300 entry = mmsg;
2301 compat_entry = (struct compat_mmsghdr __user *)mmsg;
2302
2303 while (datagrams < vlen) {
2304 /*
2305 * No need to ask LSM for more than the first datagram.
2306 */
2307 if (MSG_CMSG_COMPAT & flags) {
2308 err = ___sys_recvmsg(sock, (struct user_msghdr __user *)compat_entry,
2309 &msg_sys, flags & ~MSG_WAITFORONE,
2310 datagrams);
2311 if (err < 0)
2312 break;
2313 err = __put_user(err, &compat_entry->msg_len);
2314 ++compat_entry;
2315 } else {
2316 err = ___sys_recvmsg(sock,
2317 (struct user_msghdr __user *)entry,
2318 &msg_sys, flags & ~MSG_WAITFORONE,
2319 datagrams);
2320 if (err < 0)
2321 break;
2322 err = put_user(err, &entry->msg_len);
2323 ++entry;
2324 }
2325
2326 if (err)
2327 break;
2328 ++datagrams;
2329
2330 /* MSG_WAITFORONE turns on MSG_DONTWAIT after one packet */
2331 if (flags & MSG_WAITFORONE)
2332 flags |= MSG_DONTWAIT;
2333
2334 if (timeout) {
2335 ktime_get_ts64(&timeout64);
2336 *timeout = timespec64_to_timespec(
2337 timespec64_sub(end_time, timeout64));
2338 if (timeout->tv_sec < 0) {
2339 timeout->tv_sec = timeout->tv_nsec = 0;
2340 break;
2341 }
2342
2343 /* Timeout, return less than vlen datagrams */
2344 if (timeout->tv_nsec == 0 && timeout->tv_sec == 0)
2345 break;
2346 }
2347
2348 /* Out of band data, return right away */
2349 if (msg_sys.msg_flags & MSG_OOB)
2350 break;
2351 cond_resched();
2352 }
2353
2354 if (err == 0)
2355 goto out_put;
2356
2357 if (datagrams == 0) {
2358 datagrams = err;
2359 goto out_put;
2360 }
2361
2362 /*
2363 * We may return less entries than requested (vlen) if the
2364 * sock is non block and there aren't enough datagrams...
2365 */
2366 if (err != -EAGAIN) {
2367 /*
2368 * ... or if recvmsg returns an error after we
2369 * received some datagrams, where we record the
2370 * error to return on the next call or if the
2371 * app asks about it using getsockopt(SO_ERROR).
2372 */
2373 sock->sk->sk_err = -err;
2374 }
2375 out_put:
2376 fput_light(sock->file, fput_needed);
2377
2378 return datagrams;
2379 }
2380
2381 SYSCALL_DEFINE5(recvmmsg, int, fd, struct mmsghdr __user *, mmsg,
2382 unsigned int, vlen, unsigned int, flags,
2383 struct timespec __user *, timeout)
2384 {
2385 int datagrams;
2386 struct timespec timeout_sys;
2387
2388 if (flags & MSG_CMSG_COMPAT)
2389 return -EINVAL;
2390
2391 if (!timeout)
2392 return __sys_recvmmsg(fd, mmsg, vlen, flags, NULL);
2393
2394 if (copy_from_user(&timeout_sys, timeout, sizeof(timeout_sys)))
2395 return -EFAULT;
2396
2397 datagrams = __sys_recvmmsg(fd, mmsg, vlen, flags, &timeout_sys);
2398
2399 if (datagrams > 0 &&
2400 copy_to_user(timeout, &timeout_sys, sizeof(timeout_sys)))
2401 datagrams = -EFAULT;
2402
2403 return datagrams;
2404 }
2405
2406 #ifdef __ARCH_WANT_SYS_SOCKETCALL
2407 /* Argument list sizes for sys_socketcall */
2408 #define AL(x) ((x) * sizeof(unsigned long))
2409 static const unsigned char nargs[21] = {
2410 AL(0), AL(3), AL(3), AL(3), AL(2), AL(3),
2411 AL(3), AL(3), AL(4), AL(4), AL(4), AL(6),
2412 AL(6), AL(2), AL(5), AL(5), AL(3), AL(3),
2413 AL(4), AL(5), AL(4)
2414 };
2415
2416 #undef AL
2417
2418 /*
2419 * System call vectors.
2420 *
2421 * Argument checking cleaned up. Saved 20% in size.
2422 * This function doesn't need to set the kernel lock because
2423 * it is set by the callees.
2424 */
2425
2426 SYSCALL_DEFINE2(socketcall, int, call, unsigned long __user *, args)
2427 {
2428 unsigned long a[AUDITSC_ARGS];
2429 unsigned long a0, a1;
2430 int err;
2431 unsigned int len;
2432
2433 if (call < 1 || call > SYS_SENDMMSG)
2434 return -EINVAL;
2435
2436 len = nargs[call];
2437 if (len > sizeof(a))
2438 return -EINVAL;
2439
2440 /* copy_from_user should be SMP safe. */
2441 if (copy_from_user(a, args, len))
2442 return -EFAULT;
2443
2444 err = audit_socketcall(nargs[call] / sizeof(unsigned long), a);
2445 if (err)
2446 return err;
2447
2448 a0 = a[0];
2449 a1 = a[1];
2450
2451 switch (call) {
2452 case SYS_SOCKET:
2453 err = sys_socket(a0, a1, a[2]);
2454 break;
2455 case SYS_BIND:
2456 err = sys_bind(a0, (struct sockaddr __user *)a1, a[2]);
2457 break;
2458 case SYS_CONNECT:
2459 err = sys_connect(a0, (struct sockaddr __user *)a1, a[2]);
2460 break;
2461 case SYS_LISTEN:
2462 err = sys_listen(a0, a1);
2463 break;
2464 case SYS_ACCEPT:
2465 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2466 (int __user *)a[2], 0);
2467 break;
2468 case SYS_GETSOCKNAME:
2469 err =
2470 sys_getsockname(a0, (struct sockaddr __user *)a1,
2471 (int __user *)a[2]);
2472 break;
2473 case SYS_GETPEERNAME:
2474 err =
2475 sys_getpeername(a0, (struct sockaddr __user *)a1,
2476 (int __user *)a[2]);
2477 break;
2478 case SYS_SOCKETPAIR:
2479 err = sys_socketpair(a0, a1, a[2], (int __user *)a[3]);
2480 break;
2481 case SYS_SEND:
2482 err = sys_send(a0, (void __user *)a1, a[2], a[3]);
2483 break;
2484 case SYS_SENDTO:
2485 err = sys_sendto(a0, (void __user *)a1, a[2], a[3],
2486 (struct sockaddr __user *)a[4], a[5]);
2487 break;
2488 case SYS_RECV:
2489 err = sys_recv(a0, (void __user *)a1, a[2], a[3]);
2490 break;
2491 case SYS_RECVFROM:
2492 err = sys_recvfrom(a0, (void __user *)a1, a[2], a[3],
2493 (struct sockaddr __user *)a[4],
2494 (int __user *)a[5]);
2495 break;
2496 case SYS_SHUTDOWN:
2497 err = sys_shutdown(a0, a1);
2498 break;
2499 case SYS_SETSOCKOPT:
2500 err = sys_setsockopt(a0, a1, a[2], (char __user *)a[3], a[4]);
2501 break;
2502 case SYS_GETSOCKOPT:
2503 err =
2504 sys_getsockopt(a0, a1, a[2], (char __user *)a[3],
2505 (int __user *)a[4]);
2506 break;
2507 case SYS_SENDMSG:
2508 err = sys_sendmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2509 break;
2510 case SYS_SENDMMSG:
2511 err = sys_sendmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3]);
2512 break;
2513 case SYS_RECVMSG:
2514 err = sys_recvmsg(a0, (struct user_msghdr __user *)a1, a[2]);
2515 break;
2516 case SYS_RECVMMSG:
2517 err = sys_recvmmsg(a0, (struct mmsghdr __user *)a1, a[2], a[3],
2518 (struct timespec __user *)a[4]);
2519 break;
2520 case SYS_ACCEPT4:
2521 err = sys_accept4(a0, (struct sockaddr __user *)a1,
2522 (int __user *)a[2], a[3]);
2523 break;
2524 default:
2525 err = -EINVAL;
2526 break;
2527 }
2528 return err;
2529 }
2530
2531 #endif /* __ARCH_WANT_SYS_SOCKETCALL */
2532
2533 /**
2534 * sock_register - add a socket protocol handler
2535 * @ops: description of protocol
2536 *
2537 * This function is called by a protocol handler that wants to
2538 * advertise its address family, and have it linked into the
2539 * socket interface. The value ops->family corresponds to the
2540 * socket system call protocol family.
2541 */
2542 int sock_register(const struct net_proto_family *ops)
2543 {
2544 int err;
2545
2546 if (ops->family >= NPROTO) {
2547 pr_crit("protocol %d >= NPROTO(%d)\n", ops->family, NPROTO);
2548 return -ENOBUFS;
2549 }
2550
2551 spin_lock(&net_family_lock);
2552 if (rcu_dereference_protected(net_families[ops->family],
2553 lockdep_is_held(&net_family_lock)))
2554 err = -EEXIST;
2555 else {
2556 rcu_assign_pointer(net_families[ops->family], ops);
2557 err = 0;
2558 }
2559 spin_unlock(&net_family_lock);
2560
2561 pr_info("NET: Registered protocol family %d\n", ops->family);
2562 return err;
2563 }
2564 EXPORT_SYMBOL(sock_register);
2565
2566 /**
2567 * sock_unregister - remove a protocol handler
2568 * @family: protocol family to remove
2569 *
2570 * This function is called by a protocol handler that wants to
2571 * remove its address family, and have it unlinked from the
2572 * new socket creation.
2573 *
2574 * If protocol handler is a module, then it can use module reference
2575 * counts to protect against new references. If protocol handler is not
2576 * a module then it needs to provide its own protection in
2577 * the ops->create routine.
2578 */
2579 void sock_unregister(int family)
2580 {
2581 BUG_ON(family < 0 || family >= NPROTO);
2582
2583 spin_lock(&net_family_lock);
2584 RCU_INIT_POINTER(net_families[family], NULL);
2585 spin_unlock(&net_family_lock);
2586
2587 synchronize_rcu();
2588
2589 pr_info("NET: Unregistered protocol family %d\n", family);
2590 }
2591 EXPORT_SYMBOL(sock_unregister);
2592
2593 static int __init sock_init(void)
2594 {
2595 int err;
2596 /*
2597 * Initialize the network sysctl infrastructure.
2598 */
2599 err = net_sysctl_init();
2600 if (err)
2601 goto out;
2602
2603 /*
2604 * Initialize skbuff SLAB cache
2605 */
2606 skb_init();
2607
2608 /*
2609 * Initialize the protocols module.
2610 */
2611
2612 init_inodecache();
2613
2614 err = register_filesystem(&sock_fs_type);
2615 if (err)
2616 goto out_fs;
2617 sock_mnt = kern_mount(&sock_fs_type);
2618 if (IS_ERR(sock_mnt)) {
2619 err = PTR_ERR(sock_mnt);
2620 goto out_mount;
2621 }
2622
2623 /* The real protocol initialization is performed in later initcalls.
2624 */
2625
2626 #ifdef CONFIG_NETFILTER
2627 err = netfilter_init();
2628 if (err)
2629 goto out;
2630 #endif
2631
2632 ptp_classifier_init();
2633
2634 out:
2635 return err;
2636
2637 out_mount:
2638 unregister_filesystem(&sock_fs_type);
2639 out_fs:
2640 goto out;
2641 }
2642
2643 core_initcall(sock_init); /* early initcall */
2644
2645 #ifdef CONFIG_PROC_FS
2646 void socket_seq_show(struct seq_file *seq)
2647 {
2648 int cpu;
2649 int counter = 0;
2650
2651 for_each_possible_cpu(cpu)
2652 counter += per_cpu(sockets_in_use, cpu);
2653
2654 /* It can be negative, by the way. 8) */
2655 if (counter < 0)
2656 counter = 0;
2657
2658 seq_printf(seq, "sockets: used %d\n", counter);
2659 }
2660 #endif /* CONFIG_PROC_FS */
2661
2662 #ifdef CONFIG_COMPAT
2663 static int do_siocgstamp(struct net *net, struct socket *sock,
2664 unsigned int cmd, void __user *up)
2665 {
2666 mm_segment_t old_fs = get_fs();
2667 struct timeval ktv;
2668 int err;
2669
2670 set_fs(KERNEL_DS);
2671 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&ktv);
2672 set_fs(old_fs);
2673 if (!err)
2674 err = compat_put_timeval(&ktv, up);
2675
2676 return err;
2677 }
2678
2679 static int do_siocgstampns(struct net *net, struct socket *sock,
2680 unsigned int cmd, void __user *up)
2681 {
2682 mm_segment_t old_fs = get_fs();
2683 struct timespec kts;
2684 int err;
2685
2686 set_fs(KERNEL_DS);
2687 err = sock_do_ioctl(net, sock, cmd, (unsigned long)&kts);
2688 set_fs(old_fs);
2689 if (!err)
2690 err = compat_put_timespec(&kts, up);
2691
2692 return err;
2693 }
2694
2695 static int dev_ifname32(struct net *net, struct compat_ifreq __user *uifr32)
2696 {
2697 struct ifreq __user *uifr;
2698 int err;
2699
2700 uifr = compat_alloc_user_space(sizeof(struct ifreq));
2701 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2702 return -EFAULT;
2703
2704 err = dev_ioctl(net, SIOCGIFNAME, uifr);
2705 if (err)
2706 return err;
2707
2708 if (copy_in_user(uifr32, uifr, sizeof(struct compat_ifreq)))
2709 return -EFAULT;
2710
2711 return 0;
2712 }
2713
2714 static int dev_ifconf(struct net *net, struct compat_ifconf __user *uifc32)
2715 {
2716 struct compat_ifconf ifc32;
2717 struct ifconf ifc;
2718 struct ifconf __user *uifc;
2719 struct compat_ifreq __user *ifr32;
2720 struct ifreq __user *ifr;
2721 unsigned int i, j;
2722 int err;
2723
2724 if (copy_from_user(&ifc32, uifc32, sizeof(struct compat_ifconf)))
2725 return -EFAULT;
2726
2727 memset(&ifc, 0, sizeof(ifc));
2728 if (ifc32.ifcbuf == 0) {
2729 ifc32.ifc_len = 0;
2730 ifc.ifc_len = 0;
2731 ifc.ifc_req = NULL;
2732 uifc = compat_alloc_user_space(sizeof(struct ifconf));
2733 } else {
2734 size_t len = ((ifc32.ifc_len / sizeof(struct compat_ifreq)) + 1) *
2735 sizeof(struct ifreq);
2736 uifc = compat_alloc_user_space(sizeof(struct ifconf) + len);
2737 ifc.ifc_len = len;
2738 ifr = ifc.ifc_req = (void __user *)(uifc + 1);
2739 ifr32 = compat_ptr(ifc32.ifcbuf);
2740 for (i = 0; i < ifc32.ifc_len; i += sizeof(struct compat_ifreq)) {
2741 if (copy_in_user(ifr, ifr32, sizeof(struct compat_ifreq)))
2742 return -EFAULT;
2743 ifr++;
2744 ifr32++;
2745 }
2746 }
2747 if (copy_to_user(uifc, &ifc, sizeof(struct ifconf)))
2748 return -EFAULT;
2749
2750 err = dev_ioctl(net, SIOCGIFCONF, uifc);
2751 if (err)
2752 return err;
2753
2754 if (copy_from_user(&ifc, uifc, sizeof(struct ifconf)))
2755 return -EFAULT;
2756
2757 ifr = ifc.ifc_req;
2758 ifr32 = compat_ptr(ifc32.ifcbuf);
2759 for (i = 0, j = 0;
2760 i + sizeof(struct compat_ifreq) <= ifc32.ifc_len && j < ifc.ifc_len;
2761 i += sizeof(struct compat_ifreq), j += sizeof(struct ifreq)) {
2762 if (copy_in_user(ifr32, ifr, sizeof(struct compat_ifreq)))
2763 return -EFAULT;
2764 ifr32++;
2765 ifr++;
2766 }
2767
2768 if (ifc32.ifcbuf == 0) {
2769 /* Translate from 64-bit structure multiple to
2770 * a 32-bit one.
2771 */
2772 i = ifc.ifc_len;
2773 i = ((i / sizeof(struct ifreq)) * sizeof(struct compat_ifreq));
2774 ifc32.ifc_len = i;
2775 } else {
2776 ifc32.ifc_len = i;
2777 }
2778 if (copy_to_user(uifc32, &ifc32, sizeof(struct compat_ifconf)))
2779 return -EFAULT;
2780
2781 return 0;
2782 }
2783
2784 static int ethtool_ioctl(struct net *net, struct compat_ifreq __user *ifr32)
2785 {
2786 struct compat_ethtool_rxnfc __user *compat_rxnfc;
2787 bool convert_in = false, convert_out = false;
2788 size_t buf_size = ALIGN(sizeof(struct ifreq), 8);
2789 struct ethtool_rxnfc __user *rxnfc;
2790 struct ifreq __user *ifr;
2791 u32 rule_cnt = 0, actual_rule_cnt;
2792 u32 ethcmd;
2793 u32 data;
2794 int ret;
2795
2796 if (get_user(data, &ifr32->ifr_ifru.ifru_data))
2797 return -EFAULT;
2798
2799 compat_rxnfc = compat_ptr(data);
2800
2801 if (get_user(ethcmd, &compat_rxnfc->cmd))
2802 return -EFAULT;
2803
2804 /* Most ethtool structures are defined without padding.
2805 * Unfortunately struct ethtool_rxnfc is an exception.
2806 */
2807 switch (ethcmd) {
2808 default:
2809 break;
2810 case ETHTOOL_GRXCLSRLALL:
2811 /* Buffer size is variable */
2812 if (get_user(rule_cnt, &compat_rxnfc->rule_cnt))
2813 return -EFAULT;
2814 if (rule_cnt > KMALLOC_MAX_SIZE / sizeof(u32))
2815 return -ENOMEM;
2816 buf_size += rule_cnt * sizeof(u32);
2817 /* fall through */
2818 case ETHTOOL_GRXRINGS:
2819 case ETHTOOL_GRXCLSRLCNT:
2820 case ETHTOOL_GRXCLSRULE:
2821 case ETHTOOL_SRXCLSRLINS:
2822 convert_out = true;
2823 /* fall through */
2824 case ETHTOOL_SRXCLSRLDEL:
2825 buf_size += sizeof(struct ethtool_rxnfc);
2826 convert_in = true;
2827 break;
2828 }
2829
2830 ifr = compat_alloc_user_space(buf_size);
2831 rxnfc = (void __user *)ifr + ALIGN(sizeof(struct ifreq), 8);
2832
2833 if (copy_in_user(&ifr->ifr_name, &ifr32->ifr_name, IFNAMSIZ))
2834 return -EFAULT;
2835
2836 if (put_user(convert_in ? rxnfc : compat_ptr(data),
2837 &ifr->ifr_ifru.ifru_data))
2838 return -EFAULT;
2839
2840 if (convert_in) {
2841 /* We expect there to be holes between fs.m_ext and
2842 * fs.ring_cookie and at the end of fs, but nowhere else.
2843 */
2844 BUILD_BUG_ON(offsetof(struct compat_ethtool_rxnfc, fs.m_ext) +
2845 sizeof(compat_rxnfc->fs.m_ext) !=
2846 offsetof(struct ethtool_rxnfc, fs.m_ext) +
2847 sizeof(rxnfc->fs.m_ext));
2848 BUILD_BUG_ON(
2849 offsetof(struct compat_ethtool_rxnfc, fs.location) -
2850 offsetof(struct compat_ethtool_rxnfc, fs.ring_cookie) !=
2851 offsetof(struct ethtool_rxnfc, fs.location) -
2852 offsetof(struct ethtool_rxnfc, fs.ring_cookie));
2853
2854 if (copy_in_user(rxnfc, compat_rxnfc,
2855 (void __user *)(&rxnfc->fs.m_ext + 1) -
2856 (void __user *)rxnfc) ||
2857 copy_in_user(&rxnfc->fs.ring_cookie,
2858 &compat_rxnfc->fs.ring_cookie,
2859 (void __user *)(&rxnfc->fs.location + 1) -
2860 (void __user *)&rxnfc->fs.ring_cookie) ||
2861 copy_in_user(&rxnfc->rule_cnt, &compat_rxnfc->rule_cnt,
2862 sizeof(rxnfc->rule_cnt)))
2863 return -EFAULT;
2864 }
2865
2866 ret = dev_ioctl(net, SIOCETHTOOL, ifr);
2867 if (ret)
2868 return ret;
2869
2870 if (convert_out) {
2871 if (copy_in_user(compat_rxnfc, rxnfc,
2872 (const void __user *)(&rxnfc->fs.m_ext + 1) -
2873 (const void __user *)rxnfc) ||
2874 copy_in_user(&compat_rxnfc->fs.ring_cookie,
2875 &rxnfc->fs.ring_cookie,
2876 (const void __user *)(&rxnfc->fs.location + 1) -
2877 (const void __user *)&rxnfc->fs.ring_cookie) ||
2878 copy_in_user(&compat_rxnfc->rule_cnt, &rxnfc->rule_cnt,
2879 sizeof(rxnfc->rule_cnt)))
2880 return -EFAULT;
2881
2882 if (ethcmd == ETHTOOL_GRXCLSRLALL) {
2883 /* As an optimisation, we only copy the actual
2884 * number of rules that the underlying
2885 * function returned. Since Mallory might
2886 * change the rule count in user memory, we
2887 * check that it is less than the rule count
2888 * originally given (as the user buffer size),
2889 * which has been range-checked.
2890 */
2891 if (get_user(actual_rule_cnt, &rxnfc->rule_cnt))
2892 return -EFAULT;
2893 if (actual_rule_cnt < rule_cnt)
2894 rule_cnt = actual_rule_cnt;
2895 if (copy_in_user(&compat_rxnfc->rule_locs[0],
2896 &rxnfc->rule_locs[0],
2897 rule_cnt * sizeof(u32)))
2898 return -EFAULT;
2899 }
2900 }
2901
2902 return 0;
2903 }
2904
2905 static int compat_siocwandev(struct net *net, struct compat_ifreq __user *uifr32)
2906 {
2907 void __user *uptr;
2908 compat_uptr_t uptr32;
2909 struct ifreq __user *uifr;
2910
2911 uifr = compat_alloc_user_space(sizeof(*uifr));
2912 if (copy_in_user(uifr, uifr32, sizeof(struct compat_ifreq)))
2913 return -EFAULT;
2914
2915 if (get_user(uptr32, &uifr32->ifr_settings.ifs_ifsu))
2916 return -EFAULT;
2917
2918 uptr = compat_ptr(uptr32);
2919
2920 if (put_user(uptr, &uifr->ifr_settings.ifs_ifsu.raw_hdlc))
2921 return -EFAULT;
2922
2923 return dev_ioctl(net, SIOCWANDEV, uifr);
2924 }
2925
2926 static int bond_ioctl(struct net *net, unsigned int cmd,
2927 struct compat_ifreq __user *ifr32)
2928 {
2929 struct ifreq kifr;
2930 mm_segment_t old_fs;
2931 int err;
2932
2933 switch (cmd) {
2934 case SIOCBONDENSLAVE:
2935 case SIOCBONDRELEASE:
2936 case SIOCBONDSETHWADDR:
2937 case SIOCBONDCHANGEACTIVE:
2938 if (copy_from_user(&kifr, ifr32, sizeof(struct compat_ifreq)))
2939 return -EFAULT;
2940
2941 old_fs = get_fs();
2942 set_fs(KERNEL_DS);
2943 err = dev_ioctl(net, cmd,
2944 (struct ifreq __user __force *) &kifr);
2945 set_fs(old_fs);
2946
2947 return err;
2948 default:
2949 return -ENOIOCTLCMD;
2950 }
2951 }
2952
2953 /* Handle ioctls that use ifreq::ifr_data and just need struct ifreq converted */
2954 static int compat_ifr_data_ioctl(struct net *net, unsigned int cmd,
2955 struct compat_ifreq __user *u_ifreq32)
2956 {
2957 struct ifreq __user *u_ifreq64;
2958 char tmp_buf[IFNAMSIZ];
2959 void __user *data64;
2960 u32 data32;
2961
2962 if (copy_from_user(&tmp_buf[0], &(u_ifreq32->ifr_ifrn.ifrn_name[0]),
2963 IFNAMSIZ))
2964 return -EFAULT;
2965 if (get_user(data32, &u_ifreq32->ifr_ifru.ifru_data))
2966 return -EFAULT;
2967 data64 = compat_ptr(data32);
2968
2969 u_ifreq64 = compat_alloc_user_space(sizeof(*u_ifreq64));
2970
2971 if (copy_to_user(&u_ifreq64->ifr_ifrn.ifrn_name[0], &tmp_buf[0],
2972 IFNAMSIZ))
2973 return -EFAULT;
2974 if (put_user(data64, &u_ifreq64->ifr_ifru.ifru_data))
2975 return -EFAULT;
2976
2977 return dev_ioctl(net, cmd, u_ifreq64);
2978 }
2979
2980 static int dev_ifsioc(struct net *net, struct socket *sock,
2981 unsigned int cmd, struct compat_ifreq __user *uifr32)
2982 {
2983 struct ifreq __user *uifr;
2984 int err;
2985
2986 uifr = compat_alloc_user_space(sizeof(*uifr));
2987 if (copy_in_user(uifr, uifr32, sizeof(*uifr32)))
2988 return -EFAULT;
2989
2990 err = sock_do_ioctl(net, sock, cmd, (unsigned long)uifr);
2991
2992 if (!err) {
2993 switch (cmd) {
2994 case SIOCGIFFLAGS:
2995 case SIOCGIFMETRIC:
2996 case SIOCGIFMTU:
2997 case SIOCGIFMEM:
2998 case SIOCGIFHWADDR:
2999 case SIOCGIFINDEX:
3000 case SIOCGIFADDR:
3001 case SIOCGIFBRDADDR:
3002 case SIOCGIFDSTADDR:
3003 case SIOCGIFNETMASK:
3004 case SIOCGIFPFLAGS:
3005 case SIOCGIFTXQLEN:
3006 case SIOCGMIIPHY:
3007 case SIOCGMIIREG:
3008 if (copy_in_user(uifr32, uifr, sizeof(*uifr32)))
3009 err = -EFAULT;
3010 break;
3011 }
3012 }
3013 return err;
3014 }
3015
3016 static int compat_sioc_ifmap(struct net *net, unsigned int cmd,
3017 struct compat_ifreq __user *uifr32)
3018 {
3019 struct ifreq ifr;
3020 struct compat_ifmap __user *uifmap32;
3021 mm_segment_t old_fs;
3022 int err;
3023
3024 uifmap32 = &uifr32->ifr_ifru.ifru_map;
3025 err = copy_from_user(&ifr, uifr32, sizeof(ifr.ifr_name));
3026 err |= get_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3027 err |= get_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3028 err |= get_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3029 err |= get_user(ifr.ifr_map.irq, &uifmap32->irq);
3030 err |= get_user(ifr.ifr_map.dma, &uifmap32->dma);
3031 err |= get_user(ifr.ifr_map.port, &uifmap32->port);
3032 if (err)
3033 return -EFAULT;
3034
3035 old_fs = get_fs();
3036 set_fs(KERNEL_DS);
3037 err = dev_ioctl(net, cmd, (void __user __force *)&ifr);
3038 set_fs(old_fs);
3039
3040 if (cmd == SIOCGIFMAP && !err) {
3041 err = copy_to_user(uifr32, &ifr, sizeof(ifr.ifr_name));
3042 err |= put_user(ifr.ifr_map.mem_start, &uifmap32->mem_start);
3043 err |= put_user(ifr.ifr_map.mem_end, &uifmap32->mem_end);
3044 err |= put_user(ifr.ifr_map.base_addr, &uifmap32->base_addr);
3045 err |= put_user(ifr.ifr_map.irq, &uifmap32->irq);
3046 err |= put_user(ifr.ifr_map.dma, &uifmap32->dma);
3047 err |= put_user(ifr.ifr_map.port, &uifmap32->port);
3048 if (err)
3049 err = -EFAULT;
3050 }
3051 return err;
3052 }
3053
3054 struct rtentry32 {
3055 u32 rt_pad1;
3056 struct sockaddr rt_dst; /* target address */
3057 struct sockaddr rt_gateway; /* gateway addr (RTF_GATEWAY) */
3058 struct sockaddr rt_genmask; /* target network mask (IP) */
3059 unsigned short rt_flags;
3060 short rt_pad2;
3061 u32 rt_pad3;
3062 unsigned char rt_tos;
3063 unsigned char rt_class;
3064 short rt_pad4;
3065 short rt_metric; /* +1 for binary compatibility! */
3066 /* char * */ u32 rt_dev; /* forcing the device at add */
3067 u32 rt_mtu; /* per route MTU/Window */
3068 u32 rt_window; /* Window clamping */
3069 unsigned short rt_irtt; /* Initial RTT */
3070 };
3071
3072 struct in6_rtmsg32 {
3073 struct in6_addr rtmsg_dst;
3074 struct in6_addr rtmsg_src;
3075 struct in6_addr rtmsg_gateway;
3076 u32 rtmsg_type;
3077 u16 rtmsg_dst_len;
3078 u16 rtmsg_src_len;
3079 u32 rtmsg_metric;
3080 u32 rtmsg_info;
3081 u32 rtmsg_flags;
3082 s32 rtmsg_ifindex;
3083 };
3084
3085 static int routing_ioctl(struct net *net, struct socket *sock,
3086 unsigned int cmd, void __user *argp)
3087 {
3088 int ret;
3089 void *r = NULL;
3090 struct in6_rtmsg r6;
3091 struct rtentry r4;
3092 char devname[16];
3093 u32 rtdev;
3094 mm_segment_t old_fs = get_fs();
3095
3096 if (sock && sock->sk && sock->sk->sk_family == AF_INET6) { /* ipv6 */
3097 struct in6_rtmsg32 __user *ur6 = argp;
3098 ret = copy_from_user(&r6.rtmsg_dst, &(ur6->rtmsg_dst),
3099 3 * sizeof(struct in6_addr));
3100 ret |= get_user(r6.rtmsg_type, &(ur6->rtmsg_type));
3101 ret |= get_user(r6.rtmsg_dst_len, &(ur6->rtmsg_dst_len));
3102 ret |= get_user(r6.rtmsg_src_len, &(ur6->rtmsg_src_len));
3103 ret |= get_user(r6.rtmsg_metric, &(ur6->rtmsg_metric));
3104 ret |= get_user(r6.rtmsg_info, &(ur6->rtmsg_info));
3105 ret |= get_user(r6.rtmsg_flags, &(ur6->rtmsg_flags));
3106 ret |= get_user(r6.rtmsg_ifindex, &(ur6->rtmsg_ifindex));
3107
3108 r = (void *) &r6;
3109 } else { /* ipv4 */
3110 struct rtentry32 __user *ur4 = argp;
3111 ret = copy_from_user(&r4.rt_dst, &(ur4->rt_dst),
3112 3 * sizeof(struct sockaddr));
3113 ret |= get_user(r4.rt_flags, &(ur4->rt_flags));
3114 ret |= get_user(r4.rt_metric, &(ur4->rt_metric));
3115 ret |= get_user(r4.rt_mtu, &(ur4->rt_mtu));
3116 ret |= get_user(r4.rt_window, &(ur4->rt_window));
3117 ret |= get_user(r4.rt_irtt, &(ur4->rt_irtt));
3118 ret |= get_user(rtdev, &(ur4->rt_dev));
3119 if (rtdev) {
3120 ret |= copy_from_user(devname, compat_ptr(rtdev), 15);
3121 r4.rt_dev = (char __user __force *)devname;
3122 devname[15] = 0;
3123 } else
3124 r4.rt_dev = NULL;
3125
3126 r = (void *) &r4;
3127 }
3128
3129 if (ret) {
3130 ret = -EFAULT;
3131 goto out;
3132 }
3133
3134 set_fs(KERNEL_DS);
3135 ret = sock_do_ioctl(net, sock, cmd, (unsigned long) r);
3136 set_fs(old_fs);
3137
3138 out:
3139 return ret;
3140 }
3141
3142 /* Since old style bridge ioctl's endup using SIOCDEVPRIVATE
3143 * for some operations; this forces use of the newer bridge-utils that
3144 * use compatible ioctls
3145 */
3146 static int old_bridge_ioctl(compat_ulong_t __user *argp)
3147 {
3148 compat_ulong_t tmp;
3149
3150 if (get_user(tmp, argp))
3151 return -EFAULT;
3152 if (tmp == BRCTL_GET_VERSION)
3153 return BRCTL_VERSION + 1;
3154 return -EINVAL;
3155 }
3156
3157 static int compat_sock_ioctl_trans(struct file *file, struct socket *sock,
3158 unsigned int cmd, unsigned long arg)
3159 {
3160 void __user *argp = compat_ptr(arg);
3161 struct sock *sk = sock->sk;
3162 struct net *net = sock_net(sk);
3163
3164 if (cmd >= SIOCDEVPRIVATE && cmd <= (SIOCDEVPRIVATE + 15))
3165 return compat_ifr_data_ioctl(net, cmd, argp);
3166
3167 switch (cmd) {
3168 case SIOCSIFBR:
3169 case SIOCGIFBR:
3170 return old_bridge_ioctl(argp);
3171 case SIOCGIFNAME:
3172 return dev_ifname32(net, argp);
3173 case SIOCGIFCONF:
3174 return dev_ifconf(net, argp);
3175 case SIOCETHTOOL:
3176 return ethtool_ioctl(net, argp);
3177 case SIOCWANDEV:
3178 return compat_siocwandev(net, argp);
3179 case SIOCGIFMAP:
3180 case SIOCSIFMAP:
3181 return compat_sioc_ifmap(net, cmd, argp);
3182 case SIOCBONDENSLAVE:
3183 case SIOCBONDRELEASE:
3184 case SIOCBONDSETHWADDR:
3185 case SIOCBONDCHANGEACTIVE:
3186 return bond_ioctl(net, cmd, argp);
3187 case SIOCADDRT:
3188 case SIOCDELRT:
3189 return routing_ioctl(net, sock, cmd, argp);
3190 case SIOCGSTAMP:
3191 return do_siocgstamp(net, sock, cmd, argp);
3192 case SIOCGSTAMPNS:
3193 return do_siocgstampns(net, sock, cmd, argp);
3194 case SIOCBONDSLAVEINFOQUERY:
3195 case SIOCBONDINFOQUERY:
3196 case SIOCSHWTSTAMP:
3197 case SIOCGHWTSTAMP:
3198 return compat_ifr_data_ioctl(net, cmd, argp);
3199
3200 case FIOSETOWN:
3201 case SIOCSPGRP:
3202 case FIOGETOWN:
3203 case SIOCGPGRP:
3204 case SIOCBRADDBR:
3205 case SIOCBRDELBR:
3206 case SIOCGIFVLAN:
3207 case SIOCSIFVLAN:
3208 case SIOCADDDLCI:
3209 case SIOCDELDLCI:
3210 case SIOCGSKNS:
3211 return sock_ioctl(file, cmd, arg);
3212
3213 case SIOCGIFFLAGS:
3214 case SIOCSIFFLAGS:
3215 case SIOCGIFMETRIC:
3216 case SIOCSIFMETRIC:
3217 case SIOCGIFMTU:
3218 case SIOCSIFMTU:
3219 case SIOCGIFMEM:
3220 case SIOCSIFMEM:
3221 case SIOCGIFHWADDR:
3222 case SIOCSIFHWADDR:
3223 case SIOCADDMULTI:
3224 case SIOCDELMULTI:
3225 case SIOCGIFINDEX:
3226 case SIOCGIFADDR:
3227 case SIOCSIFADDR:
3228 case SIOCSIFHWBROADCAST:
3229 case SIOCDIFADDR:
3230 case SIOCGIFBRDADDR:
3231 case SIOCSIFBRDADDR:
3232 case SIOCGIFDSTADDR:
3233 case SIOCSIFDSTADDR:
3234 case SIOCGIFNETMASK:
3235 case SIOCSIFNETMASK:
3236 case SIOCSIFPFLAGS:
3237 case SIOCGIFPFLAGS:
3238 case SIOCGIFTXQLEN:
3239 case SIOCSIFTXQLEN:
3240 case SIOCBRADDIF:
3241 case SIOCBRDELIF:
3242 case SIOCSIFNAME:
3243 case SIOCGMIIPHY:
3244 case SIOCGMIIREG:
3245 case SIOCSMIIREG:
3246 return dev_ifsioc(net, sock, cmd, argp);
3247
3248 case SIOCSARP:
3249 case SIOCGARP:
3250 case SIOCDARP:
3251 case SIOCATMARK:
3252 return sock_do_ioctl(net, sock, cmd, arg);
3253 }
3254
3255 return -ENOIOCTLCMD;
3256 }
3257
3258 static long compat_sock_ioctl(struct file *file, unsigned int cmd,
3259 unsigned long arg)
3260 {
3261 struct socket *sock = file->private_data;
3262 int ret = -ENOIOCTLCMD;
3263 struct sock *sk;
3264 struct net *net;
3265
3266 sk = sock->sk;
3267 net = sock_net(sk);
3268
3269 if (sock->ops->compat_ioctl)
3270 ret = sock->ops->compat_ioctl(sock, cmd, arg);
3271
3272 if (ret == -ENOIOCTLCMD &&
3273 (cmd >= SIOCIWFIRST && cmd <= SIOCIWLAST))
3274 ret = compat_wext_handle_ioctl(net, cmd, arg);
3275
3276 if (ret == -ENOIOCTLCMD)
3277 ret = compat_sock_ioctl_trans(file, sock, cmd, arg);
3278
3279 return ret;
3280 }
3281 #endif
3282
3283 int kernel_bind(struct socket *sock, struct sockaddr *addr, int addrlen)
3284 {
3285 return sock->ops->bind(sock, addr, addrlen);
3286 }
3287 EXPORT_SYMBOL(kernel_bind);
3288
3289 int kernel_listen(struct socket *sock, int backlog)
3290 {
3291 return sock->ops->listen(sock, backlog);
3292 }
3293 EXPORT_SYMBOL(kernel_listen);
3294
3295 int kernel_accept(struct socket *sock, struct socket **newsock, int flags)
3296 {
3297 struct sock *sk = sock->sk;
3298 int err;
3299
3300 err = sock_create_lite(sk->sk_family, sk->sk_type, sk->sk_protocol,
3301 newsock);
3302 if (err < 0)
3303 goto done;
3304
3305 err = sock->ops->accept(sock, *newsock, flags, true);
3306 if (err < 0) {
3307 sock_release(*newsock);
3308 *newsock = NULL;
3309 goto done;
3310 }
3311
3312 (*newsock)->ops = sock->ops;
3313 __module_get((*newsock)->ops->owner);
3314
3315 done:
3316 return err;
3317 }
3318 EXPORT_SYMBOL(kernel_accept);
3319
3320 int kernel_connect(struct socket *sock, struct sockaddr *addr, int addrlen,
3321 int flags)
3322 {
3323 return sock->ops->connect(sock, addr, addrlen, flags);
3324 }
3325 EXPORT_SYMBOL(kernel_connect);
3326
3327 int kernel_getsockname(struct socket *sock, struct sockaddr *addr,
3328 int *addrlen)
3329 {
3330 return sock->ops->getname(sock, addr, addrlen, 0);
3331 }
3332 EXPORT_SYMBOL(kernel_getsockname);
3333
3334 int kernel_getpeername(struct socket *sock, struct sockaddr *addr,
3335 int *addrlen)
3336 {
3337 return sock->ops->getname(sock, addr, addrlen, 1);
3338 }
3339 EXPORT_SYMBOL(kernel_getpeername);
3340
3341 int kernel_getsockopt(struct socket *sock, int level, int optname,
3342 char *optval, int *optlen)
3343 {
3344 mm_segment_t oldfs = get_fs();
3345 char __user *uoptval;
3346 int __user *uoptlen;
3347 int err;
3348
3349 uoptval = (char __user __force *) optval;
3350 uoptlen = (int __user __force *) optlen;
3351
3352 set_fs(KERNEL_DS);
3353 if (level == SOL_SOCKET)
3354 err = sock_getsockopt(sock, level, optname, uoptval, uoptlen);
3355 else
3356 err = sock->ops->getsockopt(sock, level, optname, uoptval,
3357 uoptlen);
3358 set_fs(oldfs);
3359 return err;
3360 }
3361 EXPORT_SYMBOL(kernel_getsockopt);
3362
3363 int kernel_setsockopt(struct socket *sock, int level, int optname,
3364 char *optval, unsigned int optlen)
3365 {
3366 mm_segment_t oldfs = get_fs();
3367 char __user *uoptval;
3368 int err;
3369
3370 uoptval = (char __user __force *) optval;
3371
3372 set_fs(KERNEL_DS);
3373 if (level == SOL_SOCKET)
3374 err = sock_setsockopt(sock, level, optname, uoptval, optlen);
3375 else
3376 err = sock->ops->setsockopt(sock, level, optname, uoptval,
3377 optlen);
3378 set_fs(oldfs);
3379 return err;
3380 }
3381 EXPORT_SYMBOL(kernel_setsockopt);
3382
3383 int kernel_sendpage(struct socket *sock, struct page *page, int offset,
3384 size_t size, int flags)
3385 {
3386 if (sock->ops->sendpage)
3387 return sock->ops->sendpage(sock, page, offset, size, flags);
3388
3389 return sock_no_sendpage(sock, page, offset, size, flags);
3390 }
3391 EXPORT_SYMBOL(kernel_sendpage);
3392
3393 int kernel_sendpage_locked(struct sock *sk, struct page *page, int offset,
3394 size_t size, int flags)
3395 {
3396 struct socket *sock = sk->sk_socket;
3397
3398 if (sock->ops->sendpage_locked)
3399 return sock->ops->sendpage_locked(sk, page, offset, size,
3400 flags);
3401
3402 return sock_no_sendpage_locked(sk, page, offset, size, flags);
3403 }
3404 EXPORT_SYMBOL(kernel_sendpage_locked);
3405
3406 int kernel_sock_ioctl(struct socket *sock, int cmd, unsigned long arg)
3407 {
3408 mm_segment_t oldfs = get_fs();
3409 int err;
3410
3411 set_fs(KERNEL_DS);
3412 err = sock->ops->ioctl(sock, cmd, arg);
3413 set_fs(oldfs);
3414
3415 return err;
3416 }
3417 EXPORT_SYMBOL(kernel_sock_ioctl);
3418
3419 int kernel_sock_shutdown(struct socket *sock, enum sock_shutdown_cmd how)
3420 {
3421 return sock->ops->shutdown(sock, how);
3422 }
3423 EXPORT_SYMBOL(kernel_sock_shutdown);
3424
3425 /* This routine returns the IP overhead imposed by a socket i.e.
3426 * the length of the underlying IP header, depending on whether
3427 * this is an IPv4 or IPv6 socket and the length from IP options turned
3428 * on at the socket. Assumes that the caller has a lock on the socket.
3429 */
3430 u32 kernel_sock_ip_overhead(struct sock *sk)
3431 {
3432 struct inet_sock *inet;
3433 struct ip_options_rcu *opt;
3434 u32 overhead = 0;
3435 #if IS_ENABLED(CONFIG_IPV6)
3436 struct ipv6_pinfo *np;
3437 struct ipv6_txoptions *optv6 = NULL;
3438 #endif /* IS_ENABLED(CONFIG_IPV6) */
3439
3440 if (!sk)
3441 return overhead;
3442
3443 switch (sk->sk_family) {
3444 case AF_INET:
3445 inet = inet_sk(sk);
3446 overhead += sizeof(struct iphdr);
3447 opt = rcu_dereference_protected(inet->inet_opt,
3448 sock_owned_by_user(sk));
3449 if (opt)
3450 overhead += opt->opt.optlen;
3451 return overhead;
3452 #if IS_ENABLED(CONFIG_IPV6)
3453 case AF_INET6:
3454 np = inet6_sk(sk);
3455 overhead += sizeof(struct ipv6hdr);
3456 if (np)
3457 optv6 = rcu_dereference_protected(np->opt,
3458 sock_owned_by_user(sk));
3459 if (optv6)
3460 overhead += (optv6->opt_flen + optv6->opt_nflen);
3461 return overhead;
3462 #endif /* IS_ENABLED(CONFIG_IPV6) */
3463 default: /* Returns 0 overhead if the socket is not ipv4 or ipv6 */
3464 return overhead;
3465 }
3466 }
3467 EXPORT_SYMBOL(kernel_sock_ip_overhead);