remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / zsmalloc.c
1 /*
2 * zsmalloc memory allocator
3 *
4 * Copyright (C) 2011 Nitin Gupta
5 * Copyright (C) 2012, 2013 Minchan Kim
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the license that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 */
13
14 /*
15 * Following is how we use various fields and flags of underlying
16 * struct page(s) to form a zspage.
17 *
18 * Usage of struct page fields:
19 * page->private: points to zspage
20 * page->freelist(index): links together all component pages of a zspage
21 * For the huge page, this is always 0, so we use this field
22 * to store handle.
23 * page->units: first object offset in a subpage of zspage
24 *
25 * Usage of struct page flags:
26 * PG_private: identifies the first component page
27 * PG_owner_priv_1: identifies the huge component page
28 *
29 */
30
31 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
32
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/sched.h>
36 #include <linux/magic.h>
37 #include <linux/bitops.h>
38 #include <linux/errno.h>
39 #include <linux/highmem.h>
40 #include <linux/string.h>
41 #include <linux/slab.h>
42 #include <asm/tlbflush.h>
43 #include <asm/pgtable.h>
44 #include <linux/cpumask.h>
45 #include <linux/cpu.h>
46 #include <linux/vmalloc.h>
47 #include <linux/preempt.h>
48 #include <linux/spinlock.h>
49 #include <linux/types.h>
50 #include <linux/debugfs.h>
51 #include <linux/zsmalloc.h>
52 #include <linux/zpool.h>
53 #include <linux/mount.h>
54 #include <linux/migrate.h>
55 #include <linux/pagemap.h>
56
57 #define ZSPAGE_MAGIC 0x58
58
59 /*
60 * This must be power of 2 and greater than of equal to sizeof(link_free).
61 * These two conditions ensure that any 'struct link_free' itself doesn't
62 * span more than 1 page which avoids complex case of mapping 2 pages simply
63 * to restore link_free pointer values.
64 */
65 #define ZS_ALIGN 8
66
67 /*
68 * A single 'zspage' is composed of up to 2^N discontiguous 0-order (single)
69 * pages. ZS_MAX_ZSPAGE_ORDER defines upper limit on N.
70 */
71 #define ZS_MAX_ZSPAGE_ORDER 2
72 #define ZS_MAX_PAGES_PER_ZSPAGE (_AC(1, UL) << ZS_MAX_ZSPAGE_ORDER)
73
74 #define ZS_HANDLE_SIZE (sizeof(unsigned long))
75
76 /*
77 * Object location (<PFN>, <obj_idx>) is encoded as
78 * as single (unsigned long) handle value.
79 *
80 * Note that object index <obj_idx> starts from 0.
81 *
82 * This is made more complicated by various memory models and PAE.
83 */
84
85 #ifndef MAX_PHYSMEM_BITS
86 #ifdef CONFIG_HIGHMEM64G
87 #define MAX_PHYSMEM_BITS 36
88 #else /* !CONFIG_HIGHMEM64G */
89 /*
90 * If this definition of MAX_PHYSMEM_BITS is used, OBJ_INDEX_BITS will just
91 * be PAGE_SHIFT
92 */
93 #define MAX_PHYSMEM_BITS BITS_PER_LONG
94 #endif
95 #endif
96 #define _PFN_BITS (MAX_PHYSMEM_BITS - PAGE_SHIFT)
97
98 /*
99 * Memory for allocating for handle keeps object position by
100 * encoding <page, obj_idx> and the encoded value has a room
101 * in least bit(ie, look at obj_to_location).
102 * We use the bit to synchronize between object access by
103 * user and migration.
104 */
105 #define HANDLE_PIN_BIT 0
106
107 /*
108 * Head in allocated object should have OBJ_ALLOCATED_TAG
109 * to identify the object was allocated or not.
110 * It's okay to add the status bit in the least bit because
111 * header keeps handle which is 4byte-aligned address so we
112 * have room for two bit at least.
113 */
114 #define OBJ_ALLOCATED_TAG 1
115 #define OBJ_TAG_BITS 1
116 #define OBJ_INDEX_BITS (BITS_PER_LONG - _PFN_BITS - OBJ_TAG_BITS)
117 #define OBJ_INDEX_MASK ((_AC(1, UL) << OBJ_INDEX_BITS) - 1)
118
119 #define FULLNESS_BITS 2
120 #define CLASS_BITS 8
121 #define ISOLATED_BITS 3
122 #define MAGIC_VAL_BITS 8
123
124 #define MAX(a, b) ((a) >= (b) ? (a) : (b))
125 /* ZS_MIN_ALLOC_SIZE must be multiple of ZS_ALIGN */
126 #define ZS_MIN_ALLOC_SIZE \
127 MAX(32, (ZS_MAX_PAGES_PER_ZSPAGE << PAGE_SHIFT >> OBJ_INDEX_BITS))
128 /* each chunk includes extra space to keep handle */
129 #define ZS_MAX_ALLOC_SIZE PAGE_SIZE
130
131 /*
132 * On systems with 4K page size, this gives 255 size classes! There is a
133 * trader-off here:
134 * - Large number of size classes is potentially wasteful as free page are
135 * spread across these classes
136 * - Small number of size classes causes large internal fragmentation
137 * - Probably its better to use specific size classes (empirically
138 * determined). NOTE: all those class sizes must be set as multiple of
139 * ZS_ALIGN to make sure link_free itself never has to span 2 pages.
140 *
141 * ZS_MIN_ALLOC_SIZE and ZS_SIZE_CLASS_DELTA must be multiple of ZS_ALIGN
142 * (reason above)
143 */
144 #define ZS_SIZE_CLASS_DELTA (PAGE_SIZE >> CLASS_BITS)
145 #define ZS_SIZE_CLASSES (DIV_ROUND_UP(ZS_MAX_ALLOC_SIZE - ZS_MIN_ALLOC_SIZE, \
146 ZS_SIZE_CLASS_DELTA) + 1)
147
148 enum fullness_group {
149 ZS_EMPTY,
150 ZS_ALMOST_EMPTY,
151 ZS_ALMOST_FULL,
152 ZS_FULL,
153 NR_ZS_FULLNESS,
154 };
155
156 enum zs_stat_type {
157 CLASS_EMPTY,
158 CLASS_ALMOST_EMPTY,
159 CLASS_ALMOST_FULL,
160 CLASS_FULL,
161 OBJ_ALLOCATED,
162 OBJ_USED,
163 NR_ZS_STAT_TYPE,
164 };
165
166 struct zs_size_stat {
167 unsigned long objs[NR_ZS_STAT_TYPE];
168 };
169
170 #ifdef CONFIG_ZSMALLOC_STAT
171 static struct dentry *zs_stat_root;
172 #endif
173
174 #ifdef CONFIG_COMPACTION
175 static struct vfsmount *zsmalloc_mnt;
176 #endif
177
178 /*
179 * We assign a page to ZS_ALMOST_EMPTY fullness group when:
180 * n <= N / f, where
181 * n = number of allocated objects
182 * N = total number of objects zspage can store
183 * f = fullness_threshold_frac
184 *
185 * Similarly, we assign zspage to:
186 * ZS_ALMOST_FULL when n > N / f
187 * ZS_EMPTY when n == 0
188 * ZS_FULL when n == N
189 *
190 * (see: fix_fullness_group())
191 */
192 static const int fullness_threshold_frac = 4;
193 static size_t huge_class_size;
194
195 struct size_class {
196 spinlock_t lock;
197 struct list_head fullness_list[NR_ZS_FULLNESS];
198 /*
199 * Size of objects stored in this class. Must be multiple
200 * of ZS_ALIGN.
201 */
202 int size;
203 int objs_per_zspage;
204 /* Number of PAGE_SIZE sized pages to combine to form a 'zspage' */
205 int pages_per_zspage;
206
207 unsigned int index;
208 struct zs_size_stat stats;
209 };
210
211 /* huge object: pages_per_zspage == 1 && maxobj_per_zspage == 1 */
212 static void SetPageHugeObject(struct page *page)
213 {
214 SetPageOwnerPriv1(page);
215 }
216
217 static void ClearPageHugeObject(struct page *page)
218 {
219 ClearPageOwnerPriv1(page);
220 }
221
222 static int PageHugeObject(struct page *page)
223 {
224 return PageOwnerPriv1(page);
225 }
226
227 /*
228 * Placed within free objects to form a singly linked list.
229 * For every zspage, zspage->freeobj gives head of this list.
230 *
231 * This must be power of 2 and less than or equal to ZS_ALIGN
232 */
233 struct link_free {
234 union {
235 /*
236 * Free object index;
237 * It's valid for non-allocated object
238 */
239 unsigned long next;
240 /*
241 * Handle of allocated object.
242 */
243 unsigned long handle;
244 };
245 };
246
247 struct zs_pool {
248 const char *name;
249
250 struct size_class *size_class[ZS_SIZE_CLASSES];
251 struct kmem_cache *handle_cachep;
252 struct kmem_cache *zspage_cachep;
253
254 atomic_long_t pages_allocated;
255
256 struct zs_pool_stats stats;
257
258 /* Compact classes */
259 struct shrinker shrinker;
260 /*
261 * To signify that register_shrinker() was successful
262 * and unregister_shrinker() will not Oops.
263 */
264 bool shrinker_enabled;
265 #ifdef CONFIG_ZSMALLOC_STAT
266 struct dentry *stat_dentry;
267 #endif
268 #ifdef CONFIG_COMPACTION
269 struct inode *inode;
270 struct work_struct free_work;
271 #endif
272 };
273
274 struct zspage {
275 struct {
276 unsigned int fullness:FULLNESS_BITS;
277 unsigned int class:CLASS_BITS + 1;
278 unsigned int isolated:ISOLATED_BITS;
279 unsigned int magic:MAGIC_VAL_BITS;
280 };
281 unsigned int inuse;
282 unsigned int freeobj;
283 struct page *first_page;
284 struct list_head list; /* fullness list */
285 #ifdef CONFIG_COMPACTION
286 rwlock_t lock;
287 #endif
288 };
289
290 struct mapping_area {
291 #ifdef CONFIG_PGTABLE_MAPPING
292 struct vm_struct *vm; /* vm area for mapping object that span pages */
293 #else
294 char *vm_buf; /* copy buffer for objects that span pages */
295 #endif
296 char *vm_addr; /* address of kmap_atomic()'ed pages */
297 enum zs_mapmode vm_mm; /* mapping mode */
298 };
299
300 #ifdef CONFIG_COMPACTION
301 static int zs_register_migration(struct zs_pool *pool);
302 static void zs_unregister_migration(struct zs_pool *pool);
303 static void migrate_lock_init(struct zspage *zspage);
304 static void migrate_read_lock(struct zspage *zspage);
305 static void migrate_read_unlock(struct zspage *zspage);
306 static void kick_deferred_free(struct zs_pool *pool);
307 static void init_deferred_free(struct zs_pool *pool);
308 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage);
309 #else
310 static int zsmalloc_mount(void) { return 0; }
311 static void zsmalloc_unmount(void) {}
312 static int zs_register_migration(struct zs_pool *pool) { return 0; }
313 static void zs_unregister_migration(struct zs_pool *pool) {}
314 static void migrate_lock_init(struct zspage *zspage) {}
315 static void migrate_read_lock(struct zspage *zspage) {}
316 static void migrate_read_unlock(struct zspage *zspage) {}
317 static void kick_deferred_free(struct zs_pool *pool) {}
318 static void init_deferred_free(struct zs_pool *pool) {}
319 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage) {}
320 #endif
321
322 static int create_cache(struct zs_pool *pool)
323 {
324 pool->handle_cachep = kmem_cache_create("zs_handle", ZS_HANDLE_SIZE,
325 0, 0, NULL);
326 if (!pool->handle_cachep)
327 return 1;
328
329 pool->zspage_cachep = kmem_cache_create("zspage", sizeof(struct zspage),
330 0, 0, NULL);
331 if (!pool->zspage_cachep) {
332 kmem_cache_destroy(pool->handle_cachep);
333 pool->handle_cachep = NULL;
334 return 1;
335 }
336
337 return 0;
338 }
339
340 static void destroy_cache(struct zs_pool *pool)
341 {
342 kmem_cache_destroy(pool->handle_cachep);
343 kmem_cache_destroy(pool->zspage_cachep);
344 }
345
346 static unsigned long cache_alloc_handle(struct zs_pool *pool, gfp_t gfp)
347 {
348 return (unsigned long)kmem_cache_alloc(pool->handle_cachep,
349 gfp & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
350 }
351
352 static void cache_free_handle(struct zs_pool *pool, unsigned long handle)
353 {
354 kmem_cache_free(pool->handle_cachep, (void *)handle);
355 }
356
357 static struct zspage *cache_alloc_zspage(struct zs_pool *pool, gfp_t flags)
358 {
359 return kmem_cache_alloc(pool->zspage_cachep,
360 flags & ~(__GFP_HIGHMEM|__GFP_MOVABLE));
361 }
362
363 static void cache_free_zspage(struct zs_pool *pool, struct zspage *zspage)
364 {
365 kmem_cache_free(pool->zspage_cachep, zspage);
366 }
367
368 static void record_obj(unsigned long handle, unsigned long obj)
369 {
370 /*
371 * lsb of @obj represents handle lock while other bits
372 * represent object value the handle is pointing so
373 * updating shouldn't do store tearing.
374 */
375 WRITE_ONCE(*(unsigned long *)handle, obj);
376 }
377
378 /* zpool driver */
379
380 #ifdef CONFIG_ZPOOL
381
382 static void *zs_zpool_create(const char *name, gfp_t gfp,
383 const struct zpool_ops *zpool_ops,
384 struct zpool *zpool)
385 {
386 /*
387 * Ignore global gfp flags: zs_malloc() may be invoked from
388 * different contexts and its caller must provide a valid
389 * gfp mask.
390 */
391 return zs_create_pool(name);
392 }
393
394 static void zs_zpool_destroy(void *pool)
395 {
396 zs_destroy_pool(pool);
397 }
398
399 static int zs_zpool_malloc(void *pool, size_t size, gfp_t gfp,
400 unsigned long *handle)
401 {
402 *handle = zs_malloc(pool, size, gfp);
403 return *handle ? 0 : -1;
404 }
405 static void zs_zpool_free(void *pool, unsigned long handle)
406 {
407 zs_free(pool, handle);
408 }
409
410 static int zs_zpool_shrink(void *pool, unsigned int pages,
411 unsigned int *reclaimed)
412 {
413 return -EINVAL;
414 }
415
416 static void *zs_zpool_map(void *pool, unsigned long handle,
417 enum zpool_mapmode mm)
418 {
419 enum zs_mapmode zs_mm;
420
421 switch (mm) {
422 case ZPOOL_MM_RO:
423 zs_mm = ZS_MM_RO;
424 break;
425 case ZPOOL_MM_WO:
426 zs_mm = ZS_MM_WO;
427 break;
428 case ZPOOL_MM_RW: /* fallthru */
429 default:
430 zs_mm = ZS_MM_RW;
431 break;
432 }
433
434 return zs_map_object(pool, handle, zs_mm);
435 }
436 static void zs_zpool_unmap(void *pool, unsigned long handle)
437 {
438 zs_unmap_object(pool, handle);
439 }
440
441 static u64 zs_zpool_total_size(void *pool)
442 {
443 return zs_get_total_pages(pool) << PAGE_SHIFT;
444 }
445
446 static struct zpool_driver zs_zpool_driver = {
447 .type = "zsmalloc",
448 .owner = THIS_MODULE,
449 .create = zs_zpool_create,
450 .destroy = zs_zpool_destroy,
451 .malloc = zs_zpool_malloc,
452 .free = zs_zpool_free,
453 .shrink = zs_zpool_shrink,
454 .map = zs_zpool_map,
455 .unmap = zs_zpool_unmap,
456 .total_size = zs_zpool_total_size,
457 };
458
459 MODULE_ALIAS("zpool-zsmalloc");
460 #endif /* CONFIG_ZPOOL */
461
462 /* per-cpu VM mapping areas for zspage accesses that cross page boundaries */
463 static DEFINE_PER_CPU(struct mapping_area, zs_map_area);
464
465 static bool is_zspage_isolated(struct zspage *zspage)
466 {
467 return zspage->isolated;
468 }
469
470 static __maybe_unused int is_first_page(struct page *page)
471 {
472 return PagePrivate(page);
473 }
474
475 /* Protected by class->lock */
476 static inline int get_zspage_inuse(struct zspage *zspage)
477 {
478 return zspage->inuse;
479 }
480
481 static inline void set_zspage_inuse(struct zspage *zspage, int val)
482 {
483 zspage->inuse = val;
484 }
485
486 static inline void mod_zspage_inuse(struct zspage *zspage, int val)
487 {
488 zspage->inuse += val;
489 }
490
491 static inline struct page *get_first_page(struct zspage *zspage)
492 {
493 struct page *first_page = zspage->first_page;
494
495 VM_BUG_ON_PAGE(!is_first_page(first_page), first_page);
496 return first_page;
497 }
498
499 static inline int get_first_obj_offset(struct page *page)
500 {
501 return page->units;
502 }
503
504 static inline void set_first_obj_offset(struct page *page, int offset)
505 {
506 page->units = offset;
507 }
508
509 static inline unsigned int get_freeobj(struct zspage *zspage)
510 {
511 return zspage->freeobj;
512 }
513
514 static inline void set_freeobj(struct zspage *zspage, unsigned int obj)
515 {
516 zspage->freeobj = obj;
517 }
518
519 static void get_zspage_mapping(struct zspage *zspage,
520 unsigned int *class_idx,
521 enum fullness_group *fullness)
522 {
523 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
524
525 *fullness = zspage->fullness;
526 *class_idx = zspage->class;
527 }
528
529 static void set_zspage_mapping(struct zspage *zspage,
530 unsigned int class_idx,
531 enum fullness_group fullness)
532 {
533 zspage->class = class_idx;
534 zspage->fullness = fullness;
535 }
536
537 /*
538 * zsmalloc divides the pool into various size classes where each
539 * class maintains a list of zspages where each zspage is divided
540 * into equal sized chunks. Each allocation falls into one of these
541 * classes depending on its size. This function returns index of the
542 * size class which has chunk size big enough to hold the give size.
543 */
544 static int get_size_class_index(int size)
545 {
546 int idx = 0;
547
548 if (likely(size > ZS_MIN_ALLOC_SIZE))
549 idx = DIV_ROUND_UP(size - ZS_MIN_ALLOC_SIZE,
550 ZS_SIZE_CLASS_DELTA);
551
552 return min_t(int, ZS_SIZE_CLASSES - 1, idx);
553 }
554
555 /* type can be of enum type zs_stat_type or fullness_group */
556 static inline void zs_stat_inc(struct size_class *class,
557 int type, unsigned long cnt)
558 {
559 class->stats.objs[type] += cnt;
560 }
561
562 /* type can be of enum type zs_stat_type or fullness_group */
563 static inline void zs_stat_dec(struct size_class *class,
564 int type, unsigned long cnt)
565 {
566 class->stats.objs[type] -= cnt;
567 }
568
569 /* type can be of enum type zs_stat_type or fullness_group */
570 static inline unsigned long zs_stat_get(struct size_class *class,
571 int type)
572 {
573 return class->stats.objs[type];
574 }
575
576 #ifdef CONFIG_ZSMALLOC_STAT
577
578 static void __init zs_stat_init(void)
579 {
580 if (!debugfs_initialized()) {
581 pr_warn("debugfs not available, stat dir not created\n");
582 return;
583 }
584
585 zs_stat_root = debugfs_create_dir("zsmalloc", NULL);
586 if (!zs_stat_root)
587 pr_warn("debugfs 'zsmalloc' stat dir creation failed\n");
588 }
589
590 static void __exit zs_stat_exit(void)
591 {
592 debugfs_remove_recursive(zs_stat_root);
593 }
594
595 static unsigned long zs_can_compact(struct size_class *class);
596
597 static int zs_stats_size_show(struct seq_file *s, void *v)
598 {
599 int i;
600 struct zs_pool *pool = s->private;
601 struct size_class *class;
602 int objs_per_zspage;
603 unsigned long class_almost_full, class_almost_empty;
604 unsigned long obj_allocated, obj_used, pages_used, freeable;
605 unsigned long total_class_almost_full = 0, total_class_almost_empty = 0;
606 unsigned long total_objs = 0, total_used_objs = 0, total_pages = 0;
607 unsigned long total_freeable = 0;
608
609 seq_printf(s, " %5s %5s %11s %12s %13s %10s %10s %16s %8s\n",
610 "class", "size", "almost_full", "almost_empty",
611 "obj_allocated", "obj_used", "pages_used",
612 "pages_per_zspage", "freeable");
613
614 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
615 class = pool->size_class[i];
616
617 if (class->index != i)
618 continue;
619
620 spin_lock(&class->lock);
621 class_almost_full = zs_stat_get(class, CLASS_ALMOST_FULL);
622 class_almost_empty = zs_stat_get(class, CLASS_ALMOST_EMPTY);
623 obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
624 obj_used = zs_stat_get(class, OBJ_USED);
625 freeable = zs_can_compact(class);
626 spin_unlock(&class->lock);
627
628 objs_per_zspage = class->objs_per_zspage;
629 pages_used = obj_allocated / objs_per_zspage *
630 class->pages_per_zspage;
631
632 seq_printf(s, " %5u %5u %11lu %12lu %13lu"
633 " %10lu %10lu %16d %8lu\n",
634 i, class->size, class_almost_full, class_almost_empty,
635 obj_allocated, obj_used, pages_used,
636 class->pages_per_zspage, freeable);
637
638 total_class_almost_full += class_almost_full;
639 total_class_almost_empty += class_almost_empty;
640 total_objs += obj_allocated;
641 total_used_objs += obj_used;
642 total_pages += pages_used;
643 total_freeable += freeable;
644 }
645
646 seq_puts(s, "\n");
647 seq_printf(s, " %5s %5s %11lu %12lu %13lu %10lu %10lu %16s %8lu\n",
648 "Total", "", total_class_almost_full,
649 total_class_almost_empty, total_objs,
650 total_used_objs, total_pages, "", total_freeable);
651
652 return 0;
653 }
654
655 static int zs_stats_size_open(struct inode *inode, struct file *file)
656 {
657 return single_open(file, zs_stats_size_show, inode->i_private);
658 }
659
660 static const struct file_operations zs_stat_size_ops = {
661 .open = zs_stats_size_open,
662 .read = seq_read,
663 .llseek = seq_lseek,
664 .release = single_release,
665 };
666
667 static void zs_pool_stat_create(struct zs_pool *pool, const char *name)
668 {
669 struct dentry *entry;
670
671 if (!zs_stat_root) {
672 pr_warn("no root stat dir, not creating <%s> stat dir\n", name);
673 return;
674 }
675
676 entry = debugfs_create_dir(name, zs_stat_root);
677 if (!entry) {
678 pr_warn("debugfs dir <%s> creation failed\n", name);
679 return;
680 }
681 pool->stat_dentry = entry;
682
683 entry = debugfs_create_file("classes", S_IFREG | S_IRUGO,
684 pool->stat_dentry, pool, &zs_stat_size_ops);
685 if (!entry) {
686 pr_warn("%s: debugfs file entry <%s> creation failed\n",
687 name, "classes");
688 debugfs_remove_recursive(pool->stat_dentry);
689 pool->stat_dentry = NULL;
690 }
691 }
692
693 static void zs_pool_stat_destroy(struct zs_pool *pool)
694 {
695 debugfs_remove_recursive(pool->stat_dentry);
696 }
697
698 #else /* CONFIG_ZSMALLOC_STAT */
699 static void __init zs_stat_init(void)
700 {
701 }
702
703 static void __exit zs_stat_exit(void)
704 {
705 }
706
707 static inline void zs_pool_stat_create(struct zs_pool *pool, const char *name)
708 {
709 }
710
711 static inline void zs_pool_stat_destroy(struct zs_pool *pool)
712 {
713 }
714 #endif
715
716
717 /*
718 * For each size class, zspages are divided into different groups
719 * depending on how "full" they are. This was done so that we could
720 * easily find empty or nearly empty zspages when we try to shrink
721 * the pool (not yet implemented). This function returns fullness
722 * status of the given page.
723 */
724 static enum fullness_group get_fullness_group(struct size_class *class,
725 struct zspage *zspage)
726 {
727 int inuse, objs_per_zspage;
728 enum fullness_group fg;
729
730 inuse = get_zspage_inuse(zspage);
731 objs_per_zspage = class->objs_per_zspage;
732
733 if (inuse == 0)
734 fg = ZS_EMPTY;
735 else if (inuse == objs_per_zspage)
736 fg = ZS_FULL;
737 else if (inuse <= 3 * objs_per_zspage / fullness_threshold_frac)
738 fg = ZS_ALMOST_EMPTY;
739 else
740 fg = ZS_ALMOST_FULL;
741
742 return fg;
743 }
744
745 /*
746 * Each size class maintains various freelists and zspages are assigned
747 * to one of these freelists based on the number of live objects they
748 * have. This functions inserts the given zspage into the freelist
749 * identified by <class, fullness_group>.
750 */
751 static void insert_zspage(struct size_class *class,
752 struct zspage *zspage,
753 enum fullness_group fullness)
754 {
755 struct zspage *head;
756
757 zs_stat_inc(class, fullness, 1);
758 head = list_first_entry_or_null(&class->fullness_list[fullness],
759 struct zspage, list);
760 /*
761 * We want to see more ZS_FULL pages and less almost empty/full.
762 * Put pages with higher ->inuse first.
763 */
764 if (head) {
765 if (get_zspage_inuse(zspage) < get_zspage_inuse(head)) {
766 list_add(&zspage->list, &head->list);
767 return;
768 }
769 }
770 list_add(&zspage->list, &class->fullness_list[fullness]);
771 }
772
773 /*
774 * This function removes the given zspage from the freelist identified
775 * by <class, fullness_group>.
776 */
777 static void remove_zspage(struct size_class *class,
778 struct zspage *zspage,
779 enum fullness_group fullness)
780 {
781 VM_BUG_ON(list_empty(&class->fullness_list[fullness]));
782 VM_BUG_ON(is_zspage_isolated(zspage));
783
784 list_del_init(&zspage->list);
785 zs_stat_dec(class, fullness, 1);
786 }
787
788 /*
789 * Each size class maintains zspages in different fullness groups depending
790 * on the number of live objects they contain. When allocating or freeing
791 * objects, the fullness status of the page can change, say, from ALMOST_FULL
792 * to ALMOST_EMPTY when freeing an object. This function checks if such
793 * a status change has occurred for the given page and accordingly moves the
794 * page from the freelist of the old fullness group to that of the new
795 * fullness group.
796 */
797 static enum fullness_group fix_fullness_group(struct size_class *class,
798 struct zspage *zspage)
799 {
800 int class_idx;
801 enum fullness_group currfg, newfg;
802
803 get_zspage_mapping(zspage, &class_idx, &currfg);
804 newfg = get_fullness_group(class, zspage);
805 if (newfg == currfg)
806 goto out;
807
808 if (!is_zspage_isolated(zspage)) {
809 remove_zspage(class, zspage, currfg);
810 insert_zspage(class, zspage, newfg);
811 }
812
813 set_zspage_mapping(zspage, class_idx, newfg);
814
815 out:
816 return newfg;
817 }
818
819 /*
820 * We have to decide on how many pages to link together
821 * to form a zspage for each size class. This is important
822 * to reduce wastage due to unusable space left at end of
823 * each zspage which is given as:
824 * wastage = Zp % class_size
825 * usage = Zp - wastage
826 * where Zp = zspage size = k * PAGE_SIZE where k = 1, 2, ...
827 *
828 * For example, for size class of 3/8 * PAGE_SIZE, we should
829 * link together 3 PAGE_SIZE sized pages to form a zspage
830 * since then we can perfectly fit in 8 such objects.
831 */
832 static int get_pages_per_zspage(int class_size)
833 {
834 int i, max_usedpc = 0;
835 /* zspage order which gives maximum used size per KB */
836 int max_usedpc_order = 1;
837
838 for (i = 1; i <= ZS_MAX_PAGES_PER_ZSPAGE; i++) {
839 int zspage_size;
840 int waste, usedpc;
841
842 zspage_size = i * PAGE_SIZE;
843 waste = zspage_size % class_size;
844 usedpc = (zspage_size - waste) * 100 / zspage_size;
845
846 if (usedpc > max_usedpc) {
847 max_usedpc = usedpc;
848 max_usedpc_order = i;
849 }
850 }
851
852 return max_usedpc_order;
853 }
854
855 static struct zspage *get_zspage(struct page *page)
856 {
857 struct zspage *zspage = (struct zspage *)page->private;
858
859 BUG_ON(zspage->magic != ZSPAGE_MAGIC);
860 return zspage;
861 }
862
863 static struct page *get_next_page(struct page *page)
864 {
865 if (unlikely(PageHugeObject(page)))
866 return NULL;
867
868 return page->freelist;
869 }
870
871 /**
872 * obj_to_location - get (<page>, <obj_idx>) from encoded object value
873 * @page: page object resides in zspage
874 * @obj_idx: object index
875 */
876 static void obj_to_location(unsigned long obj, struct page **page,
877 unsigned int *obj_idx)
878 {
879 obj >>= OBJ_TAG_BITS;
880 *page = pfn_to_page(obj >> OBJ_INDEX_BITS);
881 *obj_idx = (obj & OBJ_INDEX_MASK);
882 }
883
884 /**
885 * location_to_obj - get obj value encoded from (<page>, <obj_idx>)
886 * @page: page object resides in zspage
887 * @obj_idx: object index
888 */
889 static unsigned long location_to_obj(struct page *page, unsigned int obj_idx)
890 {
891 unsigned long obj;
892
893 obj = page_to_pfn(page) << OBJ_INDEX_BITS;
894 obj |= obj_idx & OBJ_INDEX_MASK;
895 obj <<= OBJ_TAG_BITS;
896
897 return obj;
898 }
899
900 static unsigned long handle_to_obj(unsigned long handle)
901 {
902 return *(unsigned long *)handle;
903 }
904
905 static unsigned long obj_to_head(struct page *page, void *obj)
906 {
907 if (unlikely(PageHugeObject(page))) {
908 VM_BUG_ON_PAGE(!is_first_page(page), page);
909 return page->index;
910 } else
911 return *(unsigned long *)obj;
912 }
913
914 static inline int testpin_tag(unsigned long handle)
915 {
916 return bit_spin_is_locked(HANDLE_PIN_BIT, (unsigned long *)handle);
917 }
918
919 static inline int trypin_tag(unsigned long handle)
920 {
921 return bit_spin_trylock(HANDLE_PIN_BIT, (unsigned long *)handle);
922 }
923
924 static void pin_tag(unsigned long handle)
925 {
926 bit_spin_lock(HANDLE_PIN_BIT, (unsigned long *)handle);
927 }
928
929 static void unpin_tag(unsigned long handle)
930 {
931 bit_spin_unlock(HANDLE_PIN_BIT, (unsigned long *)handle);
932 }
933
934 static void reset_page(struct page *page)
935 {
936 __ClearPageMovable(page);
937 ClearPagePrivate(page);
938 set_page_private(page, 0);
939 page_mapcount_reset(page);
940 ClearPageHugeObject(page);
941 page->freelist = NULL;
942 }
943
944 /*
945 * To prevent zspage destroy during migration, zspage freeing should
946 * hold locks of all pages in the zspage.
947 */
948 void lock_zspage(struct zspage *zspage)
949 {
950 struct page *page = get_first_page(zspage);
951
952 do {
953 lock_page(page);
954 } while ((page = get_next_page(page)) != NULL);
955 }
956
957 int trylock_zspage(struct zspage *zspage)
958 {
959 struct page *cursor, *fail;
960
961 for (cursor = get_first_page(zspage); cursor != NULL; cursor =
962 get_next_page(cursor)) {
963 if (!trylock_page(cursor)) {
964 fail = cursor;
965 goto unlock;
966 }
967 }
968
969 return 1;
970 unlock:
971 for (cursor = get_first_page(zspage); cursor != fail; cursor =
972 get_next_page(cursor))
973 unlock_page(cursor);
974
975 return 0;
976 }
977
978 static void __free_zspage(struct zs_pool *pool, struct size_class *class,
979 struct zspage *zspage)
980 {
981 struct page *page, *next;
982 enum fullness_group fg;
983 unsigned int class_idx;
984
985 get_zspage_mapping(zspage, &class_idx, &fg);
986
987 assert_spin_locked(&class->lock);
988
989 VM_BUG_ON(get_zspage_inuse(zspage));
990 VM_BUG_ON(fg != ZS_EMPTY);
991
992 next = page = get_first_page(zspage);
993 do {
994 VM_BUG_ON_PAGE(!PageLocked(page), page);
995 next = get_next_page(page);
996 reset_page(page);
997 unlock_page(page);
998 dec_zone_page_state(page, NR_ZSPAGES);
999 put_page(page);
1000 page = next;
1001 } while (page != NULL);
1002
1003 cache_free_zspage(pool, zspage);
1004
1005 zs_stat_dec(class, OBJ_ALLOCATED, class->objs_per_zspage);
1006 atomic_long_sub(class->pages_per_zspage,
1007 &pool->pages_allocated);
1008 }
1009
1010 static void free_zspage(struct zs_pool *pool, struct size_class *class,
1011 struct zspage *zspage)
1012 {
1013 VM_BUG_ON(get_zspage_inuse(zspage));
1014 VM_BUG_ON(list_empty(&zspage->list));
1015
1016 if (!trylock_zspage(zspage)) {
1017 kick_deferred_free(pool);
1018 return;
1019 }
1020
1021 remove_zspage(class, zspage, ZS_EMPTY);
1022 __free_zspage(pool, class, zspage);
1023 }
1024
1025 /* Initialize a newly allocated zspage */
1026 static void init_zspage(struct size_class *class, struct zspage *zspage)
1027 {
1028 unsigned int freeobj = 1;
1029 unsigned long off = 0;
1030 struct page *page = get_first_page(zspage);
1031
1032 while (page) {
1033 struct page *next_page;
1034 struct link_free *link;
1035 void *vaddr;
1036
1037 set_first_obj_offset(page, off);
1038
1039 vaddr = kmap_atomic(page);
1040 link = (struct link_free *)vaddr + off / sizeof(*link);
1041
1042 while ((off += class->size) < PAGE_SIZE) {
1043 link->next = freeobj++ << OBJ_TAG_BITS;
1044 link += class->size / sizeof(*link);
1045 }
1046
1047 /*
1048 * We now come to the last (full or partial) object on this
1049 * page, which must point to the first object on the next
1050 * page (if present)
1051 */
1052 next_page = get_next_page(page);
1053 if (next_page) {
1054 link->next = freeobj++ << OBJ_TAG_BITS;
1055 } else {
1056 /*
1057 * Reset OBJ_TAG_BITS bit to last link to tell
1058 * whether it's allocated object or not.
1059 */
1060 link->next = -1 << OBJ_TAG_BITS;
1061 }
1062 kunmap_atomic(vaddr);
1063 page = next_page;
1064 off %= PAGE_SIZE;
1065 }
1066
1067 set_freeobj(zspage, 0);
1068 }
1069
1070 static void create_page_chain(struct size_class *class, struct zspage *zspage,
1071 struct page *pages[])
1072 {
1073 int i;
1074 struct page *page;
1075 struct page *prev_page = NULL;
1076 int nr_pages = class->pages_per_zspage;
1077
1078 /*
1079 * Allocate individual pages and link them together as:
1080 * 1. all pages are linked together using page->freelist
1081 * 2. each sub-page point to zspage using page->private
1082 *
1083 * we set PG_private to identify the first page (i.e. no other sub-page
1084 * has this flag set).
1085 */
1086 for (i = 0; i < nr_pages; i++) {
1087 page = pages[i];
1088 set_page_private(page, (unsigned long)zspage);
1089 page->freelist = NULL;
1090 if (i == 0) {
1091 zspage->first_page = page;
1092 SetPagePrivate(page);
1093 if (unlikely(class->objs_per_zspage == 1 &&
1094 class->pages_per_zspage == 1))
1095 SetPageHugeObject(page);
1096 } else {
1097 prev_page->freelist = page;
1098 }
1099 prev_page = page;
1100 }
1101 }
1102
1103 /*
1104 * Allocate a zspage for the given size class
1105 */
1106 static struct zspage *alloc_zspage(struct zs_pool *pool,
1107 struct size_class *class,
1108 gfp_t gfp)
1109 {
1110 int i;
1111 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE];
1112 struct zspage *zspage = cache_alloc_zspage(pool, gfp);
1113
1114 if (!zspage)
1115 return NULL;
1116
1117 memset(zspage, 0, sizeof(struct zspage));
1118 zspage->magic = ZSPAGE_MAGIC;
1119 migrate_lock_init(zspage);
1120
1121 for (i = 0; i < class->pages_per_zspage; i++) {
1122 struct page *page;
1123
1124 page = alloc_page(gfp);
1125 if (!page) {
1126 while (--i >= 0) {
1127 dec_zone_page_state(pages[i], NR_ZSPAGES);
1128 __free_page(pages[i]);
1129 }
1130 cache_free_zspage(pool, zspage);
1131 return NULL;
1132 }
1133
1134 inc_zone_page_state(page, NR_ZSPAGES);
1135 pages[i] = page;
1136 }
1137
1138 create_page_chain(class, zspage, pages);
1139 init_zspage(class, zspage);
1140
1141 return zspage;
1142 }
1143
1144 static struct zspage *find_get_zspage(struct size_class *class)
1145 {
1146 int i;
1147 struct zspage *zspage;
1148
1149 for (i = ZS_ALMOST_FULL; i >= ZS_EMPTY; i--) {
1150 zspage = list_first_entry_or_null(&class->fullness_list[i],
1151 struct zspage, list);
1152 if (zspage)
1153 break;
1154 }
1155
1156 return zspage;
1157 }
1158
1159 #ifdef CONFIG_PGTABLE_MAPPING
1160 static inline int __zs_cpu_up(struct mapping_area *area)
1161 {
1162 /*
1163 * Make sure we don't leak memory if a cpu UP notification
1164 * and zs_init() race and both call zs_cpu_up() on the same cpu
1165 */
1166 if (area->vm)
1167 return 0;
1168 area->vm = alloc_vm_area(PAGE_SIZE * 2, NULL);
1169 if (!area->vm)
1170 return -ENOMEM;
1171 return 0;
1172 }
1173
1174 static inline void __zs_cpu_down(struct mapping_area *area)
1175 {
1176 if (area->vm)
1177 free_vm_area(area->vm);
1178 area->vm = NULL;
1179 }
1180
1181 static inline void *__zs_map_object(struct mapping_area *area,
1182 struct page *pages[2], int off, int size)
1183 {
1184 BUG_ON(map_vm_area(area->vm, PAGE_KERNEL, pages));
1185 area->vm_addr = area->vm->addr;
1186 return area->vm_addr + off;
1187 }
1188
1189 static inline void __zs_unmap_object(struct mapping_area *area,
1190 struct page *pages[2], int off, int size)
1191 {
1192 unsigned long addr = (unsigned long)area->vm_addr;
1193
1194 unmap_kernel_range(addr, PAGE_SIZE * 2);
1195 }
1196
1197 #else /* CONFIG_PGTABLE_MAPPING */
1198
1199 static inline int __zs_cpu_up(struct mapping_area *area)
1200 {
1201 /*
1202 * Make sure we don't leak memory if a cpu UP notification
1203 * and zs_init() race and both call zs_cpu_up() on the same cpu
1204 */
1205 if (area->vm_buf)
1206 return 0;
1207 area->vm_buf = kmalloc(ZS_MAX_ALLOC_SIZE, GFP_KERNEL);
1208 if (!area->vm_buf)
1209 return -ENOMEM;
1210 return 0;
1211 }
1212
1213 static inline void __zs_cpu_down(struct mapping_area *area)
1214 {
1215 kfree(area->vm_buf);
1216 area->vm_buf = NULL;
1217 }
1218
1219 static void *__zs_map_object(struct mapping_area *area,
1220 struct page *pages[2], int off, int size)
1221 {
1222 int sizes[2];
1223 void *addr;
1224 char *buf = area->vm_buf;
1225
1226 /* disable page faults to match kmap_atomic() return conditions */
1227 pagefault_disable();
1228
1229 /* no read fastpath */
1230 if (area->vm_mm == ZS_MM_WO)
1231 goto out;
1232
1233 sizes[0] = PAGE_SIZE - off;
1234 sizes[1] = size - sizes[0];
1235
1236 /* copy object to per-cpu buffer */
1237 addr = kmap_atomic(pages[0]);
1238 memcpy(buf, addr + off, sizes[0]);
1239 kunmap_atomic(addr);
1240 addr = kmap_atomic(pages[1]);
1241 memcpy(buf + sizes[0], addr, sizes[1]);
1242 kunmap_atomic(addr);
1243 out:
1244 return area->vm_buf;
1245 }
1246
1247 static void __zs_unmap_object(struct mapping_area *area,
1248 struct page *pages[2], int off, int size)
1249 {
1250 int sizes[2];
1251 void *addr;
1252 char *buf;
1253
1254 /* no write fastpath */
1255 if (area->vm_mm == ZS_MM_RO)
1256 goto out;
1257
1258 buf = area->vm_buf;
1259 buf = buf + ZS_HANDLE_SIZE;
1260 size -= ZS_HANDLE_SIZE;
1261 off += ZS_HANDLE_SIZE;
1262
1263 sizes[0] = PAGE_SIZE - off;
1264 sizes[1] = size - sizes[0];
1265
1266 /* copy per-cpu buffer to object */
1267 addr = kmap_atomic(pages[0]);
1268 memcpy(addr + off, buf, sizes[0]);
1269 kunmap_atomic(addr);
1270 addr = kmap_atomic(pages[1]);
1271 memcpy(addr, buf + sizes[0], sizes[1]);
1272 kunmap_atomic(addr);
1273
1274 out:
1275 /* enable page faults to match kunmap_atomic() return conditions */
1276 pagefault_enable();
1277 }
1278
1279 #endif /* CONFIG_PGTABLE_MAPPING */
1280
1281 static int zs_cpu_prepare(unsigned int cpu)
1282 {
1283 struct mapping_area *area;
1284
1285 area = &per_cpu(zs_map_area, cpu);
1286 return __zs_cpu_up(area);
1287 }
1288
1289 static int zs_cpu_dead(unsigned int cpu)
1290 {
1291 struct mapping_area *area;
1292
1293 area = &per_cpu(zs_map_area, cpu);
1294 __zs_cpu_down(area);
1295 return 0;
1296 }
1297
1298 static bool can_merge(struct size_class *prev, int pages_per_zspage,
1299 int objs_per_zspage)
1300 {
1301 if (prev->pages_per_zspage == pages_per_zspage &&
1302 prev->objs_per_zspage == objs_per_zspage)
1303 return true;
1304
1305 return false;
1306 }
1307
1308 static bool zspage_full(struct size_class *class, struct zspage *zspage)
1309 {
1310 return get_zspage_inuse(zspage) == class->objs_per_zspage;
1311 }
1312
1313 unsigned long zs_get_total_pages(struct zs_pool *pool)
1314 {
1315 return atomic_long_read(&pool->pages_allocated);
1316 }
1317 EXPORT_SYMBOL_GPL(zs_get_total_pages);
1318
1319 /**
1320 * zs_map_object - get address of allocated object from handle.
1321 * @pool: pool from which the object was allocated
1322 * @handle: handle returned from zs_malloc
1323 *
1324 * Before using an object allocated from zs_malloc, it must be mapped using
1325 * this function. When done with the object, it must be unmapped using
1326 * zs_unmap_object.
1327 *
1328 * Only one object can be mapped per cpu at a time. There is no protection
1329 * against nested mappings.
1330 *
1331 * This function returns with preemption and page faults disabled.
1332 */
1333 void *zs_map_object(struct zs_pool *pool, unsigned long handle,
1334 enum zs_mapmode mm)
1335 {
1336 struct zspage *zspage;
1337 struct page *page;
1338 unsigned long obj, off;
1339 unsigned int obj_idx;
1340
1341 unsigned int class_idx;
1342 enum fullness_group fg;
1343 struct size_class *class;
1344 struct mapping_area *area;
1345 struct page *pages[2];
1346 void *ret;
1347
1348 /*
1349 * Because we use per-cpu mapping areas shared among the
1350 * pools/users, we can't allow mapping in interrupt context
1351 * because it can corrupt another users mappings.
1352 */
1353 BUG_ON(in_interrupt());
1354
1355 /* From now on, migration cannot move the object */
1356 pin_tag(handle);
1357
1358 obj = handle_to_obj(handle);
1359 obj_to_location(obj, &page, &obj_idx);
1360 zspage = get_zspage(page);
1361
1362 /* migration cannot move any subpage in this zspage */
1363 migrate_read_lock(zspage);
1364
1365 get_zspage_mapping(zspage, &class_idx, &fg);
1366 class = pool->size_class[class_idx];
1367 off = (class->size * obj_idx) & ~PAGE_MASK;
1368
1369 area = &get_cpu_var(zs_map_area);
1370 area->vm_mm = mm;
1371 if (off + class->size <= PAGE_SIZE) {
1372 /* this object is contained entirely within a page */
1373 area->vm_addr = kmap_atomic(page);
1374 ret = area->vm_addr + off;
1375 goto out;
1376 }
1377
1378 /* this object spans two pages */
1379 pages[0] = page;
1380 pages[1] = get_next_page(page);
1381 BUG_ON(!pages[1]);
1382
1383 ret = __zs_map_object(area, pages, off, class->size);
1384 out:
1385 if (likely(!PageHugeObject(page)))
1386 ret += ZS_HANDLE_SIZE;
1387
1388 return ret;
1389 }
1390 EXPORT_SYMBOL_GPL(zs_map_object);
1391
1392 void zs_unmap_object(struct zs_pool *pool, unsigned long handle)
1393 {
1394 struct zspage *zspage;
1395 struct page *page;
1396 unsigned long obj, off;
1397 unsigned int obj_idx;
1398
1399 unsigned int class_idx;
1400 enum fullness_group fg;
1401 struct size_class *class;
1402 struct mapping_area *area;
1403
1404 obj = handle_to_obj(handle);
1405 obj_to_location(obj, &page, &obj_idx);
1406 zspage = get_zspage(page);
1407 get_zspage_mapping(zspage, &class_idx, &fg);
1408 class = pool->size_class[class_idx];
1409 off = (class->size * obj_idx) & ~PAGE_MASK;
1410
1411 area = this_cpu_ptr(&zs_map_area);
1412 if (off + class->size <= PAGE_SIZE)
1413 kunmap_atomic(area->vm_addr);
1414 else {
1415 struct page *pages[2];
1416
1417 pages[0] = page;
1418 pages[1] = get_next_page(page);
1419 BUG_ON(!pages[1]);
1420
1421 __zs_unmap_object(area, pages, off, class->size);
1422 }
1423 put_cpu_var(zs_map_area);
1424
1425 migrate_read_unlock(zspage);
1426 unpin_tag(handle);
1427 }
1428 EXPORT_SYMBOL_GPL(zs_unmap_object);
1429
1430 /**
1431 * zs_huge_class_size() - Returns the size (in bytes) of the first huge
1432 * zsmalloc &size_class.
1433 * @pool: zsmalloc pool to use
1434 *
1435 * The function returns the size of the first huge class - any object of equal
1436 * or bigger size will be stored in zspage consisting of a single physical
1437 * page.
1438 *
1439 * Context: Any context.
1440 *
1441 * Return: the size (in bytes) of the first huge zsmalloc &size_class.
1442 */
1443 size_t zs_huge_class_size(struct zs_pool *pool)
1444 {
1445 return huge_class_size;
1446 }
1447 EXPORT_SYMBOL_GPL(zs_huge_class_size);
1448
1449 static unsigned long obj_malloc(struct size_class *class,
1450 struct zspage *zspage, unsigned long handle)
1451 {
1452 int i, nr_page, offset;
1453 unsigned long obj;
1454 struct link_free *link;
1455
1456 struct page *m_page;
1457 unsigned long m_offset;
1458 void *vaddr;
1459
1460 handle |= OBJ_ALLOCATED_TAG;
1461 obj = get_freeobj(zspage);
1462
1463 offset = obj * class->size;
1464 nr_page = offset >> PAGE_SHIFT;
1465 m_offset = offset & ~PAGE_MASK;
1466 m_page = get_first_page(zspage);
1467
1468 for (i = 0; i < nr_page; i++)
1469 m_page = get_next_page(m_page);
1470
1471 vaddr = kmap_atomic(m_page);
1472 link = (struct link_free *)vaddr + m_offset / sizeof(*link);
1473 set_freeobj(zspage, link->next >> OBJ_TAG_BITS);
1474 if (likely(!PageHugeObject(m_page)))
1475 /* record handle in the header of allocated chunk */
1476 link->handle = handle;
1477 else
1478 /* record handle to page->index */
1479 zspage->first_page->index = handle;
1480
1481 kunmap_atomic(vaddr);
1482 mod_zspage_inuse(zspage, 1);
1483 zs_stat_inc(class, OBJ_USED, 1);
1484
1485 obj = location_to_obj(m_page, obj);
1486
1487 return obj;
1488 }
1489
1490
1491 /**
1492 * zs_malloc - Allocate block of given size from pool.
1493 * @pool: pool to allocate from
1494 * @size: size of block to allocate
1495 * @gfp: gfp flags when allocating object
1496 *
1497 * On success, handle to the allocated object is returned,
1498 * otherwise 0.
1499 * Allocation requests with size > ZS_MAX_ALLOC_SIZE will fail.
1500 */
1501 unsigned long zs_malloc(struct zs_pool *pool, size_t size, gfp_t gfp)
1502 {
1503 unsigned long handle, obj;
1504 struct size_class *class;
1505 enum fullness_group newfg;
1506 struct zspage *zspage;
1507
1508 if (unlikely(!size || size > ZS_MAX_ALLOC_SIZE))
1509 return 0;
1510
1511 handle = cache_alloc_handle(pool, gfp);
1512 if (!handle)
1513 return 0;
1514
1515 /* extra space in chunk to keep the handle */
1516 size += ZS_HANDLE_SIZE;
1517 class = pool->size_class[get_size_class_index(size)];
1518
1519 spin_lock(&class->lock);
1520 zspage = find_get_zspage(class);
1521 if (likely(zspage)) {
1522 obj = obj_malloc(class, zspage, handle);
1523 /* Now move the zspage to another fullness group, if required */
1524 fix_fullness_group(class, zspage);
1525 record_obj(handle, obj);
1526 spin_unlock(&class->lock);
1527
1528 return handle;
1529 }
1530
1531 spin_unlock(&class->lock);
1532
1533 zspage = alloc_zspage(pool, class, gfp);
1534 if (!zspage) {
1535 cache_free_handle(pool, handle);
1536 return 0;
1537 }
1538
1539 spin_lock(&class->lock);
1540 obj = obj_malloc(class, zspage, handle);
1541 newfg = get_fullness_group(class, zspage);
1542 insert_zspage(class, zspage, newfg);
1543 set_zspage_mapping(zspage, class->index, newfg);
1544 record_obj(handle, obj);
1545 atomic_long_add(class->pages_per_zspage,
1546 &pool->pages_allocated);
1547 zs_stat_inc(class, OBJ_ALLOCATED, class->objs_per_zspage);
1548
1549 /* We completely set up zspage so mark them as movable */
1550 SetZsPageMovable(pool, zspage);
1551 spin_unlock(&class->lock);
1552
1553 return handle;
1554 }
1555 EXPORT_SYMBOL_GPL(zs_malloc);
1556
1557 static void obj_free(struct size_class *class, unsigned long obj)
1558 {
1559 struct link_free *link;
1560 struct zspage *zspage;
1561 struct page *f_page;
1562 unsigned long f_offset;
1563 unsigned int f_objidx;
1564 void *vaddr;
1565
1566 obj &= ~OBJ_ALLOCATED_TAG;
1567 obj_to_location(obj, &f_page, &f_objidx);
1568 f_offset = (class->size * f_objidx) & ~PAGE_MASK;
1569 zspage = get_zspage(f_page);
1570
1571 vaddr = kmap_atomic(f_page);
1572
1573 /* Insert this object in containing zspage's freelist */
1574 link = (struct link_free *)(vaddr + f_offset);
1575 link->next = get_freeobj(zspage) << OBJ_TAG_BITS;
1576 kunmap_atomic(vaddr);
1577 set_freeobj(zspage, f_objidx);
1578 mod_zspage_inuse(zspage, -1);
1579 zs_stat_dec(class, OBJ_USED, 1);
1580 }
1581
1582 void zs_free(struct zs_pool *pool, unsigned long handle)
1583 {
1584 struct zspage *zspage;
1585 struct page *f_page;
1586 unsigned long obj;
1587 unsigned int f_objidx;
1588 int class_idx;
1589 struct size_class *class;
1590 enum fullness_group fullness;
1591 bool isolated;
1592
1593 if (unlikely(!handle))
1594 return;
1595
1596 pin_tag(handle);
1597 obj = handle_to_obj(handle);
1598 obj_to_location(obj, &f_page, &f_objidx);
1599 zspage = get_zspage(f_page);
1600
1601 migrate_read_lock(zspage);
1602
1603 get_zspage_mapping(zspage, &class_idx, &fullness);
1604 class = pool->size_class[class_idx];
1605
1606 spin_lock(&class->lock);
1607 obj_free(class, obj);
1608 fullness = fix_fullness_group(class, zspage);
1609 if (fullness != ZS_EMPTY) {
1610 migrate_read_unlock(zspage);
1611 goto out;
1612 }
1613
1614 isolated = is_zspage_isolated(zspage);
1615 migrate_read_unlock(zspage);
1616 /* If zspage is isolated, zs_page_putback will free the zspage */
1617 if (likely(!isolated))
1618 free_zspage(pool, class, zspage);
1619 out:
1620
1621 spin_unlock(&class->lock);
1622 unpin_tag(handle);
1623 cache_free_handle(pool, handle);
1624 }
1625 EXPORT_SYMBOL_GPL(zs_free);
1626
1627 static void zs_object_copy(struct size_class *class, unsigned long dst,
1628 unsigned long src)
1629 {
1630 struct page *s_page, *d_page;
1631 unsigned int s_objidx, d_objidx;
1632 unsigned long s_off, d_off;
1633 void *s_addr, *d_addr;
1634 int s_size, d_size, size;
1635 int written = 0;
1636
1637 s_size = d_size = class->size;
1638
1639 obj_to_location(src, &s_page, &s_objidx);
1640 obj_to_location(dst, &d_page, &d_objidx);
1641
1642 s_off = (class->size * s_objidx) & ~PAGE_MASK;
1643 d_off = (class->size * d_objidx) & ~PAGE_MASK;
1644
1645 if (s_off + class->size > PAGE_SIZE)
1646 s_size = PAGE_SIZE - s_off;
1647
1648 if (d_off + class->size > PAGE_SIZE)
1649 d_size = PAGE_SIZE - d_off;
1650
1651 s_addr = kmap_atomic(s_page);
1652 d_addr = kmap_atomic(d_page);
1653
1654 while (1) {
1655 size = min(s_size, d_size);
1656 memcpy(d_addr + d_off, s_addr + s_off, size);
1657 written += size;
1658
1659 if (written == class->size)
1660 break;
1661
1662 s_off += size;
1663 s_size -= size;
1664 d_off += size;
1665 d_size -= size;
1666
1667 if (s_off >= PAGE_SIZE) {
1668 kunmap_atomic(d_addr);
1669 kunmap_atomic(s_addr);
1670 s_page = get_next_page(s_page);
1671 s_addr = kmap_atomic(s_page);
1672 d_addr = kmap_atomic(d_page);
1673 s_size = class->size - written;
1674 s_off = 0;
1675 }
1676
1677 if (d_off >= PAGE_SIZE) {
1678 kunmap_atomic(d_addr);
1679 d_page = get_next_page(d_page);
1680 d_addr = kmap_atomic(d_page);
1681 d_size = class->size - written;
1682 d_off = 0;
1683 }
1684 }
1685
1686 kunmap_atomic(d_addr);
1687 kunmap_atomic(s_addr);
1688 }
1689
1690 /*
1691 * Find alloced object in zspage from index object and
1692 * return handle.
1693 */
1694 static unsigned long find_alloced_obj(struct size_class *class,
1695 struct page *page, int *obj_idx)
1696 {
1697 unsigned long head;
1698 int offset = 0;
1699 int index = *obj_idx;
1700 unsigned long handle = 0;
1701 void *addr = kmap_atomic(page);
1702
1703 offset = get_first_obj_offset(page);
1704 offset += class->size * index;
1705
1706 while (offset < PAGE_SIZE) {
1707 head = obj_to_head(page, addr + offset);
1708 if (head & OBJ_ALLOCATED_TAG) {
1709 handle = head & ~OBJ_ALLOCATED_TAG;
1710 if (trypin_tag(handle))
1711 break;
1712 handle = 0;
1713 }
1714
1715 offset += class->size;
1716 index++;
1717 }
1718
1719 kunmap_atomic(addr);
1720
1721 *obj_idx = index;
1722
1723 return handle;
1724 }
1725
1726 struct zs_compact_control {
1727 /* Source spage for migration which could be a subpage of zspage */
1728 struct page *s_page;
1729 /* Destination page for migration which should be a first page
1730 * of zspage. */
1731 struct page *d_page;
1732 /* Starting object index within @s_page which used for live object
1733 * in the subpage. */
1734 int obj_idx;
1735 };
1736
1737 static int migrate_zspage(struct zs_pool *pool, struct size_class *class,
1738 struct zs_compact_control *cc)
1739 {
1740 unsigned long used_obj, free_obj;
1741 unsigned long handle;
1742 struct page *s_page = cc->s_page;
1743 struct page *d_page = cc->d_page;
1744 int obj_idx = cc->obj_idx;
1745 int ret = 0;
1746
1747 while (1) {
1748 handle = find_alloced_obj(class, s_page, &obj_idx);
1749 if (!handle) {
1750 s_page = get_next_page(s_page);
1751 if (!s_page)
1752 break;
1753 obj_idx = 0;
1754 continue;
1755 }
1756
1757 /* Stop if there is no more space */
1758 if (zspage_full(class, get_zspage(d_page))) {
1759 unpin_tag(handle);
1760 ret = -ENOMEM;
1761 break;
1762 }
1763
1764 used_obj = handle_to_obj(handle);
1765 free_obj = obj_malloc(class, get_zspage(d_page), handle);
1766 zs_object_copy(class, free_obj, used_obj);
1767 obj_idx++;
1768 /*
1769 * record_obj updates handle's value to free_obj and it will
1770 * invalidate lock bit(ie, HANDLE_PIN_BIT) of handle, which
1771 * breaks synchronization using pin_tag(e,g, zs_free) so
1772 * let's keep the lock bit.
1773 */
1774 free_obj |= BIT(HANDLE_PIN_BIT);
1775 record_obj(handle, free_obj);
1776 unpin_tag(handle);
1777 obj_free(class, used_obj);
1778 }
1779
1780 /* Remember last position in this iteration */
1781 cc->s_page = s_page;
1782 cc->obj_idx = obj_idx;
1783
1784 return ret;
1785 }
1786
1787 static struct zspage *isolate_zspage(struct size_class *class, bool source)
1788 {
1789 int i;
1790 struct zspage *zspage;
1791 enum fullness_group fg[2] = {ZS_ALMOST_EMPTY, ZS_ALMOST_FULL};
1792
1793 if (!source) {
1794 fg[0] = ZS_ALMOST_FULL;
1795 fg[1] = ZS_ALMOST_EMPTY;
1796 }
1797
1798 for (i = 0; i < 2; i++) {
1799 zspage = list_first_entry_or_null(&class->fullness_list[fg[i]],
1800 struct zspage, list);
1801 if (zspage) {
1802 VM_BUG_ON(is_zspage_isolated(zspage));
1803 remove_zspage(class, zspage, fg[i]);
1804 return zspage;
1805 }
1806 }
1807
1808 return zspage;
1809 }
1810
1811 /*
1812 * putback_zspage - add @zspage into right class's fullness list
1813 * @class: destination class
1814 * @zspage: target page
1815 *
1816 * Return @zspage's fullness_group
1817 */
1818 static enum fullness_group putback_zspage(struct size_class *class,
1819 struct zspage *zspage)
1820 {
1821 enum fullness_group fullness;
1822
1823 VM_BUG_ON(is_zspage_isolated(zspage));
1824
1825 fullness = get_fullness_group(class, zspage);
1826 insert_zspage(class, zspage, fullness);
1827 set_zspage_mapping(zspage, class->index, fullness);
1828
1829 return fullness;
1830 }
1831
1832 #ifdef CONFIG_COMPACTION
1833 static struct dentry *zs_mount(struct file_system_type *fs_type,
1834 int flags, const char *dev_name, void *data)
1835 {
1836 static const struct dentry_operations ops = {
1837 .d_dname = simple_dname,
1838 };
1839
1840 return mount_pseudo(fs_type, "zsmalloc:", NULL, &ops, ZSMALLOC_MAGIC);
1841 }
1842
1843 static struct file_system_type zsmalloc_fs = {
1844 .name = "zsmalloc",
1845 .mount = zs_mount,
1846 .kill_sb = kill_anon_super,
1847 };
1848
1849 static int zsmalloc_mount(void)
1850 {
1851 int ret = 0;
1852
1853 zsmalloc_mnt = kern_mount(&zsmalloc_fs);
1854 if (IS_ERR(zsmalloc_mnt))
1855 ret = PTR_ERR(zsmalloc_mnt);
1856
1857 return ret;
1858 }
1859
1860 static void zsmalloc_unmount(void)
1861 {
1862 kern_unmount(zsmalloc_mnt);
1863 }
1864
1865 static void migrate_lock_init(struct zspage *zspage)
1866 {
1867 rwlock_init(&zspage->lock);
1868 }
1869
1870 static void migrate_read_lock(struct zspage *zspage)
1871 {
1872 read_lock(&zspage->lock);
1873 }
1874
1875 static void migrate_read_unlock(struct zspage *zspage)
1876 {
1877 read_unlock(&zspage->lock);
1878 }
1879
1880 static void migrate_write_lock(struct zspage *zspage)
1881 {
1882 write_lock(&zspage->lock);
1883 }
1884
1885 static void migrate_write_unlock(struct zspage *zspage)
1886 {
1887 write_unlock(&zspage->lock);
1888 }
1889
1890 /* Number of isolated subpage for *page migration* in this zspage */
1891 static void inc_zspage_isolation(struct zspage *zspage)
1892 {
1893 zspage->isolated++;
1894 }
1895
1896 static void dec_zspage_isolation(struct zspage *zspage)
1897 {
1898 zspage->isolated--;
1899 }
1900
1901 static void replace_sub_page(struct size_class *class, struct zspage *zspage,
1902 struct page *newpage, struct page *oldpage)
1903 {
1904 struct page *page;
1905 struct page *pages[ZS_MAX_PAGES_PER_ZSPAGE] = {NULL, };
1906 int idx = 0;
1907
1908 page = get_first_page(zspage);
1909 do {
1910 if (page == oldpage)
1911 pages[idx] = newpage;
1912 else
1913 pages[idx] = page;
1914 idx++;
1915 } while ((page = get_next_page(page)) != NULL);
1916
1917 create_page_chain(class, zspage, pages);
1918 set_first_obj_offset(newpage, get_first_obj_offset(oldpage));
1919 if (unlikely(PageHugeObject(oldpage)))
1920 newpage->index = oldpage->index;
1921 __SetPageMovable(newpage, page_mapping(oldpage));
1922 }
1923
1924 bool zs_page_isolate(struct page *page, isolate_mode_t mode)
1925 {
1926 struct zs_pool *pool;
1927 struct size_class *class;
1928 int class_idx;
1929 enum fullness_group fullness;
1930 struct zspage *zspage;
1931 struct address_space *mapping;
1932
1933 /*
1934 * Page is locked so zspage couldn't be destroyed. For detail, look at
1935 * lock_zspage in free_zspage.
1936 */
1937 VM_BUG_ON_PAGE(!PageMovable(page), page);
1938 VM_BUG_ON_PAGE(PageIsolated(page), page);
1939
1940 zspage = get_zspage(page);
1941
1942 /*
1943 * Without class lock, fullness could be stale while class_idx is okay
1944 * because class_idx is constant unless page is freed so we should get
1945 * fullness again under class lock.
1946 */
1947 get_zspage_mapping(zspage, &class_idx, &fullness);
1948 mapping = page_mapping(page);
1949 pool = mapping->private_data;
1950 class = pool->size_class[class_idx];
1951
1952 spin_lock(&class->lock);
1953 if (get_zspage_inuse(zspage) == 0) {
1954 spin_unlock(&class->lock);
1955 return false;
1956 }
1957
1958 /* zspage is isolated for object migration */
1959 if (list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1960 spin_unlock(&class->lock);
1961 return false;
1962 }
1963
1964 /*
1965 * If this is first time isolation for the zspage, isolate zspage from
1966 * size_class to prevent further object allocation from the zspage.
1967 */
1968 if (!list_empty(&zspage->list) && !is_zspage_isolated(zspage)) {
1969 get_zspage_mapping(zspage, &class_idx, &fullness);
1970 remove_zspage(class, zspage, fullness);
1971 }
1972
1973 inc_zspage_isolation(zspage);
1974 spin_unlock(&class->lock);
1975
1976 return true;
1977 }
1978
1979 int zs_page_migrate(struct address_space *mapping, struct page *newpage,
1980 struct page *page, enum migrate_mode mode)
1981 {
1982 struct zs_pool *pool;
1983 struct size_class *class;
1984 int class_idx;
1985 enum fullness_group fullness;
1986 struct zspage *zspage;
1987 struct page *dummy;
1988 void *s_addr, *d_addr, *addr;
1989 int offset, pos;
1990 unsigned long handle, head;
1991 unsigned long old_obj, new_obj;
1992 unsigned int obj_idx;
1993 int ret = -EAGAIN;
1994
1995 /*
1996 * We cannot support the _NO_COPY case here, because copy needs to
1997 * happen under the zs lock, which does not work with
1998 * MIGRATE_SYNC_NO_COPY workflow.
1999 */
2000 if (mode == MIGRATE_SYNC_NO_COPY)
2001 return -EINVAL;
2002
2003 VM_BUG_ON_PAGE(!PageMovable(page), page);
2004 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2005
2006 zspage = get_zspage(page);
2007
2008 /* Concurrent compactor cannot migrate any subpage in zspage */
2009 migrate_write_lock(zspage);
2010 get_zspage_mapping(zspage, &class_idx, &fullness);
2011 pool = mapping->private_data;
2012 class = pool->size_class[class_idx];
2013 offset = get_first_obj_offset(page);
2014
2015 spin_lock(&class->lock);
2016 if (!get_zspage_inuse(zspage)) {
2017 /*
2018 * Set "offset" to end of the page so that every loops
2019 * skips unnecessary object scanning.
2020 */
2021 offset = PAGE_SIZE;
2022 }
2023
2024 pos = offset;
2025 s_addr = kmap_atomic(page);
2026 while (pos < PAGE_SIZE) {
2027 head = obj_to_head(page, s_addr + pos);
2028 if (head & OBJ_ALLOCATED_TAG) {
2029 handle = head & ~OBJ_ALLOCATED_TAG;
2030 if (!trypin_tag(handle))
2031 goto unpin_objects;
2032 }
2033 pos += class->size;
2034 }
2035
2036 /*
2037 * Here, any user cannot access all objects in the zspage so let's move.
2038 */
2039 d_addr = kmap_atomic(newpage);
2040 memcpy(d_addr, s_addr, PAGE_SIZE);
2041 kunmap_atomic(d_addr);
2042
2043 for (addr = s_addr + offset; addr < s_addr + pos;
2044 addr += class->size) {
2045 head = obj_to_head(page, addr);
2046 if (head & OBJ_ALLOCATED_TAG) {
2047 handle = head & ~OBJ_ALLOCATED_TAG;
2048 if (!testpin_tag(handle))
2049 BUG();
2050
2051 old_obj = handle_to_obj(handle);
2052 obj_to_location(old_obj, &dummy, &obj_idx);
2053 new_obj = (unsigned long)location_to_obj(newpage,
2054 obj_idx);
2055 new_obj |= BIT(HANDLE_PIN_BIT);
2056 record_obj(handle, new_obj);
2057 }
2058 }
2059
2060 replace_sub_page(class, zspage, newpage, page);
2061 get_page(newpage);
2062
2063 dec_zspage_isolation(zspage);
2064
2065 /*
2066 * Page migration is done so let's putback isolated zspage to
2067 * the list if @page is final isolated subpage in the zspage.
2068 */
2069 if (!is_zspage_isolated(zspage))
2070 putback_zspage(class, zspage);
2071
2072 reset_page(page);
2073 put_page(page);
2074 page = newpage;
2075
2076 ret = MIGRATEPAGE_SUCCESS;
2077 unpin_objects:
2078 for (addr = s_addr + offset; addr < s_addr + pos;
2079 addr += class->size) {
2080 head = obj_to_head(page, addr);
2081 if (head & OBJ_ALLOCATED_TAG) {
2082 handle = head & ~OBJ_ALLOCATED_TAG;
2083 if (!testpin_tag(handle))
2084 BUG();
2085 unpin_tag(handle);
2086 }
2087 }
2088 kunmap_atomic(s_addr);
2089 spin_unlock(&class->lock);
2090 migrate_write_unlock(zspage);
2091
2092 return ret;
2093 }
2094
2095 void zs_page_putback(struct page *page)
2096 {
2097 struct zs_pool *pool;
2098 struct size_class *class;
2099 int class_idx;
2100 enum fullness_group fg;
2101 struct address_space *mapping;
2102 struct zspage *zspage;
2103
2104 VM_BUG_ON_PAGE(!PageMovable(page), page);
2105 VM_BUG_ON_PAGE(!PageIsolated(page), page);
2106
2107 zspage = get_zspage(page);
2108 get_zspage_mapping(zspage, &class_idx, &fg);
2109 mapping = page_mapping(page);
2110 pool = mapping->private_data;
2111 class = pool->size_class[class_idx];
2112
2113 spin_lock(&class->lock);
2114 dec_zspage_isolation(zspage);
2115 if (!is_zspage_isolated(zspage)) {
2116 fg = putback_zspage(class, zspage);
2117 /*
2118 * Due to page_lock, we cannot free zspage immediately
2119 * so let's defer.
2120 */
2121 if (fg == ZS_EMPTY)
2122 schedule_work(&pool->free_work);
2123 }
2124 spin_unlock(&class->lock);
2125 }
2126
2127 const struct address_space_operations zsmalloc_aops = {
2128 .isolate_page = zs_page_isolate,
2129 .migratepage = zs_page_migrate,
2130 .putback_page = zs_page_putback,
2131 };
2132
2133 static int zs_register_migration(struct zs_pool *pool)
2134 {
2135 pool->inode = alloc_anon_inode(zsmalloc_mnt->mnt_sb);
2136 if (IS_ERR(pool->inode)) {
2137 pool->inode = NULL;
2138 return 1;
2139 }
2140
2141 pool->inode->i_mapping->private_data = pool;
2142 pool->inode->i_mapping->a_ops = &zsmalloc_aops;
2143 return 0;
2144 }
2145
2146 static void zs_unregister_migration(struct zs_pool *pool)
2147 {
2148 flush_work(&pool->free_work);
2149 iput(pool->inode);
2150 }
2151
2152 /*
2153 * Caller should hold page_lock of all pages in the zspage
2154 * In here, we cannot use zspage meta data.
2155 */
2156 static void async_free_zspage(struct work_struct *work)
2157 {
2158 int i;
2159 struct size_class *class;
2160 unsigned int class_idx;
2161 enum fullness_group fullness;
2162 struct zspage *zspage, *tmp;
2163 LIST_HEAD(free_pages);
2164 struct zs_pool *pool = container_of(work, struct zs_pool,
2165 free_work);
2166
2167 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2168 class = pool->size_class[i];
2169 if (class->index != i)
2170 continue;
2171
2172 spin_lock(&class->lock);
2173 list_splice_init(&class->fullness_list[ZS_EMPTY], &free_pages);
2174 spin_unlock(&class->lock);
2175 }
2176
2177
2178 list_for_each_entry_safe(zspage, tmp, &free_pages, list) {
2179 list_del(&zspage->list);
2180 lock_zspage(zspage);
2181
2182 get_zspage_mapping(zspage, &class_idx, &fullness);
2183 VM_BUG_ON(fullness != ZS_EMPTY);
2184 class = pool->size_class[class_idx];
2185 spin_lock(&class->lock);
2186 __free_zspage(pool, pool->size_class[class_idx], zspage);
2187 spin_unlock(&class->lock);
2188 }
2189 };
2190
2191 static void kick_deferred_free(struct zs_pool *pool)
2192 {
2193 schedule_work(&pool->free_work);
2194 }
2195
2196 static void init_deferred_free(struct zs_pool *pool)
2197 {
2198 INIT_WORK(&pool->free_work, async_free_zspage);
2199 }
2200
2201 static void SetZsPageMovable(struct zs_pool *pool, struct zspage *zspage)
2202 {
2203 struct page *page = get_first_page(zspage);
2204
2205 do {
2206 WARN_ON(!trylock_page(page));
2207 __SetPageMovable(page, pool->inode->i_mapping);
2208 unlock_page(page);
2209 } while ((page = get_next_page(page)) != NULL);
2210 }
2211 #endif
2212
2213 /*
2214 *
2215 * Based on the number of unused allocated objects calculate
2216 * and return the number of pages that we can free.
2217 */
2218 static unsigned long zs_can_compact(struct size_class *class)
2219 {
2220 unsigned long obj_wasted;
2221 unsigned long obj_allocated = zs_stat_get(class, OBJ_ALLOCATED);
2222 unsigned long obj_used = zs_stat_get(class, OBJ_USED);
2223
2224 if (obj_allocated <= obj_used)
2225 return 0;
2226
2227 obj_wasted = obj_allocated - obj_used;
2228 obj_wasted /= class->objs_per_zspage;
2229
2230 return obj_wasted * class->pages_per_zspage;
2231 }
2232
2233 static void __zs_compact(struct zs_pool *pool, struct size_class *class)
2234 {
2235 struct zs_compact_control cc;
2236 struct zspage *src_zspage;
2237 struct zspage *dst_zspage = NULL;
2238
2239 spin_lock(&class->lock);
2240 while ((src_zspage = isolate_zspage(class, true))) {
2241
2242 if (!zs_can_compact(class))
2243 break;
2244
2245 cc.obj_idx = 0;
2246 cc.s_page = get_first_page(src_zspage);
2247
2248 while ((dst_zspage = isolate_zspage(class, false))) {
2249 cc.d_page = get_first_page(dst_zspage);
2250 /*
2251 * If there is no more space in dst_page, resched
2252 * and see if anyone had allocated another zspage.
2253 */
2254 if (!migrate_zspage(pool, class, &cc))
2255 break;
2256
2257 putback_zspage(class, dst_zspage);
2258 }
2259
2260 /* Stop if we couldn't find slot */
2261 if (dst_zspage == NULL)
2262 break;
2263
2264 putback_zspage(class, dst_zspage);
2265 if (putback_zspage(class, src_zspage) == ZS_EMPTY) {
2266 free_zspage(pool, class, src_zspage);
2267 pool->stats.pages_compacted += class->pages_per_zspage;
2268 }
2269 spin_unlock(&class->lock);
2270 cond_resched();
2271 spin_lock(&class->lock);
2272 }
2273
2274 if (src_zspage)
2275 putback_zspage(class, src_zspage);
2276
2277 spin_unlock(&class->lock);
2278 }
2279
2280 unsigned long zs_compact(struct zs_pool *pool)
2281 {
2282 int i;
2283 struct size_class *class;
2284
2285 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2286 class = pool->size_class[i];
2287 if (!class)
2288 continue;
2289 if (class->index != i)
2290 continue;
2291 __zs_compact(pool, class);
2292 }
2293
2294 return pool->stats.pages_compacted;
2295 }
2296 EXPORT_SYMBOL_GPL(zs_compact);
2297
2298 void zs_pool_stats(struct zs_pool *pool, struct zs_pool_stats *stats)
2299 {
2300 memcpy(stats, &pool->stats, sizeof(struct zs_pool_stats));
2301 }
2302 EXPORT_SYMBOL_GPL(zs_pool_stats);
2303
2304 static unsigned long zs_shrinker_scan(struct shrinker *shrinker,
2305 struct shrink_control *sc)
2306 {
2307 unsigned long pages_freed;
2308 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2309 shrinker);
2310
2311 pages_freed = pool->stats.pages_compacted;
2312 /*
2313 * Compact classes and calculate compaction delta.
2314 * Can run concurrently with a manually triggered
2315 * (by user) compaction.
2316 */
2317 pages_freed = zs_compact(pool) - pages_freed;
2318
2319 return pages_freed ? pages_freed : SHRINK_STOP;
2320 }
2321
2322 static unsigned long zs_shrinker_count(struct shrinker *shrinker,
2323 struct shrink_control *sc)
2324 {
2325 int i;
2326 struct size_class *class;
2327 unsigned long pages_to_free = 0;
2328 struct zs_pool *pool = container_of(shrinker, struct zs_pool,
2329 shrinker);
2330
2331 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2332 class = pool->size_class[i];
2333 if (!class)
2334 continue;
2335 if (class->index != i)
2336 continue;
2337
2338 pages_to_free += zs_can_compact(class);
2339 }
2340
2341 return pages_to_free;
2342 }
2343
2344 static void zs_unregister_shrinker(struct zs_pool *pool)
2345 {
2346 if (pool->shrinker_enabled) {
2347 unregister_shrinker(&pool->shrinker);
2348 pool->shrinker_enabled = false;
2349 }
2350 }
2351
2352 static int zs_register_shrinker(struct zs_pool *pool)
2353 {
2354 pool->shrinker.scan_objects = zs_shrinker_scan;
2355 pool->shrinker.count_objects = zs_shrinker_count;
2356 pool->shrinker.batch = 0;
2357 pool->shrinker.seeks = DEFAULT_SEEKS;
2358
2359 return register_shrinker(&pool->shrinker);
2360 }
2361
2362 /**
2363 * zs_create_pool - Creates an allocation pool to work from.
2364 * @name: pool name to be created
2365 *
2366 * This function must be called before anything when using
2367 * the zsmalloc allocator.
2368 *
2369 * On success, a pointer to the newly created pool is returned,
2370 * otherwise NULL.
2371 */
2372 struct zs_pool *zs_create_pool(const char *name)
2373 {
2374 int i;
2375 struct zs_pool *pool;
2376 struct size_class *prev_class = NULL;
2377
2378 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2379 if (!pool)
2380 return NULL;
2381
2382 init_deferred_free(pool);
2383
2384 pool->name = kstrdup(name, GFP_KERNEL);
2385 if (!pool->name)
2386 goto err;
2387
2388 if (create_cache(pool))
2389 goto err;
2390
2391 /*
2392 * Iterate reversely, because, size of size_class that we want to use
2393 * for merging should be larger or equal to current size.
2394 */
2395 for (i = ZS_SIZE_CLASSES - 1; i >= 0; i--) {
2396 int size;
2397 int pages_per_zspage;
2398 int objs_per_zspage;
2399 struct size_class *class;
2400 int fullness = 0;
2401
2402 size = ZS_MIN_ALLOC_SIZE + i * ZS_SIZE_CLASS_DELTA;
2403 if (size > ZS_MAX_ALLOC_SIZE)
2404 size = ZS_MAX_ALLOC_SIZE;
2405 pages_per_zspage = get_pages_per_zspage(size);
2406 objs_per_zspage = pages_per_zspage * PAGE_SIZE / size;
2407
2408 /*
2409 * We iterate from biggest down to smallest classes,
2410 * so huge_class_size holds the size of the first huge
2411 * class. Any object bigger than or equal to that will
2412 * endup in the huge class.
2413 */
2414 if (pages_per_zspage != 1 && objs_per_zspage != 1 &&
2415 !huge_class_size) {
2416 huge_class_size = size;
2417 /*
2418 * The object uses ZS_HANDLE_SIZE bytes to store the
2419 * handle. We need to subtract it, because zs_malloc()
2420 * unconditionally adds handle size before it performs
2421 * size class search - so object may be smaller than
2422 * huge class size, yet it still can end up in the huge
2423 * class because it grows by ZS_HANDLE_SIZE extra bytes
2424 * right before class lookup.
2425 */
2426 huge_class_size -= (ZS_HANDLE_SIZE - 1);
2427 }
2428
2429 /*
2430 * size_class is used for normal zsmalloc operation such
2431 * as alloc/free for that size. Although it is natural that we
2432 * have one size_class for each size, there is a chance that we
2433 * can get more memory utilization if we use one size_class for
2434 * many different sizes whose size_class have same
2435 * characteristics. So, we makes size_class point to
2436 * previous size_class if possible.
2437 */
2438 if (prev_class) {
2439 if (can_merge(prev_class, pages_per_zspage, objs_per_zspage)) {
2440 pool->size_class[i] = prev_class;
2441 continue;
2442 }
2443 }
2444
2445 class = kzalloc(sizeof(struct size_class), GFP_KERNEL);
2446 if (!class)
2447 goto err;
2448
2449 class->size = size;
2450 class->index = i;
2451 class->pages_per_zspage = pages_per_zspage;
2452 class->objs_per_zspage = objs_per_zspage;
2453 spin_lock_init(&class->lock);
2454 pool->size_class[i] = class;
2455 for (fullness = ZS_EMPTY; fullness < NR_ZS_FULLNESS;
2456 fullness++)
2457 INIT_LIST_HEAD(&class->fullness_list[fullness]);
2458
2459 prev_class = class;
2460 }
2461
2462 /* debug only, don't abort if it fails */
2463 zs_pool_stat_create(pool, name);
2464
2465 if (zs_register_migration(pool))
2466 goto err;
2467
2468 /*
2469 * Not critical, we still can use the pool
2470 * and user can trigger compaction manually.
2471 */
2472 if (zs_register_shrinker(pool) == 0)
2473 pool->shrinker_enabled = true;
2474 return pool;
2475
2476 err:
2477 zs_destroy_pool(pool);
2478 return NULL;
2479 }
2480 EXPORT_SYMBOL_GPL(zs_create_pool);
2481
2482 void zs_destroy_pool(struct zs_pool *pool)
2483 {
2484 int i;
2485
2486 zs_unregister_shrinker(pool);
2487 zs_unregister_migration(pool);
2488 zs_pool_stat_destroy(pool);
2489
2490 for (i = 0; i < ZS_SIZE_CLASSES; i++) {
2491 int fg;
2492 struct size_class *class = pool->size_class[i];
2493
2494 if (!class)
2495 continue;
2496
2497 if (class->index != i)
2498 continue;
2499
2500 for (fg = ZS_EMPTY; fg < NR_ZS_FULLNESS; fg++) {
2501 if (!list_empty(&class->fullness_list[fg])) {
2502 pr_info("Freeing non-empty class with size %db, fullness group %d\n",
2503 class->size, fg);
2504 }
2505 }
2506 kfree(class);
2507 }
2508
2509 destroy_cache(pool);
2510 kfree(pool->name);
2511 kfree(pool);
2512 }
2513 EXPORT_SYMBOL_GPL(zs_destroy_pool);
2514
2515 static int __init zs_init(void)
2516 {
2517 int ret;
2518
2519 ret = zsmalloc_mount();
2520 if (ret)
2521 goto out;
2522
2523 ret = cpuhp_setup_state(CPUHP_MM_ZS_PREPARE, "mm/zsmalloc:prepare",
2524 zs_cpu_prepare, zs_cpu_dead);
2525 if (ret)
2526 goto hp_setup_fail;
2527
2528 #ifdef CONFIG_ZPOOL
2529 zpool_register_driver(&zs_zpool_driver);
2530 #endif
2531
2532 zs_stat_init();
2533
2534 return 0;
2535
2536 hp_setup_fail:
2537 zsmalloc_unmount();
2538 out:
2539 return ret;
2540 }
2541
2542 static void __exit zs_exit(void)
2543 {
2544 #ifdef CONFIG_ZPOOL
2545 zpool_unregister_driver(&zs_zpool_driver);
2546 #endif
2547 zsmalloc_unmount();
2548 cpuhp_remove_state(CPUHP_MM_ZS_PREPARE);
2549
2550 zs_stat_exit();
2551 }
2552
2553 module_init(zs_init);
2554 module_exit(zs_exit);
2555
2556 MODULE_LICENSE("Dual BSD/GPL");
2557 MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");