remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / vmscan.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
15 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
17 #include <linux/mm.h>
18 #include <linux/sched/mm.h>
19 #include <linux/module.h>
20 #include <linux/gfp.h>
21 #include <linux/kernel_stat.h>
22 #include <linux/swap.h>
23 #include <linux/pagemap.h>
24 #include <linux/init.h>
25 #include <linux/highmem.h>
26 #include <linux/vmpressure.h>
27 #include <linux/vmstat.h>
28 #include <linux/file.h>
29 #include <linux/writeback.h>
30 #include <linux/blkdev.h>
31 #include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33 #include <linux/mm_inline.h>
34 #include <linux/backing-dev.h>
35 #include <linux/rmap.h>
36 #include <linux/topology.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/compaction.h>
40 #include <linux/notifier.h>
41 #include <linux/rwsem.h>
42 #include <linux/delay.h>
43 #include <linux/kthread.h>
44 #include <linux/freezer.h>
45 #include <linux/memcontrol.h>
46 #include <linux/delayacct.h>
47 #include <linux/sysctl.h>
48 #include <linux/oom.h>
49 #include <linux/prefetch.h>
50 #include <linux/printk.h>
51 #include <linux/dax.h>
52 #include <linux/psi.h>
53
54 #include <asm/tlbflush.h>
55 #include <asm/div64.h>
56
57 #include <linux/swapops.h>
58 #include <linux/balloon_compaction.h>
59
60 #include "internal.h"
61
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/vmscan.h>
64
65 struct scan_control {
66 /* How many pages shrink_list() should reclaim */
67 unsigned long nr_to_reclaim;
68
69 /* This context's GFP mask */
70 gfp_t gfp_mask;
71
72 /* Allocation order */
73 int order;
74
75 /*
76 * Nodemask of nodes allowed by the caller. If NULL, all nodes
77 * are scanned.
78 */
79 nodemask_t *nodemask;
80
81 /*
82 * The memory cgroup that hit its limit and as a result is the
83 * primary target of this reclaim invocation.
84 */
85 struct mem_cgroup *target_mem_cgroup;
86
87 /* Scan (total_size >> priority) pages at once */
88 int priority;
89
90 /* The highest zone to isolate pages for reclaim from */
91 enum zone_type reclaim_idx;
92
93 /* Writepage batching in laptop mode; RECLAIM_WRITE */
94 unsigned int may_writepage:1;
95
96 /* Can mapped pages be reclaimed? */
97 unsigned int may_unmap:1;
98
99 /* Can pages be swapped as part of reclaim? */
100 unsigned int may_swap:1;
101
102 /*
103 * Cgroups are not reclaimed below their configured memory.low,
104 * unless we threaten to OOM. If any cgroups are skipped due to
105 * memory.low and nothing was reclaimed, go back for memory.low.
106 */
107 unsigned int memcg_low_reclaim:1;
108 unsigned int memcg_low_skipped:1;
109
110 unsigned int hibernation_mode:1;
111
112 /* One of the zones is ready for compaction */
113 unsigned int compaction_ready:1;
114
115 /* Incremented by the number of inactive pages that were scanned */
116 unsigned long nr_scanned;
117
118 /* Number of pages freed so far during a call to shrink_zones() */
119 unsigned long nr_reclaimed;
120 };
121
122 #ifdef ARCH_HAS_PREFETCH
123 #define prefetch_prev_lru_page(_page, _base, _field) \
124 do { \
125 if ((_page)->lru.prev != _base) { \
126 struct page *prev; \
127 \
128 prev = lru_to_page(&(_page->lru)); \
129 prefetch(&prev->_field); \
130 } \
131 } while (0)
132 #else
133 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
134 #endif
135
136 #ifdef ARCH_HAS_PREFETCHW
137 #define prefetchw_prev_lru_page(_page, _base, _field) \
138 do { \
139 if ((_page)->lru.prev != _base) { \
140 struct page *prev; \
141 \
142 prev = lru_to_page(&(_page->lru)); \
143 prefetchw(&prev->_field); \
144 } \
145 } while (0)
146 #else
147 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
148 #endif
149
150 /*
151 * From 0 .. 100. Higher means more swappy.
152 */
153 int vm_swappiness = 60;
154 /*
155 * The total number of pages which are beyond the high watermark within all
156 * zones.
157 */
158 unsigned long vm_total_pages;
159
160 static LIST_HEAD(shrinker_list);
161 static DECLARE_RWSEM(shrinker_rwsem);
162
163 #ifdef CONFIG_MEMCG
164 static bool global_reclaim(struct scan_control *sc)
165 {
166 return !sc->target_mem_cgroup;
167 }
168
169 /**
170 * sane_reclaim - is the usual dirty throttling mechanism operational?
171 * @sc: scan_control in question
172 *
173 * The normal page dirty throttling mechanism in balance_dirty_pages() is
174 * completely broken with the legacy memcg and direct stalling in
175 * shrink_page_list() is used for throttling instead, which lacks all the
176 * niceties such as fairness, adaptive pausing, bandwidth proportional
177 * allocation and configurability.
178 *
179 * This function tests whether the vmscan currently in progress can assume
180 * that the normal dirty throttling mechanism is operational.
181 */
182 static bool sane_reclaim(struct scan_control *sc)
183 {
184 struct mem_cgroup *memcg = sc->target_mem_cgroup;
185
186 if (!memcg)
187 return true;
188 #ifdef CONFIG_CGROUP_WRITEBACK
189 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
190 return true;
191 #endif
192 return false;
193 }
194 #else
195 static bool global_reclaim(struct scan_control *sc)
196 {
197 return true;
198 }
199
200 static bool sane_reclaim(struct scan_control *sc)
201 {
202 return true;
203 }
204 #endif
205
206 /*
207 * This misses isolated pages which are not accounted for to save counters.
208 * As the data only determines if reclaim or compaction continues, it is
209 * not expected that isolated pages will be a dominating factor.
210 */
211 unsigned long zone_reclaimable_pages(struct zone *zone)
212 {
213 unsigned long nr;
214
215 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
216 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
217 if (get_nr_swap_pages() > 0)
218 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
219 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
220
221 return nr;
222 }
223
224 unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
225 {
226 unsigned long nr;
227
228 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
229 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
230 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
231
232 if (get_nr_swap_pages() > 0)
233 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
234 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
235 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
236
237 return nr;
238 }
239
240 /**
241 * lruvec_lru_size - Returns the number of pages on the given LRU list.
242 * @lruvec: lru vector
243 * @lru: lru to use
244 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
245 */
246 unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
247 {
248 unsigned long lru_size;
249 int zid;
250
251 if (!mem_cgroup_disabled())
252 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
253 else
254 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
255
256 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
257 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
258 unsigned long size;
259
260 if (!managed_zone(zone))
261 continue;
262
263 if (!mem_cgroup_disabled())
264 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
265 else
266 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
267 NR_ZONE_LRU_BASE + lru);
268 lru_size -= min(size, lru_size);
269 }
270
271 return lru_size;
272
273 }
274
275 /*
276 * Add a shrinker callback to be called from the vm.
277 */
278 int register_shrinker(struct shrinker *shrinker)
279 {
280 size_t size = sizeof(*shrinker->nr_deferred);
281
282 if (shrinker->flags & SHRINKER_NUMA_AWARE)
283 size *= nr_node_ids;
284
285 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
286 if (!shrinker->nr_deferred)
287 return -ENOMEM;
288
289 down_write(&shrinker_rwsem);
290 list_add_tail(&shrinker->list, &shrinker_list);
291 up_write(&shrinker_rwsem);
292 return 0;
293 }
294 EXPORT_SYMBOL(register_shrinker);
295
296 /*
297 * Remove one
298 */
299 void unregister_shrinker(struct shrinker *shrinker)
300 {
301 if (!shrinker->nr_deferred)
302 return;
303 down_write(&shrinker_rwsem);
304 list_del(&shrinker->list);
305 up_write(&shrinker_rwsem);
306 kfree(shrinker->nr_deferred);
307 shrinker->nr_deferred = NULL;
308 }
309 EXPORT_SYMBOL(unregister_shrinker);
310
311 #define SHRINK_BATCH 128
312
313 static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
314 struct shrinker *shrinker,
315 unsigned long nr_scanned,
316 unsigned long nr_eligible)
317 {
318 unsigned long freed = 0;
319 unsigned long long delta;
320 long total_scan;
321 long freeable;
322 long nr;
323 long new_nr;
324 int nid = shrinkctl->nid;
325 long batch_size = shrinker->batch ? shrinker->batch
326 : SHRINK_BATCH;
327 long scanned = 0, next_deferred;
328
329 freeable = shrinker->count_objects(shrinker, shrinkctl);
330 if (freeable == 0)
331 return 0;
332
333 /*
334 * copy the current shrinker scan count into a local variable
335 * and zero it so that other concurrent shrinker invocations
336 * don't also do this scanning work.
337 */
338 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
339
340 total_scan = nr;
341 delta = (4 * nr_scanned) / shrinker->seeks;
342 delta *= freeable;
343 do_div(delta, nr_eligible + 1);
344 total_scan += delta;
345 if (total_scan < 0) {
346 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
347 shrinker->scan_objects, total_scan);
348 total_scan = freeable;
349 next_deferred = nr;
350 } else
351 next_deferred = total_scan;
352
353 /*
354 * We need to avoid excessive windup on filesystem shrinkers
355 * due to large numbers of GFP_NOFS allocations causing the
356 * shrinkers to return -1 all the time. This results in a large
357 * nr being built up so when a shrink that can do some work
358 * comes along it empties the entire cache due to nr >>>
359 * freeable. This is bad for sustaining a working set in
360 * memory.
361 *
362 * Hence only allow the shrinker to scan the entire cache when
363 * a large delta change is calculated directly.
364 */
365 if (delta < freeable / 4)
366 total_scan = min(total_scan, freeable / 2);
367
368 /*
369 * Avoid risking looping forever due to too large nr value:
370 * never try to free more than twice the estimate number of
371 * freeable entries.
372 */
373 if (total_scan > freeable * 2)
374 total_scan = freeable * 2;
375
376 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
377 nr_scanned, nr_eligible,
378 freeable, delta, total_scan);
379
380 /*
381 * Normally, we should not scan less than batch_size objects in one
382 * pass to avoid too frequent shrinker calls, but if the slab has less
383 * than batch_size objects in total and we are really tight on memory,
384 * we will try to reclaim all available objects, otherwise we can end
385 * up failing allocations although there are plenty of reclaimable
386 * objects spread over several slabs with usage less than the
387 * batch_size.
388 *
389 * We detect the "tight on memory" situations by looking at the total
390 * number of objects we want to scan (total_scan). If it is greater
391 * than the total number of objects on slab (freeable), we must be
392 * scanning at high prio and therefore should try to reclaim as much as
393 * possible.
394 */
395 while (total_scan >= batch_size ||
396 total_scan >= freeable) {
397 unsigned long ret;
398 unsigned long nr_to_scan = min(batch_size, total_scan);
399
400 shrinkctl->nr_to_scan = nr_to_scan;
401 shrinkctl->nr_scanned = nr_to_scan;
402 ret = shrinker->scan_objects(shrinker, shrinkctl);
403 if (ret == SHRINK_STOP)
404 break;
405 freed += ret;
406
407 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
408 total_scan -= shrinkctl->nr_scanned;
409 scanned += shrinkctl->nr_scanned;
410
411 cond_resched();
412 }
413
414 if (next_deferred >= scanned)
415 next_deferred -= scanned;
416 else
417 next_deferred = 0;
418 /*
419 * move the unused scan count back into the shrinker in a
420 * manner that handles concurrent updates. If we exhausted the
421 * scan, there is no need to do an update.
422 */
423 if (next_deferred > 0)
424 new_nr = atomic_long_add_return(next_deferred,
425 &shrinker->nr_deferred[nid]);
426 else
427 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
428
429 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
430 return freed;
431 }
432
433 /**
434 * shrink_slab - shrink slab caches
435 * @gfp_mask: allocation context
436 * @nid: node whose slab caches to target
437 * @memcg: memory cgroup whose slab caches to target
438 * @nr_scanned: pressure numerator
439 * @nr_eligible: pressure denominator
440 *
441 * Call the shrink functions to age shrinkable caches.
442 *
443 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
444 * unaware shrinkers will receive a node id of 0 instead.
445 *
446 * @memcg specifies the memory cgroup to target. If it is not NULL,
447 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
448 * objects from the memory cgroup specified. Otherwise, only unaware
449 * shrinkers are called.
450 *
451 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
452 * the available objects should be scanned. Page reclaim for example
453 * passes the number of pages scanned and the number of pages on the
454 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
455 * when it encountered mapped pages. The ratio is further biased by
456 * the ->seeks setting of the shrink function, which indicates the
457 * cost to recreate an object relative to that of an LRU page.
458 *
459 * Returns the number of reclaimed slab objects.
460 */
461 static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
462 struct mem_cgroup *memcg,
463 unsigned long nr_scanned,
464 unsigned long nr_eligible)
465 {
466 struct shrinker *shrinker;
467 unsigned long freed = 0;
468
469 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
470 return 0;
471
472 if (nr_scanned == 0)
473 nr_scanned = SWAP_CLUSTER_MAX;
474
475 if (!down_read_trylock(&shrinker_rwsem)) {
476 /*
477 * If we would return 0, our callers would understand that we
478 * have nothing else to shrink and give up trying. By returning
479 * 1 we keep it going and assume we'll be able to shrink next
480 * time.
481 */
482 freed = 1;
483 goto out;
484 }
485
486 list_for_each_entry(shrinker, &shrinker_list, list) {
487 struct shrink_control sc = {
488 .gfp_mask = gfp_mask,
489 .nid = nid,
490 .memcg = memcg,
491 };
492
493 /*
494 * If kernel memory accounting is disabled, we ignore
495 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
496 * passing NULL for memcg.
497 */
498 if (memcg_kmem_enabled() &&
499 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
500 continue;
501
502 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
503 sc.nid = 0;
504
505 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
506 }
507
508 up_read(&shrinker_rwsem);
509 out:
510 cond_resched();
511 return freed;
512 }
513
514 void drop_slab_node(int nid)
515 {
516 unsigned long freed;
517
518 do {
519 struct mem_cgroup *memcg = NULL;
520
521 freed = 0;
522 do {
523 freed += shrink_slab(GFP_KERNEL, nid, memcg,
524 1000, 1000);
525 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
526 } while (freed > 10);
527 }
528
529 void drop_slab(void)
530 {
531 int nid;
532
533 for_each_online_node(nid)
534 drop_slab_node(nid);
535 }
536
537 static inline int is_page_cache_freeable(struct page *page)
538 {
539 /*
540 * A freeable page cache page is referenced only by the caller
541 * that isolated the page, the page cache radix tree and
542 * optional buffer heads at page->private.
543 */
544 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
545 HPAGE_PMD_NR : 1;
546 return page_count(page) - page_has_private(page) == 1 + radix_pins;
547 }
548
549 static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
550 {
551 if (current->flags & PF_SWAPWRITE)
552 return 1;
553 if (!inode_write_congested(inode))
554 return 1;
555 if (inode_to_bdi(inode) == current->backing_dev_info)
556 return 1;
557 return 0;
558 }
559
560 /*
561 * We detected a synchronous write error writing a page out. Probably
562 * -ENOSPC. We need to propagate that into the address_space for a subsequent
563 * fsync(), msync() or close().
564 *
565 * The tricky part is that after writepage we cannot touch the mapping: nothing
566 * prevents it from being freed up. But we have a ref on the page and once
567 * that page is locked, the mapping is pinned.
568 *
569 * We're allowed to run sleeping lock_page() here because we know the caller has
570 * __GFP_FS.
571 */
572 static void handle_write_error(struct address_space *mapping,
573 struct page *page, int error)
574 {
575 lock_page(page);
576 if (page_mapping(page) == mapping)
577 mapping_set_error(mapping, error);
578 unlock_page(page);
579 }
580
581 /* possible outcome of pageout() */
582 typedef enum {
583 /* failed to write page out, page is locked */
584 PAGE_KEEP,
585 /* move page to the active list, page is locked */
586 PAGE_ACTIVATE,
587 /* page has been sent to the disk successfully, page is unlocked */
588 PAGE_SUCCESS,
589 /* page is clean and locked */
590 PAGE_CLEAN,
591 } pageout_t;
592
593 /*
594 * pageout is called by shrink_page_list() for each dirty page.
595 * Calls ->writepage().
596 */
597 static pageout_t pageout(struct page *page, struct address_space *mapping,
598 struct scan_control *sc)
599 {
600 /*
601 * If the page is dirty, only perform writeback if that write
602 * will be non-blocking. To prevent this allocation from being
603 * stalled by pagecache activity. But note that there may be
604 * stalls if we need to run get_block(). We could test
605 * PagePrivate for that.
606 *
607 * If this process is currently in __generic_file_write_iter() against
608 * this page's queue, we can perform writeback even if that
609 * will block.
610 *
611 * If the page is swapcache, write it back even if that would
612 * block, for some throttling. This happens by accident, because
613 * swap_backing_dev_info is bust: it doesn't reflect the
614 * congestion state of the swapdevs. Easy to fix, if needed.
615 */
616 if (!is_page_cache_freeable(page))
617 return PAGE_KEEP;
618 if (!mapping) {
619 /*
620 * Some data journaling orphaned pages can have
621 * page->mapping == NULL while being dirty with clean buffers.
622 */
623 if (page_has_private(page)) {
624 if (try_to_free_buffers(page)) {
625 ClearPageDirty(page);
626 pr_info("%s: orphaned page\n", __func__);
627 return PAGE_CLEAN;
628 }
629 }
630 return PAGE_KEEP;
631 }
632 if (mapping->a_ops->writepage == NULL)
633 return PAGE_ACTIVATE;
634 if (!may_write_to_inode(mapping->host, sc))
635 return PAGE_KEEP;
636
637 if (clear_page_dirty_for_io(page)) {
638 int res;
639 struct writeback_control wbc = {
640 .sync_mode = WB_SYNC_NONE,
641 .nr_to_write = SWAP_CLUSTER_MAX,
642 .range_start = 0,
643 .range_end = LLONG_MAX,
644 .for_reclaim = 1,
645 };
646
647 SetPageReclaim(page);
648 res = mapping->a_ops->writepage(page, &wbc);
649 if (res < 0)
650 handle_write_error(mapping, page, res);
651 if (res == AOP_WRITEPAGE_ACTIVATE) {
652 ClearPageReclaim(page);
653 return PAGE_ACTIVATE;
654 }
655
656 if (!PageWriteback(page)) {
657 /* synchronous write or broken a_ops? */
658 ClearPageReclaim(page);
659 }
660 trace_mm_vmscan_writepage(page);
661 inc_node_page_state(page, NR_VMSCAN_WRITE);
662 return PAGE_SUCCESS;
663 }
664
665 return PAGE_CLEAN;
666 }
667
668 /*
669 * Same as remove_mapping, but if the page is removed from the mapping, it
670 * gets returned with a refcount of 0.
671 */
672 static int __remove_mapping(struct address_space *mapping, struct page *page,
673 bool reclaimed)
674 {
675 unsigned long flags;
676 int refcount;
677
678 BUG_ON(!PageLocked(page));
679 BUG_ON(mapping != page_mapping(page));
680
681 spin_lock_irqsave(&mapping->tree_lock, flags);
682 /*
683 * The non racy check for a busy page.
684 *
685 * Must be careful with the order of the tests. When someone has
686 * a ref to the page, it may be possible that they dirty it then
687 * drop the reference. So if PageDirty is tested before page_count
688 * here, then the following race may occur:
689 *
690 * get_user_pages(&page);
691 * [user mapping goes away]
692 * write_to(page);
693 * !PageDirty(page) [good]
694 * SetPageDirty(page);
695 * put_page(page);
696 * !page_count(page) [good, discard it]
697 *
698 * [oops, our write_to data is lost]
699 *
700 * Reversing the order of the tests ensures such a situation cannot
701 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
702 * load is not satisfied before that of page->_refcount.
703 *
704 * Note that if SetPageDirty is always performed via set_page_dirty,
705 * and thus under tree_lock, then this ordering is not required.
706 */
707 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
708 refcount = 1 + HPAGE_PMD_NR;
709 else
710 refcount = 2;
711 if (!page_ref_freeze(page, refcount))
712 goto cannot_free;
713 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
714 if (unlikely(PageDirty(page))) {
715 page_ref_unfreeze(page, refcount);
716 goto cannot_free;
717 }
718
719 if (PageSwapCache(page)) {
720 swp_entry_t swap = { .val = page_private(page) };
721 mem_cgroup_swapout(page, swap);
722 __delete_from_swap_cache(page);
723 spin_unlock_irqrestore(&mapping->tree_lock, flags);
724 put_swap_page(page, swap);
725 } else {
726 void (*freepage)(struct page *);
727 void *shadow = NULL;
728
729 freepage = mapping->a_ops->freepage;
730 /*
731 * Remember a shadow entry for reclaimed file cache in
732 * order to detect refaults, thus thrashing, later on.
733 *
734 * But don't store shadows in an address space that is
735 * already exiting. This is not just an optizimation,
736 * inode reclaim needs to empty out the radix tree or
737 * the nodes are lost. Don't plant shadows behind its
738 * back.
739 *
740 * We also don't store shadows for DAX mappings because the
741 * only page cache pages found in these are zero pages
742 * covering holes, and because we don't want to mix DAX
743 * exceptional entries and shadow exceptional entries in the
744 * same page_tree.
745 */
746 if (reclaimed && page_is_file_cache(page) &&
747 !mapping_exiting(mapping) && !dax_mapping(mapping))
748 shadow = workingset_eviction(mapping, page);
749 __delete_from_page_cache(page, shadow);
750 spin_unlock_irqrestore(&mapping->tree_lock, flags);
751
752 if (freepage != NULL)
753 freepage(page);
754 }
755
756 return 1;
757
758 cannot_free:
759 spin_unlock_irqrestore(&mapping->tree_lock, flags);
760 return 0;
761 }
762
763 /*
764 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
765 * someone else has a ref on the page, abort and return 0. If it was
766 * successfully detached, return 1. Assumes the caller has a single ref on
767 * this page.
768 */
769 int remove_mapping(struct address_space *mapping, struct page *page)
770 {
771 if (__remove_mapping(mapping, page, false)) {
772 /*
773 * Unfreezing the refcount with 1 rather than 2 effectively
774 * drops the pagecache ref for us without requiring another
775 * atomic operation.
776 */
777 page_ref_unfreeze(page, 1);
778 return 1;
779 }
780 return 0;
781 }
782
783 /**
784 * putback_lru_page - put previously isolated page onto appropriate LRU list
785 * @page: page to be put back to appropriate lru list
786 *
787 * Add previously isolated @page to appropriate LRU list.
788 * Page may still be unevictable for other reasons.
789 *
790 * lru_lock must not be held, interrupts must be enabled.
791 */
792 void putback_lru_page(struct page *page)
793 {
794 bool is_unevictable;
795 int was_unevictable = PageUnevictable(page);
796
797 VM_BUG_ON_PAGE(PageLRU(page), page);
798
799 redo:
800 ClearPageUnevictable(page);
801
802 if (page_evictable(page)) {
803 /*
804 * For evictable pages, we can use the cache.
805 * In event of a race, worst case is we end up with an
806 * unevictable page on [in]active list.
807 * We know how to handle that.
808 */
809 is_unevictable = false;
810 lru_cache_add(page);
811 } else {
812 /*
813 * Put unevictable pages directly on zone's unevictable
814 * list.
815 */
816 is_unevictable = true;
817 add_page_to_unevictable_list(page);
818 /*
819 * When racing with an mlock or AS_UNEVICTABLE clearing
820 * (page is unlocked) make sure that if the other thread
821 * does not observe our setting of PG_lru and fails
822 * isolation/check_move_unevictable_pages,
823 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
824 * the page back to the evictable list.
825 *
826 * The other side is TestClearPageMlocked() or shmem_lock().
827 */
828 smp_mb();
829 }
830
831 /*
832 * page's status can change while we move it among lru. If an evictable
833 * page is on unevictable list, it never be freed. To avoid that,
834 * check after we added it to the list, again.
835 */
836 if (is_unevictable && page_evictable(page)) {
837 if (!isolate_lru_page(page)) {
838 put_page(page);
839 goto redo;
840 }
841 /* This means someone else dropped this page from LRU
842 * So, it will be freed or putback to LRU again. There is
843 * nothing to do here.
844 */
845 }
846
847 if (was_unevictable && !is_unevictable)
848 count_vm_event(UNEVICTABLE_PGRESCUED);
849 else if (!was_unevictable && is_unevictable)
850 count_vm_event(UNEVICTABLE_PGCULLED);
851
852 put_page(page); /* drop ref from isolate */
853 }
854
855 enum page_references {
856 PAGEREF_RECLAIM,
857 PAGEREF_RECLAIM_CLEAN,
858 PAGEREF_KEEP,
859 PAGEREF_ACTIVATE,
860 };
861
862 static enum page_references page_check_references(struct page *page,
863 struct scan_control *sc)
864 {
865 int referenced_ptes, referenced_page;
866 unsigned long vm_flags;
867
868 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
869 &vm_flags);
870 referenced_page = TestClearPageReferenced(page);
871
872 /*
873 * Mlock lost the isolation race with us. Let try_to_unmap()
874 * move the page to the unevictable list.
875 */
876 if (vm_flags & VM_LOCKED)
877 return PAGEREF_RECLAIM;
878
879 if (referenced_ptes) {
880 if (PageSwapBacked(page))
881 return PAGEREF_ACTIVATE;
882 /*
883 * All mapped pages start out with page table
884 * references from the instantiating fault, so we need
885 * to look twice if a mapped file page is used more
886 * than once.
887 *
888 * Mark it and spare it for another trip around the
889 * inactive list. Another page table reference will
890 * lead to its activation.
891 *
892 * Note: the mark is set for activated pages as well
893 * so that recently deactivated but used pages are
894 * quickly recovered.
895 */
896 SetPageReferenced(page);
897
898 if (referenced_page || referenced_ptes > 1)
899 return PAGEREF_ACTIVATE;
900
901 /*
902 * Activate file-backed executable pages after first usage.
903 */
904 if (vm_flags & VM_EXEC)
905 return PAGEREF_ACTIVATE;
906
907 return PAGEREF_KEEP;
908 }
909
910 /* Reclaim if clean, defer dirty pages to writeback */
911 if (referenced_page && !PageSwapBacked(page))
912 return PAGEREF_RECLAIM_CLEAN;
913
914 return PAGEREF_RECLAIM;
915 }
916
917 /* Check if a page is dirty or under writeback */
918 static void page_check_dirty_writeback(struct page *page,
919 bool *dirty, bool *writeback)
920 {
921 struct address_space *mapping;
922
923 /*
924 * Anonymous pages are not handled by flushers and must be written
925 * from reclaim context. Do not stall reclaim based on them
926 */
927 if (!page_is_file_cache(page) ||
928 (PageAnon(page) && !PageSwapBacked(page))) {
929 *dirty = false;
930 *writeback = false;
931 return;
932 }
933
934 /* By default assume that the page flags are accurate */
935 *dirty = PageDirty(page);
936 *writeback = PageWriteback(page);
937
938 /* Verify dirty/writeback state if the filesystem supports it */
939 if (!page_has_private(page))
940 return;
941
942 mapping = page_mapping(page);
943 if (mapping && mapping->a_ops->is_dirty_writeback)
944 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
945 }
946
947 struct reclaim_stat {
948 unsigned nr_dirty;
949 unsigned nr_unqueued_dirty;
950 unsigned nr_congested;
951 unsigned nr_writeback;
952 unsigned nr_immediate;
953 unsigned nr_activate;
954 unsigned nr_ref_keep;
955 unsigned nr_unmap_fail;
956 };
957
958 /*
959 * shrink_page_list() returns the number of reclaimed pages
960 */
961 static unsigned long shrink_page_list(struct list_head *page_list,
962 struct pglist_data *pgdat,
963 struct scan_control *sc,
964 enum ttu_flags ttu_flags,
965 struct reclaim_stat *stat,
966 bool skip_reference_check)
967 {
968 LIST_HEAD(ret_pages);
969 LIST_HEAD(free_pages);
970 int pgactivate = 0;
971 unsigned nr_unqueued_dirty = 0;
972 unsigned nr_dirty = 0;
973 unsigned nr_congested = 0;
974 unsigned nr_reclaimed = 0;
975 unsigned nr_writeback = 0;
976 unsigned nr_immediate = 0;
977 unsigned nr_ref_keep = 0;
978 unsigned nr_unmap_fail = 0;
979
980 cond_resched();
981
982 while (!list_empty(page_list)) {
983 struct address_space *mapping;
984 struct page *page;
985 int may_enter_fs;
986 enum page_references references = PAGEREF_RECLAIM;
987 bool dirty, writeback;
988
989 cond_resched();
990
991 page = lru_to_page(page_list);
992 list_del(&page->lru);
993
994 if (!trylock_page(page))
995 goto keep;
996
997 VM_BUG_ON_PAGE(PageActive(page), page);
998
999 sc->nr_scanned++;
1000
1001 if (unlikely(!page_evictable(page)))
1002 goto activate_locked;
1003
1004 if (!sc->may_unmap && page_mapped(page))
1005 goto keep_locked;
1006
1007 /* Double the slab pressure for mapped and swapcache pages */
1008 if ((page_mapped(page) || PageSwapCache(page)) &&
1009 !(PageAnon(page) && !PageSwapBacked(page)))
1010 sc->nr_scanned++;
1011
1012 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1013 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1014
1015 /*
1016 * The number of dirty pages determines if a zone is marked
1017 * reclaim_congested which affects wait_iff_congested. kswapd
1018 * will stall and start writing pages if the tail of the LRU
1019 * is all dirty unqueued pages.
1020 */
1021 page_check_dirty_writeback(page, &dirty, &writeback);
1022 if (dirty || writeback)
1023 nr_dirty++;
1024
1025 if (dirty && !writeback)
1026 nr_unqueued_dirty++;
1027
1028 /*
1029 * Treat this page as congested if the underlying BDI is or if
1030 * pages are cycling through the LRU so quickly that the
1031 * pages marked for immediate reclaim are making it to the
1032 * end of the LRU a second time.
1033 */
1034 mapping = page_mapping(page);
1035 if (((dirty || writeback) && mapping &&
1036 inode_write_congested(mapping->host)) ||
1037 (writeback && PageReclaim(page)))
1038 nr_congested++;
1039
1040 /*
1041 * If a page at the tail of the LRU is under writeback, there
1042 * are three cases to consider.
1043 *
1044 * 1) If reclaim is encountering an excessive number of pages
1045 * under writeback and this page is both under writeback and
1046 * PageReclaim then it indicates that pages are being queued
1047 * for IO but are being recycled through the LRU before the
1048 * IO can complete. Waiting on the page itself risks an
1049 * indefinite stall if it is impossible to writeback the
1050 * page due to IO error or disconnected storage so instead
1051 * note that the LRU is being scanned too quickly and the
1052 * caller can stall after page list has been processed.
1053 *
1054 * 2) Global or new memcg reclaim encounters a page that is
1055 * not marked for immediate reclaim, or the caller does not
1056 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1057 * not to fs). In this case mark the page for immediate
1058 * reclaim and continue scanning.
1059 *
1060 * Require may_enter_fs because we would wait on fs, which
1061 * may not have submitted IO yet. And the loop driver might
1062 * enter reclaim, and deadlock if it waits on a page for
1063 * which it is needed to do the write (loop masks off
1064 * __GFP_IO|__GFP_FS for this reason); but more thought
1065 * would probably show more reasons.
1066 *
1067 * 3) Legacy memcg encounters a page that is already marked
1068 * PageReclaim. memcg does not have any dirty pages
1069 * throttling so we could easily OOM just because too many
1070 * pages are in writeback and there is nothing else to
1071 * reclaim. Wait for the writeback to complete.
1072 *
1073 * In cases 1) and 2) we activate the pages to get them out of
1074 * the way while we continue scanning for clean pages on the
1075 * inactive list and refilling from the active list. The
1076 * observation here is that waiting for disk writes is more
1077 * expensive than potentially causing reloads down the line.
1078 * Since they're marked for immediate reclaim, they won't put
1079 * memory pressure on the cache working set any longer than it
1080 * takes to write them to disk.
1081 */
1082 if (PageWriteback(page)) {
1083 /* Case 1 above */
1084 if (current_is_kswapd() &&
1085 PageReclaim(page) &&
1086 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
1087 nr_immediate++;
1088 goto activate_locked;
1089
1090 /* Case 2 above */
1091 } else if (sane_reclaim(sc) ||
1092 !PageReclaim(page) || !may_enter_fs) {
1093 /*
1094 * This is slightly racy - end_page_writeback()
1095 * might have just cleared PageReclaim, then
1096 * setting PageReclaim here end up interpreted
1097 * as PageReadahead - but that does not matter
1098 * enough to care. What we do want is for this
1099 * page to have PageReclaim set next time memcg
1100 * reclaim reaches the tests above, so it will
1101 * then wait_on_page_writeback() to avoid OOM;
1102 * and it's also appropriate in global reclaim.
1103 */
1104 SetPageReclaim(page);
1105 nr_writeback++;
1106 goto activate_locked;
1107
1108 /* Case 3 above */
1109 } else {
1110 unlock_page(page);
1111 wait_on_page_writeback(page);
1112 /* then go back and try same page again */
1113 list_add_tail(&page->lru, page_list);
1114 continue;
1115 }
1116 }
1117
1118 if (!skip_reference_check)
1119 references = page_check_references(page, sc);
1120
1121 switch (references) {
1122 case PAGEREF_ACTIVATE:
1123 goto activate_locked;
1124 case PAGEREF_KEEP:
1125 nr_ref_keep++;
1126 goto keep_locked;
1127 case PAGEREF_RECLAIM:
1128 case PAGEREF_RECLAIM_CLEAN:
1129 ; /* try to reclaim the page below */
1130 }
1131
1132 /*
1133 * Anonymous process memory has backing store?
1134 * Try to allocate it some swap space here.
1135 * Lazyfree page could be freed directly
1136 */
1137 if (PageAnon(page) && PageSwapBacked(page)) {
1138 if (!PageSwapCache(page)) {
1139 if (!(sc->gfp_mask & __GFP_IO))
1140 goto keep_locked;
1141 if (PageTransHuge(page)) {
1142 /* cannot split THP, skip it */
1143 if (!can_split_huge_page(page, NULL))
1144 goto activate_locked;
1145 /*
1146 * Split pages without a PMD map right
1147 * away. Chances are some or all of the
1148 * tail pages can be freed without IO.
1149 */
1150 if (!compound_mapcount(page) &&
1151 split_huge_page_to_list(page,
1152 page_list))
1153 goto activate_locked;
1154 }
1155 if (!add_to_swap(page)) {
1156 if (!PageTransHuge(page))
1157 goto activate_locked;
1158 /* Fallback to swap normal pages */
1159 if (split_huge_page_to_list(page,
1160 page_list))
1161 goto activate_locked;
1162 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1163 count_vm_event(THP_SWPOUT_FALLBACK);
1164 #endif
1165 if (!add_to_swap(page))
1166 goto activate_locked;
1167 }
1168
1169 may_enter_fs = 1;
1170
1171 /* Adding to swap updated mapping */
1172 mapping = page_mapping(page);
1173 }
1174 } else if (unlikely(PageTransHuge(page))) {
1175 /* Split file THP */
1176 if (split_huge_page_to_list(page, page_list))
1177 goto keep_locked;
1178 }
1179
1180 /*
1181 * The page is mapped into the page tables of one or more
1182 * processes. Try to unmap it here.
1183 */
1184 if (page_mapped(page)) {
1185 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1186
1187 if (unlikely(PageTransHuge(page)))
1188 flags |= TTU_SPLIT_HUGE_PMD;
1189 if (!try_to_unmap(page, flags)) {
1190 nr_unmap_fail++;
1191 goto activate_locked;
1192 }
1193 }
1194
1195 if (PageDirty(page)) {
1196 /*
1197 * Only kswapd can writeback filesystem pages
1198 * to avoid risk of stack overflow. But avoid
1199 * injecting inefficient single-page IO into
1200 * flusher writeback as much as possible: only
1201 * write pages when we've encountered many
1202 * dirty pages, and when we've already scanned
1203 * the rest of the LRU for clean pages and see
1204 * the same dirty pages again (PageReclaim).
1205 */
1206 if (page_is_file_cache(page) &&
1207 (!current_is_kswapd() || !PageReclaim(page) ||
1208 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
1209 /*
1210 * Immediately reclaim when written back.
1211 * Similar in principal to deactivate_page()
1212 * except we already have the page isolated
1213 * and know it's dirty
1214 */
1215 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
1216 SetPageReclaim(page);
1217
1218 goto activate_locked;
1219 }
1220
1221 if (references == PAGEREF_RECLAIM_CLEAN)
1222 goto keep_locked;
1223 if (!may_enter_fs)
1224 goto keep_locked;
1225 if (!sc->may_writepage)
1226 goto keep_locked;
1227
1228 /*
1229 * Page is dirty. Flush the TLB if a writable entry
1230 * potentially exists to avoid CPU writes after IO
1231 * starts and then write it out here.
1232 */
1233 try_to_unmap_flush_dirty();
1234 switch (pageout(page, mapping, sc)) {
1235 case PAGE_KEEP:
1236 goto keep_locked;
1237 case PAGE_ACTIVATE:
1238 goto activate_locked;
1239 case PAGE_SUCCESS:
1240 if (PageWriteback(page))
1241 goto keep;
1242 if (PageDirty(page))
1243 goto keep;
1244
1245 /*
1246 * A synchronous write - probably a ramdisk. Go
1247 * ahead and try to reclaim the page.
1248 */
1249 if (!trylock_page(page))
1250 goto keep;
1251 if (PageDirty(page) || PageWriteback(page))
1252 goto keep_locked;
1253 mapping = page_mapping(page);
1254 case PAGE_CLEAN:
1255 ; /* try to free the page below */
1256 }
1257 }
1258
1259 /*
1260 * If the page has buffers, try to free the buffer mappings
1261 * associated with this page. If we succeed we try to free
1262 * the page as well.
1263 *
1264 * We do this even if the page is PageDirty().
1265 * try_to_release_page() does not perform I/O, but it is
1266 * possible for a page to have PageDirty set, but it is actually
1267 * clean (all its buffers are clean). This happens if the
1268 * buffers were written out directly, with submit_bh(). ext3
1269 * will do this, as well as the blockdev mapping.
1270 * try_to_release_page() will discover that cleanness and will
1271 * drop the buffers and mark the page clean - it can be freed.
1272 *
1273 * Rarely, pages can have buffers and no ->mapping. These are
1274 * the pages which were not successfully invalidated in
1275 * truncate_complete_page(). We try to drop those buffers here
1276 * and if that worked, and the page is no longer mapped into
1277 * process address space (page_count == 1) it can be freed.
1278 * Otherwise, leave the page on the LRU so it is swappable.
1279 */
1280 if (page_has_private(page)) {
1281 if (!try_to_release_page(page, sc->gfp_mask))
1282 goto activate_locked;
1283 if (!mapping && page_count(page) == 1) {
1284 unlock_page(page);
1285 if (put_page_testzero(page))
1286 goto free_it;
1287 else {
1288 /*
1289 * rare race with speculative reference.
1290 * the speculative reference will free
1291 * this page shortly, so we may
1292 * increment nr_reclaimed here (and
1293 * leave it off the LRU).
1294 */
1295 nr_reclaimed++;
1296 continue;
1297 }
1298 }
1299 }
1300
1301 if (PageAnon(page) && !PageSwapBacked(page)) {
1302 /* follow __remove_mapping for reference */
1303 if (!page_ref_freeze(page, 1))
1304 goto keep_locked;
1305 if (PageDirty(page)) {
1306 page_ref_unfreeze(page, 1);
1307 goto keep_locked;
1308 }
1309
1310 count_vm_event(PGLAZYFREED);
1311 count_memcg_page_event(page, PGLAZYFREED);
1312 } else if (!mapping || !__remove_mapping(mapping, page, true))
1313 goto keep_locked;
1314 /*
1315 * At this point, we have no other references and there is
1316 * no way to pick any more up (removed from LRU, removed
1317 * from pagecache). Can use non-atomic bitops now (and
1318 * we obviously don't have to worry about waking up a process
1319 * waiting on the page lock, because there are no references.
1320 */
1321 __ClearPageLocked(page);
1322 free_it:
1323 nr_reclaimed++;
1324
1325 /*
1326 * Is there need to periodically free_page_list? It would
1327 * appear not as the counts should be low
1328 */
1329 if (unlikely(PageTransHuge(page))) {
1330 mem_cgroup_uncharge(page);
1331 (*get_compound_page_dtor(page))(page);
1332 } else
1333 list_add(&page->lru, &free_pages);
1334 continue;
1335
1336 activate_locked:
1337 /* Not a candidate for swapping, so reclaim swap space. */
1338 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1339 PageMlocked(page)))
1340 try_to_free_swap(page);
1341 VM_BUG_ON_PAGE(PageActive(page), page);
1342 if (!PageMlocked(page)) {
1343 SetPageActive(page);
1344 pgactivate++;
1345 count_memcg_page_event(page, PGACTIVATE);
1346 }
1347 keep_locked:
1348 unlock_page(page);
1349 keep:
1350 list_add(&page->lru, &ret_pages);
1351 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1352 }
1353
1354 mem_cgroup_uncharge_list(&free_pages);
1355 try_to_unmap_flush();
1356 free_hot_cold_page_list(&free_pages, true);
1357
1358 list_splice(&ret_pages, page_list);
1359 count_vm_events(PGACTIVATE, pgactivate);
1360
1361 if (stat) {
1362 stat->nr_dirty = nr_dirty;
1363 stat->nr_congested = nr_congested;
1364 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1365 stat->nr_writeback = nr_writeback;
1366 stat->nr_immediate = nr_immediate;
1367 stat->nr_activate = pgactivate;
1368 stat->nr_ref_keep = nr_ref_keep;
1369 stat->nr_unmap_fail = nr_unmap_fail;
1370 }
1371 return nr_reclaimed;
1372 }
1373
1374 unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1375 struct list_head *page_list)
1376 {
1377 struct scan_control sc = {
1378 .gfp_mask = GFP_KERNEL,
1379 .priority = DEF_PRIORITY,
1380 .may_unmap = 1,
1381 };
1382 unsigned long ret;
1383 struct page *page, *next;
1384 LIST_HEAD(clean_pages);
1385
1386 list_for_each_entry_safe(page, next, page_list, lru) {
1387 if (page_is_file_cache(page) && !PageDirty(page) &&
1388 !__PageMovable(page)) {
1389 ClearPageActive(page);
1390 list_move(&page->lru, &clean_pages);
1391 }
1392 }
1393
1394 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
1395 TTU_IGNORE_ACCESS, NULL, true);
1396 list_splice(&clean_pages, page_list);
1397 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
1398 return ret;
1399 }
1400
1401 #ifdef CONFIG_PROCESS_RECLAIM
1402 unsigned long reclaim_pages(struct list_head *page_list)
1403 {
1404 struct reclaim_stat dummy;
1405 unsigned long nr_reclaimed;
1406 struct page *page;
1407 unsigned long nr_isolated[2] = {0, };
1408 struct pglist_data *pgdat = NULL;
1409 struct scan_control sc = {
1410 .gfp_mask = GFP_KERNEL,
1411 .priority = DEF_PRIORITY,
1412 .may_writepage = 1,
1413 .may_unmap = 1,
1414 .may_swap = 1,
1415 };
1416
1417 if (list_empty(page_list))
1418 return 0;
1419
1420 list_for_each_entry(page, page_list, lru) {
1421 ClearPageActive(page);
1422 if (pgdat == NULL)
1423 pgdat = page_pgdat(page);
1424 /* XXX: It could be multiple node in other config */
1425 WARN_ON_ONCE(pgdat != page_pgdat(page));
1426 if (!page_is_file_cache(page))
1427 nr_isolated[0]++;
1428 else
1429 nr_isolated[1]++;
1430 }
1431
1432 mod_node_page_state(pgdat, NR_ISOLATED_ANON, nr_isolated[0]);
1433 mod_node_page_state(pgdat, NR_ISOLATED_FILE, nr_isolated[1]);
1434
1435 nr_reclaimed = shrink_page_list(page_list, pgdat, &sc,
1436 TTU_IGNORE_ACCESS, &dummy, true);
1437
1438 while (!list_empty(page_list)) {
1439 page = lru_to_page(page_list);
1440 list_del(&page->lru);
1441 putback_lru_page(page);
1442 }
1443
1444 mod_node_page_state(pgdat, NR_ISOLATED_ANON, -nr_isolated[0]);
1445 mod_node_page_state(pgdat, NR_ISOLATED_FILE, -nr_isolated[1]);
1446
1447 return nr_reclaimed;
1448 }
1449 #endif
1450
1451 /*
1452 * Attempt to remove the specified page from its LRU. Only take this page
1453 * if it is of the appropriate PageActive status. Pages which are being
1454 * freed elsewhere are also ignored.
1455 *
1456 * page: page to consider
1457 * mode: one of the LRU isolation modes defined above
1458 *
1459 * returns 0 on success, -ve errno on failure.
1460 */
1461 int __isolate_lru_page(struct page *page, isolate_mode_t mode)
1462 {
1463 int ret = -EINVAL;
1464
1465 /* Only take pages on the LRU. */
1466 if (!PageLRU(page))
1467 return ret;
1468
1469 /* Compaction should not handle unevictable pages but CMA can do so */
1470 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
1471 return ret;
1472
1473 ret = -EBUSY;
1474
1475 /*
1476 * To minimise LRU disruption, the caller can indicate that it only
1477 * wants to isolate pages it will be able to operate on without
1478 * blocking - clean pages for the most part.
1479 *
1480 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1481 * that it is possible to migrate without blocking
1482 */
1483 if (mode & ISOLATE_ASYNC_MIGRATE) {
1484 /* All the caller can do on PageWriteback is block */
1485 if (PageWriteback(page))
1486 return ret;
1487
1488 if (PageDirty(page)) {
1489 struct address_space *mapping;
1490 bool migrate_dirty;
1491
1492 /*
1493 * Only pages without mappings or that have a
1494 * ->migratepage callback are possible to migrate
1495 * without blocking. However, we can be racing with
1496 * truncation so it's necessary to lock the page
1497 * to stabilise the mapping as truncation holds
1498 * the page lock until after the page is removed
1499 * from the page cache.
1500 */
1501 if (!trylock_page(page))
1502 return ret;
1503
1504 mapping = page_mapping(page);
1505 migrate_dirty = !mapping || mapping->a_ops->migratepage;
1506 unlock_page(page);
1507 if (!migrate_dirty)
1508 return ret;
1509 }
1510 }
1511
1512 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1513 return ret;
1514
1515 if (likely(get_page_unless_zero(page))) {
1516 /*
1517 * Be careful not to clear PageLRU until after we're
1518 * sure the page is not being freed elsewhere -- the
1519 * page release code relies on it.
1520 */
1521 ClearPageLRU(page);
1522 ret = 0;
1523 }
1524
1525 return ret;
1526 }
1527
1528
1529 /*
1530 * Update LRU sizes after isolating pages. The LRU size updates must
1531 * be complete before mem_cgroup_update_lru_size due to a santity check.
1532 */
1533 static __always_inline void update_lru_sizes(struct lruvec *lruvec,
1534 enum lru_list lru, unsigned long *nr_zone_taken)
1535 {
1536 int zid;
1537
1538 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1539 if (!nr_zone_taken[zid])
1540 continue;
1541
1542 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1543 #ifdef CONFIG_MEMCG
1544 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
1545 #endif
1546 }
1547
1548 }
1549
1550 /*
1551 * zone_lru_lock is heavily contended. Some of the functions that
1552 * shrink the lists perform better by taking out a batch of pages
1553 * and working on them outside the LRU lock.
1554 *
1555 * For pagecache intensive workloads, this function is the hottest
1556 * spot in the kernel (apart from copy_*_user functions).
1557 *
1558 * Appropriate locks must be held before calling this function.
1559 *
1560 * @nr_to_scan: The number of eligible pages to look through on the list.
1561 * @lruvec: The LRU vector to pull pages from.
1562 * @dst: The temp list to put pages on to.
1563 * @nr_scanned: The number of pages that were scanned.
1564 * @sc: The scan_control struct for this reclaim session
1565 * @mode: One of the LRU isolation modes
1566 * @lru: LRU list id for isolating
1567 *
1568 * returns how many pages were moved onto *@dst.
1569 */
1570 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1571 struct lruvec *lruvec, struct list_head *dst,
1572 unsigned long *nr_scanned, struct scan_control *sc,
1573 isolate_mode_t mode, enum lru_list lru)
1574 {
1575 struct list_head *src = &lruvec->lists[lru];
1576 unsigned long nr_taken = 0;
1577 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
1578 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
1579 unsigned long skipped = 0;
1580 unsigned long scan, total_scan, nr_pages;
1581 LIST_HEAD(pages_skipped);
1582
1583 scan = 0;
1584 for (total_scan = 0;
1585 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1586 total_scan++) {
1587 struct page *page;
1588
1589 page = lru_to_page(src);
1590 prefetchw_prev_lru_page(page, src, flags);
1591
1592 VM_BUG_ON_PAGE(!PageLRU(page), page);
1593
1594 if (page_zonenum(page) > sc->reclaim_idx) {
1595 list_move(&page->lru, &pages_skipped);
1596 nr_skipped[page_zonenum(page)]++;
1597 continue;
1598 }
1599
1600 /*
1601 * Do not count skipped pages because that makes the function
1602 * return with no isolated pages if the LRU mostly contains
1603 * ineligible pages. This causes the VM to not reclaim any
1604 * pages, triggering a premature OOM.
1605 */
1606 scan++;
1607 switch (__isolate_lru_page(page, mode)) {
1608 case 0:
1609 nr_pages = hpage_nr_pages(page);
1610 nr_taken += nr_pages;
1611 nr_zone_taken[page_zonenum(page)] += nr_pages;
1612 list_move(&page->lru, dst);
1613 break;
1614
1615 case -EBUSY:
1616 /* else it is being freed elsewhere */
1617 list_move(&page->lru, src);
1618 continue;
1619
1620 default:
1621 BUG();
1622 }
1623 }
1624
1625 /*
1626 * Splice any skipped pages to the start of the LRU list. Note that
1627 * this disrupts the LRU order when reclaiming for lower zones but
1628 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1629 * scanning would soon rescan the same pages to skip and put the
1630 * system at risk of premature OOM.
1631 */
1632 if (!list_empty(&pages_skipped)) {
1633 int zid;
1634
1635 list_splice(&pages_skipped, src);
1636 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1637 if (!nr_skipped[zid])
1638 continue;
1639
1640 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1641 skipped += nr_skipped[zid];
1642 }
1643 }
1644 *nr_scanned = total_scan;
1645 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
1646 total_scan, skipped, nr_taken, mode, lru);
1647 update_lru_sizes(lruvec, lru, nr_zone_taken);
1648 return nr_taken;
1649 }
1650
1651 /**
1652 * isolate_lru_page - tries to isolate a page from its LRU list
1653 * @page: page to isolate from its LRU list
1654 *
1655 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1656 * vmstat statistic corresponding to whatever LRU list the page was on.
1657 *
1658 * Returns 0 if the page was removed from an LRU list.
1659 * Returns -EBUSY if the page was not on an LRU list.
1660 *
1661 * The returned page will have PageLRU() cleared. If it was found on
1662 * the active list, it will have PageActive set. If it was found on
1663 * the unevictable list, it will have the PageUnevictable bit set. That flag
1664 * may need to be cleared by the caller before letting the page go.
1665 *
1666 * The vmstat statistic corresponding to the list on which the page was
1667 * found will be decremented.
1668 *
1669 * Restrictions:
1670 * (1) Must be called with an elevated refcount on the page. This is a
1671 * fundamentnal difference from isolate_lru_pages (which is called
1672 * without a stable reference).
1673 * (2) the lru_lock must not be held.
1674 * (3) interrupts must be enabled.
1675 */
1676 int isolate_lru_page(struct page *page)
1677 {
1678 int ret = -EBUSY;
1679
1680 VM_BUG_ON_PAGE(!page_count(page), page);
1681 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
1682
1683 if (PageLRU(page)) {
1684 struct zone *zone = page_zone(page);
1685 struct lruvec *lruvec;
1686
1687 spin_lock_irq(zone_lru_lock(zone));
1688 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
1689 if (PageLRU(page)) {
1690 int lru = page_lru(page);
1691 get_page(page);
1692 ClearPageLRU(page);
1693 del_page_from_lru_list(page, lruvec, lru);
1694 ret = 0;
1695 }
1696 spin_unlock_irq(zone_lru_lock(zone));
1697 }
1698 return ret;
1699 }
1700
1701 /*
1702 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1703 * then get resheduled. When there are massive number of tasks doing page
1704 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1705 * the LRU list will go small and be scanned faster than necessary, leading to
1706 * unnecessary swapping, thrashing and OOM.
1707 */
1708 static int too_many_isolated(struct pglist_data *pgdat, int file,
1709 struct scan_control *sc)
1710 {
1711 unsigned long inactive, isolated;
1712
1713 if (current_is_kswapd())
1714 return 0;
1715
1716 if (!sane_reclaim(sc))
1717 return 0;
1718
1719 if (file) {
1720 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1721 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
1722 } else {
1723 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1724 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
1725 }
1726
1727 /*
1728 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1729 * won't get blocked by normal direct-reclaimers, forming a circular
1730 * deadlock.
1731 */
1732 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
1733 inactive >>= 3;
1734
1735 return isolated > inactive;
1736 }
1737
1738 static noinline_for_stack void
1739 putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
1740 {
1741 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1742 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1743 LIST_HEAD(pages_to_free);
1744
1745 /*
1746 * Put back any unfreeable pages.
1747 */
1748 while (!list_empty(page_list)) {
1749 struct page *page = lru_to_page(page_list);
1750 int lru;
1751
1752 VM_BUG_ON_PAGE(PageLRU(page), page);
1753 list_del(&page->lru);
1754 if (unlikely(!page_evictable(page))) {
1755 spin_unlock_irq(&pgdat->lru_lock);
1756 putback_lru_page(page);
1757 spin_lock_irq(&pgdat->lru_lock);
1758 continue;
1759 }
1760
1761 lruvec = mem_cgroup_page_lruvec(page, pgdat);
1762
1763 SetPageLRU(page);
1764 lru = page_lru(page);
1765 add_page_to_lru_list(page, lruvec, lru);
1766
1767 if (is_active_lru(lru)) {
1768 int file = is_file_lru(lru);
1769 int numpages = hpage_nr_pages(page);
1770 reclaim_stat->recent_rotated[file] += numpages;
1771 }
1772 if (put_page_testzero(page)) {
1773 __ClearPageLRU(page);
1774 __ClearPageActive(page);
1775 del_page_from_lru_list(page, lruvec, lru);
1776
1777 if (unlikely(PageCompound(page))) {
1778 spin_unlock_irq(&pgdat->lru_lock);
1779 mem_cgroup_uncharge(page);
1780 (*get_compound_page_dtor(page))(page);
1781 spin_lock_irq(&pgdat->lru_lock);
1782 } else
1783 list_add(&page->lru, &pages_to_free);
1784 }
1785 }
1786
1787 /*
1788 * To save our caller's stack, now use input list for pages to free.
1789 */
1790 list_splice(&pages_to_free, page_list);
1791 }
1792
1793 /*
1794 * If a kernel thread (such as nfsd for loop-back mounts) services
1795 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1796 * In that case we should only throttle if the backing device it is
1797 * writing to is congested. In other cases it is safe to throttle.
1798 */
1799 static int current_may_throttle(void)
1800 {
1801 return !(current->flags & PF_LESS_THROTTLE) ||
1802 current->backing_dev_info == NULL ||
1803 bdi_write_congested(current->backing_dev_info);
1804 }
1805
1806 /*
1807 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1808 * of reclaimed pages
1809 */
1810 static noinline_for_stack unsigned long
1811 shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
1812 struct scan_control *sc, enum lru_list lru)
1813 {
1814 LIST_HEAD(page_list);
1815 unsigned long nr_scanned;
1816 unsigned long nr_reclaimed = 0;
1817 unsigned long nr_taken;
1818 struct reclaim_stat stat = {};
1819 isolate_mode_t isolate_mode = 0;
1820 int file = is_file_lru(lru);
1821 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1822 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
1823 bool stalled = false;
1824
1825 while (unlikely(too_many_isolated(pgdat, file, sc))) {
1826 if (stalled)
1827 return 0;
1828
1829 /* wait a bit for the reclaimer. */
1830 msleep(100);
1831 stalled = true;
1832
1833 /* We are about to die and free our memory. Return now. */
1834 if (fatal_signal_pending(current))
1835 return SWAP_CLUSTER_MAX;
1836 }
1837
1838 lru_add_drain();
1839
1840 if (!sc->may_unmap)
1841 isolate_mode |= ISOLATE_UNMAPPED;
1842
1843 spin_lock_irq(&pgdat->lru_lock);
1844
1845 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1846 &nr_scanned, sc, isolate_mode, lru);
1847
1848 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
1849 reclaim_stat->recent_scanned[file] += nr_taken;
1850
1851 if (current_is_kswapd()) {
1852 if (global_reclaim(sc))
1853 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
1854 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1855 nr_scanned);
1856 } else {
1857 if (global_reclaim(sc))
1858 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
1859 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1860 nr_scanned);
1861 }
1862 spin_unlock_irq(&pgdat->lru_lock);
1863
1864 if (nr_taken == 0)
1865 return 0;
1866
1867 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
1868 &stat, false);
1869
1870 spin_lock_irq(&pgdat->lru_lock);
1871
1872 if (current_is_kswapd()) {
1873 if (global_reclaim(sc))
1874 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
1875 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1876 nr_reclaimed);
1877 } else {
1878 if (global_reclaim(sc))
1879 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
1880 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1881 nr_reclaimed);
1882 }
1883
1884 putback_inactive_pages(lruvec, &page_list);
1885
1886 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
1887
1888 spin_unlock_irq(&pgdat->lru_lock);
1889
1890 mem_cgroup_uncharge_list(&page_list);
1891 free_hot_cold_page_list(&page_list, true);
1892
1893 /*
1894 * If reclaim is isolating dirty pages under writeback, it implies
1895 * that the long-lived page allocation rate is exceeding the page
1896 * laundering rate. Either the global limits are not being effective
1897 * at throttling processes due to the page distribution throughout
1898 * zones or there is heavy usage of a slow backing device. The
1899 * only option is to throttle from reclaim context which is not ideal
1900 * as there is no guarantee the dirtying process is throttled in the
1901 * same way balance_dirty_pages() manages.
1902 *
1903 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1904 * of pages under pages flagged for immediate reclaim and stall if any
1905 * are encountered in the nr_immediate check below.
1906 */
1907 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
1908 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
1909
1910 /*
1911 * If dirty pages are scanned that are not queued for IO, it
1912 * implies that flushers are not doing their job. This can
1913 * happen when memory pressure pushes dirty pages to the end of
1914 * the LRU before the dirty limits are breached and the dirty
1915 * data has expired. It can also happen when the proportion of
1916 * dirty pages grows not through writes but through memory
1917 * pressure reclaiming all the clean cache. And in some cases,
1918 * the flushers simply cannot keep up with the allocation
1919 * rate. Nudge the flusher threads in case they are asleep.
1920 */
1921 if (stat.nr_unqueued_dirty == nr_taken)
1922 wakeup_flusher_threads(0, WB_REASON_VMSCAN);
1923
1924 /*
1925 * Legacy memcg will stall in page writeback so avoid forcibly
1926 * stalling here.
1927 */
1928 if (sane_reclaim(sc)) {
1929 /*
1930 * Tag a zone as congested if all the dirty pages scanned were
1931 * backed by a congested BDI and wait_iff_congested will stall.
1932 */
1933 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
1934 set_bit(PGDAT_CONGESTED, &pgdat->flags);
1935
1936 /* Allow kswapd to start writing pages during reclaim. */
1937 if (stat.nr_unqueued_dirty == nr_taken)
1938 set_bit(PGDAT_DIRTY, &pgdat->flags);
1939
1940 /*
1941 * If kswapd scans pages marked marked for immediate
1942 * reclaim and under writeback (nr_immediate), it implies
1943 * that pages are cycling through the LRU faster than
1944 * they are written so also forcibly stall.
1945 */
1946 if (stat.nr_immediate && current_may_throttle())
1947 congestion_wait(BLK_RW_ASYNC, HZ/10);
1948 }
1949
1950 /*
1951 * Stall direct reclaim for IO completions if underlying BDIs or zone
1952 * is congested. Allow kswapd to continue until it starts encountering
1953 * unqueued dirty pages or cycling through the LRU too quickly.
1954 */
1955 if (!sc->hibernation_mode && !current_is_kswapd() &&
1956 current_may_throttle())
1957 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
1958
1959 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1960 nr_scanned, nr_reclaimed,
1961 stat.nr_dirty, stat.nr_writeback,
1962 stat.nr_congested, stat.nr_immediate,
1963 stat.nr_activate, stat.nr_ref_keep,
1964 stat.nr_unmap_fail,
1965 sc->priority, file);
1966 return nr_reclaimed;
1967 }
1968
1969 /*
1970 * This moves pages from the active list to the inactive list.
1971 *
1972 * We move them the other way if the page is referenced by one or more
1973 * processes, from rmap.
1974 *
1975 * If the pages are mostly unmapped, the processing is fast and it is
1976 * appropriate to hold zone_lru_lock across the whole operation. But if
1977 * the pages are mapped, the processing is slow (page_referenced()) so we
1978 * should drop zone_lru_lock around each page. It's impossible to balance
1979 * this, so instead we remove the pages from the LRU while processing them.
1980 * It is safe to rely on PG_active against the non-LRU pages in here because
1981 * nobody will play with that bit on a non-LRU page.
1982 *
1983 * The downside is that we have to touch page->_refcount against each page.
1984 * But we had to alter page->flags anyway.
1985 *
1986 * Returns the number of pages moved to the given lru.
1987 */
1988
1989 static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
1990 struct list_head *list,
1991 struct list_head *pages_to_free,
1992 enum lru_list lru)
1993 {
1994 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1995 struct page *page;
1996 int nr_pages;
1997 int nr_moved = 0;
1998
1999 while (!list_empty(list)) {
2000 page = lru_to_page(list);
2001 lruvec = mem_cgroup_page_lruvec(page, pgdat);
2002
2003 VM_BUG_ON_PAGE(PageLRU(page), page);
2004 SetPageLRU(page);
2005
2006 nr_pages = hpage_nr_pages(page);
2007 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
2008 list_move(&page->lru, &lruvec->lists[lru]);
2009
2010 if (put_page_testzero(page)) {
2011 __ClearPageLRU(page);
2012 __ClearPageActive(page);
2013 del_page_from_lru_list(page, lruvec, lru);
2014
2015 if (unlikely(PageCompound(page))) {
2016 spin_unlock_irq(&pgdat->lru_lock);
2017 mem_cgroup_uncharge(page);
2018 (*get_compound_page_dtor(page))(page);
2019 spin_lock_irq(&pgdat->lru_lock);
2020 } else
2021 list_add(&page->lru, pages_to_free);
2022 } else {
2023 nr_moved += nr_pages;
2024 }
2025 }
2026
2027 if (!is_active_lru(lru)) {
2028 __count_vm_events(PGDEACTIVATE, nr_moved);
2029 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2030 nr_moved);
2031 }
2032
2033 return nr_moved;
2034 }
2035
2036 static void shrink_active_list(unsigned long nr_to_scan,
2037 struct lruvec *lruvec,
2038 struct scan_control *sc,
2039 enum lru_list lru)
2040 {
2041 unsigned long nr_taken;
2042 unsigned long nr_scanned;
2043 unsigned long vm_flags;
2044 LIST_HEAD(l_hold); /* The pages which were snipped off */
2045 LIST_HEAD(l_active);
2046 LIST_HEAD(l_inactive);
2047 struct page *page;
2048 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2049 unsigned nr_deactivate, nr_activate;
2050 unsigned nr_rotated = 0;
2051 isolate_mode_t isolate_mode = 0;
2052 int file = is_file_lru(lru);
2053 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2054
2055 lru_add_drain();
2056
2057 if (!sc->may_unmap)
2058 isolate_mode |= ISOLATE_UNMAPPED;
2059
2060 spin_lock_irq(&pgdat->lru_lock);
2061
2062 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2063 &nr_scanned, sc, isolate_mode, lru);
2064
2065 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
2066 reclaim_stat->recent_scanned[file] += nr_taken;
2067
2068 __count_vm_events(PGREFILL, nr_scanned);
2069 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
2070
2071 spin_unlock_irq(&pgdat->lru_lock);
2072
2073 while (!list_empty(&l_hold)) {
2074 cond_resched();
2075 page = lru_to_page(&l_hold);
2076 list_del(&page->lru);
2077
2078 if (unlikely(!page_evictable(page))) {
2079 putback_lru_page(page);
2080 continue;
2081 }
2082
2083 if (unlikely(buffer_heads_over_limit)) {
2084 if (page_has_private(page) && trylock_page(page)) {
2085 if (page_has_private(page))
2086 try_to_release_page(page, 0);
2087 unlock_page(page);
2088 }
2089 }
2090
2091 if (page_referenced(page, 0, sc->target_mem_cgroup,
2092 &vm_flags)) {
2093 nr_rotated += hpage_nr_pages(page);
2094 /*
2095 * Identify referenced, file-backed active pages and
2096 * give them one more trip around the active list. So
2097 * that executable code get better chances to stay in
2098 * memory under moderate memory pressure. Anon pages
2099 * are not likely to be evicted by use-once streaming
2100 * IO, plus JVM can create lots of anon VM_EXEC pages,
2101 * so we ignore them here.
2102 */
2103 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
2104 list_add(&page->lru, &l_active);
2105 continue;
2106 }
2107 }
2108
2109 ClearPageActive(page); /* we are de-activating */
2110 SetPageWorkingset(page);
2111 list_add(&page->lru, &l_inactive);
2112 }
2113
2114 /*
2115 * Move pages back to the lru list.
2116 */
2117 spin_lock_irq(&pgdat->lru_lock);
2118 /*
2119 * Count referenced pages from currently used mappings as rotated,
2120 * even though only some of them are actually re-activated. This
2121 * helps balance scan pressure between file and anonymous pages in
2122 * get_scan_count.
2123 */
2124 reclaim_stat->recent_rotated[file] += nr_rotated;
2125
2126 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2127 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
2128 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2129 spin_unlock_irq(&pgdat->lru_lock);
2130
2131 mem_cgroup_uncharge_list(&l_hold);
2132 free_hot_cold_page_list(&l_hold, true);
2133 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2134 nr_deactivate, nr_rotated, sc->priority, file);
2135 }
2136
2137 /*
2138 * The inactive anon list should be small enough that the VM never has
2139 * to do too much work.
2140 *
2141 * The inactive file list should be small enough to leave most memory
2142 * to the established workingset on the scan-resistant active list,
2143 * but large enough to avoid thrashing the aggregate readahead window.
2144 *
2145 * Both inactive lists should also be large enough that each inactive
2146 * page has a chance to be referenced again before it is reclaimed.
2147 *
2148 * If that fails and refaulting is observed, the inactive list grows.
2149 *
2150 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
2151 * on this LRU, maintained by the pageout code. A zone->inactive_ratio
2152 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
2153 *
2154 * total target max
2155 * memory ratio inactive
2156 * -------------------------------------
2157 * 10MB 1 5MB
2158 * 100MB 1 50MB
2159 * 1GB 3 250MB
2160 * 10GB 10 0.9GB
2161 * 100GB 31 3GB
2162 * 1TB 101 10GB
2163 * 10TB 320 32GB
2164 */
2165 static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2166 struct mem_cgroup *memcg,
2167 struct scan_control *sc, bool actual_reclaim)
2168 {
2169 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2170 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2171 enum lru_list inactive_lru = file * LRU_FILE;
2172 unsigned long inactive, active;
2173 unsigned long inactive_ratio;
2174 unsigned long refaults;
2175 unsigned long gb;
2176
2177 /*
2178 * If we don't have swap space, anonymous page deactivation
2179 * is pointless.
2180 */
2181 if (!file && !total_swap_pages)
2182 return false;
2183
2184 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2185 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
2186
2187 if (memcg)
2188 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2189 else
2190 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2191
2192 /*
2193 * When refaults are being observed, it means a new workingset
2194 * is being established. Disable active list protection to get
2195 * rid of the stale workingset quickly.
2196 */
2197 if (file && actual_reclaim && lruvec->refaults != refaults) {
2198 inactive_ratio = 0;
2199 } else {
2200 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2201 if (gb)
2202 inactive_ratio = int_sqrt(10 * gb);
2203 else
2204 inactive_ratio = 1;
2205 }
2206
2207 if (actual_reclaim)
2208 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2209 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2210 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2211 inactive_ratio, file);
2212
2213 return inactive * inactive_ratio < active;
2214 }
2215
2216 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2217 struct lruvec *lruvec, struct mem_cgroup *memcg,
2218 struct scan_control *sc)
2219 {
2220 if (is_active_lru(lru)) {
2221 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2222 memcg, sc, true))
2223 shrink_active_list(nr_to_scan, lruvec, sc, lru);
2224 return 0;
2225 }
2226
2227 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
2228 }
2229
2230 enum scan_balance {
2231 SCAN_EQUAL,
2232 SCAN_FRACT,
2233 SCAN_ANON,
2234 SCAN_FILE,
2235 };
2236
2237 /*
2238 * Determine how aggressively the anon and file LRU lists should be
2239 * scanned. The relative value of each set of LRU lists is determined
2240 * by looking at the fraction of the pages scanned we did rotate back
2241 * onto the active list instead of evict.
2242 *
2243 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2244 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
2245 */
2246 static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
2247 struct scan_control *sc, unsigned long *nr,
2248 unsigned long *lru_pages)
2249 {
2250 int swappiness = mem_cgroup_swappiness(memcg);
2251 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2252 u64 fraction[2];
2253 u64 denominator = 0; /* gcc */
2254 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2255 unsigned long anon_prio, file_prio;
2256 enum scan_balance scan_balance;
2257 unsigned long anon, file;
2258 unsigned long ap, fp;
2259 enum lru_list lru;
2260
2261 /* If we have no swap space, do not bother scanning anon pages. */
2262 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
2263 scan_balance = SCAN_FILE;
2264 goto out;
2265 }
2266
2267 /*
2268 * Global reclaim will swap to prevent OOM even with no
2269 * swappiness, but memcg users want to use this knob to
2270 * disable swapping for individual groups completely when
2271 * using the memory controller's swap limit feature would be
2272 * too expensive.
2273 */
2274 if (!global_reclaim(sc) && !swappiness) {
2275 scan_balance = SCAN_FILE;
2276 goto out;
2277 }
2278
2279 /*
2280 * Do not apply any pressure balancing cleverness when the
2281 * system is close to OOM, scan both anon and file equally
2282 * (unless the swappiness setting disagrees with swapping).
2283 */
2284 if (!sc->priority && swappiness) {
2285 scan_balance = SCAN_EQUAL;
2286 goto out;
2287 }
2288
2289 /*
2290 * Prevent the reclaimer from falling into the cache trap: as
2291 * cache pages start out inactive, every cache fault will tip
2292 * the scan balance towards the file LRU. And as the file LRU
2293 * shrinks, so does the window for rotation from references.
2294 * This means we have a runaway feedback loop where a tiny
2295 * thrashing file LRU becomes infinitely more attractive than
2296 * anon pages. Try to detect this based on file LRU size.
2297 */
2298 if (global_reclaim(sc)) {
2299 unsigned long pgdatfile;
2300 unsigned long pgdatfree;
2301 int z;
2302 unsigned long total_high_wmark = 0;
2303
2304 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2305 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2306 node_page_state(pgdat, NR_INACTIVE_FILE);
2307
2308 for (z = 0; z < MAX_NR_ZONES; z++) {
2309 struct zone *zone = &pgdat->node_zones[z];
2310 if (!managed_zone(zone))
2311 continue;
2312
2313 total_high_wmark += high_wmark_pages(zone);
2314 }
2315
2316 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
2317 /*
2318 * Force SCAN_ANON if there are enough inactive
2319 * anonymous pages on the LRU in eligible zones.
2320 * Otherwise, the small LRU gets thrashed.
2321 */
2322 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2323 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2324 >> sc->priority) {
2325 scan_balance = SCAN_ANON;
2326 goto out;
2327 }
2328 }
2329 }
2330
2331 /*
2332 * If there is enough inactive page cache, i.e. if the size of the
2333 * inactive list is greater than that of the active list *and* the
2334 * inactive list actually has some pages to scan on this priority, we
2335 * do not reclaim anything from the anonymous working set right now.
2336 * Without the second condition we could end up never scanning an
2337 * lruvec even if it has plenty of old anonymous pages unless the
2338 * system is under heavy pressure.
2339 */
2340 if (!IS_ENABLED(CONFIG_BALANCE_ANON_FILE_RECLAIM) &&
2341 !inactive_list_is_low(lruvec, true, memcg, sc, false) &&
2342 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
2343 scan_balance = SCAN_FILE;
2344 goto out;
2345 }
2346
2347 scan_balance = SCAN_FRACT;
2348
2349 /*
2350 * With swappiness at 100, anonymous and file have the same priority.
2351 * This scanning priority is essentially the inverse of IO cost.
2352 */
2353 anon_prio = swappiness;
2354 file_prio = 200 - anon_prio;
2355
2356 /*
2357 * OK, so we have swap space and a fair amount of page cache
2358 * pages. We use the recently rotated / recently scanned
2359 * ratios to determine how valuable each cache is.
2360 *
2361 * Because workloads change over time (and to avoid overflow)
2362 * we keep these statistics as a floating average, which ends
2363 * up weighing recent references more than old ones.
2364 *
2365 * anon in [0], file in [1]
2366 */
2367
2368 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2369 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2370 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2371 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2372
2373 spin_lock_irq(&pgdat->lru_lock);
2374 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
2375 reclaim_stat->recent_scanned[0] /= 2;
2376 reclaim_stat->recent_rotated[0] /= 2;
2377 }
2378
2379 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
2380 reclaim_stat->recent_scanned[1] /= 2;
2381 reclaim_stat->recent_rotated[1] /= 2;
2382 }
2383
2384 /*
2385 * The amount of pressure on anon vs file pages is inversely
2386 * proportional to the fraction of recently scanned pages on
2387 * each list that were recently referenced and in active use.
2388 */
2389 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
2390 ap /= reclaim_stat->recent_rotated[0] + 1;
2391
2392 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
2393 fp /= reclaim_stat->recent_rotated[1] + 1;
2394 spin_unlock_irq(&pgdat->lru_lock);
2395
2396 fraction[0] = ap;
2397 fraction[1] = fp;
2398 denominator = ap + fp + 1;
2399 out:
2400 *lru_pages = 0;
2401 for_each_evictable_lru(lru) {
2402 int file = is_file_lru(lru);
2403 unsigned long size;
2404 unsigned long scan;
2405
2406 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2407 scan = size >> sc->priority;
2408 /*
2409 * If the cgroup's already been deleted, make sure to
2410 * scrape out the remaining cache.
2411 */
2412 if (!scan && !mem_cgroup_online(memcg))
2413 scan = min(size, SWAP_CLUSTER_MAX);
2414
2415 switch (scan_balance) {
2416 case SCAN_EQUAL:
2417 /* Scan lists relative to size */
2418 break;
2419 case SCAN_FRACT:
2420 /*
2421 * Scan types proportional to swappiness and
2422 * their relative recent reclaim efficiency.
2423 * Make sure we don't miss the last page
2424 * because of a round-off error.
2425 */
2426 scan = DIV64_U64_ROUND_UP(scan * fraction[file],
2427 denominator);
2428 break;
2429 case SCAN_FILE:
2430 case SCAN_ANON:
2431 /* Scan one type exclusively */
2432 if ((scan_balance == SCAN_FILE) != file) {
2433 size = 0;
2434 scan = 0;
2435 }
2436 break;
2437 default:
2438 /* Look ma, no brain */
2439 BUG();
2440 }
2441
2442 *lru_pages += size;
2443 nr[lru] = scan;
2444 }
2445 }
2446
2447 /*
2448 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
2449 */
2450 static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
2451 struct scan_control *sc, unsigned long *lru_pages)
2452 {
2453 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
2454 unsigned long nr[NR_LRU_LISTS];
2455 unsigned long targets[NR_LRU_LISTS];
2456 unsigned long nr_to_scan;
2457 enum lru_list lru;
2458 unsigned long nr_reclaimed = 0;
2459 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2460 struct blk_plug plug;
2461 bool scan_adjusted;
2462
2463 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
2464
2465 /* Record the original scan target for proportional adjustments later */
2466 memcpy(targets, nr, sizeof(nr));
2467
2468 /*
2469 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2470 * event that can occur when there is little memory pressure e.g.
2471 * multiple streaming readers/writers. Hence, we do not abort scanning
2472 * when the requested number of pages are reclaimed when scanning at
2473 * DEF_PRIORITY on the assumption that the fact we are direct
2474 * reclaiming implies that kswapd is not keeping up and it is best to
2475 * do a batch of work at once. For memcg reclaim one check is made to
2476 * abort proportional reclaim if either the file or anon lru has already
2477 * dropped to zero at the first pass.
2478 */
2479 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2480 sc->priority == DEF_PRIORITY);
2481
2482 blk_start_plug(&plug);
2483 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2484 nr[LRU_INACTIVE_FILE]) {
2485 unsigned long nr_anon, nr_file, percentage;
2486 unsigned long nr_scanned;
2487
2488 for_each_evictable_lru(lru) {
2489 if (nr[lru]) {
2490 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2491 nr[lru] -= nr_to_scan;
2492
2493 nr_reclaimed += shrink_list(lru, nr_to_scan,
2494 lruvec, memcg, sc);
2495 }
2496 }
2497
2498 cond_resched();
2499
2500 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2501 continue;
2502
2503 /*
2504 * For kswapd and memcg, reclaim at least the number of pages
2505 * requested. Ensure that the anon and file LRUs are scanned
2506 * proportionally what was requested by get_scan_count(). We
2507 * stop reclaiming one LRU and reduce the amount scanning
2508 * proportional to the original scan target.
2509 */
2510 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2511 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2512
2513 /*
2514 * It's just vindictive to attack the larger once the smaller
2515 * has gone to zero. And given the way we stop scanning the
2516 * smaller below, this makes sure that we only make one nudge
2517 * towards proportionality once we've got nr_to_reclaim.
2518 */
2519 if (!nr_file || !nr_anon)
2520 break;
2521
2522 if (nr_file > nr_anon) {
2523 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2524 targets[LRU_ACTIVE_ANON] + 1;
2525 lru = LRU_BASE;
2526 percentage = nr_anon * 100 / scan_target;
2527 } else {
2528 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2529 targets[LRU_ACTIVE_FILE] + 1;
2530 lru = LRU_FILE;
2531 percentage = nr_file * 100 / scan_target;
2532 }
2533
2534 /* Stop scanning the smaller of the LRU */
2535 nr[lru] = 0;
2536 nr[lru + LRU_ACTIVE] = 0;
2537
2538 /*
2539 * Recalculate the other LRU scan count based on its original
2540 * scan target and the percentage scanning already complete
2541 */
2542 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2543 nr_scanned = targets[lru] - nr[lru];
2544 nr[lru] = targets[lru] * (100 - percentage) / 100;
2545 nr[lru] -= min(nr[lru], nr_scanned);
2546
2547 lru += LRU_ACTIVE;
2548 nr_scanned = targets[lru] - nr[lru];
2549 nr[lru] = targets[lru] * (100 - percentage) / 100;
2550 nr[lru] -= min(nr[lru], nr_scanned);
2551
2552 scan_adjusted = true;
2553 }
2554 blk_finish_plug(&plug);
2555 sc->nr_reclaimed += nr_reclaimed;
2556
2557 /*
2558 * Even if we did not try to evict anon pages at all, we want to
2559 * rebalance the anon lru active/inactive ratio.
2560 */
2561 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
2562 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2563 sc, LRU_ACTIVE_ANON);
2564 }
2565
2566 /* Use reclaim/compaction for costly allocs or under memory pressure */
2567 static bool in_reclaim_compaction(struct scan_control *sc)
2568 {
2569 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
2570 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
2571 sc->priority < DEF_PRIORITY - 2))
2572 return true;
2573
2574 return false;
2575 }
2576
2577 /*
2578 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2579 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2580 * true if more pages should be reclaimed such that when the page allocator
2581 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2582 * It will give up earlier than that if there is difficulty reclaiming pages.
2583 */
2584 static inline bool should_continue_reclaim(struct pglist_data *pgdat,
2585 unsigned long nr_reclaimed,
2586 unsigned long nr_scanned,
2587 struct scan_control *sc)
2588 {
2589 unsigned long pages_for_compaction;
2590 unsigned long inactive_lru_pages;
2591 int z;
2592
2593 /* If not in reclaim/compaction mode, stop */
2594 if (!in_reclaim_compaction(sc))
2595 return false;
2596
2597 /* Consider stopping depending on scan and reclaim activity */
2598 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2599 /*
2600 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2601 * full LRU list has been scanned and we are still failing
2602 * to reclaim pages. This full LRU scan is potentially
2603 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2604 */
2605 if (!nr_reclaimed && !nr_scanned)
2606 return false;
2607 } else {
2608 /*
2609 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2610 * fail without consequence, stop if we failed to reclaim
2611 * any pages from the last SWAP_CLUSTER_MAX number of
2612 * pages that were scanned. This will return to the
2613 * caller faster at the risk reclaim/compaction and
2614 * the resulting allocation attempt fails
2615 */
2616 if (!nr_reclaimed)
2617 return false;
2618 }
2619
2620 /*
2621 * If we have not reclaimed enough pages for compaction and the
2622 * inactive lists are large enough, continue reclaiming
2623 */
2624 pages_for_compaction = compact_gap(sc->order);
2625 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
2626 if (get_nr_swap_pages() > 0)
2627 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
2628 if (sc->nr_reclaimed < pages_for_compaction &&
2629 inactive_lru_pages > pages_for_compaction)
2630 return true;
2631
2632 /* If compaction would go ahead or the allocation would succeed, stop */
2633 for (z = 0; z <= sc->reclaim_idx; z++) {
2634 struct zone *zone = &pgdat->node_zones[z];
2635 if (!managed_zone(zone))
2636 continue;
2637
2638 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
2639 case COMPACT_SUCCESS:
2640 case COMPACT_CONTINUE:
2641 return false;
2642 default:
2643 /* check next zone */
2644 ;
2645 }
2646 }
2647 return true;
2648 }
2649
2650 static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
2651 {
2652 struct reclaim_state *reclaim_state = current->reclaim_state;
2653 unsigned long nr_reclaimed, nr_scanned;
2654 bool reclaimable = false;
2655
2656 do {
2657 struct mem_cgroup *root = sc->target_mem_cgroup;
2658 struct mem_cgroup_reclaim_cookie reclaim = {
2659 .pgdat = pgdat,
2660 .priority = sc->priority,
2661 };
2662 unsigned long node_lru_pages = 0;
2663 struct mem_cgroup *memcg;
2664
2665 nr_reclaimed = sc->nr_reclaimed;
2666 nr_scanned = sc->nr_scanned;
2667
2668 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2669 do {
2670 unsigned long lru_pages;
2671 unsigned long reclaimed;
2672 unsigned long scanned;
2673
2674 if (mem_cgroup_low(root, memcg)) {
2675 if (!sc->memcg_low_reclaim) {
2676 sc->memcg_low_skipped = 1;
2677 continue;
2678 }
2679 mem_cgroup_event(memcg, MEMCG_LOW);
2680 }
2681
2682 reclaimed = sc->nr_reclaimed;
2683 scanned = sc->nr_scanned;
2684
2685 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2686 node_lru_pages += lru_pages;
2687
2688 if (memcg)
2689 shrink_slab(sc->gfp_mask, pgdat->node_id,
2690 memcg, sc->nr_scanned - scanned,
2691 lru_pages);
2692
2693 /* Record the group's reclaim efficiency */
2694 vmpressure(sc->gfp_mask, memcg, false,
2695 sc->nr_scanned - scanned,
2696 sc->nr_reclaimed - reclaimed);
2697
2698 /*
2699 * Direct reclaim and kswapd have to scan all memory
2700 * cgroups to fulfill the overall scan target for the
2701 * node.
2702 *
2703 * Limit reclaim, on the other hand, only cares about
2704 * nr_to_reclaim pages to be reclaimed and it will
2705 * retry with decreasing priority if one round over the
2706 * whole hierarchy is not sufficient.
2707 */
2708 if (!global_reclaim(sc) &&
2709 sc->nr_reclaimed >= sc->nr_to_reclaim) {
2710 mem_cgroup_iter_break(root, memcg);
2711 break;
2712 }
2713 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
2714
2715 /*
2716 * Shrink the slab caches in the same proportion that
2717 * the eligible LRU pages were scanned.
2718 */
2719 if (global_reclaim(sc))
2720 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
2721 sc->nr_scanned - nr_scanned,
2722 node_lru_pages);
2723
2724 if (reclaim_state) {
2725 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2726 reclaim_state->reclaimed_slab = 0;
2727 }
2728
2729 /* Record the subtree's reclaim efficiency */
2730 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
2731 sc->nr_scanned - nr_scanned,
2732 sc->nr_reclaimed - nr_reclaimed);
2733
2734 if (sc->nr_reclaimed - nr_reclaimed)
2735 reclaimable = true;
2736
2737 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
2738 sc->nr_scanned - nr_scanned, sc));
2739
2740 /*
2741 * Kswapd gives up on balancing particular nodes after too
2742 * many failures to reclaim anything from them and goes to
2743 * sleep. On reclaim progress, reset the failure counter. A
2744 * successful direct reclaim run will revive a dormant kswapd.
2745 */
2746 if (reclaimable)
2747 pgdat->kswapd_failures = 0;
2748
2749 return reclaimable;
2750 }
2751
2752 /*
2753 * Returns true if compaction should go ahead for a costly-order request, or
2754 * the allocation would already succeed without compaction. Return false if we
2755 * should reclaim first.
2756 */
2757 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2758 {
2759 unsigned long watermark;
2760 enum compact_result suitable;
2761
2762 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2763 if (suitable == COMPACT_SUCCESS)
2764 /* Allocation should succeed already. Don't reclaim. */
2765 return true;
2766 if (suitable == COMPACT_SKIPPED)
2767 /* Compaction cannot yet proceed. Do reclaim. */
2768 return false;
2769
2770 /*
2771 * Compaction is already possible, but it takes time to run and there
2772 * are potentially other callers using the pages just freed. So proceed
2773 * with reclaim to make a buffer of free pages available to give
2774 * compaction a reasonable chance of completing and allocating the page.
2775 * Note that we won't actually reclaim the whole buffer in one attempt
2776 * as the target watermark in should_continue_reclaim() is lower. But if
2777 * we are already above the high+gap watermark, don't reclaim at all.
2778 */
2779 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
2780
2781 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
2782 }
2783
2784 /*
2785 * This is the direct reclaim path, for page-allocating processes. We only
2786 * try to reclaim pages from zones which will satisfy the caller's allocation
2787 * request.
2788 *
2789 * If a zone is deemed to be full of pinned pages then just give it a light
2790 * scan then give up on it.
2791 */
2792 static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
2793 {
2794 struct zoneref *z;
2795 struct zone *zone;
2796 unsigned long nr_soft_reclaimed;
2797 unsigned long nr_soft_scanned;
2798 gfp_t orig_mask;
2799 pg_data_t *last_pgdat = NULL;
2800
2801 /*
2802 * If the number of buffer_heads in the machine exceeds the maximum
2803 * allowed level, force direct reclaim to scan the highmem zone as
2804 * highmem pages could be pinning lowmem pages storing buffer_heads
2805 */
2806 orig_mask = sc->gfp_mask;
2807 if (buffer_heads_over_limit) {
2808 sc->gfp_mask |= __GFP_HIGHMEM;
2809 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
2810 }
2811
2812 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2813 sc->reclaim_idx, sc->nodemask) {
2814 /*
2815 * Take care memory controller reclaiming has small influence
2816 * to global LRU.
2817 */
2818 if (global_reclaim(sc)) {
2819 if (!cpuset_zone_allowed(zone,
2820 GFP_KERNEL | __GFP_HARDWALL))
2821 continue;
2822
2823 /*
2824 * If we already have plenty of memory free for
2825 * compaction in this zone, don't free any more.
2826 * Even though compaction is invoked for any
2827 * non-zero order, only frequent costly order
2828 * reclamation is disruptive enough to become a
2829 * noticeable problem, like transparent huge
2830 * page allocations.
2831 */
2832 if (IS_ENABLED(CONFIG_COMPACTION) &&
2833 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
2834 compaction_ready(zone, sc)) {
2835 sc->compaction_ready = true;
2836 continue;
2837 }
2838
2839 /*
2840 * Shrink each node in the zonelist once. If the
2841 * zonelist is ordered by zone (not the default) then a
2842 * node may be shrunk multiple times but in that case
2843 * the user prefers lower zones being preserved.
2844 */
2845 if (zone->zone_pgdat == last_pgdat)
2846 continue;
2847
2848 /*
2849 * This steals pages from memory cgroups over softlimit
2850 * and returns the number of reclaimed pages and
2851 * scanned pages. This works for global memory pressure
2852 * and balancing, not for a memcg's limit.
2853 */
2854 nr_soft_scanned = 0;
2855 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
2856 sc->order, sc->gfp_mask,
2857 &nr_soft_scanned);
2858 sc->nr_reclaimed += nr_soft_reclaimed;
2859 sc->nr_scanned += nr_soft_scanned;
2860 /* need some check for avoid more shrink_zone() */
2861 }
2862
2863 /* See comment about same check for global reclaim above */
2864 if (zone->zone_pgdat == last_pgdat)
2865 continue;
2866 last_pgdat = zone->zone_pgdat;
2867 shrink_node(zone->zone_pgdat, sc);
2868 }
2869
2870 /*
2871 * Restore to original mask to avoid the impact on the caller if we
2872 * promoted it to __GFP_HIGHMEM.
2873 */
2874 sc->gfp_mask = orig_mask;
2875 }
2876
2877 static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2878 {
2879 struct mem_cgroup *memcg;
2880
2881 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2882 do {
2883 unsigned long refaults;
2884 struct lruvec *lruvec;
2885
2886 if (memcg)
2887 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2888 else
2889 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2890
2891 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2892 lruvec->refaults = refaults;
2893 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2894 }
2895
2896 /*
2897 * This is the main entry point to direct page reclaim.
2898 *
2899 * If a full scan of the inactive list fails to free enough memory then we
2900 * are "out of memory" and something needs to be killed.
2901 *
2902 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2903 * high - the zone may be full of dirty or under-writeback pages, which this
2904 * caller can't do much about. We kick the writeback threads and take explicit
2905 * naps in the hope that some of these pages can be written. But if the
2906 * allocating task holds filesystem locks which prevent writeout this might not
2907 * work, and the allocation attempt will fail.
2908 *
2909 * returns: 0, if no pages reclaimed
2910 * else, the number of pages reclaimed
2911 */
2912 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2913 struct scan_control *sc)
2914 {
2915 int initial_priority = sc->priority;
2916 pg_data_t *last_pgdat;
2917 struct zoneref *z;
2918 struct zone *zone;
2919 retry:
2920 delayacct_freepages_start();
2921
2922 if (global_reclaim(sc))
2923 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
2924
2925 do {
2926 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2927 sc->priority);
2928 sc->nr_scanned = 0;
2929 shrink_zones(zonelist, sc);
2930
2931 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2932 break;
2933
2934 if (sc->compaction_ready)
2935 break;
2936
2937 /*
2938 * If we're getting trouble reclaiming, start doing
2939 * writepage even in laptop mode.
2940 */
2941 if (sc->priority < DEF_PRIORITY - 2)
2942 sc->may_writepage = 1;
2943 } while (--sc->priority >= 0);
2944
2945 last_pgdat = NULL;
2946 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2947 sc->nodemask) {
2948 if (zone->zone_pgdat == last_pgdat)
2949 continue;
2950 last_pgdat = zone->zone_pgdat;
2951 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2952 }
2953
2954 delayacct_freepages_end();
2955
2956 if (sc->nr_reclaimed)
2957 return sc->nr_reclaimed;
2958
2959 /* Aborted reclaim to try compaction? don't OOM, then */
2960 if (sc->compaction_ready)
2961 return 1;
2962
2963 /* Untapped cgroup reserves? Don't OOM, retry. */
2964 if (sc->memcg_low_skipped) {
2965 sc->priority = initial_priority;
2966 sc->memcg_low_reclaim = 1;
2967 sc->memcg_low_skipped = 0;
2968 goto retry;
2969 }
2970
2971 return 0;
2972 }
2973
2974 static bool allow_direct_reclaim(pg_data_t *pgdat)
2975 {
2976 struct zone *zone;
2977 unsigned long pfmemalloc_reserve = 0;
2978 unsigned long free_pages = 0;
2979 int i;
2980 bool wmark_ok;
2981
2982 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2983 return true;
2984
2985 for (i = 0; i <= ZONE_NORMAL; i++) {
2986 zone = &pgdat->node_zones[i];
2987 if (!managed_zone(zone))
2988 continue;
2989
2990 if (!zone_reclaimable_pages(zone))
2991 continue;
2992
2993 pfmemalloc_reserve += min_wmark_pages(zone);
2994 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2995 }
2996
2997 /* If there are no reserves (unexpected config) then do not throttle */
2998 if (!pfmemalloc_reserve)
2999 return true;
3000
3001 wmark_ok = free_pages > pfmemalloc_reserve / 2;
3002
3003 /* kswapd must be awake if processes are being throttled */
3004 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
3005 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
3006 (enum zone_type)ZONE_NORMAL);
3007 wake_up_interruptible(&pgdat->kswapd_wait);
3008 }
3009
3010 return wmark_ok;
3011 }
3012
3013 /*
3014 * Throttle direct reclaimers if backing storage is backed by the network
3015 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
3016 * depleted. kswapd will continue to make progress and wake the processes
3017 * when the low watermark is reached.
3018 *
3019 * Returns true if a fatal signal was delivered during throttling. If this
3020 * happens, the page allocator should not consider triggering the OOM killer.
3021 */
3022 static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
3023 nodemask_t *nodemask)
3024 {
3025 struct zoneref *z;
3026 struct zone *zone;
3027 pg_data_t *pgdat = NULL;
3028
3029 /*
3030 * Kernel threads should not be throttled as they may be indirectly
3031 * responsible for cleaning pages necessary for reclaim to make forward
3032 * progress. kjournald for example may enter direct reclaim while
3033 * committing a transaction where throttling it could forcing other
3034 * processes to block on log_wait_commit().
3035 */
3036 if (current->flags & PF_KTHREAD)
3037 goto out;
3038
3039 /*
3040 * If a fatal signal is pending, this process should not throttle.
3041 * It should return quickly so it can exit and free its memory
3042 */
3043 if (fatal_signal_pending(current))
3044 goto out;
3045
3046 /*
3047 * Check if the pfmemalloc reserves are ok by finding the first node
3048 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3049 * GFP_KERNEL will be required for allocating network buffers when
3050 * swapping over the network so ZONE_HIGHMEM is unusable.
3051 *
3052 * Throttling is based on the first usable node and throttled processes
3053 * wait on a queue until kswapd makes progress and wakes them. There
3054 * is an affinity then between processes waking up and where reclaim
3055 * progress has been made assuming the process wakes on the same node.
3056 * More importantly, processes running on remote nodes will not compete
3057 * for remote pfmemalloc reserves and processes on different nodes
3058 * should make reasonable progress.
3059 */
3060 for_each_zone_zonelist_nodemask(zone, z, zonelist,
3061 gfp_zone(gfp_mask), nodemask) {
3062 if (zone_idx(zone) > ZONE_NORMAL)
3063 continue;
3064
3065 /* Throttle based on the first usable node */
3066 pgdat = zone->zone_pgdat;
3067 if (allow_direct_reclaim(pgdat))
3068 goto out;
3069 break;
3070 }
3071
3072 /* If no zone was usable by the allocation flags then do not throttle */
3073 if (!pgdat)
3074 goto out;
3075
3076 /* Account for the throttling */
3077 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3078
3079 /*
3080 * If the caller cannot enter the filesystem, it's possible that it
3081 * is due to the caller holding an FS lock or performing a journal
3082 * transaction in the case of a filesystem like ext[3|4]. In this case,
3083 * it is not safe to block on pfmemalloc_wait as kswapd could be
3084 * blocked waiting on the same lock. Instead, throttle for up to a
3085 * second before continuing.
3086 */
3087 if (!(gfp_mask & __GFP_FS)) {
3088 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
3089 allow_direct_reclaim(pgdat), HZ);
3090
3091 goto check_pending;
3092 }
3093
3094 /* Throttle until kswapd wakes the process */
3095 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
3096 allow_direct_reclaim(pgdat));
3097
3098 check_pending:
3099 if (fatal_signal_pending(current))
3100 return true;
3101
3102 out:
3103 return false;
3104 }
3105
3106 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
3107 gfp_t gfp_mask, nodemask_t *nodemask)
3108 {
3109 ktime_t event_ts;
3110 unsigned long nr_reclaimed;
3111 struct scan_control sc = {
3112 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3113 .gfp_mask = current_gfp_context(gfp_mask),
3114 .reclaim_idx = gfp_zone(gfp_mask),
3115 .order = order,
3116 .nodemask = nodemask,
3117 .priority = DEF_PRIORITY,
3118 .may_writepage = !laptop_mode,
3119 .may_unmap = 1,
3120 .may_swap = 1,
3121 };
3122
3123 /*
3124 * Do not enter reclaim if fatal signal was delivered while throttled.
3125 * 1 is returned so that the page allocator does not OOM kill at this
3126 * point.
3127 */
3128 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
3129 return 1;
3130
3131 mm_event_start(&event_ts);
3132 trace_mm_vmscan_direct_reclaim_begin(order,
3133 sc.may_writepage,
3134 sc.gfp_mask,
3135 sc.reclaim_idx);
3136
3137 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3138
3139 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3140 mm_event_end(MM_RECLAIM, event_ts);
3141
3142 return nr_reclaimed;
3143 }
3144
3145 #ifdef CONFIG_MEMCG
3146
3147 unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
3148 gfp_t gfp_mask, bool noswap,
3149 pg_data_t *pgdat,
3150 unsigned long *nr_scanned)
3151 {
3152 struct scan_control sc = {
3153 .nr_to_reclaim = SWAP_CLUSTER_MAX,
3154 .target_mem_cgroup = memcg,
3155 .may_writepage = !laptop_mode,
3156 .may_unmap = 1,
3157 .reclaim_idx = MAX_NR_ZONES - 1,
3158 .may_swap = !noswap,
3159 };
3160 unsigned long lru_pages;
3161
3162 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3163 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
3164
3165 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
3166 sc.may_writepage,
3167 sc.gfp_mask,
3168 sc.reclaim_idx);
3169
3170 /*
3171 * NOTE: Although we can get the priority field, using it
3172 * here is not a good idea, since it limits the pages we can scan.
3173 * if we don't reclaim here, the shrink_node from balance_pgdat
3174 * will pick up pages from other mem cgroup's as well. We hack
3175 * the priority and make it zero.
3176 */
3177 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
3178
3179 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3180
3181 *nr_scanned = sc.nr_scanned;
3182 return sc.nr_reclaimed;
3183 }
3184
3185 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
3186 unsigned long nr_pages,
3187 gfp_t gfp_mask,
3188 bool may_swap)
3189 {
3190 struct zonelist *zonelist;
3191 unsigned long nr_reclaimed;
3192 unsigned long pflags;
3193 int nid;
3194 unsigned int noreclaim_flag;
3195 struct scan_control sc = {
3196 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3197 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
3198 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
3199 .reclaim_idx = MAX_NR_ZONES - 1,
3200 .target_mem_cgroup = memcg,
3201 .priority = DEF_PRIORITY,
3202 .may_writepage = !laptop_mode,
3203 .may_unmap = 1,
3204 .may_swap = may_swap,
3205 };
3206
3207 /*
3208 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3209 * take care of from where we get pages. So the node where we start the
3210 * scan does not need to be the current node.
3211 */
3212 nid = mem_cgroup_select_victim_node(memcg);
3213
3214 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
3215
3216 trace_mm_vmscan_memcg_reclaim_begin(0,
3217 sc.may_writepage,
3218 sc.gfp_mask,
3219 sc.reclaim_idx);
3220
3221 psi_memstall_enter(&pflags);
3222 noreclaim_flag = memalloc_noreclaim_save();
3223
3224 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3225
3226 memalloc_noreclaim_restore(noreclaim_flag);
3227 psi_memstall_leave(&pflags);
3228
3229 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3230
3231 return nr_reclaimed;
3232 }
3233 #endif
3234
3235 static void age_active_anon(struct pglist_data *pgdat,
3236 struct scan_control *sc)
3237 {
3238 struct mem_cgroup *memcg;
3239
3240 if (!total_swap_pages)
3241 return;
3242
3243 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3244 do {
3245 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
3246
3247 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
3248 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
3249 sc, LRU_ACTIVE_ANON);
3250
3251 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3252 } while (memcg);
3253 }
3254
3255 /*
3256 * Returns true if there is an eligible zone balanced for the request order
3257 * and classzone_idx
3258 */
3259 static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
3260 {
3261 int i;
3262 unsigned long mark = -1;
3263 struct zone *zone;
3264
3265 for (i = 0; i <= classzone_idx; i++) {
3266 zone = pgdat->node_zones + i;
3267
3268 if (!managed_zone(zone))
3269 continue;
3270
3271 mark = high_wmark_pages(zone);
3272 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3273 return true;
3274 }
3275
3276 /*
3277 * If a node has no populated zone within classzone_idx, it does not
3278 * need balancing by definition. This can happen if a zone-restricted
3279 * allocation tries to wake a remote kswapd.
3280 */
3281 if (mark == -1)
3282 return true;
3283
3284 return false;
3285 }
3286
3287 /* Clear pgdat state for congested, dirty or under writeback. */
3288 static void clear_pgdat_congested(pg_data_t *pgdat)
3289 {
3290 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3291 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3292 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3293 }
3294
3295 /*
3296 * Prepare kswapd for sleeping. This verifies that there are no processes
3297 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3298 *
3299 * Returns true if kswapd is ready to sleep
3300 */
3301 static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
3302 {
3303 /*
3304 * The throttled processes are normally woken up in balance_pgdat() as
3305 * soon as allow_direct_reclaim() is true. But there is a potential
3306 * race between when kswapd checks the watermarks and a process gets
3307 * throttled. There is also a potential race if processes get
3308 * throttled, kswapd wakes, a large process exits thereby balancing the
3309 * zones, which causes kswapd to exit balance_pgdat() before reaching
3310 * the wake up checks. If kswapd is going to sleep, no process should
3311 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3312 * the wake up is premature, processes will wake kswapd and get
3313 * throttled again. The difference from wake ups in balance_pgdat() is
3314 * that here we are under prepare_to_wait().
3315 */
3316 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3317 wake_up_all(&pgdat->pfmemalloc_wait);
3318
3319 /* Hopeless node, leave it to direct reclaim */
3320 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3321 return true;
3322
3323 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3324 clear_pgdat_congested(pgdat);
3325 return true;
3326 }
3327
3328 return false;
3329 }
3330
3331 /*
3332 * kswapd shrinks a node of pages that are at or below the highest usable
3333 * zone that is currently unbalanced.
3334 *
3335 * Returns true if kswapd scanned at least the requested number of pages to
3336 * reclaim or if the lack of progress was due to pages under writeback.
3337 * This is used to determine if the scanning priority needs to be raised.
3338 */
3339 static bool kswapd_shrink_node(pg_data_t *pgdat,
3340 struct scan_control *sc)
3341 {
3342 struct zone *zone;
3343 int z;
3344
3345 /* Reclaim a number of pages proportional to the number of zones */
3346 sc->nr_to_reclaim = 0;
3347 for (z = 0; z <= sc->reclaim_idx; z++) {
3348 zone = pgdat->node_zones + z;
3349 if (!managed_zone(zone))
3350 continue;
3351
3352 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3353 }
3354
3355 /*
3356 * Historically care was taken to put equal pressure on all zones but
3357 * now pressure is applied based on node LRU order.
3358 */
3359 shrink_node(pgdat, sc);
3360
3361 /*
3362 * Fragmentation may mean that the system cannot be rebalanced for
3363 * high-order allocations. If twice the allocation size has been
3364 * reclaimed then recheck watermarks only at order-0 to prevent
3365 * excessive reclaim. Assume that a process requested a high-order
3366 * can direct reclaim/compact.
3367 */
3368 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
3369 sc->order = 0;
3370
3371 return sc->nr_scanned >= sc->nr_to_reclaim;
3372 }
3373
3374 /*
3375 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3376 * that are eligible for use by the caller until at least one zone is
3377 * balanced.
3378 *
3379 * Returns the order kswapd finished reclaiming at.
3380 *
3381 * kswapd scans the zones in the highmem->normal->dma direction. It skips
3382 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
3383 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3384 * or lower is eligible for reclaim until at least one usable zone is
3385 * balanced.
3386 */
3387 static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
3388 {
3389 int i;
3390 unsigned long nr_soft_reclaimed;
3391 unsigned long nr_soft_scanned;
3392 unsigned long pflags;
3393 struct zone *zone;
3394 struct scan_control sc = {
3395 .gfp_mask = GFP_KERNEL,
3396 .order = order,
3397 .priority = DEF_PRIORITY,
3398 .may_writepage = !laptop_mode,
3399 .may_unmap = 1,
3400 .may_swap = 1,
3401 };
3402 psi_memstall_enter(&pflags);
3403 count_vm_event(PAGEOUTRUN);
3404
3405 do {
3406 unsigned long nr_reclaimed = sc.nr_reclaimed;
3407 bool raise_priority = true;
3408
3409 sc.reclaim_idx = classzone_idx;
3410
3411 /*
3412 * If the number of buffer_heads exceeds the maximum allowed
3413 * then consider reclaiming from all zones. This has a dual
3414 * purpose -- on 64-bit systems it is expected that
3415 * buffer_heads are stripped during active rotation. On 32-bit
3416 * systems, highmem pages can pin lowmem memory and shrinking
3417 * buffers can relieve lowmem pressure. Reclaim may still not
3418 * go ahead if all eligible zones for the original allocation
3419 * request are balanced to avoid excessive reclaim from kswapd.
3420 */
3421 if (buffer_heads_over_limit) {
3422 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3423 zone = pgdat->node_zones + i;
3424 if (!managed_zone(zone))
3425 continue;
3426
3427 sc.reclaim_idx = i;
3428 break;
3429 }
3430 }
3431
3432 /*
3433 * Only reclaim if there are no eligible zones. Note that
3434 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3435 * have adjusted it.
3436 */
3437 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3438 goto out;
3439
3440 /*
3441 * Do some background aging of the anon list, to give
3442 * pages a chance to be referenced before reclaiming. All
3443 * pages are rotated regardless of classzone as this is
3444 * about consistent aging.
3445 */
3446 age_active_anon(pgdat, &sc);
3447
3448 /*
3449 * If we're getting trouble reclaiming, start doing writepage
3450 * even in laptop mode.
3451 */
3452 if (sc.priority < DEF_PRIORITY - 2)
3453 sc.may_writepage = 1;
3454
3455 /* Call soft limit reclaim before calling shrink_node. */
3456 sc.nr_scanned = 0;
3457 nr_soft_scanned = 0;
3458 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
3459 sc.gfp_mask, &nr_soft_scanned);
3460 sc.nr_reclaimed += nr_soft_reclaimed;
3461
3462 /*
3463 * There should be no need to raise the scanning priority if
3464 * enough pages are already being scanned that that high
3465 * watermark would be met at 100% efficiency.
3466 */
3467 if (kswapd_shrink_node(pgdat, &sc))
3468 raise_priority = false;
3469
3470 /*
3471 * If the low watermark is met there is no need for processes
3472 * to be throttled on pfmemalloc_wait as they should not be
3473 * able to safely make forward progress. Wake them
3474 */
3475 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
3476 allow_direct_reclaim(pgdat))
3477 wake_up_all(&pgdat->pfmemalloc_wait);
3478
3479 /* Check if kswapd should be suspending */
3480 if (try_to_freeze() || kthread_should_stop())
3481 break;
3482
3483 /*
3484 * Raise priority if scanning rate is too low or there was no
3485 * progress in reclaiming pages
3486 */
3487 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3488 if (raise_priority || !nr_reclaimed)
3489 sc.priority--;
3490 } while (sc.priority >= 1);
3491
3492 if (!sc.nr_reclaimed)
3493 pgdat->kswapd_failures++;
3494
3495 out:
3496 snapshot_refaults(NULL, pgdat);
3497 psi_memstall_leave(&pflags);
3498 /*
3499 * Return the order kswapd stopped reclaiming at as
3500 * prepare_kswapd_sleep() takes it into account. If another caller
3501 * entered the allocator slow path while kswapd was awake, order will
3502 * remain at the higher level.
3503 */
3504 return sc.order;
3505 }
3506
3507 /*
3508 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3509 * allocation request woke kswapd for. When kswapd has not woken recently,
3510 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3511 * given classzone and returns it or the highest classzone index kswapd
3512 * was recently woke for.
3513 */
3514 static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3515 enum zone_type classzone_idx)
3516 {
3517 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3518 return classzone_idx;
3519
3520 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3521 }
3522
3523 static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3524 unsigned int classzone_idx)
3525 {
3526 long remaining = 0;
3527 DEFINE_WAIT(wait);
3528
3529 if (freezing(current) || kthread_should_stop())
3530 return;
3531
3532 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3533
3534 /*
3535 * Try to sleep for a short interval. Note that kcompactd will only be
3536 * woken if it is possible to sleep for a short interval. This is
3537 * deliberate on the assumption that if reclaim cannot keep an
3538 * eligible zone balanced that it's also unlikely that compaction will
3539 * succeed.
3540 */
3541 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3542 /*
3543 * Compaction records what page blocks it recently failed to
3544 * isolate pages from and skips them in the future scanning.
3545 * When kswapd is going to sleep, it is reasonable to assume
3546 * that pages and compaction may succeed so reset the cache.
3547 */
3548 reset_isolation_suitable(pgdat);
3549
3550 /*
3551 * We have freed the memory, now we should compact it to make
3552 * allocation of the requested order possible.
3553 */
3554 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
3555
3556 remaining = schedule_timeout(HZ/10);
3557
3558 /*
3559 * If woken prematurely then reset kswapd_classzone_idx and
3560 * order. The values will either be from a wakeup request or
3561 * the previous request that slept prematurely.
3562 */
3563 if (remaining) {
3564 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3565 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3566 }
3567
3568 finish_wait(&pgdat->kswapd_wait, &wait);
3569 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3570 }
3571
3572 /*
3573 * After a short sleep, check if it was a premature sleep. If not, then
3574 * go fully to sleep until explicitly woken up.
3575 */
3576 if (!remaining &&
3577 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
3578 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3579
3580 /*
3581 * vmstat counters are not perfectly accurate and the estimated
3582 * value for counters such as NR_FREE_PAGES can deviate from the
3583 * true value by nr_online_cpus * threshold. To avoid the zone
3584 * watermarks being breached while under pressure, we reduce the
3585 * per-cpu vmstat threshold while kswapd is awake and restore
3586 * them before going back to sleep.
3587 */
3588 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
3589
3590 if (!kthread_should_stop())
3591 schedule();
3592
3593 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3594 } else {
3595 if (remaining)
3596 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3597 else
3598 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3599 }
3600 finish_wait(&pgdat->kswapd_wait, &wait);
3601 }
3602
3603 /*
3604 * The background pageout daemon, started as a kernel thread
3605 * from the init process.
3606 *
3607 * This basically trickles out pages so that we have _some_
3608 * free memory available even if there is no other activity
3609 * that frees anything up. This is needed for things like routing
3610 * etc, where we otherwise might have all activity going on in
3611 * asynchronous contexts that cannot page things out.
3612 *
3613 * If there are applications that are active memory-allocators
3614 * (most normal use), this basically shouldn't matter.
3615 */
3616 static int kswapd(void *p)
3617 {
3618 unsigned int alloc_order, reclaim_order;
3619 unsigned int classzone_idx = MAX_NR_ZONES - 1;
3620 pg_data_t *pgdat = (pg_data_t*)p;
3621 struct task_struct *tsk = current;
3622
3623 struct reclaim_state reclaim_state = {
3624 .reclaimed_slab = 0,
3625 };
3626 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
3627
3628 if (!cpumask_empty(cpumask))
3629 set_cpus_allowed_ptr(tsk, cpumask);
3630 current->reclaim_state = &reclaim_state;
3631
3632 /*
3633 * Tell the memory management that we're a "memory allocator",
3634 * and that if we need more memory we should get access to it
3635 * regardless (see "__alloc_pages()"). "kswapd" should
3636 * never get caught in the normal page freeing logic.
3637 *
3638 * (Kswapd normally doesn't need memory anyway, but sometimes
3639 * you need a small amount of memory in order to be able to
3640 * page out something else, and this flag essentially protects
3641 * us from recursively trying to free more memory as we're
3642 * trying to free the first piece of memory in the first place).
3643 */
3644 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
3645 set_freezable();
3646
3647 pgdat->kswapd_order = 0;
3648 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3649 for ( ; ; ) {
3650 bool ret;
3651
3652 ktime_t event_ts;
3653 alloc_order = reclaim_order = pgdat->kswapd_order;
3654 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3655
3656 kswapd_try_sleep:
3657 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3658 classzone_idx);
3659
3660 /* Read the new order and classzone_idx */
3661 alloc_order = reclaim_order = pgdat->kswapd_order;
3662 classzone_idx = kswapd_classzone_idx(pgdat, 0);
3663 pgdat->kswapd_order = 0;
3664 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
3665
3666 ret = try_to_freeze();
3667 if (kthread_should_stop())
3668 break;
3669
3670 /*
3671 * We can speed up thawing tasks if we don't call balance_pgdat
3672 * after returning from the refrigerator
3673 */
3674 if (ret)
3675 continue;
3676
3677 /*
3678 * Reclaim begins at the requested order but if a high-order
3679 * reclaim fails then kswapd falls back to reclaiming for
3680 * order-0. If that happens, kswapd will consider sleeping
3681 * for the order it finished reclaiming at (reclaim_order)
3682 * but kcompactd is woken to compact for the original
3683 * request (alloc_order).
3684 */
3685 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3686 alloc_order);
3687 fs_reclaim_acquire(GFP_KERNEL);
3688 mm_event_start(&event_ts);
3689 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
3690 mm_event_end(MM_RECLAIM, event_ts);
3691 fs_reclaim_release(GFP_KERNEL);
3692 if (reclaim_order < alloc_order)
3693 goto kswapd_try_sleep;
3694 }
3695
3696 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3697 current->reclaim_state = NULL;
3698
3699 return 0;
3700 }
3701
3702 /*
3703 * A zone is low on free memory, so wake its kswapd task to service it.
3704 */
3705 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3706 {
3707 pg_data_t *pgdat;
3708
3709 if (!managed_zone(zone))
3710 return;
3711
3712 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
3713 return;
3714 pgdat = zone->zone_pgdat;
3715 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3716 classzone_idx);
3717 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
3718 if (!waitqueue_active(&pgdat->kswapd_wait))
3719 return;
3720
3721 /* Hopeless node, leave it to direct reclaim */
3722 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3723 return;
3724
3725 if (pgdat_balanced(pgdat, order, classzone_idx))
3726 return;
3727
3728 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
3729 wake_up_interruptible(&pgdat->kswapd_wait);
3730 }
3731
3732 #ifdef CONFIG_HIBERNATION
3733 /*
3734 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3735 * freed pages.
3736 *
3737 * Rather than trying to age LRUs the aim is to preserve the overall
3738 * LRU order by reclaiming preferentially
3739 * inactive > active > active referenced > active mapped
3740 */
3741 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3742 {
3743 struct reclaim_state reclaim_state;
3744 struct scan_control sc = {
3745 .nr_to_reclaim = nr_to_reclaim,
3746 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3747 .reclaim_idx = MAX_NR_ZONES - 1,
3748 .priority = DEF_PRIORITY,
3749 .may_writepage = 1,
3750 .may_unmap = 1,
3751 .may_swap = 1,
3752 .hibernation_mode = 1,
3753 };
3754 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3755 struct task_struct *p = current;
3756 unsigned long nr_reclaimed;
3757 unsigned int noreclaim_flag;
3758
3759 noreclaim_flag = memalloc_noreclaim_save();
3760 fs_reclaim_acquire(sc.gfp_mask);
3761 reclaim_state.reclaimed_slab = 0;
3762 p->reclaim_state = &reclaim_state;
3763
3764 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
3765
3766 p->reclaim_state = NULL;
3767 fs_reclaim_release(sc.gfp_mask);
3768 memalloc_noreclaim_restore(noreclaim_flag);
3769
3770 return nr_reclaimed;
3771 }
3772 #endif /* CONFIG_HIBERNATION */
3773
3774 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3775 not required for correctness. So if the last cpu in a node goes
3776 away, we get changed to run anywhere: as the first one comes back,
3777 restore their cpu bindings. */
3778 static int kswapd_cpu_online(unsigned int cpu)
3779 {
3780 int nid;
3781
3782 for_each_node_state(nid, N_MEMORY) {
3783 pg_data_t *pgdat = NODE_DATA(nid);
3784 const struct cpumask *mask;
3785
3786 mask = cpumask_of_node(pgdat->node_id);
3787
3788 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3789 /* One of our CPUs online: restore mask */
3790 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3791 }
3792 return 0;
3793 }
3794
3795 /*
3796 * This kswapd start function will be called by init and node-hot-add.
3797 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3798 */
3799 int kswapd_run(int nid)
3800 {
3801 pg_data_t *pgdat = NODE_DATA(nid);
3802 int ret = 0;
3803
3804 if (pgdat->kswapd)
3805 return 0;
3806
3807 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3808 if (IS_ERR(pgdat->kswapd)) {
3809 /* failure at boot is fatal */
3810 BUG_ON(system_state < SYSTEM_RUNNING);
3811 pr_err("Failed to start kswapd on node %d\n", nid);
3812 ret = PTR_ERR(pgdat->kswapd);
3813 pgdat->kswapd = NULL;
3814 }
3815 return ret;
3816 }
3817
3818 /*
3819 * Called by memory hotplug when all memory in a node is offlined. Caller must
3820 * hold mem_hotplug_begin/end().
3821 */
3822 void kswapd_stop(int nid)
3823 {
3824 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3825
3826 if (kswapd) {
3827 kthread_stop(kswapd);
3828 NODE_DATA(nid)->kswapd = NULL;
3829 }
3830 }
3831
3832 static int __init kswapd_init(void)
3833 {
3834 int nid, ret;
3835
3836 swap_setup();
3837 for_each_node_state(nid, N_MEMORY)
3838 kswapd_run(nid);
3839 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3840 "mm/vmscan:online", kswapd_cpu_online,
3841 NULL);
3842 WARN_ON(ret < 0);
3843 return 0;
3844 }
3845
3846 module_init(kswapd_init)
3847
3848 #ifdef CONFIG_NUMA
3849 /*
3850 * Node reclaim mode
3851 *
3852 * If non-zero call node_reclaim when the number of free pages falls below
3853 * the watermarks.
3854 */
3855 int node_reclaim_mode __read_mostly;
3856
3857 #define RECLAIM_OFF 0
3858 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3859 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3860 #define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
3861
3862 /*
3863 * Priority for NODE_RECLAIM. This determines the fraction of pages
3864 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3865 * a zone.
3866 */
3867 #define NODE_RECLAIM_PRIORITY 4
3868
3869 /*
3870 * Percentage of pages in a zone that must be unmapped for node_reclaim to
3871 * occur.
3872 */
3873 int sysctl_min_unmapped_ratio = 1;
3874
3875 /*
3876 * If the number of slab pages in a zone grows beyond this percentage then
3877 * slab reclaim needs to occur.
3878 */
3879 int sysctl_min_slab_ratio = 5;
3880
3881 static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
3882 {
3883 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3884 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3885 node_page_state(pgdat, NR_ACTIVE_FILE);
3886
3887 /*
3888 * It's possible for there to be more file mapped pages than
3889 * accounted for by the pages on the file LRU lists because
3890 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3891 */
3892 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3893 }
3894
3895 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3896 static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
3897 {
3898 unsigned long nr_pagecache_reclaimable;
3899 unsigned long delta = 0;
3900
3901 /*
3902 * If RECLAIM_UNMAP is set, then all file pages are considered
3903 * potentially reclaimable. Otherwise, we have to worry about
3904 * pages like swapcache and node_unmapped_file_pages() provides
3905 * a better estimate
3906 */
3907 if (node_reclaim_mode & RECLAIM_UNMAP)
3908 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
3909 else
3910 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
3911
3912 /* If we can't clean pages, remove dirty pages from consideration */
3913 if (!(node_reclaim_mode & RECLAIM_WRITE))
3914 delta += node_page_state(pgdat, NR_FILE_DIRTY);
3915
3916 /* Watch for any possible underflows due to delta */
3917 if (unlikely(delta > nr_pagecache_reclaimable))
3918 delta = nr_pagecache_reclaimable;
3919
3920 return nr_pagecache_reclaimable - delta;
3921 }
3922
3923 /*
3924 * Try to free up some pages from this node through reclaim.
3925 */
3926 static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3927 {
3928 /* Minimum pages needed in order to stay on node */
3929 const unsigned long nr_pages = 1 << order;
3930 struct task_struct *p = current;
3931 struct reclaim_state reclaim_state;
3932 unsigned int noreclaim_flag;
3933 struct scan_control sc = {
3934 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
3935 .gfp_mask = current_gfp_context(gfp_mask),
3936 .order = order,
3937 .priority = NODE_RECLAIM_PRIORITY,
3938 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3939 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
3940 .may_swap = 1,
3941 .reclaim_idx = gfp_zone(gfp_mask),
3942 };
3943
3944 cond_resched();
3945 /*
3946 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
3947 * and we also need to be able to write out pages for RECLAIM_WRITE
3948 * and RECLAIM_UNMAP.
3949 */
3950 noreclaim_flag = memalloc_noreclaim_save();
3951 p->flags |= PF_SWAPWRITE;
3952 fs_reclaim_acquire(sc.gfp_mask);
3953 reclaim_state.reclaimed_slab = 0;
3954 p->reclaim_state = &reclaim_state;
3955
3956 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
3957 /*
3958 * Free memory by calling shrink zone with increasing
3959 * priorities until we have enough memory freed.
3960 */
3961 do {
3962 shrink_node(pgdat, &sc);
3963 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
3964 }
3965
3966 p->reclaim_state = NULL;
3967 fs_reclaim_release(gfp_mask);
3968 current->flags &= ~PF_SWAPWRITE;
3969 memalloc_noreclaim_restore(noreclaim_flag);
3970 return sc.nr_reclaimed >= nr_pages;
3971 }
3972
3973 int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
3974 {
3975 int ret;
3976
3977 /*
3978 * Node reclaim reclaims unmapped file backed pages and
3979 * slab pages if we are over the defined limits.
3980 *
3981 * A small portion of unmapped file backed pages is needed for
3982 * file I/O otherwise pages read by file I/O will be immediately
3983 * thrown out if the node is overallocated. So we do not reclaim
3984 * if less than a specified percentage of the node is used by
3985 * unmapped file backed pages.
3986 */
3987 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
3988 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
3989 return NODE_RECLAIM_FULL;
3990
3991 /*
3992 * Do not scan if the allocation should not be delayed.
3993 */
3994 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
3995 return NODE_RECLAIM_NOSCAN;
3996
3997 /*
3998 * Only run node reclaim on the local node or on nodes that do not
3999 * have associated processors. This will favor the local processor
4000 * over remote processors and spread off node memory allocations
4001 * as wide as possible.
4002 */
4003 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
4004 return NODE_RECLAIM_NOSCAN;
4005
4006 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
4007 return NODE_RECLAIM_NOSCAN;
4008
4009 ret = __node_reclaim(pgdat, gfp_mask, order);
4010 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
4011
4012 if (!ret)
4013 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
4014
4015 return ret;
4016 }
4017 #endif
4018
4019 /*
4020 * page_evictable - test whether a page is evictable
4021 * @page: the page to test
4022 *
4023 * Test whether page is evictable--i.e., should be placed on active/inactive
4024 * lists vs unevictable list.
4025 *
4026 * Reasons page might not be evictable:
4027 * (1) page's mapping marked unevictable
4028 * (2) page is part of an mlocked VMA
4029 *
4030 */
4031 int page_evictable(struct page *page)
4032 {
4033 int ret;
4034
4035 /* Prevent address_space of inode and swap cache from being freed */
4036 rcu_read_lock();
4037 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
4038 rcu_read_unlock();
4039 return ret;
4040 }
4041
4042 #ifdef CONFIG_SHMEM
4043 /**
4044 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4045 * @pages: array of pages to check
4046 * @nr_pages: number of pages to check
4047 *
4048 * Checks pages for evictability and moves them to the appropriate lru list.
4049 *
4050 * This function is only used for SysV IPC SHM_UNLOCK.
4051 */
4052 void check_move_unevictable_pages(struct page **pages, int nr_pages)
4053 {
4054 struct lruvec *lruvec;
4055 struct pglist_data *pgdat = NULL;
4056 int pgscanned = 0;
4057 int pgrescued = 0;
4058 int i;
4059
4060 for (i = 0; i < nr_pages; i++) {
4061 struct page *page = pages[i];
4062 struct pglist_data *pagepgdat = page_pgdat(page);
4063
4064 pgscanned++;
4065 if (pagepgdat != pgdat) {
4066 if (pgdat)
4067 spin_unlock_irq(&pgdat->lru_lock);
4068 pgdat = pagepgdat;
4069 spin_lock_irq(&pgdat->lru_lock);
4070 }
4071 lruvec = mem_cgroup_page_lruvec(page, pgdat);
4072
4073 if (!PageLRU(page) || !PageUnevictable(page))
4074 continue;
4075
4076 if (page_evictable(page)) {
4077 enum lru_list lru = page_lru_base_type(page);
4078
4079 VM_BUG_ON_PAGE(PageActive(page), page);
4080 ClearPageUnevictable(page);
4081 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4082 add_page_to_lru_list(page, lruvec, lru);
4083 pgrescued++;
4084 }
4085 }
4086
4087 if (pgdat) {
4088 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4089 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
4090 spin_unlock_irq(&pgdat->lru_lock);
4091 }
4092 }
4093 #endif /* CONFIG_SHMEM */