remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / truncate.c
1 /*
2 * mm/truncate.c - code for taking down pages from address_spaces
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 10Sep2002 Andrew Morton
7 * Initial version.
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/backing-dev.h>
12 #include <linux/dax.h>
13 #include <linux/gfp.h>
14 #include <linux/mm.h>
15 #include <linux/swap.h>
16 #include <linux/export.h>
17 #include <linux/pagemap.h>
18 #include <linux/highmem.h>
19 #include <linux/pagevec.h>
20 #include <linux/task_io_accounting_ops.h>
21 #include <linux/buffer_head.h> /* grr. try_to_release_page,
22 do_invalidatepage */
23 #include <linux/shmem_fs.h>
24 #include <linux/cleancache.h>
25 #include <linux/rmap.h>
26 #include "internal.h"
27
28 static void clear_shadow_entry(struct address_space *mapping, pgoff_t index,
29 void *entry)
30 {
31 struct radix_tree_node *node;
32 void **slot;
33
34 spin_lock_irq(&mapping->tree_lock);
35 /*
36 * Regular page slots are stabilized by the page lock even
37 * without the tree itself locked. These unlocked entries
38 * need verification under the tree lock.
39 */
40 if (!__radix_tree_lookup(&mapping->page_tree, index, &node, &slot))
41 goto unlock;
42 if (*slot != entry)
43 goto unlock;
44 __radix_tree_replace(&mapping->page_tree, node, slot, NULL,
45 workingset_update_node, mapping);
46 mapping->nrexceptional--;
47 unlock:
48 spin_unlock_irq(&mapping->tree_lock);
49 }
50
51 /*
52 * Unconditionally remove exceptional entry. Usually called from truncate path.
53 */
54 static void truncate_exceptional_entry(struct address_space *mapping,
55 pgoff_t index, void *entry)
56 {
57 /* Handled by shmem itself */
58 if (shmem_mapping(mapping))
59 return;
60
61 if (dax_mapping(mapping)) {
62 dax_delete_mapping_entry(mapping, index);
63 return;
64 }
65 clear_shadow_entry(mapping, index, entry);
66 }
67
68 /*
69 * Invalidate exceptional entry if easily possible. This handles exceptional
70 * entries for invalidate_inode_pages().
71 */
72 static int invalidate_exceptional_entry(struct address_space *mapping,
73 pgoff_t index, void *entry)
74 {
75 /* Handled by shmem itself, or for DAX we do nothing. */
76 if (shmem_mapping(mapping) || dax_mapping(mapping))
77 return 1;
78 clear_shadow_entry(mapping, index, entry);
79 return 1;
80 }
81
82 /*
83 * Invalidate exceptional entry if clean. This handles exceptional entries for
84 * invalidate_inode_pages2() so for DAX it evicts only clean entries.
85 */
86 static int invalidate_exceptional_entry2(struct address_space *mapping,
87 pgoff_t index, void *entry)
88 {
89 /* Handled by shmem itself */
90 if (shmem_mapping(mapping))
91 return 1;
92 if (dax_mapping(mapping))
93 return dax_invalidate_mapping_entry_sync(mapping, index);
94 clear_shadow_entry(mapping, index, entry);
95 return 1;
96 }
97
98 /**
99 * do_invalidatepage - invalidate part or all of a page
100 * @page: the page which is affected
101 * @offset: start of the range to invalidate
102 * @length: length of the range to invalidate
103 *
104 * do_invalidatepage() is called when all or part of the page has become
105 * invalidated by a truncate operation.
106 *
107 * do_invalidatepage() does not have to release all buffers, but it must
108 * ensure that no dirty buffer is left outside @offset and that no I/O
109 * is underway against any of the blocks which are outside the truncation
110 * point. Because the caller is about to free (and possibly reuse) those
111 * blocks on-disk.
112 */
113 void do_invalidatepage(struct page *page, unsigned int offset,
114 unsigned int length)
115 {
116 void (*invalidatepage)(struct page *, unsigned int, unsigned int);
117
118 invalidatepage = page->mapping->a_ops->invalidatepage;
119 #ifdef CONFIG_BLOCK
120 if (!invalidatepage)
121 invalidatepage = block_invalidatepage;
122 #endif
123 if (invalidatepage)
124 (*invalidatepage)(page, offset, length);
125 }
126
127 /*
128 * If truncate cannot remove the fs-private metadata from the page, the page
129 * becomes orphaned. It will be left on the LRU and may even be mapped into
130 * user pagetables if we're racing with filemap_fault().
131 *
132 * We need to bale out if page->mapping is no longer equal to the original
133 * mapping. This happens a) when the VM reclaimed the page while we waited on
134 * its lock, b) when a concurrent invalidate_mapping_pages got there first and
135 * c) when tmpfs swizzles a page between a tmpfs inode and swapper_space.
136 */
137 static int
138 truncate_complete_page(struct address_space *mapping, struct page *page)
139 {
140 if (page->mapping != mapping)
141 return -EIO;
142
143 if (page_has_private(page))
144 do_invalidatepage(page, 0, PAGE_SIZE);
145
146 /*
147 * Some filesystems seem to re-dirty the page even after
148 * the VM has canceled the dirty bit (eg ext3 journaling).
149 * Hence dirty accounting check is placed after invalidation.
150 */
151 cancel_dirty_page(page);
152 ClearPageMappedToDisk(page);
153 delete_from_page_cache(page);
154 return 0;
155 }
156
157 /*
158 * This is for invalidate_mapping_pages(). That function can be called at
159 * any time, and is not supposed to throw away dirty pages. But pages can
160 * be marked dirty at any time too, so use remove_mapping which safely
161 * discards clean, unused pages.
162 *
163 * Returns non-zero if the page was successfully invalidated.
164 */
165 static int
166 invalidate_complete_page(struct address_space *mapping, struct page *page)
167 {
168 int ret;
169
170 if (page->mapping != mapping)
171 return 0;
172
173 if (page_has_private(page) && !try_to_release_page(page, 0))
174 return 0;
175
176 ret = remove_mapping(mapping, page);
177
178 return ret;
179 }
180
181 int truncate_inode_page(struct address_space *mapping, struct page *page)
182 {
183 loff_t holelen;
184 VM_BUG_ON_PAGE(PageTail(page), page);
185
186 holelen = PageTransHuge(page) ? HPAGE_PMD_SIZE : PAGE_SIZE;
187 if (page_mapped(page)) {
188 unmap_mapping_range(mapping,
189 (loff_t)page->index << PAGE_SHIFT,
190 holelen, 0);
191 }
192 return truncate_complete_page(mapping, page);
193 }
194
195 /*
196 * Used to get rid of pages on hardware memory corruption.
197 */
198 int generic_error_remove_page(struct address_space *mapping, struct page *page)
199 {
200 if (!mapping)
201 return -EINVAL;
202 /*
203 * Only punch for normal data pages for now.
204 * Handling other types like directories would need more auditing.
205 */
206 if (!S_ISREG(mapping->host->i_mode))
207 return -EIO;
208 return truncate_inode_page(mapping, page);
209 }
210 EXPORT_SYMBOL(generic_error_remove_page);
211
212 /*
213 * Safely invalidate one page from its pagecache mapping.
214 * It only drops clean, unused pages. The page must be locked.
215 *
216 * Returns 1 if the page is successfully invalidated, otherwise 0.
217 */
218 int invalidate_inode_page(struct page *page)
219 {
220 struct address_space *mapping = page_mapping(page);
221 if (!mapping)
222 return 0;
223 if (PageDirty(page) || PageWriteback(page))
224 return 0;
225 if (page_mapped(page))
226 return 0;
227 return invalidate_complete_page(mapping, page);
228 }
229
230 /**
231 * truncate_inode_pages_range - truncate range of pages specified by start & end byte offsets
232 * @mapping: mapping to truncate
233 * @lstart: offset from which to truncate
234 * @lend: offset to which to truncate (inclusive)
235 *
236 * Truncate the page cache, removing the pages that are between
237 * specified offsets (and zeroing out partial pages
238 * if lstart or lend + 1 is not page aligned).
239 *
240 * Truncate takes two passes - the first pass is nonblocking. It will not
241 * block on page locks and it will not block on writeback. The second pass
242 * will wait. This is to prevent as much IO as possible in the affected region.
243 * The first pass will remove most pages, so the search cost of the second pass
244 * is low.
245 *
246 * We pass down the cache-hot hint to the page freeing code. Even if the
247 * mapping is large, it is probably the case that the final pages are the most
248 * recently touched, and freeing happens in ascending file offset order.
249 *
250 * Note that since ->invalidatepage() accepts range to invalidate
251 * truncate_inode_pages_range is able to handle cases where lend + 1 is not
252 * page aligned properly.
253 */
254 void truncate_inode_pages_range(struct address_space *mapping,
255 loff_t lstart, loff_t lend)
256 {
257 pgoff_t start; /* inclusive */
258 pgoff_t end; /* exclusive */
259 unsigned int partial_start; /* inclusive */
260 unsigned int partial_end; /* exclusive */
261 struct pagevec pvec;
262 pgoff_t indices[PAGEVEC_SIZE];
263 pgoff_t index;
264 int i;
265
266 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
267 goto out;
268
269 /* Offsets within partial pages */
270 partial_start = lstart & (PAGE_SIZE - 1);
271 partial_end = (lend + 1) & (PAGE_SIZE - 1);
272
273 /*
274 * 'start' and 'end' always covers the range of pages to be fully
275 * truncated. Partial pages are covered with 'partial_start' at the
276 * start of the range and 'partial_end' at the end of the range.
277 * Note that 'end' is exclusive while 'lend' is inclusive.
278 */
279 start = (lstart + PAGE_SIZE - 1) >> PAGE_SHIFT;
280 if (lend == -1)
281 /*
282 * lend == -1 indicates end-of-file so we have to set 'end'
283 * to the highest possible pgoff_t and since the type is
284 * unsigned we're using -1.
285 */
286 end = -1;
287 else
288 end = (lend + 1) >> PAGE_SHIFT;
289
290 pagevec_init(&pvec, 0);
291 index = start;
292 while (index < end && pagevec_lookup_entries(&pvec, mapping, index,
293 min(end - index, (pgoff_t)PAGEVEC_SIZE),
294 indices)) {
295 for (i = 0; i < pagevec_count(&pvec); i++) {
296 struct page *page = pvec.pages[i];
297
298 /* We rely upon deletion not changing page->index */
299 index = indices[i];
300 if (index >= end)
301 break;
302
303 if (radix_tree_exceptional_entry(page)) {
304 truncate_exceptional_entry(mapping, index,
305 page);
306 continue;
307 }
308
309 if (!trylock_page(page))
310 continue;
311 WARN_ON(page_to_index(page) != index);
312 if (PageWriteback(page)) {
313 unlock_page(page);
314 continue;
315 }
316 truncate_inode_page(mapping, page);
317 unlock_page(page);
318 }
319 pagevec_remove_exceptionals(&pvec);
320 pagevec_release(&pvec);
321 cond_resched();
322 index++;
323 }
324
325 if (partial_start) {
326 struct page *page = find_lock_page(mapping, start - 1);
327 if (page) {
328 unsigned int top = PAGE_SIZE;
329 if (start > end) {
330 /* Truncation within a single page */
331 top = partial_end;
332 partial_end = 0;
333 }
334 wait_on_page_writeback(page);
335 zero_user_segment(page, partial_start, top);
336 cleancache_invalidate_page(mapping, page);
337 if (page_has_private(page))
338 do_invalidatepage(page, partial_start,
339 top - partial_start);
340 unlock_page(page);
341 put_page(page);
342 }
343 }
344 if (partial_end) {
345 struct page *page = find_lock_page(mapping, end);
346 if (page) {
347 wait_on_page_writeback(page);
348 zero_user_segment(page, 0, partial_end);
349 cleancache_invalidate_page(mapping, page);
350 if (page_has_private(page))
351 do_invalidatepage(page, 0,
352 partial_end);
353 unlock_page(page);
354 put_page(page);
355 }
356 }
357 /*
358 * If the truncation happened within a single page no pages
359 * will be released, just zeroed, so we can bail out now.
360 */
361 if (start >= end)
362 goto out;
363
364 index = start;
365 for ( ; ; ) {
366 cond_resched();
367 if (!pagevec_lookup_entries(&pvec, mapping, index,
368 min(end - index, (pgoff_t)PAGEVEC_SIZE), indices)) {
369 /* If all gone from start onwards, we're done */
370 if (index == start)
371 break;
372 /* Otherwise restart to make sure all gone */
373 index = start;
374 continue;
375 }
376 if (index == start && indices[0] >= end) {
377 /* All gone out of hole to be punched, we're done */
378 pagevec_remove_exceptionals(&pvec);
379 pagevec_release(&pvec);
380 break;
381 }
382 for (i = 0; i < pagevec_count(&pvec); i++) {
383 struct page *page = pvec.pages[i];
384
385 /* We rely upon deletion not changing page->index */
386 index = indices[i];
387 if (index >= end) {
388 /* Restart punch to make sure all gone */
389 index = start - 1;
390 break;
391 }
392
393 if (radix_tree_exceptional_entry(page)) {
394 truncate_exceptional_entry(mapping, index,
395 page);
396 continue;
397 }
398
399 lock_page(page);
400 WARN_ON(page_to_index(page) != index);
401 wait_on_page_writeback(page);
402 truncate_inode_page(mapping, page);
403 unlock_page(page);
404 }
405 pagevec_remove_exceptionals(&pvec);
406 pagevec_release(&pvec);
407 index++;
408 }
409
410 out:
411 cleancache_invalidate_inode(mapping);
412 }
413 EXPORT_SYMBOL(truncate_inode_pages_range);
414
415 /**
416 * truncate_inode_pages - truncate *all* the pages from an offset
417 * @mapping: mapping to truncate
418 * @lstart: offset from which to truncate
419 *
420 * Called under (and serialised by) inode->i_mutex.
421 *
422 * Note: When this function returns, there can be a page in the process of
423 * deletion (inside __delete_from_page_cache()) in the specified range. Thus
424 * mapping->nrpages can be non-zero when this function returns even after
425 * truncation of the whole mapping.
426 */
427 void truncate_inode_pages(struct address_space *mapping, loff_t lstart)
428 {
429 truncate_inode_pages_range(mapping, lstart, (loff_t)-1);
430 }
431 EXPORT_SYMBOL(truncate_inode_pages);
432
433 /**
434 * truncate_inode_pages_final - truncate *all* pages before inode dies
435 * @mapping: mapping to truncate
436 *
437 * Called under (and serialized by) inode->i_mutex.
438 *
439 * Filesystems have to use this in the .evict_inode path to inform the
440 * VM that this is the final truncate and the inode is going away.
441 */
442 void truncate_inode_pages_final(struct address_space *mapping)
443 {
444 unsigned long nrexceptional;
445 unsigned long nrpages;
446
447 /*
448 * Page reclaim can not participate in regular inode lifetime
449 * management (can't call iput()) and thus can race with the
450 * inode teardown. Tell it when the address space is exiting,
451 * so that it does not install eviction information after the
452 * final truncate has begun.
453 */
454 mapping_set_exiting(mapping);
455
456 /*
457 * When reclaim installs eviction entries, it increases
458 * nrexceptional first, then decreases nrpages. Make sure we see
459 * this in the right order or we might miss an entry.
460 */
461 nrpages = mapping->nrpages;
462 smp_rmb();
463 nrexceptional = mapping->nrexceptional;
464
465 if (nrpages || nrexceptional) {
466 /*
467 * As truncation uses a lockless tree lookup, cycle
468 * the tree lock to make sure any ongoing tree
469 * modification that does not see AS_EXITING is
470 * completed before starting the final truncate.
471 */
472 spin_lock_irq(&mapping->tree_lock);
473 spin_unlock_irq(&mapping->tree_lock);
474 }
475
476 /*
477 * Cleancache needs notification even if there are no pages or shadow
478 * entries.
479 */
480 truncate_inode_pages(mapping, 0);
481 }
482 EXPORT_SYMBOL(truncate_inode_pages_final);
483
484 /**
485 * invalidate_mapping_pages - Invalidate all the unlocked pages of one inode
486 * @mapping: the address_space which holds the pages to invalidate
487 * @start: the offset 'from' which to invalidate
488 * @end: the offset 'to' which to invalidate (inclusive)
489 *
490 * This function only removes the unlocked pages, if you want to
491 * remove all the pages of one inode, you must call truncate_inode_pages.
492 *
493 * invalidate_mapping_pages() will not block on IO activity. It will not
494 * invalidate pages which are dirty, locked, under writeback or mapped into
495 * pagetables.
496 */
497 unsigned long invalidate_mapping_pages(struct address_space *mapping,
498 pgoff_t start, pgoff_t end)
499 {
500 pgoff_t indices[PAGEVEC_SIZE];
501 struct pagevec pvec;
502 pgoff_t index = start;
503 unsigned long ret;
504 unsigned long count = 0;
505 int i;
506
507 pagevec_init(&pvec, 0);
508 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
509 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
510 indices)) {
511 for (i = 0; i < pagevec_count(&pvec); i++) {
512 struct page *page = pvec.pages[i];
513
514 /* We rely upon deletion not changing page->index */
515 index = indices[i];
516 if (index > end)
517 break;
518
519 if (radix_tree_exceptional_entry(page)) {
520 invalidate_exceptional_entry(mapping, index,
521 page);
522 continue;
523 }
524
525 if (!trylock_page(page))
526 continue;
527
528 WARN_ON(page_to_index(page) != index);
529
530 /* Middle of THP: skip */
531 if (PageTransTail(page)) {
532 unlock_page(page);
533 continue;
534 } else if (PageTransHuge(page)) {
535 index += HPAGE_PMD_NR - 1;
536 i += HPAGE_PMD_NR - 1;
537 /*
538 * 'end' is in the middle of THP. Don't
539 * invalidate the page as the part outside of
540 * 'end' could be still useful.
541 */
542 if (index > end) {
543 unlock_page(page);
544 continue;
545 }
546 }
547
548 ret = invalidate_inode_page(page);
549 unlock_page(page);
550 /*
551 * Invalidation is a hint that the page is no longer
552 * of interest and try to speed up its reclaim.
553 */
554 if (!ret)
555 deactivate_file_page(page);
556 count += ret;
557 }
558 pagevec_remove_exceptionals(&pvec);
559 pagevec_release(&pvec);
560 cond_resched();
561 index++;
562 }
563 return count;
564 }
565 EXPORT_SYMBOL(invalidate_mapping_pages);
566
567 /*
568 * This is like invalidate_complete_page(), except it ignores the page's
569 * refcount. We do this because invalidate_inode_pages2() needs stronger
570 * invalidation guarantees, and cannot afford to leave pages behind because
571 * shrink_page_list() has a temp ref on them, or because they're transiently
572 * sitting in the lru_cache_add() pagevecs.
573 */
574 static int
575 invalidate_complete_page2(struct address_space *mapping, struct page *page)
576 {
577 unsigned long flags;
578
579 if (page->mapping != mapping)
580 return 0;
581
582 if (page_has_private(page) && !try_to_release_page(page, GFP_KERNEL))
583 return 0;
584
585 spin_lock_irqsave(&mapping->tree_lock, flags);
586 if (PageDirty(page))
587 goto failed;
588
589 BUG_ON(page_has_private(page));
590 __delete_from_page_cache(page, NULL);
591 spin_unlock_irqrestore(&mapping->tree_lock, flags);
592
593 if (mapping->a_ops->freepage)
594 mapping->a_ops->freepage(page);
595
596 put_page(page); /* pagecache ref */
597 return 1;
598 failed:
599 spin_unlock_irqrestore(&mapping->tree_lock, flags);
600 return 0;
601 }
602
603 static int do_launder_page(struct address_space *mapping, struct page *page)
604 {
605 if (!PageDirty(page))
606 return 0;
607 if (page->mapping != mapping || mapping->a_ops->launder_page == NULL)
608 return 0;
609 return mapping->a_ops->launder_page(page);
610 }
611
612 /**
613 * invalidate_inode_pages2_range - remove range of pages from an address_space
614 * @mapping: the address_space
615 * @start: the page offset 'from' which to invalidate
616 * @end: the page offset 'to' which to invalidate (inclusive)
617 *
618 * Any pages which are found to be mapped into pagetables are unmapped prior to
619 * invalidation.
620 *
621 * Returns -EBUSY if any pages could not be invalidated.
622 */
623 int invalidate_inode_pages2_range(struct address_space *mapping,
624 pgoff_t start, pgoff_t end)
625 {
626 pgoff_t indices[PAGEVEC_SIZE];
627 struct pagevec pvec;
628 pgoff_t index;
629 int i;
630 int ret = 0;
631 int ret2 = 0;
632 int did_range_unmap = 0;
633
634 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
635 goto out;
636
637 pagevec_init(&pvec, 0);
638 index = start;
639 while (index <= end && pagevec_lookup_entries(&pvec, mapping, index,
640 min(end - index, (pgoff_t)PAGEVEC_SIZE - 1) + 1,
641 indices)) {
642 for (i = 0; i < pagevec_count(&pvec); i++) {
643 struct page *page = pvec.pages[i];
644
645 /* We rely upon deletion not changing page->index */
646 index = indices[i];
647 if (index > end)
648 break;
649
650 if (radix_tree_exceptional_entry(page)) {
651 if (!invalidate_exceptional_entry2(mapping,
652 index, page))
653 ret = -EBUSY;
654 continue;
655 }
656
657 lock_page(page);
658 WARN_ON(page_to_index(page) != index);
659 if (page->mapping != mapping) {
660 unlock_page(page);
661 continue;
662 }
663 wait_on_page_writeback(page);
664 if (page_mapped(page)) {
665 if (!did_range_unmap) {
666 /*
667 * Zap the rest of the file in one hit.
668 */
669 unmap_mapping_range(mapping,
670 (loff_t)index << PAGE_SHIFT,
671 (loff_t)(1 + end - index)
672 << PAGE_SHIFT,
673 0);
674 did_range_unmap = 1;
675 } else {
676 /*
677 * Just zap this page
678 */
679 unmap_mapping_range(mapping,
680 (loff_t)index << PAGE_SHIFT,
681 PAGE_SIZE, 0);
682 }
683 }
684 BUG_ON(page_mapped(page));
685 ret2 = do_launder_page(mapping, page);
686 if (ret2 == 0) {
687 if (!invalidate_complete_page2(mapping, page))
688 ret2 = -EBUSY;
689 }
690 if (ret2 < 0)
691 ret = ret2;
692 unlock_page(page);
693 }
694 pagevec_remove_exceptionals(&pvec);
695 pagevec_release(&pvec);
696 cond_resched();
697 index++;
698 }
699 /*
700 * For DAX we invalidate page tables after invalidating radix tree. We
701 * could invalidate page tables while invalidating each entry however
702 * that would be expensive. And doing range unmapping before doesn't
703 * work as we have no cheap way to find whether radix tree entry didn't
704 * get remapped later.
705 */
706 if (dax_mapping(mapping)) {
707 unmap_mapping_range(mapping, (loff_t)start << PAGE_SHIFT,
708 (loff_t)(end - start + 1) << PAGE_SHIFT, 0);
709 }
710 out:
711 cleancache_invalidate_inode(mapping);
712 return ret;
713 }
714 EXPORT_SYMBOL_GPL(invalidate_inode_pages2_range);
715
716 /**
717 * invalidate_inode_pages2 - remove all pages from an address_space
718 * @mapping: the address_space
719 *
720 * Any pages which are found to be mapped into pagetables are unmapped prior to
721 * invalidation.
722 *
723 * Returns -EBUSY if any pages could not be invalidated.
724 */
725 int invalidate_inode_pages2(struct address_space *mapping)
726 {
727 return invalidate_inode_pages2_range(mapping, 0, -1);
728 }
729 EXPORT_SYMBOL_GPL(invalidate_inode_pages2);
730
731 /**
732 * truncate_pagecache - unmap and remove pagecache that has been truncated
733 * @inode: inode
734 * @newsize: new file size
735 *
736 * inode's new i_size must already be written before truncate_pagecache
737 * is called.
738 *
739 * This function should typically be called before the filesystem
740 * releases resources associated with the freed range (eg. deallocates
741 * blocks). This way, pagecache will always stay logically coherent
742 * with on-disk format, and the filesystem would not have to deal with
743 * situations such as writepage being called for a page that has already
744 * had its underlying blocks deallocated.
745 */
746 void truncate_pagecache(struct inode *inode, loff_t newsize)
747 {
748 struct address_space *mapping = inode->i_mapping;
749 loff_t holebegin = round_up(newsize, PAGE_SIZE);
750
751 /*
752 * unmap_mapping_range is called twice, first simply for
753 * efficiency so that truncate_inode_pages does fewer
754 * single-page unmaps. However after this first call, and
755 * before truncate_inode_pages finishes, it is possible for
756 * private pages to be COWed, which remain after
757 * truncate_inode_pages finishes, hence the second
758 * unmap_mapping_range call must be made for correctness.
759 */
760 unmap_mapping_range(mapping, holebegin, 0, 1);
761 truncate_inode_pages(mapping, newsize);
762 unmap_mapping_range(mapping, holebegin, 0, 1);
763 }
764 EXPORT_SYMBOL(truncate_pagecache);
765
766 /**
767 * truncate_setsize - update inode and pagecache for a new file size
768 * @inode: inode
769 * @newsize: new file size
770 *
771 * truncate_setsize updates i_size and performs pagecache truncation (if
772 * necessary) to @newsize. It will be typically be called from the filesystem's
773 * setattr function when ATTR_SIZE is passed in.
774 *
775 * Must be called with a lock serializing truncates and writes (generally
776 * i_mutex but e.g. xfs uses a different lock) and before all filesystem
777 * specific block truncation has been performed.
778 */
779 void truncate_setsize(struct inode *inode, loff_t newsize)
780 {
781 loff_t oldsize = inode->i_size;
782
783 i_size_write(inode, newsize);
784 if (newsize > oldsize)
785 pagecache_isize_extended(inode, oldsize, newsize);
786 truncate_pagecache(inode, newsize);
787 }
788 EXPORT_SYMBOL(truncate_setsize);
789
790 /**
791 * pagecache_isize_extended - update pagecache after extension of i_size
792 * @inode: inode for which i_size was extended
793 * @from: original inode size
794 * @to: new inode size
795 *
796 * Handle extension of inode size either caused by extending truncate or by
797 * write starting after current i_size. We mark the page straddling current
798 * i_size RO so that page_mkwrite() is called on the nearest write access to
799 * the page. This way filesystem can be sure that page_mkwrite() is called on
800 * the page before user writes to the page via mmap after the i_size has been
801 * changed.
802 *
803 * The function must be called after i_size is updated so that page fault
804 * coming after we unlock the page will already see the new i_size.
805 * The function must be called while we still hold i_mutex - this not only
806 * makes sure i_size is stable but also that userspace cannot observe new
807 * i_size value before we are prepared to store mmap writes at new inode size.
808 */
809 void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to)
810 {
811 int bsize = i_blocksize(inode);
812 loff_t rounded_from;
813 struct page *page;
814 pgoff_t index;
815
816 WARN_ON(to > inode->i_size);
817
818 if (from >= to || bsize == PAGE_SIZE)
819 return;
820 /* Page straddling @from will not have any hole block created? */
821 rounded_from = round_up(from, bsize);
822 if (to <= rounded_from || !(rounded_from & (PAGE_SIZE - 1)))
823 return;
824
825 index = from >> PAGE_SHIFT;
826 page = find_lock_page(inode->i_mapping, index);
827 /* Page not cached? Nothing to do */
828 if (!page)
829 return;
830 /*
831 * See clear_page_dirty_for_io() for details why set_page_dirty()
832 * is needed.
833 */
834 if (page_mkclean(page))
835 set_page_dirty(page);
836 unlock_page(page);
837 put_page(page);
838 }
839 EXPORT_SYMBOL(pagecache_isize_extended);
840
841 /**
842 * truncate_pagecache_range - unmap and remove pagecache that is hole-punched
843 * @inode: inode
844 * @lstart: offset of beginning of hole
845 * @lend: offset of last byte of hole
846 *
847 * This function should typically be called before the filesystem
848 * releases resources associated with the freed range (eg. deallocates
849 * blocks). This way, pagecache will always stay logically coherent
850 * with on-disk format, and the filesystem would not have to deal with
851 * situations such as writepage being called for a page that has already
852 * had its underlying blocks deallocated.
853 */
854 void truncate_pagecache_range(struct inode *inode, loff_t lstart, loff_t lend)
855 {
856 struct address_space *mapping = inode->i_mapping;
857 loff_t unmap_start = round_up(lstart, PAGE_SIZE);
858 loff_t unmap_end = round_down(1 + lend, PAGE_SIZE) - 1;
859 /*
860 * This rounding is currently just for example: unmap_mapping_range
861 * expands its hole outwards, whereas we want it to contract the hole
862 * inwards. However, existing callers of truncate_pagecache_range are
863 * doing their own page rounding first. Note that unmap_mapping_range
864 * allows holelen 0 for all, and we allow lend -1 for end of file.
865 */
866
867 /*
868 * Unlike in truncate_pagecache, unmap_mapping_range is called only
869 * once (before truncating pagecache), and without "even_cows" flag:
870 * hole-punching should not remove private COWed pages from the hole.
871 */
872 if ((u64)unmap_end > (u64)unmap_start)
873 unmap_mapping_range(mapping, unmap_start,
874 1 + unmap_end - unmap_start, 0);
875 truncate_inode_pages_range(mapping, lstart, lend);
876 }
877 EXPORT_SYMBOL(truncate_pagecache_range);