Merge branch 'work.mount' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / swapfile.c
1 /*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched/mm.h>
10 #include <linux/sched/task.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mman.h>
13 #include <linux/slab.h>
14 #include <linux/kernel_stat.h>
15 #include <linux/swap.h>
16 #include <linux/vmalloc.h>
17 #include <linux/pagemap.h>
18 #include <linux/namei.h>
19 #include <linux/shmem_fs.h>
20 #include <linux/blkdev.h>
21 #include <linux/random.h>
22 #include <linux/writeback.h>
23 #include <linux/proc_fs.h>
24 #include <linux/seq_file.h>
25 #include <linux/init.h>
26 #include <linux/ksm.h>
27 #include <linux/rmap.h>
28 #include <linux/security.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mutex.h>
31 #include <linux/capability.h>
32 #include <linux/syscalls.h>
33 #include <linux/memcontrol.h>
34 #include <linux/poll.h>
35 #include <linux/oom.h>
36 #include <linux/frontswap.h>
37 #include <linux/swapfile.h>
38 #include <linux/export.h>
39 #include <linux/swap_slots.h>
40 #include <linux/sort.h>
41
42 #include <asm/pgtable.h>
43 #include <asm/tlbflush.h>
44 #include <linux/swapops.h>
45 #include <linux/swap_cgroup.h>
46
47 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49 static void free_swap_count_continuations(struct swap_info_struct *);
50 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
51
52 DEFINE_SPINLOCK(swap_lock);
53 static unsigned int nr_swapfiles;
54 atomic_long_t nr_swap_pages;
55 /*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60 EXPORT_SYMBOL_GPL(nr_swap_pages);
61 /* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
62 long total_swap_pages;
63 static int least_priority = -1;
64
65 static const char Bad_file[] = "Bad swap file entry ";
66 static const char Unused_file[] = "Unused swap file entry ";
67 static const char Bad_offset[] = "Bad swap offset entry ";
68 static const char Unused_offset[] = "Unused swap offset entry ";
69
70 /*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
74 PLIST_HEAD(swap_active_head);
75
76 /*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
88 struct plist_head *swap_avail_heads;
89 static DEFINE_SPINLOCK(swap_avail_lock);
90
91 struct swap_info_struct *swap_info[MAX_SWAPFILES];
92
93 static DEFINE_MUTEX(swapon_mutex);
94
95 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96 /* Activity counter to indicate that a swapon or swapoff has occurred */
97 static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
99 atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
101 static inline unsigned char swap_count(unsigned char ent)
102 {
103 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
104 }
105
106 /* returns 1 if swap entry is freed */
107 static int
108 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
109 {
110 swp_entry_t entry = swp_entry(si->type, offset);
111 struct page *page;
112 int ret = 0;
113
114 page = find_get_page(swap_address_space(entry), swp_offset(entry));
115 if (!page)
116 return 0;
117 /*
118 * This function is called from scan_swap_map() and it's called
119 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120 * We have to use trylock for avoiding deadlock. This is a special
121 * case and you should use try_to_free_swap() with explicit lock_page()
122 * in usual operations.
123 */
124 if (trylock_page(page)) {
125 ret = try_to_free_swap(page);
126 unlock_page(page);
127 }
128 put_page(page);
129 return ret;
130 }
131
132 /*
133 * swapon tell device that all the old swap contents can be discarded,
134 * to allow the swap device to optimize its wear-levelling.
135 */
136 static int discard_swap(struct swap_info_struct *si)
137 {
138 struct swap_extent *se;
139 sector_t start_block;
140 sector_t nr_blocks;
141 int err = 0;
142
143 /* Do not discard the swap header page! */
144 se = &si->first_swap_extent;
145 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
146 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
147 if (nr_blocks) {
148 err = blkdev_issue_discard(si->bdev, start_block,
149 nr_blocks, GFP_KERNEL, 0);
150 if (err)
151 return err;
152 cond_resched();
153 }
154
155 list_for_each_entry(se, &si->first_swap_extent.list, list) {
156 start_block = se->start_block << (PAGE_SHIFT - 9);
157 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
158
159 err = blkdev_issue_discard(si->bdev, start_block,
160 nr_blocks, GFP_KERNEL, 0);
161 if (err)
162 break;
163
164 cond_resched();
165 }
166 return err; /* That will often be -EOPNOTSUPP */
167 }
168
169 /*
170 * swap allocation tell device that a cluster of swap can now be discarded,
171 * to allow the swap device to optimize its wear-levelling.
172 */
173 static void discard_swap_cluster(struct swap_info_struct *si,
174 pgoff_t start_page, pgoff_t nr_pages)
175 {
176 struct swap_extent *se = si->curr_swap_extent;
177 int found_extent = 0;
178
179 while (nr_pages) {
180 if (se->start_page <= start_page &&
181 start_page < se->start_page + se->nr_pages) {
182 pgoff_t offset = start_page - se->start_page;
183 sector_t start_block = se->start_block + offset;
184 sector_t nr_blocks = se->nr_pages - offset;
185
186 if (nr_blocks > nr_pages)
187 nr_blocks = nr_pages;
188 start_page += nr_blocks;
189 nr_pages -= nr_blocks;
190
191 if (!found_extent++)
192 si->curr_swap_extent = se;
193
194 start_block <<= PAGE_SHIFT - 9;
195 nr_blocks <<= PAGE_SHIFT - 9;
196 if (blkdev_issue_discard(si->bdev, start_block,
197 nr_blocks, GFP_NOIO, 0))
198 break;
199 }
200
201 se = list_next_entry(se, list);
202 }
203 }
204
205 #ifdef CONFIG_THP_SWAP
206 #define SWAPFILE_CLUSTER HPAGE_PMD_NR
207 #else
208 #define SWAPFILE_CLUSTER 256
209 #endif
210 #define LATENCY_LIMIT 256
211
212 static inline void cluster_set_flag(struct swap_cluster_info *info,
213 unsigned int flag)
214 {
215 info->flags = flag;
216 }
217
218 static inline unsigned int cluster_count(struct swap_cluster_info *info)
219 {
220 return info->data;
221 }
222
223 static inline void cluster_set_count(struct swap_cluster_info *info,
224 unsigned int c)
225 {
226 info->data = c;
227 }
228
229 static inline void cluster_set_count_flag(struct swap_cluster_info *info,
230 unsigned int c, unsigned int f)
231 {
232 info->flags = f;
233 info->data = c;
234 }
235
236 static inline unsigned int cluster_next(struct swap_cluster_info *info)
237 {
238 return info->data;
239 }
240
241 static inline void cluster_set_next(struct swap_cluster_info *info,
242 unsigned int n)
243 {
244 info->data = n;
245 }
246
247 static inline void cluster_set_next_flag(struct swap_cluster_info *info,
248 unsigned int n, unsigned int f)
249 {
250 info->flags = f;
251 info->data = n;
252 }
253
254 static inline bool cluster_is_free(struct swap_cluster_info *info)
255 {
256 return info->flags & CLUSTER_FLAG_FREE;
257 }
258
259 static inline bool cluster_is_null(struct swap_cluster_info *info)
260 {
261 return info->flags & CLUSTER_FLAG_NEXT_NULL;
262 }
263
264 static inline void cluster_set_null(struct swap_cluster_info *info)
265 {
266 info->flags = CLUSTER_FLAG_NEXT_NULL;
267 info->data = 0;
268 }
269
270 static inline bool cluster_is_huge(struct swap_cluster_info *info)
271 {
272 return info->flags & CLUSTER_FLAG_HUGE;
273 }
274
275 static inline void cluster_clear_huge(struct swap_cluster_info *info)
276 {
277 info->flags &= ~CLUSTER_FLAG_HUGE;
278 }
279
280 static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
281 unsigned long offset)
282 {
283 struct swap_cluster_info *ci;
284
285 ci = si->cluster_info;
286 if (ci) {
287 ci += offset / SWAPFILE_CLUSTER;
288 spin_lock(&ci->lock);
289 }
290 return ci;
291 }
292
293 static inline void unlock_cluster(struct swap_cluster_info *ci)
294 {
295 if (ci)
296 spin_unlock(&ci->lock);
297 }
298
299 static inline struct swap_cluster_info *lock_cluster_or_swap_info(
300 struct swap_info_struct *si,
301 unsigned long offset)
302 {
303 struct swap_cluster_info *ci;
304
305 ci = lock_cluster(si, offset);
306 if (!ci)
307 spin_lock(&si->lock);
308
309 return ci;
310 }
311
312 static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
313 struct swap_cluster_info *ci)
314 {
315 if (ci)
316 unlock_cluster(ci);
317 else
318 spin_unlock(&si->lock);
319 }
320
321 static inline bool cluster_list_empty(struct swap_cluster_list *list)
322 {
323 return cluster_is_null(&list->head);
324 }
325
326 static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
327 {
328 return cluster_next(&list->head);
329 }
330
331 static void cluster_list_init(struct swap_cluster_list *list)
332 {
333 cluster_set_null(&list->head);
334 cluster_set_null(&list->tail);
335 }
336
337 static void cluster_list_add_tail(struct swap_cluster_list *list,
338 struct swap_cluster_info *ci,
339 unsigned int idx)
340 {
341 if (cluster_list_empty(list)) {
342 cluster_set_next_flag(&list->head, idx, 0);
343 cluster_set_next_flag(&list->tail, idx, 0);
344 } else {
345 struct swap_cluster_info *ci_tail;
346 unsigned int tail = cluster_next(&list->tail);
347
348 /*
349 * Nested cluster lock, but both cluster locks are
350 * only acquired when we held swap_info_struct->lock
351 */
352 ci_tail = ci + tail;
353 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
354 cluster_set_next(ci_tail, idx);
355 spin_unlock(&ci_tail->lock);
356 cluster_set_next_flag(&list->tail, idx, 0);
357 }
358 }
359
360 static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
361 struct swap_cluster_info *ci)
362 {
363 unsigned int idx;
364
365 idx = cluster_next(&list->head);
366 if (cluster_next(&list->tail) == idx) {
367 cluster_set_null(&list->head);
368 cluster_set_null(&list->tail);
369 } else
370 cluster_set_next_flag(&list->head,
371 cluster_next(&ci[idx]), 0);
372
373 return idx;
374 }
375
376 /* Add a cluster to discard list and schedule it to do discard */
377 static void swap_cluster_schedule_discard(struct swap_info_struct *si,
378 unsigned int idx)
379 {
380 /*
381 * If scan_swap_map() can't find a free cluster, it will check
382 * si->swap_map directly. To make sure the discarding cluster isn't
383 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
384 * will be cleared after discard
385 */
386 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
387 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
388
389 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
390
391 schedule_work(&si->discard_work);
392 }
393
394 static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
395 {
396 struct swap_cluster_info *ci = si->cluster_info;
397
398 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
399 cluster_list_add_tail(&si->free_clusters, ci, idx);
400 }
401
402 /*
403 * Doing discard actually. After a cluster discard is finished, the cluster
404 * will be added to free cluster list. caller should hold si->lock.
405 */
406 static void swap_do_scheduled_discard(struct swap_info_struct *si)
407 {
408 struct swap_cluster_info *info, *ci;
409 unsigned int idx;
410
411 info = si->cluster_info;
412
413 while (!cluster_list_empty(&si->discard_clusters)) {
414 idx = cluster_list_del_first(&si->discard_clusters, info);
415 spin_unlock(&si->lock);
416
417 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
418 SWAPFILE_CLUSTER);
419
420 spin_lock(&si->lock);
421 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
422 __free_cluster(si, idx);
423 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
424 0, SWAPFILE_CLUSTER);
425 unlock_cluster(ci);
426 }
427 }
428
429 static void swap_discard_work(struct work_struct *work)
430 {
431 struct swap_info_struct *si;
432
433 si = container_of(work, struct swap_info_struct, discard_work);
434
435 spin_lock(&si->lock);
436 swap_do_scheduled_discard(si);
437 spin_unlock(&si->lock);
438 }
439
440 static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
441 {
442 struct swap_cluster_info *ci = si->cluster_info;
443
444 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
445 cluster_list_del_first(&si->free_clusters, ci);
446 cluster_set_count_flag(ci + idx, 0, 0);
447 }
448
449 static void free_cluster(struct swap_info_struct *si, unsigned long idx)
450 {
451 struct swap_cluster_info *ci = si->cluster_info + idx;
452
453 VM_BUG_ON(cluster_count(ci) != 0);
454 /*
455 * If the swap is discardable, prepare discard the cluster
456 * instead of free it immediately. The cluster will be freed
457 * after discard.
458 */
459 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
460 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
461 swap_cluster_schedule_discard(si, idx);
462 return;
463 }
464
465 __free_cluster(si, idx);
466 }
467
468 /*
469 * The cluster corresponding to page_nr will be used. The cluster will be
470 * removed from free cluster list and its usage counter will be increased.
471 */
472 static void inc_cluster_info_page(struct swap_info_struct *p,
473 struct swap_cluster_info *cluster_info, unsigned long page_nr)
474 {
475 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
476
477 if (!cluster_info)
478 return;
479 if (cluster_is_free(&cluster_info[idx]))
480 alloc_cluster(p, idx);
481
482 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
483 cluster_set_count(&cluster_info[idx],
484 cluster_count(&cluster_info[idx]) + 1);
485 }
486
487 /*
488 * The cluster corresponding to page_nr decreases one usage. If the usage
489 * counter becomes 0, which means no page in the cluster is in using, we can
490 * optionally discard the cluster and add it to free cluster list.
491 */
492 static void dec_cluster_info_page(struct swap_info_struct *p,
493 struct swap_cluster_info *cluster_info, unsigned long page_nr)
494 {
495 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
496
497 if (!cluster_info)
498 return;
499
500 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
501 cluster_set_count(&cluster_info[idx],
502 cluster_count(&cluster_info[idx]) - 1);
503
504 if (cluster_count(&cluster_info[idx]) == 0)
505 free_cluster(p, idx);
506 }
507
508 /*
509 * It's possible scan_swap_map() uses a free cluster in the middle of free
510 * cluster list. Avoiding such abuse to avoid list corruption.
511 */
512 static bool
513 scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
514 unsigned long offset)
515 {
516 struct percpu_cluster *percpu_cluster;
517 bool conflict;
518
519 offset /= SWAPFILE_CLUSTER;
520 conflict = !cluster_list_empty(&si->free_clusters) &&
521 offset != cluster_list_first(&si->free_clusters) &&
522 cluster_is_free(&si->cluster_info[offset]);
523
524 if (!conflict)
525 return false;
526
527 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
528 cluster_set_null(&percpu_cluster->index);
529 return true;
530 }
531
532 /*
533 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
534 * might involve allocating a new cluster for current CPU too.
535 */
536 static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
537 unsigned long *offset, unsigned long *scan_base)
538 {
539 struct percpu_cluster *cluster;
540 struct swap_cluster_info *ci;
541 bool found_free;
542 unsigned long tmp, max;
543
544 new_cluster:
545 cluster = this_cpu_ptr(si->percpu_cluster);
546 if (cluster_is_null(&cluster->index)) {
547 if (!cluster_list_empty(&si->free_clusters)) {
548 cluster->index = si->free_clusters.head;
549 cluster->next = cluster_next(&cluster->index) *
550 SWAPFILE_CLUSTER;
551 } else if (!cluster_list_empty(&si->discard_clusters)) {
552 /*
553 * we don't have free cluster but have some clusters in
554 * discarding, do discard now and reclaim them
555 */
556 swap_do_scheduled_discard(si);
557 *scan_base = *offset = si->cluster_next;
558 goto new_cluster;
559 } else
560 return false;
561 }
562
563 found_free = false;
564
565 /*
566 * Other CPUs can use our cluster if they can't find a free cluster,
567 * check if there is still free entry in the cluster
568 */
569 tmp = cluster->next;
570 max = min_t(unsigned long, si->max,
571 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
572 if (tmp >= max) {
573 cluster_set_null(&cluster->index);
574 goto new_cluster;
575 }
576 ci = lock_cluster(si, tmp);
577 while (tmp < max) {
578 if (!si->swap_map[tmp]) {
579 found_free = true;
580 break;
581 }
582 tmp++;
583 }
584 unlock_cluster(ci);
585 if (!found_free) {
586 cluster_set_null(&cluster->index);
587 goto new_cluster;
588 }
589 cluster->next = tmp + 1;
590 *offset = tmp;
591 *scan_base = tmp;
592 return found_free;
593 }
594
595 static void __del_from_avail_list(struct swap_info_struct *p)
596 {
597 int nid;
598
599 for_each_node(nid)
600 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
601 }
602
603 static void del_from_avail_list(struct swap_info_struct *p)
604 {
605 spin_lock(&swap_avail_lock);
606 __del_from_avail_list(p);
607 spin_unlock(&swap_avail_lock);
608 }
609
610 static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
611 unsigned int nr_entries)
612 {
613 unsigned int end = offset + nr_entries - 1;
614
615 if (offset == si->lowest_bit)
616 si->lowest_bit += nr_entries;
617 if (end == si->highest_bit)
618 si->highest_bit -= nr_entries;
619 si->inuse_pages += nr_entries;
620 if (si->inuse_pages == si->pages) {
621 si->lowest_bit = si->max;
622 si->highest_bit = 0;
623 del_from_avail_list(si);
624 }
625 }
626
627 static void add_to_avail_list(struct swap_info_struct *p)
628 {
629 int nid;
630
631 spin_lock(&swap_avail_lock);
632 for_each_node(nid) {
633 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
634 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
635 }
636 spin_unlock(&swap_avail_lock);
637 }
638
639 static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
640 unsigned int nr_entries)
641 {
642 unsigned long end = offset + nr_entries - 1;
643 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
644
645 if (offset < si->lowest_bit)
646 si->lowest_bit = offset;
647 if (end > si->highest_bit) {
648 bool was_full = !si->highest_bit;
649
650 si->highest_bit = end;
651 if (was_full && (si->flags & SWP_WRITEOK))
652 add_to_avail_list(si);
653 }
654 atomic_long_add(nr_entries, &nr_swap_pages);
655 si->inuse_pages -= nr_entries;
656 if (si->flags & SWP_BLKDEV)
657 swap_slot_free_notify =
658 si->bdev->bd_disk->fops->swap_slot_free_notify;
659 else
660 swap_slot_free_notify = NULL;
661 while (offset <= end) {
662 frontswap_invalidate_page(si->type, offset);
663 if (swap_slot_free_notify)
664 swap_slot_free_notify(si->bdev, offset);
665 offset++;
666 }
667 }
668
669 static int scan_swap_map_slots(struct swap_info_struct *si,
670 unsigned char usage, int nr,
671 swp_entry_t slots[])
672 {
673 struct swap_cluster_info *ci;
674 unsigned long offset;
675 unsigned long scan_base;
676 unsigned long last_in_cluster = 0;
677 int latency_ration = LATENCY_LIMIT;
678 int n_ret = 0;
679
680 if (nr > SWAP_BATCH)
681 nr = SWAP_BATCH;
682
683 /*
684 * We try to cluster swap pages by allocating them sequentially
685 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
686 * way, however, we resort to first-free allocation, starting
687 * a new cluster. This prevents us from scattering swap pages
688 * all over the entire swap partition, so that we reduce
689 * overall disk seek times between swap pages. -- sct
690 * But we do now try to find an empty cluster. -Andrea
691 * And we let swap pages go all over an SSD partition. Hugh
692 */
693
694 si->flags += SWP_SCANNING;
695 scan_base = offset = si->cluster_next;
696
697 /* SSD algorithm */
698 if (si->cluster_info) {
699 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
700 goto checks;
701 else
702 goto scan;
703 }
704
705 if (unlikely(!si->cluster_nr--)) {
706 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
707 si->cluster_nr = SWAPFILE_CLUSTER - 1;
708 goto checks;
709 }
710
711 spin_unlock(&si->lock);
712
713 /*
714 * If seek is expensive, start searching for new cluster from
715 * start of partition, to minimize the span of allocated swap.
716 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
717 * case, just handled by scan_swap_map_try_ssd_cluster() above.
718 */
719 scan_base = offset = si->lowest_bit;
720 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
721
722 /* Locate the first empty (unaligned) cluster */
723 for (; last_in_cluster <= si->highest_bit; offset++) {
724 if (si->swap_map[offset])
725 last_in_cluster = offset + SWAPFILE_CLUSTER;
726 else if (offset == last_in_cluster) {
727 spin_lock(&si->lock);
728 offset -= SWAPFILE_CLUSTER - 1;
729 si->cluster_next = offset;
730 si->cluster_nr = SWAPFILE_CLUSTER - 1;
731 goto checks;
732 }
733 if (unlikely(--latency_ration < 0)) {
734 cond_resched();
735 latency_ration = LATENCY_LIMIT;
736 }
737 }
738
739 offset = scan_base;
740 spin_lock(&si->lock);
741 si->cluster_nr = SWAPFILE_CLUSTER - 1;
742 }
743
744 checks:
745 if (si->cluster_info) {
746 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
747 /* take a break if we already got some slots */
748 if (n_ret)
749 goto done;
750 if (!scan_swap_map_try_ssd_cluster(si, &offset,
751 &scan_base))
752 goto scan;
753 }
754 }
755 if (!(si->flags & SWP_WRITEOK))
756 goto no_page;
757 if (!si->highest_bit)
758 goto no_page;
759 if (offset > si->highest_bit)
760 scan_base = offset = si->lowest_bit;
761
762 ci = lock_cluster(si, offset);
763 /* reuse swap entry of cache-only swap if not busy. */
764 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
765 int swap_was_freed;
766 unlock_cluster(ci);
767 spin_unlock(&si->lock);
768 swap_was_freed = __try_to_reclaim_swap(si, offset);
769 spin_lock(&si->lock);
770 /* entry was freed successfully, try to use this again */
771 if (swap_was_freed)
772 goto checks;
773 goto scan; /* check next one */
774 }
775
776 if (si->swap_map[offset]) {
777 unlock_cluster(ci);
778 if (!n_ret)
779 goto scan;
780 else
781 goto done;
782 }
783 si->swap_map[offset] = usage;
784 inc_cluster_info_page(si, si->cluster_info, offset);
785 unlock_cluster(ci);
786
787 swap_range_alloc(si, offset, 1);
788 si->cluster_next = offset + 1;
789 slots[n_ret++] = swp_entry(si->type, offset);
790
791 /* got enough slots or reach max slots? */
792 if ((n_ret == nr) || (offset >= si->highest_bit))
793 goto done;
794
795 /* search for next available slot */
796
797 /* time to take a break? */
798 if (unlikely(--latency_ration < 0)) {
799 if (n_ret)
800 goto done;
801 spin_unlock(&si->lock);
802 cond_resched();
803 spin_lock(&si->lock);
804 latency_ration = LATENCY_LIMIT;
805 }
806
807 /* try to get more slots in cluster */
808 if (si->cluster_info) {
809 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
810 goto checks;
811 else
812 goto done;
813 }
814 /* non-ssd case */
815 ++offset;
816
817 /* non-ssd case, still more slots in cluster? */
818 if (si->cluster_nr && !si->swap_map[offset]) {
819 --si->cluster_nr;
820 goto checks;
821 }
822
823 done:
824 si->flags -= SWP_SCANNING;
825 return n_ret;
826
827 scan:
828 spin_unlock(&si->lock);
829 while (++offset <= si->highest_bit) {
830 if (!si->swap_map[offset]) {
831 spin_lock(&si->lock);
832 goto checks;
833 }
834 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
835 spin_lock(&si->lock);
836 goto checks;
837 }
838 if (unlikely(--latency_ration < 0)) {
839 cond_resched();
840 latency_ration = LATENCY_LIMIT;
841 }
842 }
843 offset = si->lowest_bit;
844 while (offset < scan_base) {
845 if (!si->swap_map[offset]) {
846 spin_lock(&si->lock);
847 goto checks;
848 }
849 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
850 spin_lock(&si->lock);
851 goto checks;
852 }
853 if (unlikely(--latency_ration < 0)) {
854 cond_resched();
855 latency_ration = LATENCY_LIMIT;
856 }
857 offset++;
858 }
859 spin_lock(&si->lock);
860
861 no_page:
862 si->flags -= SWP_SCANNING;
863 return n_ret;
864 }
865
866 #ifdef CONFIG_THP_SWAP
867 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
868 {
869 unsigned long idx;
870 struct swap_cluster_info *ci;
871 unsigned long offset, i;
872 unsigned char *map;
873
874 if (cluster_list_empty(&si->free_clusters))
875 return 0;
876
877 idx = cluster_list_first(&si->free_clusters);
878 offset = idx * SWAPFILE_CLUSTER;
879 ci = lock_cluster(si, offset);
880 alloc_cluster(si, idx);
881 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
882
883 map = si->swap_map + offset;
884 for (i = 0; i < SWAPFILE_CLUSTER; i++)
885 map[i] = SWAP_HAS_CACHE;
886 unlock_cluster(ci);
887 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
888 *slot = swp_entry(si->type, offset);
889
890 return 1;
891 }
892
893 static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
894 {
895 unsigned long offset = idx * SWAPFILE_CLUSTER;
896 struct swap_cluster_info *ci;
897
898 ci = lock_cluster(si, offset);
899 cluster_set_count_flag(ci, 0, 0);
900 free_cluster(si, idx);
901 unlock_cluster(ci);
902 swap_range_free(si, offset, SWAPFILE_CLUSTER);
903 }
904 #else
905 static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
906 {
907 VM_WARN_ON_ONCE(1);
908 return 0;
909 }
910 #endif /* CONFIG_THP_SWAP */
911
912 static unsigned long scan_swap_map(struct swap_info_struct *si,
913 unsigned char usage)
914 {
915 swp_entry_t entry;
916 int n_ret;
917
918 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
919
920 if (n_ret)
921 return swp_offset(entry);
922 else
923 return 0;
924
925 }
926
927 int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
928 {
929 unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
930 struct swap_info_struct *si, *next;
931 long avail_pgs;
932 int n_ret = 0;
933 int node;
934
935 /* Only single cluster request supported */
936 WARN_ON_ONCE(n_goal > 1 && cluster);
937
938 avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
939 if (avail_pgs <= 0)
940 goto noswap;
941
942 if (n_goal > SWAP_BATCH)
943 n_goal = SWAP_BATCH;
944
945 if (n_goal > avail_pgs)
946 n_goal = avail_pgs;
947
948 atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
949
950 spin_lock(&swap_avail_lock);
951
952 start_over:
953 node = numa_node_id();
954 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
955 /* requeue si to after same-priority siblings */
956 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
957 spin_unlock(&swap_avail_lock);
958 spin_lock(&si->lock);
959 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
960 spin_lock(&swap_avail_lock);
961 if (plist_node_empty(&si->avail_lists[node])) {
962 spin_unlock(&si->lock);
963 goto nextsi;
964 }
965 WARN(!si->highest_bit,
966 "swap_info %d in list but !highest_bit\n",
967 si->type);
968 WARN(!(si->flags & SWP_WRITEOK),
969 "swap_info %d in list but !SWP_WRITEOK\n",
970 si->type);
971 __del_from_avail_list(si);
972 spin_unlock(&si->lock);
973 goto nextsi;
974 }
975 if (cluster) {
976 if (!(si->flags & SWP_FILE))
977 n_ret = swap_alloc_cluster(si, swp_entries);
978 } else
979 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
980 n_goal, swp_entries);
981 spin_unlock(&si->lock);
982 if (n_ret || cluster)
983 goto check_out;
984 pr_debug("scan_swap_map of si %d failed to find offset\n",
985 si->type);
986
987 spin_lock(&swap_avail_lock);
988 nextsi:
989 /*
990 * if we got here, it's likely that si was almost full before,
991 * and since scan_swap_map() can drop the si->lock, multiple
992 * callers probably all tried to get a page from the same si
993 * and it filled up before we could get one; or, the si filled
994 * up between us dropping swap_avail_lock and taking si->lock.
995 * Since we dropped the swap_avail_lock, the swap_avail_head
996 * list may have been modified; so if next is still in the
997 * swap_avail_head list then try it, otherwise start over
998 * if we have not gotten any slots.
999 */
1000 if (plist_node_empty(&next->avail_lists[node]))
1001 goto start_over;
1002 }
1003
1004 spin_unlock(&swap_avail_lock);
1005
1006 check_out:
1007 if (n_ret < n_goal)
1008 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
1009 &nr_swap_pages);
1010 noswap:
1011 return n_ret;
1012 }
1013
1014 /* The only caller of this function is now suspend routine */
1015 swp_entry_t get_swap_page_of_type(int type)
1016 {
1017 struct swap_info_struct *si;
1018 pgoff_t offset;
1019
1020 si = swap_info[type];
1021 spin_lock(&si->lock);
1022 if (si && (si->flags & SWP_WRITEOK)) {
1023 atomic_long_dec(&nr_swap_pages);
1024 /* This is called for allocating swap entry, not cache */
1025 offset = scan_swap_map(si, 1);
1026 if (offset) {
1027 spin_unlock(&si->lock);
1028 return swp_entry(type, offset);
1029 }
1030 atomic_long_inc(&nr_swap_pages);
1031 }
1032 spin_unlock(&si->lock);
1033 return (swp_entry_t) {0};
1034 }
1035
1036 static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1037 {
1038 struct swap_info_struct *p;
1039 unsigned long offset, type;
1040
1041 if (!entry.val)
1042 goto out;
1043 type = swp_type(entry);
1044 if (type >= nr_swapfiles)
1045 goto bad_nofile;
1046 p = swap_info[type];
1047 if (!(p->flags & SWP_USED))
1048 goto bad_device;
1049 offset = swp_offset(entry);
1050 if (offset >= p->max)
1051 goto bad_offset;
1052 return p;
1053
1054 bad_offset:
1055 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1056 goto out;
1057 bad_device:
1058 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1059 goto out;
1060 bad_nofile:
1061 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1062 out:
1063 return NULL;
1064 }
1065
1066 static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1067 {
1068 struct swap_info_struct *p;
1069
1070 p = __swap_info_get(entry);
1071 if (!p)
1072 goto out;
1073 if (!p->swap_map[swp_offset(entry)])
1074 goto bad_free;
1075 return p;
1076
1077 bad_free:
1078 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1079 goto out;
1080 out:
1081 return NULL;
1082 }
1083
1084 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1085 {
1086 struct swap_info_struct *p;
1087
1088 p = _swap_info_get(entry);
1089 if (p)
1090 spin_lock(&p->lock);
1091 return p;
1092 }
1093
1094 static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1095 struct swap_info_struct *q)
1096 {
1097 struct swap_info_struct *p;
1098
1099 p = _swap_info_get(entry);
1100
1101 if (p != q) {
1102 if (q != NULL)
1103 spin_unlock(&q->lock);
1104 if (p != NULL)
1105 spin_lock(&p->lock);
1106 }
1107 return p;
1108 }
1109
1110 static unsigned char __swap_entry_free(struct swap_info_struct *p,
1111 swp_entry_t entry, unsigned char usage)
1112 {
1113 struct swap_cluster_info *ci;
1114 unsigned long offset = swp_offset(entry);
1115 unsigned char count;
1116 unsigned char has_cache;
1117
1118 ci = lock_cluster_or_swap_info(p, offset);
1119
1120 count = p->swap_map[offset];
1121
1122 has_cache = count & SWAP_HAS_CACHE;
1123 count &= ~SWAP_HAS_CACHE;
1124
1125 if (usage == SWAP_HAS_CACHE) {
1126 VM_BUG_ON(!has_cache);
1127 has_cache = 0;
1128 } else if (count == SWAP_MAP_SHMEM) {
1129 /*
1130 * Or we could insist on shmem.c using a special
1131 * swap_shmem_free() and free_shmem_swap_and_cache()...
1132 */
1133 count = 0;
1134 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1135 if (count == COUNT_CONTINUED) {
1136 if (swap_count_continued(p, offset, count))
1137 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1138 else
1139 count = SWAP_MAP_MAX;
1140 } else
1141 count--;
1142 }
1143
1144 usage = count | has_cache;
1145 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1146
1147 unlock_cluster_or_swap_info(p, ci);
1148
1149 return usage;
1150 }
1151
1152 static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1153 {
1154 struct swap_cluster_info *ci;
1155 unsigned long offset = swp_offset(entry);
1156 unsigned char count;
1157
1158 ci = lock_cluster(p, offset);
1159 count = p->swap_map[offset];
1160 VM_BUG_ON(count != SWAP_HAS_CACHE);
1161 p->swap_map[offset] = 0;
1162 dec_cluster_info_page(p, p->cluster_info, offset);
1163 unlock_cluster(ci);
1164
1165 mem_cgroup_uncharge_swap(entry, 1);
1166 swap_range_free(p, offset, 1);
1167 }
1168
1169 /*
1170 * Caller has made sure that the swap device corresponding to entry
1171 * is still around or has not been recycled.
1172 */
1173 void swap_free(swp_entry_t entry)
1174 {
1175 struct swap_info_struct *p;
1176
1177 p = _swap_info_get(entry);
1178 if (p) {
1179 if (!__swap_entry_free(p, entry, 1))
1180 free_swap_slot(entry);
1181 }
1182 }
1183
1184 /*
1185 * Called after dropping swapcache to decrease refcnt to swap entries.
1186 */
1187 static void swapcache_free(swp_entry_t entry)
1188 {
1189 struct swap_info_struct *p;
1190
1191 p = _swap_info_get(entry);
1192 if (p) {
1193 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
1194 free_swap_slot(entry);
1195 }
1196 }
1197
1198 #ifdef CONFIG_THP_SWAP
1199 static void swapcache_free_cluster(swp_entry_t entry)
1200 {
1201 unsigned long offset = swp_offset(entry);
1202 unsigned long idx = offset / SWAPFILE_CLUSTER;
1203 struct swap_cluster_info *ci;
1204 struct swap_info_struct *si;
1205 unsigned char *map;
1206 unsigned int i, free_entries = 0;
1207 unsigned char val;
1208
1209 si = _swap_info_get(entry);
1210 if (!si)
1211 return;
1212
1213 ci = lock_cluster(si, offset);
1214 VM_BUG_ON(!cluster_is_huge(ci));
1215 map = si->swap_map + offset;
1216 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1217 val = map[i];
1218 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1219 if (val == SWAP_HAS_CACHE)
1220 free_entries++;
1221 }
1222 if (!free_entries) {
1223 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1224 map[i] &= ~SWAP_HAS_CACHE;
1225 }
1226 cluster_clear_huge(ci);
1227 unlock_cluster(ci);
1228 if (free_entries == SWAPFILE_CLUSTER) {
1229 spin_lock(&si->lock);
1230 ci = lock_cluster(si, offset);
1231 memset(map, 0, SWAPFILE_CLUSTER);
1232 unlock_cluster(ci);
1233 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1234 swap_free_cluster(si, idx);
1235 spin_unlock(&si->lock);
1236 } else if (free_entries) {
1237 for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1238 if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1239 free_swap_slot(entry);
1240 }
1241 }
1242 }
1243
1244 int split_swap_cluster(swp_entry_t entry)
1245 {
1246 struct swap_info_struct *si;
1247 struct swap_cluster_info *ci;
1248 unsigned long offset = swp_offset(entry);
1249
1250 si = _swap_info_get(entry);
1251 if (!si)
1252 return -EBUSY;
1253 ci = lock_cluster(si, offset);
1254 cluster_clear_huge(ci);
1255 unlock_cluster(ci);
1256 return 0;
1257 }
1258 #else
1259 static inline void swapcache_free_cluster(swp_entry_t entry)
1260 {
1261 }
1262 #endif /* CONFIG_THP_SWAP */
1263
1264 void put_swap_page(struct page *page, swp_entry_t entry)
1265 {
1266 if (!PageTransHuge(page))
1267 swapcache_free(entry);
1268 else
1269 swapcache_free_cluster(entry);
1270 }
1271
1272 static int swp_entry_cmp(const void *ent1, const void *ent2)
1273 {
1274 const swp_entry_t *e1 = ent1, *e2 = ent2;
1275
1276 return (int)swp_type(*e1) - (int)swp_type(*e2);
1277 }
1278
1279 void swapcache_free_entries(swp_entry_t *entries, int n)
1280 {
1281 struct swap_info_struct *p, *prev;
1282 int i;
1283
1284 if (n <= 0)
1285 return;
1286
1287 prev = NULL;
1288 p = NULL;
1289
1290 /*
1291 * Sort swap entries by swap device, so each lock is only taken once.
1292 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1293 * so low that it isn't necessary to optimize further.
1294 */
1295 if (nr_swapfiles > 1)
1296 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
1297 for (i = 0; i < n; ++i) {
1298 p = swap_info_get_cont(entries[i], prev);
1299 if (p)
1300 swap_entry_free(p, entries[i]);
1301 prev = p;
1302 }
1303 if (p)
1304 spin_unlock(&p->lock);
1305 }
1306
1307 /*
1308 * How many references to page are currently swapped out?
1309 * This does not give an exact answer when swap count is continued,
1310 * but does include the high COUNT_CONTINUED flag to allow for that.
1311 */
1312 int page_swapcount(struct page *page)
1313 {
1314 int count = 0;
1315 struct swap_info_struct *p;
1316 struct swap_cluster_info *ci;
1317 swp_entry_t entry;
1318 unsigned long offset;
1319
1320 entry.val = page_private(page);
1321 p = _swap_info_get(entry);
1322 if (p) {
1323 offset = swp_offset(entry);
1324 ci = lock_cluster_or_swap_info(p, offset);
1325 count = swap_count(p->swap_map[offset]);
1326 unlock_cluster_or_swap_info(p, ci);
1327 }
1328 return count;
1329 }
1330
1331 static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1332 {
1333 int count = 0;
1334 pgoff_t offset = swp_offset(entry);
1335 struct swap_cluster_info *ci;
1336
1337 ci = lock_cluster_or_swap_info(si, offset);
1338 count = swap_count(si->swap_map[offset]);
1339 unlock_cluster_or_swap_info(si, ci);
1340 return count;
1341 }
1342
1343 /*
1344 * How many references to @entry are currently swapped out?
1345 * This does not give an exact answer when swap count is continued,
1346 * but does include the high COUNT_CONTINUED flag to allow for that.
1347 */
1348 int __swp_swapcount(swp_entry_t entry)
1349 {
1350 int count = 0;
1351 struct swap_info_struct *si;
1352
1353 si = __swap_info_get(entry);
1354 if (si)
1355 count = swap_swapcount(si, entry);
1356 return count;
1357 }
1358
1359 /*
1360 * How many references to @entry are currently swapped out?
1361 * This considers COUNT_CONTINUED so it returns exact answer.
1362 */
1363 int swp_swapcount(swp_entry_t entry)
1364 {
1365 int count, tmp_count, n;
1366 struct swap_info_struct *p;
1367 struct swap_cluster_info *ci;
1368 struct page *page;
1369 pgoff_t offset;
1370 unsigned char *map;
1371
1372 p = _swap_info_get(entry);
1373 if (!p)
1374 return 0;
1375
1376 offset = swp_offset(entry);
1377
1378 ci = lock_cluster_or_swap_info(p, offset);
1379
1380 count = swap_count(p->swap_map[offset]);
1381 if (!(count & COUNT_CONTINUED))
1382 goto out;
1383
1384 count &= ~COUNT_CONTINUED;
1385 n = SWAP_MAP_MAX + 1;
1386
1387 page = vmalloc_to_page(p->swap_map + offset);
1388 offset &= ~PAGE_MASK;
1389 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1390
1391 do {
1392 page = list_next_entry(page, lru);
1393 map = kmap_atomic(page);
1394 tmp_count = map[offset];
1395 kunmap_atomic(map);
1396
1397 count += (tmp_count & ~COUNT_CONTINUED) * n;
1398 n *= (SWAP_CONT_MAX + 1);
1399 } while (tmp_count & COUNT_CONTINUED);
1400 out:
1401 unlock_cluster_or_swap_info(p, ci);
1402 return count;
1403 }
1404
1405 #ifdef CONFIG_THP_SWAP
1406 static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1407 swp_entry_t entry)
1408 {
1409 struct swap_cluster_info *ci;
1410 unsigned char *map = si->swap_map;
1411 unsigned long roffset = swp_offset(entry);
1412 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1413 int i;
1414 bool ret = false;
1415
1416 ci = lock_cluster_or_swap_info(si, offset);
1417 if (!ci || !cluster_is_huge(ci)) {
1418 if (map[roffset] != SWAP_HAS_CACHE)
1419 ret = true;
1420 goto unlock_out;
1421 }
1422 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1423 if (map[offset + i] != SWAP_HAS_CACHE) {
1424 ret = true;
1425 break;
1426 }
1427 }
1428 unlock_out:
1429 unlock_cluster_or_swap_info(si, ci);
1430 return ret;
1431 }
1432
1433 static bool page_swapped(struct page *page)
1434 {
1435 swp_entry_t entry;
1436 struct swap_info_struct *si;
1437
1438 if (likely(!PageTransCompound(page)))
1439 return page_swapcount(page) != 0;
1440
1441 page = compound_head(page);
1442 entry.val = page_private(page);
1443 si = _swap_info_get(entry);
1444 if (si)
1445 return swap_page_trans_huge_swapped(si, entry);
1446 return false;
1447 }
1448
1449 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1450 int *total_swapcount)
1451 {
1452 int i, map_swapcount, _total_mapcount, _total_swapcount;
1453 unsigned long offset = 0;
1454 struct swap_info_struct *si;
1455 struct swap_cluster_info *ci = NULL;
1456 unsigned char *map = NULL;
1457 int mapcount, swapcount = 0;
1458
1459 /* hugetlbfs shouldn't call it */
1460 VM_BUG_ON_PAGE(PageHuge(page), page);
1461
1462 if (likely(!PageTransCompound(page))) {
1463 mapcount = atomic_read(&page->_mapcount) + 1;
1464 if (total_mapcount)
1465 *total_mapcount = mapcount;
1466 if (PageSwapCache(page))
1467 swapcount = page_swapcount(page);
1468 if (total_swapcount)
1469 *total_swapcount = swapcount;
1470 return mapcount + swapcount;
1471 }
1472
1473 page = compound_head(page);
1474
1475 _total_mapcount = _total_swapcount = map_swapcount = 0;
1476 if (PageSwapCache(page)) {
1477 swp_entry_t entry;
1478
1479 entry.val = page_private(page);
1480 si = _swap_info_get(entry);
1481 if (si) {
1482 map = si->swap_map;
1483 offset = swp_offset(entry);
1484 }
1485 }
1486 if (map)
1487 ci = lock_cluster(si, offset);
1488 for (i = 0; i < HPAGE_PMD_NR; i++) {
1489 mapcount = atomic_read(&page[i]._mapcount) + 1;
1490 _total_mapcount += mapcount;
1491 if (map) {
1492 swapcount = swap_count(map[offset + i]);
1493 _total_swapcount += swapcount;
1494 }
1495 map_swapcount = max(map_swapcount, mapcount + swapcount);
1496 }
1497 unlock_cluster(ci);
1498 if (PageDoubleMap(page)) {
1499 map_swapcount -= 1;
1500 _total_mapcount -= HPAGE_PMD_NR;
1501 }
1502 mapcount = compound_mapcount(page);
1503 map_swapcount += mapcount;
1504 _total_mapcount += mapcount;
1505 if (total_mapcount)
1506 *total_mapcount = _total_mapcount;
1507 if (total_swapcount)
1508 *total_swapcount = _total_swapcount;
1509
1510 return map_swapcount;
1511 }
1512 #else
1513 #define swap_page_trans_huge_swapped(si, entry) swap_swapcount(si, entry)
1514 #define page_swapped(page) (page_swapcount(page) != 0)
1515
1516 static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1517 int *total_swapcount)
1518 {
1519 int mapcount, swapcount = 0;
1520
1521 /* hugetlbfs shouldn't call it */
1522 VM_BUG_ON_PAGE(PageHuge(page), page);
1523
1524 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1525 if (PageSwapCache(page))
1526 swapcount = page_swapcount(page);
1527 if (total_swapcount)
1528 *total_swapcount = swapcount;
1529 return mapcount + swapcount;
1530 }
1531 #endif
1532
1533 /*
1534 * We can write to an anon page without COW if there are no other references
1535 * to it. And as a side-effect, free up its swap: because the old content
1536 * on disk will never be read, and seeking back there to write new content
1537 * later would only waste time away from clustering.
1538 *
1539 * NOTE: total_map_swapcount should not be relied upon by the caller if
1540 * reuse_swap_page() returns false, but it may be always overwritten
1541 * (see the other implementation for CONFIG_SWAP=n).
1542 */
1543 bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1544 {
1545 int count, total_mapcount, total_swapcount;
1546
1547 VM_BUG_ON_PAGE(!PageLocked(page), page);
1548 if (unlikely(PageKsm(page)))
1549 return false;
1550 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1551 &total_swapcount);
1552 if (total_map_swapcount)
1553 *total_map_swapcount = total_mapcount + total_swapcount;
1554 if (count == 1 && PageSwapCache(page) &&
1555 (likely(!PageTransCompound(page)) ||
1556 /* The remaining swap count will be freed soon */
1557 total_swapcount == page_swapcount(page))) {
1558 if (!PageWriteback(page)) {
1559 page = compound_head(page);
1560 delete_from_swap_cache(page);
1561 SetPageDirty(page);
1562 } else {
1563 swp_entry_t entry;
1564 struct swap_info_struct *p;
1565
1566 entry.val = page_private(page);
1567 p = swap_info_get(entry);
1568 if (p->flags & SWP_STABLE_WRITES) {
1569 spin_unlock(&p->lock);
1570 return false;
1571 }
1572 spin_unlock(&p->lock);
1573 }
1574 }
1575
1576 return count <= 1;
1577 }
1578
1579 /*
1580 * If swap is getting full, or if there are no more mappings of this page,
1581 * then try_to_free_swap is called to free its swap space.
1582 */
1583 int try_to_free_swap(struct page *page)
1584 {
1585 VM_BUG_ON_PAGE(!PageLocked(page), page);
1586
1587 if (!PageSwapCache(page))
1588 return 0;
1589 if (PageWriteback(page))
1590 return 0;
1591 if (page_swapped(page))
1592 return 0;
1593
1594 /*
1595 * Once hibernation has begun to create its image of memory,
1596 * there's a danger that one of the calls to try_to_free_swap()
1597 * - most probably a call from __try_to_reclaim_swap() while
1598 * hibernation is allocating its own swap pages for the image,
1599 * but conceivably even a call from memory reclaim - will free
1600 * the swap from a page which has already been recorded in the
1601 * image as a clean swapcache page, and then reuse its swap for
1602 * another page of the image. On waking from hibernation, the
1603 * original page might be freed under memory pressure, then
1604 * later read back in from swap, now with the wrong data.
1605 *
1606 * Hibernation suspends storage while it is writing the image
1607 * to disk so check that here.
1608 */
1609 if (pm_suspended_storage())
1610 return 0;
1611
1612 page = compound_head(page);
1613 delete_from_swap_cache(page);
1614 SetPageDirty(page);
1615 return 1;
1616 }
1617
1618 /*
1619 * Free the swap entry like above, but also try to
1620 * free the page cache entry if it is the last user.
1621 */
1622 int free_swap_and_cache(swp_entry_t entry)
1623 {
1624 struct swap_info_struct *p;
1625 struct page *page = NULL;
1626 unsigned char count;
1627
1628 if (non_swap_entry(entry))
1629 return 1;
1630
1631 p = _swap_info_get(entry);
1632 if (p) {
1633 count = __swap_entry_free(p, entry, 1);
1634 if (count == SWAP_HAS_CACHE &&
1635 !swap_page_trans_huge_swapped(p, entry)) {
1636 page = find_get_page(swap_address_space(entry),
1637 swp_offset(entry));
1638 if (page && !trylock_page(page)) {
1639 put_page(page);
1640 page = NULL;
1641 }
1642 } else if (!count)
1643 free_swap_slot(entry);
1644 }
1645 if (page) {
1646 /*
1647 * Not mapped elsewhere, or swap space full? Free it!
1648 * Also recheck PageSwapCache now page is locked (above).
1649 */
1650 if (PageSwapCache(page) && !PageWriteback(page) &&
1651 (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
1652 !swap_page_trans_huge_swapped(p, entry)) {
1653 page = compound_head(page);
1654 delete_from_swap_cache(page);
1655 SetPageDirty(page);
1656 }
1657 unlock_page(page);
1658 put_page(page);
1659 }
1660 return p != NULL;
1661 }
1662
1663 #ifdef CONFIG_HIBERNATION
1664 /*
1665 * Find the swap type that corresponds to given device (if any).
1666 *
1667 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1668 * from 0, in which the swap header is expected to be located.
1669 *
1670 * This is needed for the suspend to disk (aka swsusp).
1671 */
1672 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
1673 {
1674 struct block_device *bdev = NULL;
1675 int type;
1676
1677 if (device)
1678 bdev = bdget(device);
1679
1680 spin_lock(&swap_lock);
1681 for (type = 0; type < nr_swapfiles; type++) {
1682 struct swap_info_struct *sis = swap_info[type];
1683
1684 if (!(sis->flags & SWP_WRITEOK))
1685 continue;
1686
1687 if (!bdev) {
1688 if (bdev_p)
1689 *bdev_p = bdgrab(sis->bdev);
1690
1691 spin_unlock(&swap_lock);
1692 return type;
1693 }
1694 if (bdev == sis->bdev) {
1695 struct swap_extent *se = &sis->first_swap_extent;
1696
1697 if (se->start_block == offset) {
1698 if (bdev_p)
1699 *bdev_p = bdgrab(sis->bdev);
1700
1701 spin_unlock(&swap_lock);
1702 bdput(bdev);
1703 return type;
1704 }
1705 }
1706 }
1707 spin_unlock(&swap_lock);
1708 if (bdev)
1709 bdput(bdev);
1710
1711 return -ENODEV;
1712 }
1713
1714 /*
1715 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1716 * corresponding to given index in swap_info (swap type).
1717 */
1718 sector_t swapdev_block(int type, pgoff_t offset)
1719 {
1720 struct block_device *bdev;
1721
1722 if ((unsigned int)type >= nr_swapfiles)
1723 return 0;
1724 if (!(swap_info[type]->flags & SWP_WRITEOK))
1725 return 0;
1726 return map_swap_entry(swp_entry(type, offset), &bdev);
1727 }
1728
1729 /*
1730 * Return either the total number of swap pages of given type, or the number
1731 * of free pages of that type (depending on @free)
1732 *
1733 * This is needed for software suspend
1734 */
1735 unsigned int count_swap_pages(int type, int free)
1736 {
1737 unsigned int n = 0;
1738
1739 spin_lock(&swap_lock);
1740 if ((unsigned int)type < nr_swapfiles) {
1741 struct swap_info_struct *sis = swap_info[type];
1742
1743 spin_lock(&sis->lock);
1744 if (sis->flags & SWP_WRITEOK) {
1745 n = sis->pages;
1746 if (free)
1747 n -= sis->inuse_pages;
1748 }
1749 spin_unlock(&sis->lock);
1750 }
1751 spin_unlock(&swap_lock);
1752 return n;
1753 }
1754 #endif /* CONFIG_HIBERNATION */
1755
1756 static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
1757 {
1758 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
1759 }
1760
1761 /*
1762 * No need to decide whether this PTE shares the swap entry with others,
1763 * just let do_wp_page work it out if a write is requested later - to
1764 * force COW, vm_page_prot omits write permission from any private vma.
1765 */
1766 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1767 unsigned long addr, swp_entry_t entry, struct page *page)
1768 {
1769 struct page *swapcache;
1770 struct mem_cgroup *memcg;
1771 spinlock_t *ptl;
1772 pte_t *pte;
1773 int ret = 1;
1774
1775 swapcache = page;
1776 page = ksm_might_need_to_copy(page, vma, addr);
1777 if (unlikely(!page))
1778 return -ENOMEM;
1779
1780 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1781 &memcg, false)) {
1782 ret = -ENOMEM;
1783 goto out_nolock;
1784 }
1785
1786 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
1787 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
1788 mem_cgroup_cancel_charge(page, memcg, false);
1789 ret = 0;
1790 goto out;
1791 }
1792
1793 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
1794 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1795 get_page(page);
1796 set_pte_at(vma->vm_mm, addr, pte,
1797 pte_mkold(mk_pte(page, vma->vm_page_prot)));
1798 if (page == swapcache) {
1799 page_add_anon_rmap(page, vma, addr, false);
1800 mem_cgroup_commit_charge(page, memcg, true, false);
1801 } else { /* ksm created a completely new copy */
1802 page_add_new_anon_rmap(page, vma, addr, false);
1803 mem_cgroup_commit_charge(page, memcg, false, false);
1804 lru_cache_add_active_or_unevictable(page, vma);
1805 }
1806 swap_free(entry);
1807 /*
1808 * Move the page to the active list so it is not
1809 * immediately swapped out again after swapon.
1810 */
1811 activate_page(page);
1812 out:
1813 pte_unmap_unlock(pte, ptl);
1814 out_nolock:
1815 if (page != swapcache) {
1816 unlock_page(page);
1817 put_page(page);
1818 }
1819 return ret;
1820 }
1821
1822 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1823 unsigned long addr, unsigned long end,
1824 swp_entry_t entry, struct page *page)
1825 {
1826 pte_t swp_pte = swp_entry_to_pte(entry);
1827 pte_t *pte;
1828 int ret = 0;
1829
1830 /*
1831 * We don't actually need pte lock while scanning for swp_pte: since
1832 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1833 * page table while we're scanning; though it could get zapped, and on
1834 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1835 * of unmatched parts which look like swp_pte, so unuse_pte must
1836 * recheck under pte lock. Scanning without pte lock lets it be
1837 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
1838 */
1839 pte = pte_offset_map(pmd, addr);
1840 do {
1841 /*
1842 * swapoff spends a _lot_ of time in this loop!
1843 * Test inline before going to call unuse_pte.
1844 */
1845 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
1846 pte_unmap(pte);
1847 ret = unuse_pte(vma, pmd, addr, entry, page);
1848 if (ret)
1849 goto out;
1850 pte = pte_offset_map(pmd, addr);
1851 }
1852 } while (pte++, addr += PAGE_SIZE, addr != end);
1853 pte_unmap(pte - 1);
1854 out:
1855 return ret;
1856 }
1857
1858 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1859 unsigned long addr, unsigned long end,
1860 swp_entry_t entry, struct page *page)
1861 {
1862 pmd_t *pmd;
1863 unsigned long next;
1864 int ret;
1865
1866 pmd = pmd_offset(pud, addr);
1867 do {
1868 cond_resched();
1869 next = pmd_addr_end(addr, end);
1870 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1871 continue;
1872 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1873 if (ret)
1874 return ret;
1875 } while (pmd++, addr = next, addr != end);
1876 return 0;
1877 }
1878
1879 static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1880 unsigned long addr, unsigned long end,
1881 swp_entry_t entry, struct page *page)
1882 {
1883 pud_t *pud;
1884 unsigned long next;
1885 int ret;
1886
1887 pud = pud_offset(p4d, addr);
1888 do {
1889 next = pud_addr_end(addr, end);
1890 if (pud_none_or_clear_bad(pud))
1891 continue;
1892 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1893 if (ret)
1894 return ret;
1895 } while (pud++, addr = next, addr != end);
1896 return 0;
1897 }
1898
1899 static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1900 unsigned long addr, unsigned long end,
1901 swp_entry_t entry, struct page *page)
1902 {
1903 p4d_t *p4d;
1904 unsigned long next;
1905 int ret;
1906
1907 p4d = p4d_offset(pgd, addr);
1908 do {
1909 next = p4d_addr_end(addr, end);
1910 if (p4d_none_or_clear_bad(p4d))
1911 continue;
1912 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1913 if (ret)
1914 return ret;
1915 } while (p4d++, addr = next, addr != end);
1916 return 0;
1917 }
1918
1919 static int unuse_vma(struct vm_area_struct *vma,
1920 swp_entry_t entry, struct page *page)
1921 {
1922 pgd_t *pgd;
1923 unsigned long addr, end, next;
1924 int ret;
1925
1926 if (page_anon_vma(page)) {
1927 addr = page_address_in_vma(page, vma);
1928 if (addr == -EFAULT)
1929 return 0;
1930 else
1931 end = addr + PAGE_SIZE;
1932 } else {
1933 addr = vma->vm_start;
1934 end = vma->vm_end;
1935 }
1936
1937 pgd = pgd_offset(vma->vm_mm, addr);
1938 do {
1939 next = pgd_addr_end(addr, end);
1940 if (pgd_none_or_clear_bad(pgd))
1941 continue;
1942 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
1943 if (ret)
1944 return ret;
1945 } while (pgd++, addr = next, addr != end);
1946 return 0;
1947 }
1948
1949 static int unuse_mm(struct mm_struct *mm,
1950 swp_entry_t entry, struct page *page)
1951 {
1952 struct vm_area_struct *vma;
1953 int ret = 0;
1954
1955 if (!down_read_trylock(&mm->mmap_sem)) {
1956 /*
1957 * Activate page so shrink_inactive_list is unlikely to unmap
1958 * its ptes while lock is dropped, so swapoff can make progress.
1959 */
1960 activate_page(page);
1961 unlock_page(page);
1962 down_read(&mm->mmap_sem);
1963 lock_page(page);
1964 }
1965 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1966 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1967 break;
1968 cond_resched();
1969 }
1970 up_read(&mm->mmap_sem);
1971 return (ret < 0)? ret: 0;
1972 }
1973
1974 /*
1975 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1976 * from current position to next entry still in use.
1977 * Recycle to start on reaching the end, returning 0 when empty.
1978 */
1979 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1980 unsigned int prev, bool frontswap)
1981 {
1982 unsigned int max = si->max;
1983 unsigned int i = prev;
1984 unsigned char count;
1985
1986 /*
1987 * No need for swap_lock here: we're just looking
1988 * for whether an entry is in use, not modifying it; false
1989 * hits are okay, and sys_swapoff() has already prevented new
1990 * allocations from this area (while holding swap_lock).
1991 */
1992 for (;;) {
1993 if (++i >= max) {
1994 if (!prev) {
1995 i = 0;
1996 break;
1997 }
1998 /*
1999 * No entries in use at top of swap_map,
2000 * loop back to start and recheck there.
2001 */
2002 max = prev + 1;
2003 prev = 0;
2004 i = 1;
2005 }
2006 count = READ_ONCE(si->swap_map[i]);
2007 if (count && swap_count(count) != SWAP_MAP_BAD)
2008 if (!frontswap || frontswap_test(si, i))
2009 break;
2010 if ((i % LATENCY_LIMIT) == 0)
2011 cond_resched();
2012 }
2013 return i;
2014 }
2015
2016 /*
2017 * We completely avoid races by reading each swap page in advance,
2018 * and then search for the process using it. All the necessary
2019 * page table adjustments can then be made atomically.
2020 *
2021 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2022 * pages_to_unuse==0 means all pages; ignored if frontswap is false
2023 */
2024 int try_to_unuse(unsigned int type, bool frontswap,
2025 unsigned long pages_to_unuse)
2026 {
2027 struct swap_info_struct *si = swap_info[type];
2028 struct mm_struct *start_mm;
2029 volatile unsigned char *swap_map; /* swap_map is accessed without
2030 * locking. Mark it as volatile
2031 * to prevent compiler doing
2032 * something odd.
2033 */
2034 unsigned char swcount;
2035 struct page *page;
2036 swp_entry_t entry;
2037 unsigned int i = 0;
2038 int retval = 0;
2039
2040 /*
2041 * When searching mms for an entry, a good strategy is to
2042 * start at the first mm we freed the previous entry from
2043 * (though actually we don't notice whether we or coincidence
2044 * freed the entry). Initialize this start_mm with a hold.
2045 *
2046 * A simpler strategy would be to start at the last mm we
2047 * freed the previous entry from; but that would take less
2048 * advantage of mmlist ordering, which clusters forked mms
2049 * together, child after parent. If we race with dup_mmap(), we
2050 * prefer to resolve parent before child, lest we miss entries
2051 * duplicated after we scanned child: using last mm would invert
2052 * that.
2053 */
2054 start_mm = &init_mm;
2055 mmget(&init_mm);
2056
2057 /*
2058 * Keep on scanning until all entries have gone. Usually,
2059 * one pass through swap_map is enough, but not necessarily:
2060 * there are races when an instance of an entry might be missed.
2061 */
2062 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
2063 if (signal_pending(current)) {
2064 retval = -EINTR;
2065 break;
2066 }
2067
2068 /*
2069 * Get a page for the entry, using the existing swap
2070 * cache page if there is one. Otherwise, get a clean
2071 * page and read the swap into it.
2072 */
2073 swap_map = &si->swap_map[i];
2074 entry = swp_entry(type, i);
2075 page = read_swap_cache_async(entry,
2076 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
2077 if (!page) {
2078 /*
2079 * Either swap_duplicate() failed because entry
2080 * has been freed independently, and will not be
2081 * reused since sys_swapoff() already disabled
2082 * allocation from here, or alloc_page() failed.
2083 */
2084 swcount = *swap_map;
2085 /*
2086 * We don't hold lock here, so the swap entry could be
2087 * SWAP_MAP_BAD (when the cluster is discarding).
2088 * Instead of fail out, We can just skip the swap
2089 * entry because swapoff will wait for discarding
2090 * finish anyway.
2091 */
2092 if (!swcount || swcount == SWAP_MAP_BAD)
2093 continue;
2094 retval = -ENOMEM;
2095 break;
2096 }
2097
2098 /*
2099 * Don't hold on to start_mm if it looks like exiting.
2100 */
2101 if (atomic_read(&start_mm->mm_users) == 1) {
2102 mmput(start_mm);
2103 start_mm = &init_mm;
2104 mmget(&init_mm);
2105 }
2106
2107 /*
2108 * Wait for and lock page. When do_swap_page races with
2109 * try_to_unuse, do_swap_page can handle the fault much
2110 * faster than try_to_unuse can locate the entry. This
2111 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2112 * defer to do_swap_page in such a case - in some tests,
2113 * do_swap_page and try_to_unuse repeatedly compete.
2114 */
2115 wait_on_page_locked(page);
2116 wait_on_page_writeback(page);
2117 lock_page(page);
2118 wait_on_page_writeback(page);
2119
2120 /*
2121 * Remove all references to entry.
2122 */
2123 swcount = *swap_map;
2124 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2125 retval = shmem_unuse(entry, page);
2126 /* page has already been unlocked and released */
2127 if (retval < 0)
2128 break;
2129 continue;
2130 }
2131 if (swap_count(swcount) && start_mm != &init_mm)
2132 retval = unuse_mm(start_mm, entry, page);
2133
2134 if (swap_count(*swap_map)) {
2135 int set_start_mm = (*swap_map >= swcount);
2136 struct list_head *p = &start_mm->mmlist;
2137 struct mm_struct *new_start_mm = start_mm;
2138 struct mm_struct *prev_mm = start_mm;
2139 struct mm_struct *mm;
2140
2141 mmget(new_start_mm);
2142 mmget(prev_mm);
2143 spin_lock(&mmlist_lock);
2144 while (swap_count(*swap_map) && !retval &&
2145 (p = p->next) != &start_mm->mmlist) {
2146 mm = list_entry(p, struct mm_struct, mmlist);
2147 if (!mmget_not_zero(mm))
2148 continue;
2149 spin_unlock(&mmlist_lock);
2150 mmput(prev_mm);
2151 prev_mm = mm;
2152
2153 cond_resched();
2154
2155 swcount = *swap_map;
2156 if (!swap_count(swcount)) /* any usage ? */
2157 ;
2158 else if (mm == &init_mm)
2159 set_start_mm = 1;
2160 else
2161 retval = unuse_mm(mm, entry, page);
2162
2163 if (set_start_mm && *swap_map < swcount) {
2164 mmput(new_start_mm);
2165 mmget(mm);
2166 new_start_mm = mm;
2167 set_start_mm = 0;
2168 }
2169 spin_lock(&mmlist_lock);
2170 }
2171 spin_unlock(&mmlist_lock);
2172 mmput(prev_mm);
2173 mmput(start_mm);
2174 start_mm = new_start_mm;
2175 }
2176 if (retval) {
2177 unlock_page(page);
2178 put_page(page);
2179 break;
2180 }
2181
2182 /*
2183 * If a reference remains (rare), we would like to leave
2184 * the page in the swap cache; but try_to_unmap could
2185 * then re-duplicate the entry once we drop page lock,
2186 * so we might loop indefinitely; also, that page could
2187 * not be swapped out to other storage meanwhile. So:
2188 * delete from cache even if there's another reference,
2189 * after ensuring that the data has been saved to disk -
2190 * since if the reference remains (rarer), it will be
2191 * read from disk into another page. Splitting into two
2192 * pages would be incorrect if swap supported "shared
2193 * private" pages, but they are handled by tmpfs files.
2194 *
2195 * Given how unuse_vma() targets one particular offset
2196 * in an anon_vma, once the anon_vma has been determined,
2197 * this splitting happens to be just what is needed to
2198 * handle where KSM pages have been swapped out: re-reading
2199 * is unnecessarily slow, but we can fix that later on.
2200 */
2201 if (swap_count(*swap_map) &&
2202 PageDirty(page) && PageSwapCache(page)) {
2203 struct writeback_control wbc = {
2204 .sync_mode = WB_SYNC_NONE,
2205 };
2206
2207 swap_writepage(compound_head(page), &wbc);
2208 lock_page(page);
2209 wait_on_page_writeback(page);
2210 }
2211
2212 /*
2213 * It is conceivable that a racing task removed this page from
2214 * swap cache just before we acquired the page lock at the top,
2215 * or while we dropped it in unuse_mm(). The page might even
2216 * be back in swap cache on another swap area: that we must not
2217 * delete, since it may not have been written out to swap yet.
2218 */
2219 if (PageSwapCache(page) &&
2220 likely(page_private(page) == entry.val) &&
2221 !page_swapped(page))
2222 delete_from_swap_cache(compound_head(page));
2223
2224 /*
2225 * So we could skip searching mms once swap count went
2226 * to 1, we did not mark any present ptes as dirty: must
2227 * mark page dirty so shrink_page_list will preserve it.
2228 */
2229 SetPageDirty(page);
2230 unlock_page(page);
2231 put_page(page);
2232
2233 /*
2234 * Make sure that we aren't completely killing
2235 * interactive performance.
2236 */
2237 cond_resched();
2238 if (frontswap && pages_to_unuse > 0) {
2239 if (!--pages_to_unuse)
2240 break;
2241 }
2242 }
2243
2244 mmput(start_mm);
2245 return retval;
2246 }
2247
2248 /*
2249 * After a successful try_to_unuse, if no swap is now in use, we know
2250 * we can empty the mmlist. swap_lock must be held on entry and exit.
2251 * Note that mmlist_lock nests inside swap_lock, and an mm must be
2252 * added to the mmlist just after page_duplicate - before would be racy.
2253 */
2254 static void drain_mmlist(void)
2255 {
2256 struct list_head *p, *next;
2257 unsigned int type;
2258
2259 for (type = 0; type < nr_swapfiles; type++)
2260 if (swap_info[type]->inuse_pages)
2261 return;
2262 spin_lock(&mmlist_lock);
2263 list_for_each_safe(p, next, &init_mm.mmlist)
2264 list_del_init(p);
2265 spin_unlock(&mmlist_lock);
2266 }
2267
2268 /*
2269 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
2270 * corresponds to page offset for the specified swap entry.
2271 * Note that the type of this function is sector_t, but it returns page offset
2272 * into the bdev, not sector offset.
2273 */
2274 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
2275 {
2276 struct swap_info_struct *sis;
2277 struct swap_extent *start_se;
2278 struct swap_extent *se;
2279 pgoff_t offset;
2280
2281 sis = swap_info[swp_type(entry)];
2282 *bdev = sis->bdev;
2283
2284 offset = swp_offset(entry);
2285 start_se = sis->curr_swap_extent;
2286 se = start_se;
2287
2288 for ( ; ; ) {
2289 if (se->start_page <= offset &&
2290 offset < (se->start_page + se->nr_pages)) {
2291 return se->start_block + (offset - se->start_page);
2292 }
2293 se = list_next_entry(se, list);
2294 sis->curr_swap_extent = se;
2295 BUG_ON(se == start_se); /* It *must* be present */
2296 }
2297 }
2298
2299 /*
2300 * Returns the page offset into bdev for the specified page's swap entry.
2301 */
2302 sector_t map_swap_page(struct page *page, struct block_device **bdev)
2303 {
2304 swp_entry_t entry;
2305 entry.val = page_private(page);
2306 return map_swap_entry(entry, bdev);
2307 }
2308
2309 /*
2310 * Free all of a swapdev's extent information
2311 */
2312 static void destroy_swap_extents(struct swap_info_struct *sis)
2313 {
2314 while (!list_empty(&sis->first_swap_extent.list)) {
2315 struct swap_extent *se;
2316
2317 se = list_first_entry(&sis->first_swap_extent.list,
2318 struct swap_extent, list);
2319 list_del(&se->list);
2320 kfree(se);
2321 }
2322
2323 if (sis->flags & SWP_FILE) {
2324 struct file *swap_file = sis->swap_file;
2325 struct address_space *mapping = swap_file->f_mapping;
2326
2327 sis->flags &= ~SWP_FILE;
2328 mapping->a_ops->swap_deactivate(swap_file);
2329 }
2330 }
2331
2332 /*
2333 * Add a block range (and the corresponding page range) into this swapdev's
2334 * extent list. The extent list is kept sorted in page order.
2335 *
2336 * This function rather assumes that it is called in ascending page order.
2337 */
2338 int
2339 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2340 unsigned long nr_pages, sector_t start_block)
2341 {
2342 struct swap_extent *se;
2343 struct swap_extent *new_se;
2344 struct list_head *lh;
2345
2346 if (start_page == 0) {
2347 se = &sis->first_swap_extent;
2348 sis->curr_swap_extent = se;
2349 se->start_page = 0;
2350 se->nr_pages = nr_pages;
2351 se->start_block = start_block;
2352 return 1;
2353 } else {
2354 lh = sis->first_swap_extent.list.prev; /* Highest extent */
2355 se = list_entry(lh, struct swap_extent, list);
2356 BUG_ON(se->start_page + se->nr_pages != start_page);
2357 if (se->start_block + se->nr_pages == start_block) {
2358 /* Merge it */
2359 se->nr_pages += nr_pages;
2360 return 0;
2361 }
2362 }
2363
2364 /*
2365 * No merge. Insert a new extent, preserving ordering.
2366 */
2367 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2368 if (new_se == NULL)
2369 return -ENOMEM;
2370 new_se->start_page = start_page;
2371 new_se->nr_pages = nr_pages;
2372 new_se->start_block = start_block;
2373
2374 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
2375 return 1;
2376 }
2377
2378 /*
2379 * A `swap extent' is a simple thing which maps a contiguous range of pages
2380 * onto a contiguous range of disk blocks. An ordered list of swap extents
2381 * is built at swapon time and is then used at swap_writepage/swap_readpage
2382 * time for locating where on disk a page belongs.
2383 *
2384 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2385 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2386 * swap files identically.
2387 *
2388 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2389 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2390 * swapfiles are handled *identically* after swapon time.
2391 *
2392 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2393 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2394 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2395 * requirements, they are simply tossed out - we will never use those blocks
2396 * for swapping.
2397 *
2398 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
2399 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2400 * which will scribble on the fs.
2401 *
2402 * The amount of disk space which a single swap extent represents varies.
2403 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2404 * extents in the list. To avoid much list walking, we cache the previous
2405 * search location in `curr_swap_extent', and start new searches from there.
2406 * This is extremely effective. The average number of iterations in
2407 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2408 */
2409 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
2410 {
2411 struct file *swap_file = sis->swap_file;
2412 struct address_space *mapping = swap_file->f_mapping;
2413 struct inode *inode = mapping->host;
2414 int ret;
2415
2416 if (S_ISBLK(inode->i_mode)) {
2417 ret = add_swap_extent(sis, 0, sis->max, 0);
2418 *span = sis->pages;
2419 return ret;
2420 }
2421
2422 if (mapping->a_ops->swap_activate) {
2423 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
2424 if (!ret) {
2425 sis->flags |= SWP_FILE;
2426 ret = add_swap_extent(sis, 0, sis->max, 0);
2427 *span = sis->pages;
2428 }
2429 return ret;
2430 }
2431
2432 return generic_swapfile_activate(sis, swap_file, span);
2433 }
2434
2435 static int swap_node(struct swap_info_struct *p)
2436 {
2437 struct block_device *bdev;
2438
2439 if (p->bdev)
2440 bdev = p->bdev;
2441 else
2442 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2443
2444 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2445 }
2446
2447 static void _enable_swap_info(struct swap_info_struct *p, int prio,
2448 unsigned char *swap_map,
2449 struct swap_cluster_info *cluster_info)
2450 {
2451 int i;
2452
2453 if (prio >= 0)
2454 p->prio = prio;
2455 else
2456 p->prio = --least_priority;
2457 /*
2458 * the plist prio is negated because plist ordering is
2459 * low-to-high, while swap ordering is high-to-low
2460 */
2461 p->list.prio = -p->prio;
2462 for_each_node(i) {
2463 if (p->prio >= 0)
2464 p->avail_lists[i].prio = -p->prio;
2465 else {
2466 if (swap_node(p) == i)
2467 p->avail_lists[i].prio = 1;
2468 else
2469 p->avail_lists[i].prio = -p->prio;
2470 }
2471 }
2472 p->swap_map = swap_map;
2473 p->cluster_info = cluster_info;
2474 p->flags |= SWP_WRITEOK;
2475 atomic_long_add(p->pages, &nr_swap_pages);
2476 total_swap_pages += p->pages;
2477
2478 assert_spin_locked(&swap_lock);
2479 /*
2480 * both lists are plists, and thus priority ordered.
2481 * swap_active_head needs to be priority ordered for swapoff(),
2482 * which on removal of any swap_info_struct with an auto-assigned
2483 * (i.e. negative) priority increments the auto-assigned priority
2484 * of any lower-priority swap_info_structs.
2485 * swap_avail_head needs to be priority ordered for get_swap_page(),
2486 * which allocates swap pages from the highest available priority
2487 * swap_info_struct.
2488 */
2489 plist_add(&p->list, &swap_active_head);
2490 add_to_avail_list(p);
2491 }
2492
2493 static void enable_swap_info(struct swap_info_struct *p, int prio,
2494 unsigned char *swap_map,
2495 struct swap_cluster_info *cluster_info,
2496 unsigned long *frontswap_map)
2497 {
2498 frontswap_init(p->type, frontswap_map);
2499 spin_lock(&swap_lock);
2500 spin_lock(&p->lock);
2501 _enable_swap_info(p, prio, swap_map, cluster_info);
2502 spin_unlock(&p->lock);
2503 spin_unlock(&swap_lock);
2504 }
2505
2506 static void reinsert_swap_info(struct swap_info_struct *p)
2507 {
2508 spin_lock(&swap_lock);
2509 spin_lock(&p->lock);
2510 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
2511 spin_unlock(&p->lock);
2512 spin_unlock(&swap_lock);
2513 }
2514
2515 bool has_usable_swap(void)
2516 {
2517 bool ret = true;
2518
2519 spin_lock(&swap_lock);
2520 if (plist_head_empty(&swap_active_head))
2521 ret = false;
2522 spin_unlock(&swap_lock);
2523 return ret;
2524 }
2525
2526 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
2527 {
2528 struct swap_info_struct *p = NULL;
2529 unsigned char *swap_map;
2530 struct swap_cluster_info *cluster_info;
2531 unsigned long *frontswap_map;
2532 struct file *swap_file, *victim;
2533 struct address_space *mapping;
2534 struct inode *inode;
2535 struct filename *pathname;
2536 int err, found = 0;
2537 unsigned int old_block_size;
2538
2539 if (!capable(CAP_SYS_ADMIN))
2540 return -EPERM;
2541
2542 BUG_ON(!current->mm);
2543
2544 pathname = getname(specialfile);
2545 if (IS_ERR(pathname))
2546 return PTR_ERR(pathname);
2547
2548 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
2549 err = PTR_ERR(victim);
2550 if (IS_ERR(victim))
2551 goto out;
2552
2553 mapping = victim->f_mapping;
2554 spin_lock(&swap_lock);
2555 plist_for_each_entry(p, &swap_active_head, list) {
2556 if (p->flags & SWP_WRITEOK) {
2557 if (p->swap_file->f_mapping == mapping) {
2558 found = 1;
2559 break;
2560 }
2561 }
2562 }
2563 if (!found) {
2564 err = -EINVAL;
2565 spin_unlock(&swap_lock);
2566 goto out_dput;
2567 }
2568 if (!security_vm_enough_memory_mm(current->mm, p->pages))
2569 vm_unacct_memory(p->pages);
2570 else {
2571 err = -ENOMEM;
2572 spin_unlock(&swap_lock);
2573 goto out_dput;
2574 }
2575 del_from_avail_list(p);
2576 spin_lock(&p->lock);
2577 if (p->prio < 0) {
2578 struct swap_info_struct *si = p;
2579 int nid;
2580
2581 plist_for_each_entry_continue(si, &swap_active_head, list) {
2582 si->prio++;
2583 si->list.prio--;
2584 for_each_node(nid) {
2585 if (si->avail_lists[nid].prio != 1)
2586 si->avail_lists[nid].prio--;
2587 }
2588 }
2589 least_priority++;
2590 }
2591 plist_del(&p->list, &swap_active_head);
2592 atomic_long_sub(p->pages, &nr_swap_pages);
2593 total_swap_pages -= p->pages;
2594 p->flags &= ~SWP_WRITEOK;
2595 spin_unlock(&p->lock);
2596 spin_unlock(&swap_lock);
2597
2598 disable_swap_slots_cache_lock();
2599
2600 set_current_oom_origin();
2601 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
2602 clear_current_oom_origin();
2603
2604 if (err) {
2605 /* re-insert swap space back into swap_list */
2606 reinsert_swap_info(p);
2607 reenable_swap_slots_cache_unlock();
2608 goto out_dput;
2609 }
2610
2611 reenable_swap_slots_cache_unlock();
2612
2613 flush_work(&p->discard_work);
2614
2615 destroy_swap_extents(p);
2616 if (p->flags & SWP_CONTINUED)
2617 free_swap_count_continuations(p);
2618
2619 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2620 atomic_dec(&nr_rotate_swap);
2621
2622 mutex_lock(&swapon_mutex);
2623 spin_lock(&swap_lock);
2624 spin_lock(&p->lock);
2625 drain_mmlist();
2626
2627 /* wait for anyone still in scan_swap_map */
2628 p->highest_bit = 0; /* cuts scans short */
2629 while (p->flags >= SWP_SCANNING) {
2630 spin_unlock(&p->lock);
2631 spin_unlock(&swap_lock);
2632 schedule_timeout_uninterruptible(1);
2633 spin_lock(&swap_lock);
2634 spin_lock(&p->lock);
2635 }
2636
2637 swap_file = p->swap_file;
2638 old_block_size = p->old_block_size;
2639 p->swap_file = NULL;
2640 p->max = 0;
2641 swap_map = p->swap_map;
2642 p->swap_map = NULL;
2643 cluster_info = p->cluster_info;
2644 p->cluster_info = NULL;
2645 frontswap_map = frontswap_map_get(p);
2646 spin_unlock(&p->lock);
2647 spin_unlock(&swap_lock);
2648 frontswap_invalidate_area(p->type);
2649 frontswap_map_set(p, NULL);
2650 mutex_unlock(&swapon_mutex);
2651 free_percpu(p->percpu_cluster);
2652 p->percpu_cluster = NULL;
2653 vfree(swap_map);
2654 kvfree(cluster_info);
2655 kvfree(frontswap_map);
2656 /* Destroy swap account information */
2657 swap_cgroup_swapoff(p->type);
2658 exit_swap_address_space(p->type);
2659
2660 inode = mapping->host;
2661 if (S_ISBLK(inode->i_mode)) {
2662 struct block_device *bdev = I_BDEV(inode);
2663 set_blocksize(bdev, old_block_size);
2664 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2665 } else {
2666 inode_lock(inode);
2667 inode->i_flags &= ~S_SWAPFILE;
2668 inode_unlock(inode);
2669 }
2670 filp_close(swap_file, NULL);
2671
2672 /*
2673 * Clear the SWP_USED flag after all resources are freed so that swapon
2674 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2675 * not hold p->lock after we cleared its SWP_WRITEOK.
2676 */
2677 spin_lock(&swap_lock);
2678 p->flags = 0;
2679 spin_unlock(&swap_lock);
2680
2681 err = 0;
2682 atomic_inc(&proc_poll_event);
2683 wake_up_interruptible(&proc_poll_wait);
2684
2685 out_dput:
2686 filp_close(victim, NULL);
2687 out:
2688 putname(pathname);
2689 return err;
2690 }
2691
2692 #ifdef CONFIG_PROC_FS
2693 static unsigned swaps_poll(struct file *file, poll_table *wait)
2694 {
2695 struct seq_file *seq = file->private_data;
2696
2697 poll_wait(file, &proc_poll_wait, wait);
2698
2699 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2700 seq->poll_event = atomic_read(&proc_poll_event);
2701 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2702 }
2703
2704 return POLLIN | POLLRDNORM;
2705 }
2706
2707 /* iterator */
2708 static void *swap_start(struct seq_file *swap, loff_t *pos)
2709 {
2710 struct swap_info_struct *si;
2711 int type;
2712 loff_t l = *pos;
2713
2714 mutex_lock(&swapon_mutex);
2715
2716 if (!l)
2717 return SEQ_START_TOKEN;
2718
2719 for (type = 0; type < nr_swapfiles; type++) {
2720 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2721 si = swap_info[type];
2722 if (!(si->flags & SWP_USED) || !si->swap_map)
2723 continue;
2724 if (!--l)
2725 return si;
2726 }
2727
2728 return NULL;
2729 }
2730
2731 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2732 {
2733 struct swap_info_struct *si = v;
2734 int type;
2735
2736 if (v == SEQ_START_TOKEN)
2737 type = 0;
2738 else
2739 type = si->type + 1;
2740
2741 for (; type < nr_swapfiles; type++) {
2742 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2743 si = swap_info[type];
2744 if (!(si->flags & SWP_USED) || !si->swap_map)
2745 continue;
2746 ++*pos;
2747 return si;
2748 }
2749
2750 return NULL;
2751 }
2752
2753 static void swap_stop(struct seq_file *swap, void *v)
2754 {
2755 mutex_unlock(&swapon_mutex);
2756 }
2757
2758 static int swap_show(struct seq_file *swap, void *v)
2759 {
2760 struct swap_info_struct *si = v;
2761 struct file *file;
2762 int len;
2763
2764 if (si == SEQ_START_TOKEN) {
2765 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2766 return 0;
2767 }
2768
2769 file = si->swap_file;
2770 len = seq_file_path(swap, file, " \t\n\\");
2771 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
2772 len < 40 ? 40 - len : 1, " ",
2773 S_ISBLK(file_inode(file)->i_mode) ?
2774 "partition" : "file\t",
2775 si->pages << (PAGE_SHIFT - 10),
2776 si->inuse_pages << (PAGE_SHIFT - 10),
2777 si->prio);
2778 return 0;
2779 }
2780
2781 static const struct seq_operations swaps_op = {
2782 .start = swap_start,
2783 .next = swap_next,
2784 .stop = swap_stop,
2785 .show = swap_show
2786 };
2787
2788 static int swaps_open(struct inode *inode, struct file *file)
2789 {
2790 struct seq_file *seq;
2791 int ret;
2792
2793 ret = seq_open(file, &swaps_op);
2794 if (ret)
2795 return ret;
2796
2797 seq = file->private_data;
2798 seq->poll_event = atomic_read(&proc_poll_event);
2799 return 0;
2800 }
2801
2802 static const struct file_operations proc_swaps_operations = {
2803 .open = swaps_open,
2804 .read = seq_read,
2805 .llseek = seq_lseek,
2806 .release = seq_release,
2807 .poll = swaps_poll,
2808 };
2809
2810 static int __init procswaps_init(void)
2811 {
2812 proc_create("swaps", 0, NULL, &proc_swaps_operations);
2813 return 0;
2814 }
2815 __initcall(procswaps_init);
2816 #endif /* CONFIG_PROC_FS */
2817
2818 #ifdef MAX_SWAPFILES_CHECK
2819 static int __init max_swapfiles_check(void)
2820 {
2821 MAX_SWAPFILES_CHECK();
2822 return 0;
2823 }
2824 late_initcall(max_swapfiles_check);
2825 #endif
2826
2827 static struct swap_info_struct *alloc_swap_info(void)
2828 {
2829 struct swap_info_struct *p;
2830 unsigned int type;
2831 int i;
2832
2833 p = kzalloc(sizeof(*p), GFP_KERNEL);
2834 if (!p)
2835 return ERR_PTR(-ENOMEM);
2836
2837 spin_lock(&swap_lock);
2838 for (type = 0; type < nr_swapfiles; type++) {
2839 if (!(swap_info[type]->flags & SWP_USED))
2840 break;
2841 }
2842 if (type >= MAX_SWAPFILES) {
2843 spin_unlock(&swap_lock);
2844 kfree(p);
2845 return ERR_PTR(-EPERM);
2846 }
2847 if (type >= nr_swapfiles) {
2848 p->type = type;
2849 swap_info[type] = p;
2850 /*
2851 * Write swap_info[type] before nr_swapfiles, in case a
2852 * racing procfs swap_start() or swap_next() is reading them.
2853 * (We never shrink nr_swapfiles, we never free this entry.)
2854 */
2855 smp_wmb();
2856 nr_swapfiles++;
2857 } else {
2858 kfree(p);
2859 p = swap_info[type];
2860 /*
2861 * Do not memset this entry: a racing procfs swap_next()
2862 * would be relying on p->type to remain valid.
2863 */
2864 }
2865 INIT_LIST_HEAD(&p->first_swap_extent.list);
2866 plist_node_init(&p->list, 0);
2867 for_each_node(i)
2868 plist_node_init(&p->avail_lists[i], 0);
2869 p->flags = SWP_USED;
2870 spin_unlock(&swap_lock);
2871 spin_lock_init(&p->lock);
2872
2873 return p;
2874 }
2875
2876 static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2877 {
2878 int error;
2879
2880 if (S_ISBLK(inode->i_mode)) {
2881 p->bdev = bdgrab(I_BDEV(inode));
2882 error = blkdev_get(p->bdev,
2883 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
2884 if (error < 0) {
2885 p->bdev = NULL;
2886 return error;
2887 }
2888 p->old_block_size = block_size(p->bdev);
2889 error = set_blocksize(p->bdev, PAGE_SIZE);
2890 if (error < 0)
2891 return error;
2892 p->flags |= SWP_BLKDEV;
2893 } else if (S_ISREG(inode->i_mode)) {
2894 p->bdev = inode->i_sb->s_bdev;
2895 inode_lock(inode);
2896 if (IS_SWAPFILE(inode))
2897 return -EBUSY;
2898 } else
2899 return -EINVAL;
2900
2901 return 0;
2902 }
2903
2904 static unsigned long read_swap_header(struct swap_info_struct *p,
2905 union swap_header *swap_header,
2906 struct inode *inode)
2907 {
2908 int i;
2909 unsigned long maxpages;
2910 unsigned long swapfilepages;
2911 unsigned long last_page;
2912
2913 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
2914 pr_err("Unable to find swap-space signature\n");
2915 return 0;
2916 }
2917
2918 /* swap partition endianess hack... */
2919 if (swab32(swap_header->info.version) == 1) {
2920 swab32s(&swap_header->info.version);
2921 swab32s(&swap_header->info.last_page);
2922 swab32s(&swap_header->info.nr_badpages);
2923 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2924 return 0;
2925 for (i = 0; i < swap_header->info.nr_badpages; i++)
2926 swab32s(&swap_header->info.badpages[i]);
2927 }
2928 /* Check the swap header's sub-version */
2929 if (swap_header->info.version != 1) {
2930 pr_warn("Unable to handle swap header version %d\n",
2931 swap_header->info.version);
2932 return 0;
2933 }
2934
2935 p->lowest_bit = 1;
2936 p->cluster_next = 1;
2937 p->cluster_nr = 0;
2938
2939 /*
2940 * Find out how many pages are allowed for a single swap
2941 * device. There are two limiting factors: 1) the number
2942 * of bits for the swap offset in the swp_entry_t type, and
2943 * 2) the number of bits in the swap pte as defined by the
2944 * different architectures. In order to find the
2945 * largest possible bit mask, a swap entry with swap type 0
2946 * and swap offset ~0UL is created, encoded to a swap pte,
2947 * decoded to a swp_entry_t again, and finally the swap
2948 * offset is extracted. This will mask all the bits from
2949 * the initial ~0UL mask that can't be encoded in either
2950 * the swp_entry_t or the architecture definition of a
2951 * swap pte.
2952 */
2953 maxpages = swp_offset(pte_to_swp_entry(
2954 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2955 last_page = swap_header->info.last_page;
2956 if (last_page > maxpages) {
2957 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
2958 maxpages << (PAGE_SHIFT - 10),
2959 last_page << (PAGE_SHIFT - 10));
2960 }
2961 if (maxpages > last_page) {
2962 maxpages = last_page + 1;
2963 /* p->max is an unsigned int: don't overflow it */
2964 if ((unsigned int)maxpages == 0)
2965 maxpages = UINT_MAX;
2966 }
2967 p->highest_bit = maxpages - 1;
2968
2969 if (!maxpages)
2970 return 0;
2971 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2972 if (swapfilepages && maxpages > swapfilepages) {
2973 pr_warn("Swap area shorter than signature indicates\n");
2974 return 0;
2975 }
2976 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2977 return 0;
2978 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2979 return 0;
2980
2981 return maxpages;
2982 }
2983
2984 #define SWAP_CLUSTER_INFO_COLS \
2985 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
2986 #define SWAP_CLUSTER_SPACE_COLS \
2987 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
2988 #define SWAP_CLUSTER_COLS \
2989 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
2990
2991 static int setup_swap_map_and_extents(struct swap_info_struct *p,
2992 union swap_header *swap_header,
2993 unsigned char *swap_map,
2994 struct swap_cluster_info *cluster_info,
2995 unsigned long maxpages,
2996 sector_t *span)
2997 {
2998 unsigned int j, k;
2999 unsigned int nr_good_pages;
3000 int nr_extents;
3001 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3002 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3003 unsigned long i, idx;
3004
3005 nr_good_pages = maxpages - 1; /* omit header page */
3006
3007 cluster_list_init(&p->free_clusters);
3008 cluster_list_init(&p->discard_clusters);
3009
3010 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3011 unsigned int page_nr = swap_header->info.badpages[i];
3012 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3013 return -EINVAL;
3014 if (page_nr < maxpages) {
3015 swap_map[page_nr] = SWAP_MAP_BAD;
3016 nr_good_pages--;
3017 /*
3018 * Haven't marked the cluster free yet, no list
3019 * operation involved
3020 */
3021 inc_cluster_info_page(p, cluster_info, page_nr);
3022 }
3023 }
3024
3025 /* Haven't marked the cluster free yet, no list operation involved */
3026 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3027 inc_cluster_info_page(p, cluster_info, i);
3028
3029 if (nr_good_pages) {
3030 swap_map[0] = SWAP_MAP_BAD;
3031 /*
3032 * Not mark the cluster free yet, no list
3033 * operation involved
3034 */
3035 inc_cluster_info_page(p, cluster_info, 0);
3036 p->max = maxpages;
3037 p->pages = nr_good_pages;
3038 nr_extents = setup_swap_extents(p, span);
3039 if (nr_extents < 0)
3040 return nr_extents;
3041 nr_good_pages = p->pages;
3042 }
3043 if (!nr_good_pages) {
3044 pr_warn("Empty swap-file\n");
3045 return -EINVAL;
3046 }
3047
3048 if (!cluster_info)
3049 return nr_extents;
3050
3051
3052 /*
3053 * Reduce false cache line sharing between cluster_info and
3054 * sharing same address space.
3055 */
3056 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3057 j = (k + col) % SWAP_CLUSTER_COLS;
3058 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3059 idx = i * SWAP_CLUSTER_COLS + j;
3060 if (idx >= nr_clusters)
3061 continue;
3062 if (cluster_count(&cluster_info[idx]))
3063 continue;
3064 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
3065 cluster_list_add_tail(&p->free_clusters, cluster_info,
3066 idx);
3067 }
3068 }
3069 return nr_extents;
3070 }
3071
3072 /*
3073 * Helper to sys_swapon determining if a given swap
3074 * backing device queue supports DISCARD operations.
3075 */
3076 static bool swap_discardable(struct swap_info_struct *si)
3077 {
3078 struct request_queue *q = bdev_get_queue(si->bdev);
3079
3080 if (!q || !blk_queue_discard(q))
3081 return false;
3082
3083 return true;
3084 }
3085
3086 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3087 {
3088 struct swap_info_struct *p;
3089 struct filename *name;
3090 struct file *swap_file = NULL;
3091 struct address_space *mapping;
3092 int prio;
3093 int error;
3094 union swap_header *swap_header;
3095 int nr_extents;
3096 sector_t span;
3097 unsigned long maxpages;
3098 unsigned char *swap_map = NULL;
3099 struct swap_cluster_info *cluster_info = NULL;
3100 unsigned long *frontswap_map = NULL;
3101 struct page *page = NULL;
3102 struct inode *inode = NULL;
3103
3104 if (swap_flags & ~SWAP_FLAGS_VALID)
3105 return -EINVAL;
3106
3107 if (!capable(CAP_SYS_ADMIN))
3108 return -EPERM;
3109
3110 if (!swap_avail_heads)
3111 return -ENOMEM;
3112
3113 p = alloc_swap_info();
3114 if (IS_ERR(p))
3115 return PTR_ERR(p);
3116
3117 INIT_WORK(&p->discard_work, swap_discard_work);
3118
3119 name = getname(specialfile);
3120 if (IS_ERR(name)) {
3121 error = PTR_ERR(name);
3122 name = NULL;
3123 goto bad_swap;
3124 }
3125 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
3126 if (IS_ERR(swap_file)) {
3127 error = PTR_ERR(swap_file);
3128 swap_file = NULL;
3129 goto bad_swap;
3130 }
3131
3132 p->swap_file = swap_file;
3133 mapping = swap_file->f_mapping;
3134 inode = mapping->host;
3135
3136 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
3137 error = claim_swapfile(p, inode);
3138 if (unlikely(error))
3139 goto bad_swap;
3140
3141 /*
3142 * Read the swap header.
3143 */
3144 if (!mapping->a_ops->readpage) {
3145 error = -EINVAL;
3146 goto bad_swap;
3147 }
3148 page = read_mapping_page(mapping, 0, swap_file);
3149 if (IS_ERR(page)) {
3150 error = PTR_ERR(page);
3151 goto bad_swap;
3152 }
3153 swap_header = kmap(page);
3154
3155 maxpages = read_swap_header(p, swap_header, inode);
3156 if (unlikely(!maxpages)) {
3157 error = -EINVAL;
3158 goto bad_swap;
3159 }
3160
3161 /* OK, set up the swap map and apply the bad block list */
3162 swap_map = vzalloc(maxpages);
3163 if (!swap_map) {
3164 error = -ENOMEM;
3165 goto bad_swap;
3166 }
3167
3168 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3169 p->flags |= SWP_STABLE_WRITES;
3170
3171 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
3172 int cpu;
3173 unsigned long ci, nr_cluster;
3174
3175 p->flags |= SWP_SOLIDSTATE;
3176 /*
3177 * select a random position to start with to help wear leveling
3178 * SSD
3179 */
3180 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
3181 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
3182
3183 cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
3184 GFP_KERNEL);
3185 if (!cluster_info) {
3186 error = -ENOMEM;
3187 goto bad_swap;
3188 }
3189
3190 for (ci = 0; ci < nr_cluster; ci++)
3191 spin_lock_init(&((cluster_info + ci)->lock));
3192
3193 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3194 if (!p->percpu_cluster) {
3195 error = -ENOMEM;
3196 goto bad_swap;
3197 }
3198 for_each_possible_cpu(cpu) {
3199 struct percpu_cluster *cluster;
3200 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
3201 cluster_set_null(&cluster->index);
3202 }
3203 } else
3204 atomic_inc(&nr_rotate_swap);
3205
3206 error = swap_cgroup_swapon(p->type, maxpages);
3207 if (error)
3208 goto bad_swap;
3209
3210 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
3211 cluster_info, maxpages, &span);
3212 if (unlikely(nr_extents < 0)) {
3213 error = nr_extents;
3214 goto bad_swap;
3215 }
3216 /* frontswap enabled? set up bit-per-page map for frontswap */
3217 if (IS_ENABLED(CONFIG_FRONTSWAP))
3218 frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
3219 GFP_KERNEL);
3220
3221 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3222 /*
3223 * When discard is enabled for swap with no particular
3224 * policy flagged, we set all swap discard flags here in
3225 * order to sustain backward compatibility with older
3226 * swapon(8) releases.
3227 */
3228 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3229 SWP_PAGE_DISCARD);
3230
3231 /*
3232 * By flagging sys_swapon, a sysadmin can tell us to
3233 * either do single-time area discards only, or to just
3234 * perform discards for released swap page-clusters.
3235 * Now it's time to adjust the p->flags accordingly.
3236 */
3237 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3238 p->flags &= ~SWP_PAGE_DISCARD;
3239 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3240 p->flags &= ~SWP_AREA_DISCARD;
3241
3242 /* issue a swapon-time discard if it's still required */
3243 if (p->flags & SWP_AREA_DISCARD) {
3244 int err = discard_swap(p);
3245 if (unlikely(err))
3246 pr_err("swapon: discard_swap(%p): %d\n",
3247 p, err);
3248 }
3249 }
3250
3251 error = init_swap_address_space(p->type, maxpages);
3252 if (error)
3253 goto bad_swap;
3254
3255 mutex_lock(&swapon_mutex);
3256 prio = -1;
3257 if (swap_flags & SWAP_FLAG_PREFER)
3258 prio =
3259 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
3260 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
3261
3262 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
3263 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
3264 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3265 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
3266 (p->flags & SWP_DISCARDABLE) ? "D" : "",
3267 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3268 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
3269 (frontswap_map) ? "FS" : "");
3270
3271 mutex_unlock(&swapon_mutex);
3272 atomic_inc(&proc_poll_event);
3273 wake_up_interruptible(&proc_poll_wait);
3274
3275 if (S_ISREG(inode->i_mode))
3276 inode->i_flags |= S_SWAPFILE;
3277 error = 0;
3278 goto out;
3279 bad_swap:
3280 free_percpu(p->percpu_cluster);
3281 p->percpu_cluster = NULL;
3282 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
3283 set_blocksize(p->bdev, p->old_block_size);
3284 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
3285 }
3286 destroy_swap_extents(p);
3287 swap_cgroup_swapoff(p->type);
3288 spin_lock(&swap_lock);
3289 p->swap_file = NULL;
3290 p->flags = 0;
3291 spin_unlock(&swap_lock);
3292 vfree(swap_map);
3293 kvfree(cluster_info);
3294 kvfree(frontswap_map);
3295 if (swap_file) {
3296 if (inode && S_ISREG(inode->i_mode)) {
3297 inode_unlock(inode);
3298 inode = NULL;
3299 }
3300 filp_close(swap_file, NULL);
3301 }
3302 out:
3303 if (page && !IS_ERR(page)) {
3304 kunmap(page);
3305 put_page(page);
3306 }
3307 if (name)
3308 putname(name);
3309 if (inode && S_ISREG(inode->i_mode))
3310 inode_unlock(inode);
3311 if (!error)
3312 enable_swap_slots_cache();
3313 return error;
3314 }
3315
3316 void si_swapinfo(struct sysinfo *val)
3317 {
3318 unsigned int type;
3319 unsigned long nr_to_be_unused = 0;
3320
3321 spin_lock(&swap_lock);
3322 for (type = 0; type < nr_swapfiles; type++) {
3323 struct swap_info_struct *si = swap_info[type];
3324
3325 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3326 nr_to_be_unused += si->inuse_pages;
3327 }
3328 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
3329 val->totalswap = total_swap_pages + nr_to_be_unused;
3330 spin_unlock(&swap_lock);
3331 }
3332
3333 /*
3334 * Verify that a swap entry is valid and increment its swap map count.
3335 *
3336 * Returns error code in following case.
3337 * - success -> 0
3338 * - swp_entry is invalid -> EINVAL
3339 * - swp_entry is migration entry -> EINVAL
3340 * - swap-cache reference is requested but there is already one. -> EEXIST
3341 * - swap-cache reference is requested but the entry is not used. -> ENOENT
3342 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
3343 */
3344 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
3345 {
3346 struct swap_info_struct *p;
3347 struct swap_cluster_info *ci;
3348 unsigned long offset, type;
3349 unsigned char count;
3350 unsigned char has_cache;
3351 int err = -EINVAL;
3352
3353 if (non_swap_entry(entry))
3354 goto out;
3355
3356 type = swp_type(entry);
3357 if (type >= nr_swapfiles)
3358 goto bad_file;
3359 p = swap_info[type];
3360 offset = swp_offset(entry);
3361 if (unlikely(offset >= p->max))
3362 goto out;
3363
3364 ci = lock_cluster_or_swap_info(p, offset);
3365
3366 count = p->swap_map[offset];
3367
3368 /*
3369 * swapin_readahead() doesn't check if a swap entry is valid, so the
3370 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3371 */
3372 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3373 err = -ENOENT;
3374 goto unlock_out;
3375 }
3376
3377 has_cache = count & SWAP_HAS_CACHE;
3378 count &= ~SWAP_HAS_CACHE;
3379 err = 0;
3380
3381 if (usage == SWAP_HAS_CACHE) {
3382
3383 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
3384 if (!has_cache && count)
3385 has_cache = SWAP_HAS_CACHE;
3386 else if (has_cache) /* someone else added cache */
3387 err = -EEXIST;
3388 else /* no users remaining */
3389 err = -ENOENT;
3390
3391 } else if (count || has_cache) {
3392
3393 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3394 count += usage;
3395 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
3396 err = -EINVAL;
3397 else if (swap_count_continued(p, offset, count))
3398 count = COUNT_CONTINUED;
3399 else
3400 err = -ENOMEM;
3401 } else
3402 err = -ENOENT; /* unused swap entry */
3403
3404 p->swap_map[offset] = count | has_cache;
3405
3406 unlock_out:
3407 unlock_cluster_or_swap_info(p, ci);
3408 out:
3409 return err;
3410
3411 bad_file:
3412 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
3413 goto out;
3414 }
3415
3416 /*
3417 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3418 * (in which case its reference count is never incremented).
3419 */
3420 void swap_shmem_alloc(swp_entry_t entry)
3421 {
3422 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3423 }
3424
3425 /*
3426 * Increase reference count of swap entry by 1.
3427 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3428 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3429 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3430 * might occur if a page table entry has got corrupted.
3431 */
3432 int swap_duplicate(swp_entry_t entry)
3433 {
3434 int err = 0;
3435
3436 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3437 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3438 return err;
3439 }
3440
3441 /*
3442 * @entry: swap entry for which we allocate swap cache.
3443 *
3444 * Called when allocating swap cache for existing swap entry,
3445 * This can return error codes. Returns 0 at success.
3446 * -EBUSY means there is a swap cache.
3447 * Note: return code is different from swap_duplicate().
3448 */
3449 int swapcache_prepare(swp_entry_t entry)
3450 {
3451 return __swap_duplicate(entry, SWAP_HAS_CACHE);
3452 }
3453
3454 struct swap_info_struct *page_swap_info(struct page *page)
3455 {
3456 swp_entry_t swap = { .val = page_private(page) };
3457 return swap_info[swp_type(swap)];
3458 }
3459
3460 /*
3461 * out-of-line __page_file_ methods to avoid include hell.
3462 */
3463 struct address_space *__page_file_mapping(struct page *page)
3464 {
3465 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3466 return page_swap_info(page)->swap_file->f_mapping;
3467 }
3468 EXPORT_SYMBOL_GPL(__page_file_mapping);
3469
3470 pgoff_t __page_file_index(struct page *page)
3471 {
3472 swp_entry_t swap = { .val = page_private(page) };
3473 VM_BUG_ON_PAGE(!PageSwapCache(page), page);
3474 return swp_offset(swap);
3475 }
3476 EXPORT_SYMBOL_GPL(__page_file_index);
3477
3478 /*
3479 * add_swap_count_continuation - called when a swap count is duplicated
3480 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3481 * page of the original vmalloc'ed swap_map, to hold the continuation count
3482 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3483 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3484 *
3485 * These continuation pages are seldom referenced: the common paths all work
3486 * on the original swap_map, only referring to a continuation page when the
3487 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3488 *
3489 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3490 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3491 * can be called after dropping locks.
3492 */
3493 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3494 {
3495 struct swap_info_struct *si;
3496 struct swap_cluster_info *ci;
3497 struct page *head;
3498 struct page *page;
3499 struct page *list_page;
3500 pgoff_t offset;
3501 unsigned char count;
3502
3503 /*
3504 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3505 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3506 */
3507 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3508
3509 si = swap_info_get(entry);
3510 if (!si) {
3511 /*
3512 * An acceptable race has occurred since the failing
3513 * __swap_duplicate(): the swap entry has been freed,
3514 * perhaps even the whole swap_map cleared for swapoff.
3515 */
3516 goto outer;
3517 }
3518
3519 offset = swp_offset(entry);
3520
3521 ci = lock_cluster(si, offset);
3522
3523 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3524
3525 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3526 /*
3527 * The higher the swap count, the more likely it is that tasks
3528 * will race to add swap count continuation: we need to avoid
3529 * over-provisioning.
3530 */
3531 goto out;
3532 }
3533
3534 if (!page) {
3535 unlock_cluster(ci);
3536 spin_unlock(&si->lock);
3537 return -ENOMEM;
3538 }
3539
3540 /*
3541 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
3542 * no architecture is using highmem pages for kernel page tables: so it
3543 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
3544 */
3545 head = vmalloc_to_page(si->swap_map + offset);
3546 offset &= ~PAGE_MASK;
3547
3548 /*
3549 * Page allocation does not initialize the page's lru field,
3550 * but it does always reset its private field.
3551 */
3552 if (!page_private(head)) {
3553 BUG_ON(count & COUNT_CONTINUED);
3554 INIT_LIST_HEAD(&head->lru);
3555 set_page_private(head, SWP_CONTINUED);
3556 si->flags |= SWP_CONTINUED;
3557 }
3558
3559 list_for_each_entry(list_page, &head->lru, lru) {
3560 unsigned char *map;
3561
3562 /*
3563 * If the previous map said no continuation, but we've found
3564 * a continuation page, free our allocation and use this one.
3565 */
3566 if (!(count & COUNT_CONTINUED))
3567 goto out;
3568
3569 map = kmap_atomic(list_page) + offset;
3570 count = *map;
3571 kunmap_atomic(map);
3572
3573 /*
3574 * If this continuation count now has some space in it,
3575 * free our allocation and use this one.
3576 */
3577 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
3578 goto out;
3579 }
3580
3581 list_add_tail(&page->lru, &head->lru);
3582 page = NULL; /* now it's attached, don't free it */
3583 out:
3584 unlock_cluster(ci);
3585 spin_unlock(&si->lock);
3586 outer:
3587 if (page)
3588 __free_page(page);
3589 return 0;
3590 }
3591
3592 /*
3593 * swap_count_continued - when the original swap_map count is incremented
3594 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3595 * into, carry if so, or else fail until a new continuation page is allocated;
3596 * when the original swap_map count is decremented from 0 with continuation,
3597 * borrow from the continuation and report whether it still holds more.
3598 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3599 * lock.
3600 */
3601 static bool swap_count_continued(struct swap_info_struct *si,
3602 pgoff_t offset, unsigned char count)
3603 {
3604 struct page *head;
3605 struct page *page;
3606 unsigned char *map;
3607
3608 head = vmalloc_to_page(si->swap_map + offset);
3609 if (page_private(head) != SWP_CONTINUED) {
3610 BUG_ON(count & COUNT_CONTINUED);
3611 return false; /* need to add count continuation */
3612 }
3613
3614 offset &= ~PAGE_MASK;
3615 page = list_entry(head->lru.next, struct page, lru);
3616 map = kmap_atomic(page) + offset;
3617
3618 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3619 goto init_map; /* jump over SWAP_CONT_MAX checks */
3620
3621 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3622 /*
3623 * Think of how you add 1 to 999
3624 */
3625 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
3626 kunmap_atomic(map);
3627 page = list_entry(page->lru.next, struct page, lru);
3628 BUG_ON(page == head);
3629 map = kmap_atomic(page) + offset;
3630 }
3631 if (*map == SWAP_CONT_MAX) {
3632 kunmap_atomic(map);
3633 page = list_entry(page->lru.next, struct page, lru);
3634 if (page == head)
3635 return false; /* add count continuation */
3636 map = kmap_atomic(page) + offset;
3637 init_map: *map = 0; /* we didn't zero the page */
3638 }
3639 *map += 1;
3640 kunmap_atomic(map);
3641 page = list_entry(page->lru.prev, struct page, lru);
3642 while (page != head) {
3643 map = kmap_atomic(page) + offset;
3644 *map = COUNT_CONTINUED;
3645 kunmap_atomic(map);
3646 page = list_entry(page->lru.prev, struct page, lru);
3647 }
3648 return true; /* incremented */
3649
3650 } else { /* decrementing */
3651 /*
3652 * Think of how you subtract 1 from 1000
3653 */
3654 BUG_ON(count != COUNT_CONTINUED);
3655 while (*map == COUNT_CONTINUED) {
3656 kunmap_atomic(map);
3657 page = list_entry(page->lru.next, struct page, lru);
3658 BUG_ON(page == head);
3659 map = kmap_atomic(page) + offset;
3660 }
3661 BUG_ON(*map == 0);
3662 *map -= 1;
3663 if (*map == 0)
3664 count = 0;
3665 kunmap_atomic(map);
3666 page = list_entry(page->lru.prev, struct page, lru);
3667 while (page != head) {
3668 map = kmap_atomic(page) + offset;
3669 *map = SWAP_CONT_MAX | count;
3670 count = COUNT_CONTINUED;
3671 kunmap_atomic(map);
3672 page = list_entry(page->lru.prev, struct page, lru);
3673 }
3674 return count == COUNT_CONTINUED;
3675 }
3676 }
3677
3678 /*
3679 * free_swap_count_continuations - swapoff free all the continuation pages
3680 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3681 */
3682 static void free_swap_count_continuations(struct swap_info_struct *si)
3683 {
3684 pgoff_t offset;
3685
3686 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3687 struct page *head;
3688 head = vmalloc_to_page(si->swap_map + offset);
3689 if (page_private(head)) {
3690 struct page *page, *next;
3691
3692 list_for_each_entry_safe(page, next, &head->lru, lru) {
3693 list_del(&page->lru);
3694 __free_page(page);
3695 }
3696 }
3697 }
3698 }
3699
3700 static int __init swapfile_init(void)
3701 {
3702 int nid;
3703
3704 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3705 GFP_KERNEL);
3706 if (!swap_avail_heads) {
3707 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3708 return -ENOMEM;
3709 }
3710
3711 for_each_node(nid)
3712 plist_head_init(&swap_avail_heads[nid]);
3713
3714 return 0;
3715 }
3716 subsys_initcall(swapfile_init);