Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/dtor/input
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / sparse-vmemmap.c
1 /*
2 * Virtual Memory Map support
3 *
4 * (C) 2007 sgi. Christoph Lameter.
5 *
6 * Virtual memory maps allow VM primitives pfn_to_page, page_to_pfn,
7 * virt_to_page, page_address() to be implemented as a base offset
8 * calculation without memory access.
9 *
10 * However, virtual mappings need a page table and TLBs. Many Linux
11 * architectures already map their physical space using 1-1 mappings
12 * via TLBs. For those arches the virtual memory map is essentially
13 * for free if we use the same page size as the 1-1 mappings. In that
14 * case the overhead consists of a few additional pages that are
15 * allocated to create a view of memory for vmemmap.
16 *
17 * The architecture is expected to provide a vmemmap_populate() function
18 * to instantiate the mapping.
19 */
20 #include <linux/mm.h>
21 #include <linux/mmzone.h>
22 #include <linux/bootmem.h>
23 #include <linux/memremap.h>
24 #include <linux/highmem.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27 #include <linux/vmalloc.h>
28 #include <linux/sched.h>
29 #include <asm/dma.h>
30 #include <asm/pgalloc.h>
31 #include <asm/pgtable.h>
32
33 /*
34 * Allocate a block of memory to be used to back the virtual memory map
35 * or to back the page tables that are used to create the mapping.
36 * Uses the main allocators if they are available, else bootmem.
37 */
38
39 static void * __ref __earlyonly_bootmem_alloc(int node,
40 unsigned long size,
41 unsigned long align,
42 unsigned long goal)
43 {
44 return memblock_virt_alloc_try_nid(size, align, goal,
45 BOOTMEM_ALLOC_ACCESSIBLE, node);
46 }
47
48 static void *vmemmap_buf;
49 static void *vmemmap_buf_end;
50
51 void * __meminit vmemmap_alloc_block(unsigned long size, int node)
52 {
53 /* If the main allocator is up use that, fallback to bootmem. */
54 if (slab_is_available()) {
55 struct page *page;
56
57 page = alloc_pages_node(node,
58 GFP_KERNEL | __GFP_ZERO | __GFP_RETRY_MAYFAIL,
59 get_order(size));
60 if (page)
61 return page_address(page);
62 return NULL;
63 } else
64 return __earlyonly_bootmem_alloc(node, size, size,
65 __pa(MAX_DMA_ADDRESS));
66 }
67
68 /* need to make sure size is all the same during early stage */
69 static void * __meminit alloc_block_buf(unsigned long size, int node)
70 {
71 void *ptr;
72
73 if (!vmemmap_buf)
74 return vmemmap_alloc_block(size, node);
75
76 /* take the from buf */
77 ptr = (void *)ALIGN((unsigned long)vmemmap_buf, size);
78 if (ptr + size > vmemmap_buf_end)
79 return vmemmap_alloc_block(size, node);
80
81 vmemmap_buf = ptr + size;
82
83 return ptr;
84 }
85
86 static unsigned long __meminit vmem_altmap_next_pfn(struct vmem_altmap *altmap)
87 {
88 return altmap->base_pfn + altmap->reserve + altmap->alloc
89 + altmap->align;
90 }
91
92 static unsigned long __meminit vmem_altmap_nr_free(struct vmem_altmap *altmap)
93 {
94 unsigned long allocated = altmap->alloc + altmap->align;
95
96 if (altmap->free > allocated)
97 return altmap->free - allocated;
98 return 0;
99 }
100
101 /**
102 * vmem_altmap_alloc - allocate pages from the vmem_altmap reservation
103 * @altmap - reserved page pool for the allocation
104 * @nr_pfns - size (in pages) of the allocation
105 *
106 * Allocations are aligned to the size of the request
107 */
108 static unsigned long __meminit vmem_altmap_alloc(struct vmem_altmap *altmap,
109 unsigned long nr_pfns)
110 {
111 unsigned long pfn = vmem_altmap_next_pfn(altmap);
112 unsigned long nr_align;
113
114 nr_align = 1UL << find_first_bit(&nr_pfns, BITS_PER_LONG);
115 nr_align = ALIGN(pfn, nr_align) - pfn;
116
117 if (nr_pfns + nr_align > vmem_altmap_nr_free(altmap))
118 return ULONG_MAX;
119 altmap->alloc += nr_pfns;
120 altmap->align += nr_align;
121 return pfn + nr_align;
122 }
123
124 static void * __meminit altmap_alloc_block_buf(unsigned long size,
125 struct vmem_altmap *altmap)
126 {
127 unsigned long pfn, nr_pfns;
128 void *ptr;
129
130 if (size & ~PAGE_MASK) {
131 pr_warn_once("%s: allocations must be multiple of PAGE_SIZE (%ld)\n",
132 __func__, size);
133 return NULL;
134 }
135
136 nr_pfns = size >> PAGE_SHIFT;
137 pfn = vmem_altmap_alloc(altmap, nr_pfns);
138 if (pfn < ULONG_MAX)
139 ptr = __va(__pfn_to_phys(pfn));
140 else
141 ptr = NULL;
142 pr_debug("%s: pfn: %#lx alloc: %ld align: %ld nr: %#lx\n",
143 __func__, pfn, altmap->alloc, altmap->align, nr_pfns);
144
145 return ptr;
146 }
147
148 /* need to make sure size is all the same during early stage */
149 void * __meminit __vmemmap_alloc_block_buf(unsigned long size, int node,
150 struct vmem_altmap *altmap)
151 {
152 if (altmap)
153 return altmap_alloc_block_buf(size, altmap);
154 return alloc_block_buf(size, node);
155 }
156
157 void __meminit vmemmap_verify(pte_t *pte, int node,
158 unsigned long start, unsigned long end)
159 {
160 unsigned long pfn = pte_pfn(*pte);
161 int actual_node = early_pfn_to_nid(pfn);
162
163 if (node_distance(actual_node, node) > LOCAL_DISTANCE)
164 pr_warn("[%lx-%lx] potential offnode page_structs\n",
165 start, end - 1);
166 }
167
168 pte_t * __meminit vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node)
169 {
170 pte_t *pte = pte_offset_kernel(pmd, addr);
171 if (pte_none(*pte)) {
172 pte_t entry;
173 void *p = alloc_block_buf(PAGE_SIZE, node);
174 if (!p)
175 return NULL;
176 entry = pfn_pte(__pa(p) >> PAGE_SHIFT, PAGE_KERNEL);
177 set_pte_at(&init_mm, addr, pte, entry);
178 }
179 return pte;
180 }
181
182 pmd_t * __meminit vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node)
183 {
184 pmd_t *pmd = pmd_offset(pud, addr);
185 if (pmd_none(*pmd)) {
186 void *p = vmemmap_alloc_block(PAGE_SIZE, node);
187 if (!p)
188 return NULL;
189 pmd_populate_kernel(&init_mm, pmd, p);
190 }
191 return pmd;
192 }
193
194 pud_t * __meminit vmemmap_pud_populate(p4d_t *p4d, unsigned long addr, int node)
195 {
196 pud_t *pud = pud_offset(p4d, addr);
197 if (pud_none(*pud)) {
198 void *p = vmemmap_alloc_block(PAGE_SIZE, node);
199 if (!p)
200 return NULL;
201 pud_populate(&init_mm, pud, p);
202 }
203 return pud;
204 }
205
206 p4d_t * __meminit vmemmap_p4d_populate(pgd_t *pgd, unsigned long addr, int node)
207 {
208 p4d_t *p4d = p4d_offset(pgd, addr);
209 if (p4d_none(*p4d)) {
210 void *p = vmemmap_alloc_block(PAGE_SIZE, node);
211 if (!p)
212 return NULL;
213 p4d_populate(&init_mm, p4d, p);
214 }
215 return p4d;
216 }
217
218 pgd_t * __meminit vmemmap_pgd_populate(unsigned long addr, int node)
219 {
220 pgd_t *pgd = pgd_offset_k(addr);
221 if (pgd_none(*pgd)) {
222 void *p = vmemmap_alloc_block(PAGE_SIZE, node);
223 if (!p)
224 return NULL;
225 pgd_populate(&init_mm, pgd, p);
226 }
227 return pgd;
228 }
229
230 int __meminit vmemmap_populate_basepages(unsigned long start,
231 unsigned long end, int node)
232 {
233 unsigned long addr = start;
234 pgd_t *pgd;
235 p4d_t *p4d;
236 pud_t *pud;
237 pmd_t *pmd;
238 pte_t *pte;
239
240 for (; addr < end; addr += PAGE_SIZE) {
241 pgd = vmemmap_pgd_populate(addr, node);
242 if (!pgd)
243 return -ENOMEM;
244 p4d = vmemmap_p4d_populate(pgd, addr, node);
245 if (!p4d)
246 return -ENOMEM;
247 pud = vmemmap_pud_populate(p4d, addr, node);
248 if (!pud)
249 return -ENOMEM;
250 pmd = vmemmap_pmd_populate(pud, addr, node);
251 if (!pmd)
252 return -ENOMEM;
253 pte = vmemmap_pte_populate(pmd, addr, node);
254 if (!pte)
255 return -ENOMEM;
256 vmemmap_verify(pte, node, addr, addr + PAGE_SIZE);
257 }
258
259 return 0;
260 }
261
262 struct page * __meminit sparse_mem_map_populate(unsigned long pnum, int nid)
263 {
264 unsigned long start;
265 unsigned long end;
266 struct page *map;
267
268 map = pfn_to_page(pnum * PAGES_PER_SECTION);
269 start = (unsigned long)map;
270 end = (unsigned long)(map + PAGES_PER_SECTION);
271
272 if (vmemmap_populate(start, end, nid))
273 return NULL;
274
275 return map;
276 }
277
278 void __init sparse_mem_maps_populate_node(struct page **map_map,
279 unsigned long pnum_begin,
280 unsigned long pnum_end,
281 unsigned long map_count, int nodeid)
282 {
283 unsigned long pnum;
284 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
285 void *vmemmap_buf_start;
286
287 size = ALIGN(size, PMD_SIZE);
288 vmemmap_buf_start = __earlyonly_bootmem_alloc(nodeid, size * map_count,
289 PMD_SIZE, __pa(MAX_DMA_ADDRESS));
290
291 if (vmemmap_buf_start) {
292 vmemmap_buf = vmemmap_buf_start;
293 vmemmap_buf_end = vmemmap_buf_start + size * map_count;
294 }
295
296 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
297 struct mem_section *ms;
298
299 if (!present_section_nr(pnum))
300 continue;
301
302 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
303 if (map_map[pnum])
304 continue;
305 ms = __nr_to_section(pnum);
306 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
307 __func__);
308 ms->section_mem_map = 0;
309 }
310
311 if (vmemmap_buf_start) {
312 /* need to free left buf */
313 memblock_free_early(__pa(vmemmap_buf),
314 vmemmap_buf_end - vmemmap_buf);
315 vmemmap_buf = NULL;
316 vmemmap_buf_end = NULL;
317 }
318 }