Merge tag 'drm-fixes-for-v4.14-rc1' of git://people.freedesktop.org/~airlied/linux
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / slub.c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
7 *
8 * (C) 2007 SGI, Christoph Lameter
9 * (C) 2011 Linux Foundation, Christoph Lameter
10 */
11
12 #include <linux/mm.h>
13 #include <linux/swap.h> /* struct reclaim_state */
14 #include <linux/module.h>
15 #include <linux/bit_spinlock.h>
16 #include <linux/interrupt.h>
17 #include <linux/bitops.h>
18 #include <linux/slab.h>
19 #include "slab.h"
20 #include <linux/proc_fs.h>
21 #include <linux/notifier.h>
22 #include <linux/seq_file.h>
23 #include <linux/kasan.h>
24 #include <linux/kmemcheck.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
38
39 #include <trace/events/kmem.h>
40
41 #include "internal.h"
42
43 /*
44 * Lock order:
45 * 1. slab_mutex (Global Mutex)
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
48 *
49 * slab_mutex
50 *
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
53 *
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects the second
56 * double word in the page struct. Meaning
57 * A. page->freelist -> List of object free in a page
58 * B. page->counters -> Counters of objects
59 * C. page->frozen -> frozen state
60 *
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
66 *
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
72 *
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
82 *
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
85 *
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
91 *
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
95 *
96 * Overloading of page flags that are otherwise used for LRU management.
97 *
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
106 *
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
110 * freelist that allows lockless access to
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
113 *
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
116 * the fast path and disables lockless freelists.
117 */
118
119 static inline int kmem_cache_debug(struct kmem_cache *s)
120 {
121 #ifdef CONFIG_SLUB_DEBUG
122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 return 0;
125 #endif
126 }
127
128 void *fixup_red_left(struct kmem_cache *s, void *p)
129 {
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
132
133 return p;
134 }
135
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
137 {
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140 #else
141 return false;
142 #endif
143 }
144
145 /*
146 * Issues still to be resolved:
147 *
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
149 *
150 * - Variable sizing of the per node arrays
151 */
152
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
155
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
158
159 /*
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
162 */
163 #define MIN_PARTIAL 5
164
165 /*
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
168 * sort the partial list by the number of objects in use.
169 */
170 #define MAX_PARTIAL 10
171
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_STORE_USER)
174
175 /*
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
178 */
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
181
182
183 /*
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
187 */
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
189
190 #define OO_SHIFT 16
191 #define OO_MASK ((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
193
194 /* Internal SLUB flags */
195 #define __OBJECT_POISON 0x80000000UL /* Poison object */
196 #define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
197
198 /*
199 * Tracking user of a slab.
200 */
201 #define TRACK_ADDRS_COUNT 16
202 struct track {
203 unsigned long addr; /* Called from address */
204 #ifdef CONFIG_STACKTRACE
205 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
206 #endif
207 int cpu; /* Was running on cpu */
208 int pid; /* Pid context */
209 unsigned long when; /* When did the operation occur */
210 };
211
212 enum track_item { TRACK_ALLOC, TRACK_FREE };
213
214 #ifdef CONFIG_SYSFS
215 static int sysfs_slab_add(struct kmem_cache *);
216 static int sysfs_slab_alias(struct kmem_cache *, const char *);
217 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
218 static void sysfs_slab_remove(struct kmem_cache *s);
219 #else
220 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
221 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
222 { return 0; }
223 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
224 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
225 #endif
226
227 static inline void stat(const struct kmem_cache *s, enum stat_item si)
228 {
229 #ifdef CONFIG_SLUB_STATS
230 /*
231 * The rmw is racy on a preemptible kernel but this is acceptable, so
232 * avoid this_cpu_add()'s irq-disable overhead.
233 */
234 raw_cpu_inc(s->cpu_slab->stat[si]);
235 #endif
236 }
237
238 /********************************************************************
239 * Core slab cache functions
240 *******************************************************************/
241
242 /*
243 * Returns freelist pointer (ptr). With hardening, this is obfuscated
244 * with an XOR of the address where the pointer is held and a per-cache
245 * random number.
246 */
247 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
248 unsigned long ptr_addr)
249 {
250 #ifdef CONFIG_SLAB_FREELIST_HARDENED
251 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
252 #else
253 return ptr;
254 #endif
255 }
256
257 /* Returns the freelist pointer recorded at location ptr_addr. */
258 static inline void *freelist_dereference(const struct kmem_cache *s,
259 void *ptr_addr)
260 {
261 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
262 (unsigned long)ptr_addr);
263 }
264
265 static inline void *get_freepointer(struct kmem_cache *s, void *object)
266 {
267 return freelist_dereference(s, object + s->offset);
268 }
269
270 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
271 {
272 if (object)
273 prefetch(freelist_dereference(s, object + s->offset));
274 }
275
276 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
277 {
278 unsigned long freepointer_addr;
279 void *p;
280
281 if (!debug_pagealloc_enabled())
282 return get_freepointer(s, object);
283
284 freepointer_addr = (unsigned long)object + s->offset;
285 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
286 return freelist_ptr(s, p, freepointer_addr);
287 }
288
289 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
290 {
291 unsigned long freeptr_addr = (unsigned long)object + s->offset;
292
293 #ifdef CONFIG_SLAB_FREELIST_HARDENED
294 BUG_ON(object == fp); /* naive detection of double free or corruption */
295 #endif
296
297 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
298 }
299
300 /* Loop over all objects in a slab */
301 #define for_each_object(__p, __s, __addr, __objects) \
302 for (__p = fixup_red_left(__s, __addr); \
303 __p < (__addr) + (__objects) * (__s)->size; \
304 __p += (__s)->size)
305
306 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
307 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
308 __idx <= __objects; \
309 __p += (__s)->size, __idx++)
310
311 /* Determine object index from a given position */
312 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
313 {
314 return (p - addr) / s->size;
315 }
316
317 static inline int order_objects(int order, unsigned long size, int reserved)
318 {
319 return ((PAGE_SIZE << order) - reserved) / size;
320 }
321
322 static inline struct kmem_cache_order_objects oo_make(int order,
323 unsigned long size, int reserved)
324 {
325 struct kmem_cache_order_objects x = {
326 (order << OO_SHIFT) + order_objects(order, size, reserved)
327 };
328
329 return x;
330 }
331
332 static inline int oo_order(struct kmem_cache_order_objects x)
333 {
334 return x.x >> OO_SHIFT;
335 }
336
337 static inline int oo_objects(struct kmem_cache_order_objects x)
338 {
339 return x.x & OO_MASK;
340 }
341
342 /*
343 * Per slab locking using the pagelock
344 */
345 static __always_inline void slab_lock(struct page *page)
346 {
347 VM_BUG_ON_PAGE(PageTail(page), page);
348 bit_spin_lock(PG_locked, &page->flags);
349 }
350
351 static __always_inline void slab_unlock(struct page *page)
352 {
353 VM_BUG_ON_PAGE(PageTail(page), page);
354 __bit_spin_unlock(PG_locked, &page->flags);
355 }
356
357 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
358 {
359 struct page tmp;
360 tmp.counters = counters_new;
361 /*
362 * page->counters can cover frozen/inuse/objects as well
363 * as page->_refcount. If we assign to ->counters directly
364 * we run the risk of losing updates to page->_refcount, so
365 * be careful and only assign to the fields we need.
366 */
367 page->frozen = tmp.frozen;
368 page->inuse = tmp.inuse;
369 page->objects = tmp.objects;
370 }
371
372 /* Interrupts must be disabled (for the fallback code to work right) */
373 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
374 void *freelist_old, unsigned long counters_old,
375 void *freelist_new, unsigned long counters_new,
376 const char *n)
377 {
378 VM_BUG_ON(!irqs_disabled());
379 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
380 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
381 if (s->flags & __CMPXCHG_DOUBLE) {
382 if (cmpxchg_double(&page->freelist, &page->counters,
383 freelist_old, counters_old,
384 freelist_new, counters_new))
385 return true;
386 } else
387 #endif
388 {
389 slab_lock(page);
390 if (page->freelist == freelist_old &&
391 page->counters == counters_old) {
392 page->freelist = freelist_new;
393 set_page_slub_counters(page, counters_new);
394 slab_unlock(page);
395 return true;
396 }
397 slab_unlock(page);
398 }
399
400 cpu_relax();
401 stat(s, CMPXCHG_DOUBLE_FAIL);
402
403 #ifdef SLUB_DEBUG_CMPXCHG
404 pr_info("%s %s: cmpxchg double redo ", n, s->name);
405 #endif
406
407 return false;
408 }
409
410 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
411 void *freelist_old, unsigned long counters_old,
412 void *freelist_new, unsigned long counters_new,
413 const char *n)
414 {
415 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
416 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
417 if (s->flags & __CMPXCHG_DOUBLE) {
418 if (cmpxchg_double(&page->freelist, &page->counters,
419 freelist_old, counters_old,
420 freelist_new, counters_new))
421 return true;
422 } else
423 #endif
424 {
425 unsigned long flags;
426
427 local_irq_save(flags);
428 slab_lock(page);
429 if (page->freelist == freelist_old &&
430 page->counters == counters_old) {
431 page->freelist = freelist_new;
432 set_page_slub_counters(page, counters_new);
433 slab_unlock(page);
434 local_irq_restore(flags);
435 return true;
436 }
437 slab_unlock(page);
438 local_irq_restore(flags);
439 }
440
441 cpu_relax();
442 stat(s, CMPXCHG_DOUBLE_FAIL);
443
444 #ifdef SLUB_DEBUG_CMPXCHG
445 pr_info("%s %s: cmpxchg double redo ", n, s->name);
446 #endif
447
448 return false;
449 }
450
451 #ifdef CONFIG_SLUB_DEBUG
452 /*
453 * Determine a map of object in use on a page.
454 *
455 * Node listlock must be held to guarantee that the page does
456 * not vanish from under us.
457 */
458 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
459 {
460 void *p;
461 void *addr = page_address(page);
462
463 for (p = page->freelist; p; p = get_freepointer(s, p))
464 set_bit(slab_index(p, s, addr), map);
465 }
466
467 static inline int size_from_object(struct kmem_cache *s)
468 {
469 if (s->flags & SLAB_RED_ZONE)
470 return s->size - s->red_left_pad;
471
472 return s->size;
473 }
474
475 static inline void *restore_red_left(struct kmem_cache *s, void *p)
476 {
477 if (s->flags & SLAB_RED_ZONE)
478 p -= s->red_left_pad;
479
480 return p;
481 }
482
483 /*
484 * Debug settings:
485 */
486 #if defined(CONFIG_SLUB_DEBUG_ON)
487 static int slub_debug = DEBUG_DEFAULT_FLAGS;
488 #else
489 static int slub_debug;
490 #endif
491
492 static char *slub_debug_slabs;
493 static int disable_higher_order_debug;
494
495 /*
496 * slub is about to manipulate internal object metadata. This memory lies
497 * outside the range of the allocated object, so accessing it would normally
498 * be reported by kasan as a bounds error. metadata_access_enable() is used
499 * to tell kasan that these accesses are OK.
500 */
501 static inline void metadata_access_enable(void)
502 {
503 kasan_disable_current();
504 }
505
506 static inline void metadata_access_disable(void)
507 {
508 kasan_enable_current();
509 }
510
511 /*
512 * Object debugging
513 */
514
515 /* Verify that a pointer has an address that is valid within a slab page */
516 static inline int check_valid_pointer(struct kmem_cache *s,
517 struct page *page, void *object)
518 {
519 void *base;
520
521 if (!object)
522 return 1;
523
524 base = page_address(page);
525 object = restore_red_left(s, object);
526 if (object < base || object >= base + page->objects * s->size ||
527 (object - base) % s->size) {
528 return 0;
529 }
530
531 return 1;
532 }
533
534 static void print_section(char *level, char *text, u8 *addr,
535 unsigned int length)
536 {
537 metadata_access_enable();
538 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
539 length, 1);
540 metadata_access_disable();
541 }
542
543 static struct track *get_track(struct kmem_cache *s, void *object,
544 enum track_item alloc)
545 {
546 struct track *p;
547
548 if (s->offset)
549 p = object + s->offset + sizeof(void *);
550 else
551 p = object + s->inuse;
552
553 return p + alloc;
554 }
555
556 static void set_track(struct kmem_cache *s, void *object,
557 enum track_item alloc, unsigned long addr)
558 {
559 struct track *p = get_track(s, object, alloc);
560
561 if (addr) {
562 #ifdef CONFIG_STACKTRACE
563 struct stack_trace trace;
564 int i;
565
566 trace.nr_entries = 0;
567 trace.max_entries = TRACK_ADDRS_COUNT;
568 trace.entries = p->addrs;
569 trace.skip = 3;
570 metadata_access_enable();
571 save_stack_trace(&trace);
572 metadata_access_disable();
573
574 /* See rant in lockdep.c */
575 if (trace.nr_entries != 0 &&
576 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
577 trace.nr_entries--;
578
579 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
580 p->addrs[i] = 0;
581 #endif
582 p->addr = addr;
583 p->cpu = smp_processor_id();
584 p->pid = current->pid;
585 p->when = jiffies;
586 } else
587 memset(p, 0, sizeof(struct track));
588 }
589
590 static void init_tracking(struct kmem_cache *s, void *object)
591 {
592 if (!(s->flags & SLAB_STORE_USER))
593 return;
594
595 set_track(s, object, TRACK_FREE, 0UL);
596 set_track(s, object, TRACK_ALLOC, 0UL);
597 }
598
599 static void print_track(const char *s, struct track *t)
600 {
601 if (!t->addr)
602 return;
603
604 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
605 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
606 #ifdef CONFIG_STACKTRACE
607 {
608 int i;
609 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
610 if (t->addrs[i])
611 pr_err("\t%pS\n", (void *)t->addrs[i]);
612 else
613 break;
614 }
615 #endif
616 }
617
618 static void print_tracking(struct kmem_cache *s, void *object)
619 {
620 if (!(s->flags & SLAB_STORE_USER))
621 return;
622
623 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
624 print_track("Freed", get_track(s, object, TRACK_FREE));
625 }
626
627 static void print_page_info(struct page *page)
628 {
629 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
630 page, page->objects, page->inuse, page->freelist, page->flags);
631
632 }
633
634 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
635 {
636 struct va_format vaf;
637 va_list args;
638
639 va_start(args, fmt);
640 vaf.fmt = fmt;
641 vaf.va = &args;
642 pr_err("=============================================================================\n");
643 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
644 pr_err("-----------------------------------------------------------------------------\n\n");
645
646 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
647 va_end(args);
648 }
649
650 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
651 {
652 struct va_format vaf;
653 va_list args;
654
655 va_start(args, fmt);
656 vaf.fmt = fmt;
657 vaf.va = &args;
658 pr_err("FIX %s: %pV\n", s->name, &vaf);
659 va_end(args);
660 }
661
662 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
663 {
664 unsigned int off; /* Offset of last byte */
665 u8 *addr = page_address(page);
666
667 print_tracking(s, p);
668
669 print_page_info(page);
670
671 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
672 p, p - addr, get_freepointer(s, p));
673
674 if (s->flags & SLAB_RED_ZONE)
675 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
676 s->red_left_pad);
677 else if (p > addr + 16)
678 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
679
680 print_section(KERN_ERR, "Object ", p,
681 min_t(unsigned long, s->object_size, PAGE_SIZE));
682 if (s->flags & SLAB_RED_ZONE)
683 print_section(KERN_ERR, "Redzone ", p + s->object_size,
684 s->inuse - s->object_size);
685
686 if (s->offset)
687 off = s->offset + sizeof(void *);
688 else
689 off = s->inuse;
690
691 if (s->flags & SLAB_STORE_USER)
692 off += 2 * sizeof(struct track);
693
694 off += kasan_metadata_size(s);
695
696 if (off != size_from_object(s))
697 /* Beginning of the filler is the free pointer */
698 print_section(KERN_ERR, "Padding ", p + off,
699 size_from_object(s) - off);
700
701 dump_stack();
702 }
703
704 void object_err(struct kmem_cache *s, struct page *page,
705 u8 *object, char *reason)
706 {
707 slab_bug(s, "%s", reason);
708 print_trailer(s, page, object);
709 }
710
711 static void slab_err(struct kmem_cache *s, struct page *page,
712 const char *fmt, ...)
713 {
714 va_list args;
715 char buf[100];
716
717 va_start(args, fmt);
718 vsnprintf(buf, sizeof(buf), fmt, args);
719 va_end(args);
720 slab_bug(s, "%s", buf);
721 print_page_info(page);
722 dump_stack();
723 }
724
725 static void init_object(struct kmem_cache *s, void *object, u8 val)
726 {
727 u8 *p = object;
728
729 if (s->flags & SLAB_RED_ZONE)
730 memset(p - s->red_left_pad, val, s->red_left_pad);
731
732 if (s->flags & __OBJECT_POISON) {
733 memset(p, POISON_FREE, s->object_size - 1);
734 p[s->object_size - 1] = POISON_END;
735 }
736
737 if (s->flags & SLAB_RED_ZONE)
738 memset(p + s->object_size, val, s->inuse - s->object_size);
739 }
740
741 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
742 void *from, void *to)
743 {
744 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
745 memset(from, data, to - from);
746 }
747
748 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
749 u8 *object, char *what,
750 u8 *start, unsigned int value, unsigned int bytes)
751 {
752 u8 *fault;
753 u8 *end;
754
755 metadata_access_enable();
756 fault = memchr_inv(start, value, bytes);
757 metadata_access_disable();
758 if (!fault)
759 return 1;
760
761 end = start + bytes;
762 while (end > fault && end[-1] == value)
763 end--;
764
765 slab_bug(s, "%s overwritten", what);
766 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
767 fault, end - 1, fault[0], value);
768 print_trailer(s, page, object);
769
770 restore_bytes(s, what, value, fault, end);
771 return 0;
772 }
773
774 /*
775 * Object layout:
776 *
777 * object address
778 * Bytes of the object to be managed.
779 * If the freepointer may overlay the object then the free
780 * pointer is the first word of the object.
781 *
782 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
783 * 0xa5 (POISON_END)
784 *
785 * object + s->object_size
786 * Padding to reach word boundary. This is also used for Redzoning.
787 * Padding is extended by another word if Redzoning is enabled and
788 * object_size == inuse.
789 *
790 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
791 * 0xcc (RED_ACTIVE) for objects in use.
792 *
793 * object + s->inuse
794 * Meta data starts here.
795 *
796 * A. Free pointer (if we cannot overwrite object on free)
797 * B. Tracking data for SLAB_STORE_USER
798 * C. Padding to reach required alignment boundary or at mininum
799 * one word if debugging is on to be able to detect writes
800 * before the word boundary.
801 *
802 * Padding is done using 0x5a (POISON_INUSE)
803 *
804 * object + s->size
805 * Nothing is used beyond s->size.
806 *
807 * If slabcaches are merged then the object_size and inuse boundaries are mostly
808 * ignored. And therefore no slab options that rely on these boundaries
809 * may be used with merged slabcaches.
810 */
811
812 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
813 {
814 unsigned long off = s->inuse; /* The end of info */
815
816 if (s->offset)
817 /* Freepointer is placed after the object. */
818 off += sizeof(void *);
819
820 if (s->flags & SLAB_STORE_USER)
821 /* We also have user information there */
822 off += 2 * sizeof(struct track);
823
824 off += kasan_metadata_size(s);
825
826 if (size_from_object(s) == off)
827 return 1;
828
829 return check_bytes_and_report(s, page, p, "Object padding",
830 p + off, POISON_INUSE, size_from_object(s) - off);
831 }
832
833 /* Check the pad bytes at the end of a slab page */
834 static int slab_pad_check(struct kmem_cache *s, struct page *page)
835 {
836 u8 *start;
837 u8 *fault;
838 u8 *end;
839 int length;
840 int remainder;
841
842 if (!(s->flags & SLAB_POISON))
843 return 1;
844
845 start = page_address(page);
846 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
847 end = start + length;
848 remainder = length % s->size;
849 if (!remainder)
850 return 1;
851
852 metadata_access_enable();
853 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
854 metadata_access_disable();
855 if (!fault)
856 return 1;
857 while (end > fault && end[-1] == POISON_INUSE)
858 end--;
859
860 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
861 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
862
863 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
864 return 0;
865 }
866
867 static int check_object(struct kmem_cache *s, struct page *page,
868 void *object, u8 val)
869 {
870 u8 *p = object;
871 u8 *endobject = object + s->object_size;
872
873 if (s->flags & SLAB_RED_ZONE) {
874 if (!check_bytes_and_report(s, page, object, "Redzone",
875 object - s->red_left_pad, val, s->red_left_pad))
876 return 0;
877
878 if (!check_bytes_and_report(s, page, object, "Redzone",
879 endobject, val, s->inuse - s->object_size))
880 return 0;
881 } else {
882 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
883 check_bytes_and_report(s, page, p, "Alignment padding",
884 endobject, POISON_INUSE,
885 s->inuse - s->object_size);
886 }
887 }
888
889 if (s->flags & SLAB_POISON) {
890 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
891 (!check_bytes_and_report(s, page, p, "Poison", p,
892 POISON_FREE, s->object_size - 1) ||
893 !check_bytes_and_report(s, page, p, "Poison",
894 p + s->object_size - 1, POISON_END, 1)))
895 return 0;
896 /*
897 * check_pad_bytes cleans up on its own.
898 */
899 check_pad_bytes(s, page, p);
900 }
901
902 if (!s->offset && val == SLUB_RED_ACTIVE)
903 /*
904 * Object and freepointer overlap. Cannot check
905 * freepointer while object is allocated.
906 */
907 return 1;
908
909 /* Check free pointer validity */
910 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
911 object_err(s, page, p, "Freepointer corrupt");
912 /*
913 * No choice but to zap it and thus lose the remainder
914 * of the free objects in this slab. May cause
915 * another error because the object count is now wrong.
916 */
917 set_freepointer(s, p, NULL);
918 return 0;
919 }
920 return 1;
921 }
922
923 static int check_slab(struct kmem_cache *s, struct page *page)
924 {
925 int maxobj;
926
927 VM_BUG_ON(!irqs_disabled());
928
929 if (!PageSlab(page)) {
930 slab_err(s, page, "Not a valid slab page");
931 return 0;
932 }
933
934 maxobj = order_objects(compound_order(page), s->size, s->reserved);
935 if (page->objects > maxobj) {
936 slab_err(s, page, "objects %u > max %u",
937 page->objects, maxobj);
938 return 0;
939 }
940 if (page->inuse > page->objects) {
941 slab_err(s, page, "inuse %u > max %u",
942 page->inuse, page->objects);
943 return 0;
944 }
945 /* Slab_pad_check fixes things up after itself */
946 slab_pad_check(s, page);
947 return 1;
948 }
949
950 /*
951 * Determine if a certain object on a page is on the freelist. Must hold the
952 * slab lock to guarantee that the chains are in a consistent state.
953 */
954 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
955 {
956 int nr = 0;
957 void *fp;
958 void *object = NULL;
959 int max_objects;
960
961 fp = page->freelist;
962 while (fp && nr <= page->objects) {
963 if (fp == search)
964 return 1;
965 if (!check_valid_pointer(s, page, fp)) {
966 if (object) {
967 object_err(s, page, object,
968 "Freechain corrupt");
969 set_freepointer(s, object, NULL);
970 } else {
971 slab_err(s, page, "Freepointer corrupt");
972 page->freelist = NULL;
973 page->inuse = page->objects;
974 slab_fix(s, "Freelist cleared");
975 return 0;
976 }
977 break;
978 }
979 object = fp;
980 fp = get_freepointer(s, object);
981 nr++;
982 }
983
984 max_objects = order_objects(compound_order(page), s->size, s->reserved);
985 if (max_objects > MAX_OBJS_PER_PAGE)
986 max_objects = MAX_OBJS_PER_PAGE;
987
988 if (page->objects != max_objects) {
989 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
990 page->objects, max_objects);
991 page->objects = max_objects;
992 slab_fix(s, "Number of objects adjusted.");
993 }
994 if (page->inuse != page->objects - nr) {
995 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
996 page->inuse, page->objects - nr);
997 page->inuse = page->objects - nr;
998 slab_fix(s, "Object count adjusted.");
999 }
1000 return search == NULL;
1001 }
1002
1003 static void trace(struct kmem_cache *s, struct page *page, void *object,
1004 int alloc)
1005 {
1006 if (s->flags & SLAB_TRACE) {
1007 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1008 s->name,
1009 alloc ? "alloc" : "free",
1010 object, page->inuse,
1011 page->freelist);
1012
1013 if (!alloc)
1014 print_section(KERN_INFO, "Object ", (void *)object,
1015 s->object_size);
1016
1017 dump_stack();
1018 }
1019 }
1020
1021 /*
1022 * Tracking of fully allocated slabs for debugging purposes.
1023 */
1024 static void add_full(struct kmem_cache *s,
1025 struct kmem_cache_node *n, struct page *page)
1026 {
1027 if (!(s->flags & SLAB_STORE_USER))
1028 return;
1029
1030 lockdep_assert_held(&n->list_lock);
1031 list_add(&page->lru, &n->full);
1032 }
1033
1034 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1035 {
1036 if (!(s->flags & SLAB_STORE_USER))
1037 return;
1038
1039 lockdep_assert_held(&n->list_lock);
1040 list_del(&page->lru);
1041 }
1042
1043 /* Tracking of the number of slabs for debugging purposes */
1044 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1045 {
1046 struct kmem_cache_node *n = get_node(s, node);
1047
1048 return atomic_long_read(&n->nr_slabs);
1049 }
1050
1051 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1052 {
1053 return atomic_long_read(&n->nr_slabs);
1054 }
1055
1056 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1057 {
1058 struct kmem_cache_node *n = get_node(s, node);
1059
1060 /*
1061 * May be called early in order to allocate a slab for the
1062 * kmem_cache_node structure. Solve the chicken-egg
1063 * dilemma by deferring the increment of the count during
1064 * bootstrap (see early_kmem_cache_node_alloc).
1065 */
1066 if (likely(n)) {
1067 atomic_long_inc(&n->nr_slabs);
1068 atomic_long_add(objects, &n->total_objects);
1069 }
1070 }
1071 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1072 {
1073 struct kmem_cache_node *n = get_node(s, node);
1074
1075 atomic_long_dec(&n->nr_slabs);
1076 atomic_long_sub(objects, &n->total_objects);
1077 }
1078
1079 /* Object debug checks for alloc/free paths */
1080 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1081 void *object)
1082 {
1083 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1084 return;
1085
1086 init_object(s, object, SLUB_RED_INACTIVE);
1087 init_tracking(s, object);
1088 }
1089
1090 static inline int alloc_consistency_checks(struct kmem_cache *s,
1091 struct page *page,
1092 void *object, unsigned long addr)
1093 {
1094 if (!check_slab(s, page))
1095 return 0;
1096
1097 if (!check_valid_pointer(s, page, object)) {
1098 object_err(s, page, object, "Freelist Pointer check fails");
1099 return 0;
1100 }
1101
1102 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1103 return 0;
1104
1105 return 1;
1106 }
1107
1108 static noinline int alloc_debug_processing(struct kmem_cache *s,
1109 struct page *page,
1110 void *object, unsigned long addr)
1111 {
1112 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1113 if (!alloc_consistency_checks(s, page, object, addr))
1114 goto bad;
1115 }
1116
1117 /* Success perform special debug activities for allocs */
1118 if (s->flags & SLAB_STORE_USER)
1119 set_track(s, object, TRACK_ALLOC, addr);
1120 trace(s, page, object, 1);
1121 init_object(s, object, SLUB_RED_ACTIVE);
1122 return 1;
1123
1124 bad:
1125 if (PageSlab(page)) {
1126 /*
1127 * If this is a slab page then lets do the best we can
1128 * to avoid issues in the future. Marking all objects
1129 * as used avoids touching the remaining objects.
1130 */
1131 slab_fix(s, "Marking all objects used");
1132 page->inuse = page->objects;
1133 page->freelist = NULL;
1134 }
1135 return 0;
1136 }
1137
1138 static inline int free_consistency_checks(struct kmem_cache *s,
1139 struct page *page, void *object, unsigned long addr)
1140 {
1141 if (!check_valid_pointer(s, page, object)) {
1142 slab_err(s, page, "Invalid object pointer 0x%p", object);
1143 return 0;
1144 }
1145
1146 if (on_freelist(s, page, object)) {
1147 object_err(s, page, object, "Object already free");
1148 return 0;
1149 }
1150
1151 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1152 return 0;
1153
1154 if (unlikely(s != page->slab_cache)) {
1155 if (!PageSlab(page)) {
1156 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1157 object);
1158 } else if (!page->slab_cache) {
1159 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1160 object);
1161 dump_stack();
1162 } else
1163 object_err(s, page, object,
1164 "page slab pointer corrupt.");
1165 return 0;
1166 }
1167 return 1;
1168 }
1169
1170 /* Supports checking bulk free of a constructed freelist */
1171 static noinline int free_debug_processing(
1172 struct kmem_cache *s, struct page *page,
1173 void *head, void *tail, int bulk_cnt,
1174 unsigned long addr)
1175 {
1176 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1177 void *object = head;
1178 int cnt = 0;
1179 unsigned long uninitialized_var(flags);
1180 int ret = 0;
1181
1182 spin_lock_irqsave(&n->list_lock, flags);
1183 slab_lock(page);
1184
1185 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1186 if (!check_slab(s, page))
1187 goto out;
1188 }
1189
1190 next_object:
1191 cnt++;
1192
1193 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1194 if (!free_consistency_checks(s, page, object, addr))
1195 goto out;
1196 }
1197
1198 if (s->flags & SLAB_STORE_USER)
1199 set_track(s, object, TRACK_FREE, addr);
1200 trace(s, page, object, 0);
1201 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1202 init_object(s, object, SLUB_RED_INACTIVE);
1203
1204 /* Reached end of constructed freelist yet? */
1205 if (object != tail) {
1206 object = get_freepointer(s, object);
1207 goto next_object;
1208 }
1209 ret = 1;
1210
1211 out:
1212 if (cnt != bulk_cnt)
1213 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1214 bulk_cnt, cnt);
1215
1216 slab_unlock(page);
1217 spin_unlock_irqrestore(&n->list_lock, flags);
1218 if (!ret)
1219 slab_fix(s, "Object at 0x%p not freed", object);
1220 return ret;
1221 }
1222
1223 static int __init setup_slub_debug(char *str)
1224 {
1225 slub_debug = DEBUG_DEFAULT_FLAGS;
1226 if (*str++ != '=' || !*str)
1227 /*
1228 * No options specified. Switch on full debugging.
1229 */
1230 goto out;
1231
1232 if (*str == ',')
1233 /*
1234 * No options but restriction on slabs. This means full
1235 * debugging for slabs matching a pattern.
1236 */
1237 goto check_slabs;
1238
1239 slub_debug = 0;
1240 if (*str == '-')
1241 /*
1242 * Switch off all debugging measures.
1243 */
1244 goto out;
1245
1246 /*
1247 * Determine which debug features should be switched on
1248 */
1249 for (; *str && *str != ','; str++) {
1250 switch (tolower(*str)) {
1251 case 'f':
1252 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1253 break;
1254 case 'z':
1255 slub_debug |= SLAB_RED_ZONE;
1256 break;
1257 case 'p':
1258 slub_debug |= SLAB_POISON;
1259 break;
1260 case 'u':
1261 slub_debug |= SLAB_STORE_USER;
1262 break;
1263 case 't':
1264 slub_debug |= SLAB_TRACE;
1265 break;
1266 case 'a':
1267 slub_debug |= SLAB_FAILSLAB;
1268 break;
1269 case 'o':
1270 /*
1271 * Avoid enabling debugging on caches if its minimum
1272 * order would increase as a result.
1273 */
1274 disable_higher_order_debug = 1;
1275 break;
1276 default:
1277 pr_err("slub_debug option '%c' unknown. skipped\n",
1278 *str);
1279 }
1280 }
1281
1282 check_slabs:
1283 if (*str == ',')
1284 slub_debug_slabs = str + 1;
1285 out:
1286 return 1;
1287 }
1288
1289 __setup("slub_debug", setup_slub_debug);
1290
1291 unsigned long kmem_cache_flags(unsigned long object_size,
1292 unsigned long flags, const char *name,
1293 void (*ctor)(void *))
1294 {
1295 /*
1296 * Enable debugging if selected on the kernel commandline.
1297 */
1298 if (slub_debug && (!slub_debug_slabs || (name &&
1299 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1300 flags |= slub_debug;
1301
1302 return flags;
1303 }
1304 #else /* !CONFIG_SLUB_DEBUG */
1305 static inline void setup_object_debug(struct kmem_cache *s,
1306 struct page *page, void *object) {}
1307
1308 static inline int alloc_debug_processing(struct kmem_cache *s,
1309 struct page *page, void *object, unsigned long addr) { return 0; }
1310
1311 static inline int free_debug_processing(
1312 struct kmem_cache *s, struct page *page,
1313 void *head, void *tail, int bulk_cnt,
1314 unsigned long addr) { return 0; }
1315
1316 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1317 { return 1; }
1318 static inline int check_object(struct kmem_cache *s, struct page *page,
1319 void *object, u8 val) { return 1; }
1320 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1321 struct page *page) {}
1322 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1323 struct page *page) {}
1324 unsigned long kmem_cache_flags(unsigned long object_size,
1325 unsigned long flags, const char *name,
1326 void (*ctor)(void *))
1327 {
1328 return flags;
1329 }
1330 #define slub_debug 0
1331
1332 #define disable_higher_order_debug 0
1333
1334 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1335 { return 0; }
1336 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1337 { return 0; }
1338 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1339 int objects) {}
1340 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1341 int objects) {}
1342
1343 #endif /* CONFIG_SLUB_DEBUG */
1344
1345 /*
1346 * Hooks for other subsystems that check memory allocations. In a typical
1347 * production configuration these hooks all should produce no code at all.
1348 */
1349 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1350 {
1351 kmemleak_alloc(ptr, size, 1, flags);
1352 kasan_kmalloc_large(ptr, size, flags);
1353 }
1354
1355 static inline void kfree_hook(const void *x)
1356 {
1357 kmemleak_free(x);
1358 kasan_kfree_large(x);
1359 }
1360
1361 static inline void *slab_free_hook(struct kmem_cache *s, void *x)
1362 {
1363 void *freeptr;
1364
1365 kmemleak_free_recursive(x, s->flags);
1366
1367 /*
1368 * Trouble is that we may no longer disable interrupts in the fast path
1369 * So in order to make the debug calls that expect irqs to be
1370 * disabled we need to disable interrupts temporarily.
1371 */
1372 #if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1373 {
1374 unsigned long flags;
1375
1376 local_irq_save(flags);
1377 kmemcheck_slab_free(s, x, s->object_size);
1378 debug_check_no_locks_freed(x, s->object_size);
1379 local_irq_restore(flags);
1380 }
1381 #endif
1382 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1383 debug_check_no_obj_freed(x, s->object_size);
1384
1385 freeptr = get_freepointer(s, x);
1386 /*
1387 * kasan_slab_free() may put x into memory quarantine, delaying its
1388 * reuse. In this case the object's freelist pointer is changed.
1389 */
1390 kasan_slab_free(s, x);
1391 return freeptr;
1392 }
1393
1394 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1395 void *head, void *tail)
1396 {
1397 /*
1398 * Compiler cannot detect this function can be removed if slab_free_hook()
1399 * evaluates to nothing. Thus, catch all relevant config debug options here.
1400 */
1401 #if defined(CONFIG_KMEMCHECK) || \
1402 defined(CONFIG_LOCKDEP) || \
1403 defined(CONFIG_DEBUG_KMEMLEAK) || \
1404 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1405 defined(CONFIG_KASAN)
1406
1407 void *object = head;
1408 void *tail_obj = tail ? : head;
1409 void *freeptr;
1410
1411 do {
1412 freeptr = slab_free_hook(s, object);
1413 } while ((object != tail_obj) && (object = freeptr));
1414 #endif
1415 }
1416
1417 static void setup_object(struct kmem_cache *s, struct page *page,
1418 void *object)
1419 {
1420 setup_object_debug(s, page, object);
1421 kasan_init_slab_obj(s, object);
1422 if (unlikely(s->ctor)) {
1423 kasan_unpoison_object_data(s, object);
1424 s->ctor(object);
1425 kasan_poison_object_data(s, object);
1426 }
1427 }
1428
1429 /*
1430 * Slab allocation and freeing
1431 */
1432 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1433 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1434 {
1435 struct page *page;
1436 int order = oo_order(oo);
1437
1438 flags |= __GFP_NOTRACK;
1439
1440 if (node == NUMA_NO_NODE)
1441 page = alloc_pages(flags, order);
1442 else
1443 page = __alloc_pages_node(node, flags, order);
1444
1445 if (page && memcg_charge_slab(page, flags, order, s)) {
1446 __free_pages(page, order);
1447 page = NULL;
1448 }
1449
1450 return page;
1451 }
1452
1453 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1454 /* Pre-initialize the random sequence cache */
1455 static int init_cache_random_seq(struct kmem_cache *s)
1456 {
1457 int err;
1458 unsigned long i, count = oo_objects(s->oo);
1459
1460 /* Bailout if already initialised */
1461 if (s->random_seq)
1462 return 0;
1463
1464 err = cache_random_seq_create(s, count, GFP_KERNEL);
1465 if (err) {
1466 pr_err("SLUB: Unable to initialize free list for %s\n",
1467 s->name);
1468 return err;
1469 }
1470
1471 /* Transform to an offset on the set of pages */
1472 if (s->random_seq) {
1473 for (i = 0; i < count; i++)
1474 s->random_seq[i] *= s->size;
1475 }
1476 return 0;
1477 }
1478
1479 /* Initialize each random sequence freelist per cache */
1480 static void __init init_freelist_randomization(void)
1481 {
1482 struct kmem_cache *s;
1483
1484 mutex_lock(&slab_mutex);
1485
1486 list_for_each_entry(s, &slab_caches, list)
1487 init_cache_random_seq(s);
1488
1489 mutex_unlock(&slab_mutex);
1490 }
1491
1492 /* Get the next entry on the pre-computed freelist randomized */
1493 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1494 unsigned long *pos, void *start,
1495 unsigned long page_limit,
1496 unsigned long freelist_count)
1497 {
1498 unsigned int idx;
1499
1500 /*
1501 * If the target page allocation failed, the number of objects on the
1502 * page might be smaller than the usual size defined by the cache.
1503 */
1504 do {
1505 idx = s->random_seq[*pos];
1506 *pos += 1;
1507 if (*pos >= freelist_count)
1508 *pos = 0;
1509 } while (unlikely(idx >= page_limit));
1510
1511 return (char *)start + idx;
1512 }
1513
1514 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1515 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1516 {
1517 void *start;
1518 void *cur;
1519 void *next;
1520 unsigned long idx, pos, page_limit, freelist_count;
1521
1522 if (page->objects < 2 || !s->random_seq)
1523 return false;
1524
1525 freelist_count = oo_objects(s->oo);
1526 pos = get_random_int() % freelist_count;
1527
1528 page_limit = page->objects * s->size;
1529 start = fixup_red_left(s, page_address(page));
1530
1531 /* First entry is used as the base of the freelist */
1532 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1533 freelist_count);
1534 page->freelist = cur;
1535
1536 for (idx = 1; idx < page->objects; idx++) {
1537 setup_object(s, page, cur);
1538 next = next_freelist_entry(s, page, &pos, start, page_limit,
1539 freelist_count);
1540 set_freepointer(s, cur, next);
1541 cur = next;
1542 }
1543 setup_object(s, page, cur);
1544 set_freepointer(s, cur, NULL);
1545
1546 return true;
1547 }
1548 #else
1549 static inline int init_cache_random_seq(struct kmem_cache *s)
1550 {
1551 return 0;
1552 }
1553 static inline void init_freelist_randomization(void) { }
1554 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1555 {
1556 return false;
1557 }
1558 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1559
1560 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1561 {
1562 struct page *page;
1563 struct kmem_cache_order_objects oo = s->oo;
1564 gfp_t alloc_gfp;
1565 void *start, *p;
1566 int idx, order;
1567 bool shuffle;
1568
1569 flags &= gfp_allowed_mask;
1570
1571 if (gfpflags_allow_blocking(flags))
1572 local_irq_enable();
1573
1574 flags |= s->allocflags;
1575
1576 /*
1577 * Let the initial higher-order allocation fail under memory pressure
1578 * so we fall-back to the minimum order allocation.
1579 */
1580 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1581 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1582 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1583
1584 page = alloc_slab_page(s, alloc_gfp, node, oo);
1585 if (unlikely(!page)) {
1586 oo = s->min;
1587 alloc_gfp = flags;
1588 /*
1589 * Allocation may have failed due to fragmentation.
1590 * Try a lower order alloc if possible
1591 */
1592 page = alloc_slab_page(s, alloc_gfp, node, oo);
1593 if (unlikely(!page))
1594 goto out;
1595 stat(s, ORDER_FALLBACK);
1596 }
1597
1598 if (kmemcheck_enabled &&
1599 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1600 int pages = 1 << oo_order(oo);
1601
1602 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
1603
1604 /*
1605 * Objects from caches that have a constructor don't get
1606 * cleared when they're allocated, so we need to do it here.
1607 */
1608 if (s->ctor)
1609 kmemcheck_mark_uninitialized_pages(page, pages);
1610 else
1611 kmemcheck_mark_unallocated_pages(page, pages);
1612 }
1613
1614 page->objects = oo_objects(oo);
1615
1616 order = compound_order(page);
1617 page->slab_cache = s;
1618 __SetPageSlab(page);
1619 if (page_is_pfmemalloc(page))
1620 SetPageSlabPfmemalloc(page);
1621
1622 start = page_address(page);
1623
1624 if (unlikely(s->flags & SLAB_POISON))
1625 memset(start, POISON_INUSE, PAGE_SIZE << order);
1626
1627 kasan_poison_slab(page);
1628
1629 shuffle = shuffle_freelist(s, page);
1630
1631 if (!shuffle) {
1632 for_each_object_idx(p, idx, s, start, page->objects) {
1633 setup_object(s, page, p);
1634 if (likely(idx < page->objects))
1635 set_freepointer(s, p, p + s->size);
1636 else
1637 set_freepointer(s, p, NULL);
1638 }
1639 page->freelist = fixup_red_left(s, start);
1640 }
1641
1642 page->inuse = page->objects;
1643 page->frozen = 1;
1644
1645 out:
1646 if (gfpflags_allow_blocking(flags))
1647 local_irq_disable();
1648 if (!page)
1649 return NULL;
1650
1651 mod_lruvec_page_state(page,
1652 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1653 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1654 1 << oo_order(oo));
1655
1656 inc_slabs_node(s, page_to_nid(page), page->objects);
1657
1658 return page;
1659 }
1660
1661 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1662 {
1663 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1664 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1665 flags &= ~GFP_SLAB_BUG_MASK;
1666 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1667 invalid_mask, &invalid_mask, flags, &flags);
1668 dump_stack();
1669 }
1670
1671 return allocate_slab(s,
1672 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1673 }
1674
1675 static void __free_slab(struct kmem_cache *s, struct page *page)
1676 {
1677 int order = compound_order(page);
1678 int pages = 1 << order;
1679
1680 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1681 void *p;
1682
1683 slab_pad_check(s, page);
1684 for_each_object(p, s, page_address(page),
1685 page->objects)
1686 check_object(s, page, p, SLUB_RED_INACTIVE);
1687 }
1688
1689 kmemcheck_free_shadow(page, compound_order(page));
1690
1691 mod_lruvec_page_state(page,
1692 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1693 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1694 -pages);
1695
1696 __ClearPageSlabPfmemalloc(page);
1697 __ClearPageSlab(page);
1698
1699 page_mapcount_reset(page);
1700 if (current->reclaim_state)
1701 current->reclaim_state->reclaimed_slab += pages;
1702 memcg_uncharge_slab(page, order, s);
1703 __free_pages(page, order);
1704 }
1705
1706 #define need_reserve_slab_rcu \
1707 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1708
1709 static void rcu_free_slab(struct rcu_head *h)
1710 {
1711 struct page *page;
1712
1713 if (need_reserve_slab_rcu)
1714 page = virt_to_head_page(h);
1715 else
1716 page = container_of((struct list_head *)h, struct page, lru);
1717
1718 __free_slab(page->slab_cache, page);
1719 }
1720
1721 static void free_slab(struct kmem_cache *s, struct page *page)
1722 {
1723 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1724 struct rcu_head *head;
1725
1726 if (need_reserve_slab_rcu) {
1727 int order = compound_order(page);
1728 int offset = (PAGE_SIZE << order) - s->reserved;
1729
1730 VM_BUG_ON(s->reserved != sizeof(*head));
1731 head = page_address(page) + offset;
1732 } else {
1733 head = &page->rcu_head;
1734 }
1735
1736 call_rcu(head, rcu_free_slab);
1737 } else
1738 __free_slab(s, page);
1739 }
1740
1741 static void discard_slab(struct kmem_cache *s, struct page *page)
1742 {
1743 dec_slabs_node(s, page_to_nid(page), page->objects);
1744 free_slab(s, page);
1745 }
1746
1747 /*
1748 * Management of partially allocated slabs.
1749 */
1750 static inline void
1751 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1752 {
1753 n->nr_partial++;
1754 if (tail == DEACTIVATE_TO_TAIL)
1755 list_add_tail(&page->lru, &n->partial);
1756 else
1757 list_add(&page->lru, &n->partial);
1758 }
1759
1760 static inline void add_partial(struct kmem_cache_node *n,
1761 struct page *page, int tail)
1762 {
1763 lockdep_assert_held(&n->list_lock);
1764 __add_partial(n, page, tail);
1765 }
1766
1767 static inline void remove_partial(struct kmem_cache_node *n,
1768 struct page *page)
1769 {
1770 lockdep_assert_held(&n->list_lock);
1771 list_del(&page->lru);
1772 n->nr_partial--;
1773 }
1774
1775 /*
1776 * Remove slab from the partial list, freeze it and
1777 * return the pointer to the freelist.
1778 *
1779 * Returns a list of objects or NULL if it fails.
1780 */
1781 static inline void *acquire_slab(struct kmem_cache *s,
1782 struct kmem_cache_node *n, struct page *page,
1783 int mode, int *objects)
1784 {
1785 void *freelist;
1786 unsigned long counters;
1787 struct page new;
1788
1789 lockdep_assert_held(&n->list_lock);
1790
1791 /*
1792 * Zap the freelist and set the frozen bit.
1793 * The old freelist is the list of objects for the
1794 * per cpu allocation list.
1795 */
1796 freelist = page->freelist;
1797 counters = page->counters;
1798 new.counters = counters;
1799 *objects = new.objects - new.inuse;
1800 if (mode) {
1801 new.inuse = page->objects;
1802 new.freelist = NULL;
1803 } else {
1804 new.freelist = freelist;
1805 }
1806
1807 VM_BUG_ON(new.frozen);
1808 new.frozen = 1;
1809
1810 if (!__cmpxchg_double_slab(s, page,
1811 freelist, counters,
1812 new.freelist, new.counters,
1813 "acquire_slab"))
1814 return NULL;
1815
1816 remove_partial(n, page);
1817 WARN_ON(!freelist);
1818 return freelist;
1819 }
1820
1821 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1822 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1823
1824 /*
1825 * Try to allocate a partial slab from a specific node.
1826 */
1827 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1828 struct kmem_cache_cpu *c, gfp_t flags)
1829 {
1830 struct page *page, *page2;
1831 void *object = NULL;
1832 int available = 0;
1833 int objects;
1834
1835 /*
1836 * Racy check. If we mistakenly see no partial slabs then we
1837 * just allocate an empty slab. If we mistakenly try to get a
1838 * partial slab and there is none available then get_partials()
1839 * will return NULL.
1840 */
1841 if (!n || !n->nr_partial)
1842 return NULL;
1843
1844 spin_lock(&n->list_lock);
1845 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1846 void *t;
1847
1848 if (!pfmemalloc_match(page, flags))
1849 continue;
1850
1851 t = acquire_slab(s, n, page, object == NULL, &objects);
1852 if (!t)
1853 break;
1854
1855 available += objects;
1856 if (!object) {
1857 c->page = page;
1858 stat(s, ALLOC_FROM_PARTIAL);
1859 object = t;
1860 } else {
1861 put_cpu_partial(s, page, 0);
1862 stat(s, CPU_PARTIAL_NODE);
1863 }
1864 if (!kmem_cache_has_cpu_partial(s)
1865 || available > slub_cpu_partial(s) / 2)
1866 break;
1867
1868 }
1869 spin_unlock(&n->list_lock);
1870 return object;
1871 }
1872
1873 /*
1874 * Get a page from somewhere. Search in increasing NUMA distances.
1875 */
1876 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1877 struct kmem_cache_cpu *c)
1878 {
1879 #ifdef CONFIG_NUMA
1880 struct zonelist *zonelist;
1881 struct zoneref *z;
1882 struct zone *zone;
1883 enum zone_type high_zoneidx = gfp_zone(flags);
1884 void *object;
1885 unsigned int cpuset_mems_cookie;
1886
1887 /*
1888 * The defrag ratio allows a configuration of the tradeoffs between
1889 * inter node defragmentation and node local allocations. A lower
1890 * defrag_ratio increases the tendency to do local allocations
1891 * instead of attempting to obtain partial slabs from other nodes.
1892 *
1893 * If the defrag_ratio is set to 0 then kmalloc() always
1894 * returns node local objects. If the ratio is higher then kmalloc()
1895 * may return off node objects because partial slabs are obtained
1896 * from other nodes and filled up.
1897 *
1898 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1899 * (which makes defrag_ratio = 1000) then every (well almost)
1900 * allocation will first attempt to defrag slab caches on other nodes.
1901 * This means scanning over all nodes to look for partial slabs which
1902 * may be expensive if we do it every time we are trying to find a slab
1903 * with available objects.
1904 */
1905 if (!s->remote_node_defrag_ratio ||
1906 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1907 return NULL;
1908
1909 do {
1910 cpuset_mems_cookie = read_mems_allowed_begin();
1911 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1912 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1913 struct kmem_cache_node *n;
1914
1915 n = get_node(s, zone_to_nid(zone));
1916
1917 if (n && cpuset_zone_allowed(zone, flags) &&
1918 n->nr_partial > s->min_partial) {
1919 object = get_partial_node(s, n, c, flags);
1920 if (object) {
1921 /*
1922 * Don't check read_mems_allowed_retry()
1923 * here - if mems_allowed was updated in
1924 * parallel, that was a harmless race
1925 * between allocation and the cpuset
1926 * update
1927 */
1928 return object;
1929 }
1930 }
1931 }
1932 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1933 #endif
1934 return NULL;
1935 }
1936
1937 /*
1938 * Get a partial page, lock it and return it.
1939 */
1940 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1941 struct kmem_cache_cpu *c)
1942 {
1943 void *object;
1944 int searchnode = node;
1945
1946 if (node == NUMA_NO_NODE)
1947 searchnode = numa_mem_id();
1948 else if (!node_present_pages(node))
1949 searchnode = node_to_mem_node(node);
1950
1951 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1952 if (object || node != NUMA_NO_NODE)
1953 return object;
1954
1955 return get_any_partial(s, flags, c);
1956 }
1957
1958 #ifdef CONFIG_PREEMPT
1959 /*
1960 * Calculate the next globally unique transaction for disambiguiation
1961 * during cmpxchg. The transactions start with the cpu number and are then
1962 * incremented by CONFIG_NR_CPUS.
1963 */
1964 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1965 #else
1966 /*
1967 * No preemption supported therefore also no need to check for
1968 * different cpus.
1969 */
1970 #define TID_STEP 1
1971 #endif
1972
1973 static inline unsigned long next_tid(unsigned long tid)
1974 {
1975 return tid + TID_STEP;
1976 }
1977
1978 static inline unsigned int tid_to_cpu(unsigned long tid)
1979 {
1980 return tid % TID_STEP;
1981 }
1982
1983 static inline unsigned long tid_to_event(unsigned long tid)
1984 {
1985 return tid / TID_STEP;
1986 }
1987
1988 static inline unsigned int init_tid(int cpu)
1989 {
1990 return cpu;
1991 }
1992
1993 static inline void note_cmpxchg_failure(const char *n,
1994 const struct kmem_cache *s, unsigned long tid)
1995 {
1996 #ifdef SLUB_DEBUG_CMPXCHG
1997 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1998
1999 pr_info("%s %s: cmpxchg redo ", n, s->name);
2000
2001 #ifdef CONFIG_PREEMPT
2002 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
2003 pr_warn("due to cpu change %d -> %d\n",
2004 tid_to_cpu(tid), tid_to_cpu(actual_tid));
2005 else
2006 #endif
2007 if (tid_to_event(tid) != tid_to_event(actual_tid))
2008 pr_warn("due to cpu running other code. Event %ld->%ld\n",
2009 tid_to_event(tid), tid_to_event(actual_tid));
2010 else
2011 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
2012 actual_tid, tid, next_tid(tid));
2013 #endif
2014 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
2015 }
2016
2017 static void init_kmem_cache_cpus(struct kmem_cache *s)
2018 {
2019 int cpu;
2020
2021 for_each_possible_cpu(cpu)
2022 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2023 }
2024
2025 /*
2026 * Remove the cpu slab
2027 */
2028 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2029 void *freelist, struct kmem_cache_cpu *c)
2030 {
2031 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2032 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2033 int lock = 0;
2034 enum slab_modes l = M_NONE, m = M_NONE;
2035 void *nextfree;
2036 int tail = DEACTIVATE_TO_HEAD;
2037 struct page new;
2038 struct page old;
2039
2040 if (page->freelist) {
2041 stat(s, DEACTIVATE_REMOTE_FREES);
2042 tail = DEACTIVATE_TO_TAIL;
2043 }
2044
2045 /*
2046 * Stage one: Free all available per cpu objects back
2047 * to the page freelist while it is still frozen. Leave the
2048 * last one.
2049 *
2050 * There is no need to take the list->lock because the page
2051 * is still frozen.
2052 */
2053 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2054 void *prior;
2055 unsigned long counters;
2056
2057 do {
2058 prior = page->freelist;
2059 counters = page->counters;
2060 set_freepointer(s, freelist, prior);
2061 new.counters = counters;
2062 new.inuse--;
2063 VM_BUG_ON(!new.frozen);
2064
2065 } while (!__cmpxchg_double_slab(s, page,
2066 prior, counters,
2067 freelist, new.counters,
2068 "drain percpu freelist"));
2069
2070 freelist = nextfree;
2071 }
2072
2073 /*
2074 * Stage two: Ensure that the page is unfrozen while the
2075 * list presence reflects the actual number of objects
2076 * during unfreeze.
2077 *
2078 * We setup the list membership and then perform a cmpxchg
2079 * with the count. If there is a mismatch then the page
2080 * is not unfrozen but the page is on the wrong list.
2081 *
2082 * Then we restart the process which may have to remove
2083 * the page from the list that we just put it on again
2084 * because the number of objects in the slab may have
2085 * changed.
2086 */
2087 redo:
2088
2089 old.freelist = page->freelist;
2090 old.counters = page->counters;
2091 VM_BUG_ON(!old.frozen);
2092
2093 /* Determine target state of the slab */
2094 new.counters = old.counters;
2095 if (freelist) {
2096 new.inuse--;
2097 set_freepointer(s, freelist, old.freelist);
2098 new.freelist = freelist;
2099 } else
2100 new.freelist = old.freelist;
2101
2102 new.frozen = 0;
2103
2104 if (!new.inuse && n->nr_partial >= s->min_partial)
2105 m = M_FREE;
2106 else if (new.freelist) {
2107 m = M_PARTIAL;
2108 if (!lock) {
2109 lock = 1;
2110 /*
2111 * Taking the spinlock removes the possiblity
2112 * that acquire_slab() will see a slab page that
2113 * is frozen
2114 */
2115 spin_lock(&n->list_lock);
2116 }
2117 } else {
2118 m = M_FULL;
2119 if (kmem_cache_debug(s) && !lock) {
2120 lock = 1;
2121 /*
2122 * This also ensures that the scanning of full
2123 * slabs from diagnostic functions will not see
2124 * any frozen slabs.
2125 */
2126 spin_lock(&n->list_lock);
2127 }
2128 }
2129
2130 if (l != m) {
2131
2132 if (l == M_PARTIAL)
2133
2134 remove_partial(n, page);
2135
2136 else if (l == M_FULL)
2137
2138 remove_full(s, n, page);
2139
2140 if (m == M_PARTIAL) {
2141
2142 add_partial(n, page, tail);
2143 stat(s, tail);
2144
2145 } else if (m == M_FULL) {
2146
2147 stat(s, DEACTIVATE_FULL);
2148 add_full(s, n, page);
2149
2150 }
2151 }
2152
2153 l = m;
2154 if (!__cmpxchg_double_slab(s, page,
2155 old.freelist, old.counters,
2156 new.freelist, new.counters,
2157 "unfreezing slab"))
2158 goto redo;
2159
2160 if (lock)
2161 spin_unlock(&n->list_lock);
2162
2163 if (m == M_FREE) {
2164 stat(s, DEACTIVATE_EMPTY);
2165 discard_slab(s, page);
2166 stat(s, FREE_SLAB);
2167 }
2168
2169 c->page = NULL;
2170 c->freelist = NULL;
2171 }
2172
2173 /*
2174 * Unfreeze all the cpu partial slabs.
2175 *
2176 * This function must be called with interrupts disabled
2177 * for the cpu using c (or some other guarantee must be there
2178 * to guarantee no concurrent accesses).
2179 */
2180 static void unfreeze_partials(struct kmem_cache *s,
2181 struct kmem_cache_cpu *c)
2182 {
2183 #ifdef CONFIG_SLUB_CPU_PARTIAL
2184 struct kmem_cache_node *n = NULL, *n2 = NULL;
2185 struct page *page, *discard_page = NULL;
2186
2187 while ((page = c->partial)) {
2188 struct page new;
2189 struct page old;
2190
2191 c->partial = page->next;
2192
2193 n2 = get_node(s, page_to_nid(page));
2194 if (n != n2) {
2195 if (n)
2196 spin_unlock(&n->list_lock);
2197
2198 n = n2;
2199 spin_lock(&n->list_lock);
2200 }
2201
2202 do {
2203
2204 old.freelist = page->freelist;
2205 old.counters = page->counters;
2206 VM_BUG_ON(!old.frozen);
2207
2208 new.counters = old.counters;
2209 new.freelist = old.freelist;
2210
2211 new.frozen = 0;
2212
2213 } while (!__cmpxchg_double_slab(s, page,
2214 old.freelist, old.counters,
2215 new.freelist, new.counters,
2216 "unfreezing slab"));
2217
2218 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2219 page->next = discard_page;
2220 discard_page = page;
2221 } else {
2222 add_partial(n, page, DEACTIVATE_TO_TAIL);
2223 stat(s, FREE_ADD_PARTIAL);
2224 }
2225 }
2226
2227 if (n)
2228 spin_unlock(&n->list_lock);
2229
2230 while (discard_page) {
2231 page = discard_page;
2232 discard_page = discard_page->next;
2233
2234 stat(s, DEACTIVATE_EMPTY);
2235 discard_slab(s, page);
2236 stat(s, FREE_SLAB);
2237 }
2238 #endif
2239 }
2240
2241 /*
2242 * Put a page that was just frozen (in __slab_free) into a partial page
2243 * slot if available. This is done without interrupts disabled and without
2244 * preemption disabled. The cmpxchg is racy and may put the partial page
2245 * onto a random cpus partial slot.
2246 *
2247 * If we did not find a slot then simply move all the partials to the
2248 * per node partial list.
2249 */
2250 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2251 {
2252 #ifdef CONFIG_SLUB_CPU_PARTIAL
2253 struct page *oldpage;
2254 int pages;
2255 int pobjects;
2256
2257 preempt_disable();
2258 do {
2259 pages = 0;
2260 pobjects = 0;
2261 oldpage = this_cpu_read(s->cpu_slab->partial);
2262
2263 if (oldpage) {
2264 pobjects = oldpage->pobjects;
2265 pages = oldpage->pages;
2266 if (drain && pobjects > s->cpu_partial) {
2267 unsigned long flags;
2268 /*
2269 * partial array is full. Move the existing
2270 * set to the per node partial list.
2271 */
2272 local_irq_save(flags);
2273 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2274 local_irq_restore(flags);
2275 oldpage = NULL;
2276 pobjects = 0;
2277 pages = 0;
2278 stat(s, CPU_PARTIAL_DRAIN);
2279 }
2280 }
2281
2282 pages++;
2283 pobjects += page->objects - page->inuse;
2284
2285 page->pages = pages;
2286 page->pobjects = pobjects;
2287 page->next = oldpage;
2288
2289 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2290 != oldpage);
2291 if (unlikely(!s->cpu_partial)) {
2292 unsigned long flags;
2293
2294 local_irq_save(flags);
2295 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2296 local_irq_restore(flags);
2297 }
2298 preempt_enable();
2299 #endif
2300 }
2301
2302 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2303 {
2304 stat(s, CPUSLAB_FLUSH);
2305 deactivate_slab(s, c->page, c->freelist, c);
2306
2307 c->tid = next_tid(c->tid);
2308 }
2309
2310 /*
2311 * Flush cpu slab.
2312 *
2313 * Called from IPI handler with interrupts disabled.
2314 */
2315 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2316 {
2317 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2318
2319 if (likely(c)) {
2320 if (c->page)
2321 flush_slab(s, c);
2322
2323 unfreeze_partials(s, c);
2324 }
2325 }
2326
2327 static void flush_cpu_slab(void *d)
2328 {
2329 struct kmem_cache *s = d;
2330
2331 __flush_cpu_slab(s, smp_processor_id());
2332 }
2333
2334 static bool has_cpu_slab(int cpu, void *info)
2335 {
2336 struct kmem_cache *s = info;
2337 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2338
2339 return c->page || slub_percpu_partial(c);
2340 }
2341
2342 static void flush_all(struct kmem_cache *s)
2343 {
2344 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2345 }
2346
2347 /*
2348 * Use the cpu notifier to insure that the cpu slabs are flushed when
2349 * necessary.
2350 */
2351 static int slub_cpu_dead(unsigned int cpu)
2352 {
2353 struct kmem_cache *s;
2354 unsigned long flags;
2355
2356 mutex_lock(&slab_mutex);
2357 list_for_each_entry(s, &slab_caches, list) {
2358 local_irq_save(flags);
2359 __flush_cpu_slab(s, cpu);
2360 local_irq_restore(flags);
2361 }
2362 mutex_unlock(&slab_mutex);
2363 return 0;
2364 }
2365
2366 /*
2367 * Check if the objects in a per cpu structure fit numa
2368 * locality expectations.
2369 */
2370 static inline int node_match(struct page *page, int node)
2371 {
2372 #ifdef CONFIG_NUMA
2373 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2374 return 0;
2375 #endif
2376 return 1;
2377 }
2378
2379 #ifdef CONFIG_SLUB_DEBUG
2380 static int count_free(struct page *page)
2381 {
2382 return page->objects - page->inuse;
2383 }
2384
2385 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2386 {
2387 return atomic_long_read(&n->total_objects);
2388 }
2389 #endif /* CONFIG_SLUB_DEBUG */
2390
2391 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2392 static unsigned long count_partial(struct kmem_cache_node *n,
2393 int (*get_count)(struct page *))
2394 {
2395 unsigned long flags;
2396 unsigned long x = 0;
2397 struct page *page;
2398
2399 spin_lock_irqsave(&n->list_lock, flags);
2400 list_for_each_entry(page, &n->partial, lru)
2401 x += get_count(page);
2402 spin_unlock_irqrestore(&n->list_lock, flags);
2403 return x;
2404 }
2405 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2406
2407 static noinline void
2408 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2409 {
2410 #ifdef CONFIG_SLUB_DEBUG
2411 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2412 DEFAULT_RATELIMIT_BURST);
2413 int node;
2414 struct kmem_cache_node *n;
2415
2416 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2417 return;
2418
2419 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2420 nid, gfpflags, &gfpflags);
2421 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2422 s->name, s->object_size, s->size, oo_order(s->oo),
2423 oo_order(s->min));
2424
2425 if (oo_order(s->min) > get_order(s->object_size))
2426 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2427 s->name);
2428
2429 for_each_kmem_cache_node(s, node, n) {
2430 unsigned long nr_slabs;
2431 unsigned long nr_objs;
2432 unsigned long nr_free;
2433
2434 nr_free = count_partial(n, count_free);
2435 nr_slabs = node_nr_slabs(n);
2436 nr_objs = node_nr_objs(n);
2437
2438 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2439 node, nr_slabs, nr_objs, nr_free);
2440 }
2441 #endif
2442 }
2443
2444 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2445 int node, struct kmem_cache_cpu **pc)
2446 {
2447 void *freelist;
2448 struct kmem_cache_cpu *c = *pc;
2449 struct page *page;
2450
2451 freelist = get_partial(s, flags, node, c);
2452
2453 if (freelist)
2454 return freelist;
2455
2456 page = new_slab(s, flags, node);
2457 if (page) {
2458 c = raw_cpu_ptr(s->cpu_slab);
2459 if (c->page)
2460 flush_slab(s, c);
2461
2462 /*
2463 * No other reference to the page yet so we can
2464 * muck around with it freely without cmpxchg
2465 */
2466 freelist = page->freelist;
2467 page->freelist = NULL;
2468
2469 stat(s, ALLOC_SLAB);
2470 c->page = page;
2471 *pc = c;
2472 } else
2473 freelist = NULL;
2474
2475 return freelist;
2476 }
2477
2478 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2479 {
2480 if (unlikely(PageSlabPfmemalloc(page)))
2481 return gfp_pfmemalloc_allowed(gfpflags);
2482
2483 return true;
2484 }
2485
2486 /*
2487 * Check the page->freelist of a page and either transfer the freelist to the
2488 * per cpu freelist or deactivate the page.
2489 *
2490 * The page is still frozen if the return value is not NULL.
2491 *
2492 * If this function returns NULL then the page has been unfrozen.
2493 *
2494 * This function must be called with interrupt disabled.
2495 */
2496 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2497 {
2498 struct page new;
2499 unsigned long counters;
2500 void *freelist;
2501
2502 do {
2503 freelist = page->freelist;
2504 counters = page->counters;
2505
2506 new.counters = counters;
2507 VM_BUG_ON(!new.frozen);
2508
2509 new.inuse = page->objects;
2510 new.frozen = freelist != NULL;
2511
2512 } while (!__cmpxchg_double_slab(s, page,
2513 freelist, counters,
2514 NULL, new.counters,
2515 "get_freelist"));
2516
2517 return freelist;
2518 }
2519
2520 /*
2521 * Slow path. The lockless freelist is empty or we need to perform
2522 * debugging duties.
2523 *
2524 * Processing is still very fast if new objects have been freed to the
2525 * regular freelist. In that case we simply take over the regular freelist
2526 * as the lockless freelist and zap the regular freelist.
2527 *
2528 * If that is not working then we fall back to the partial lists. We take the
2529 * first element of the freelist as the object to allocate now and move the
2530 * rest of the freelist to the lockless freelist.
2531 *
2532 * And if we were unable to get a new slab from the partial slab lists then
2533 * we need to allocate a new slab. This is the slowest path since it involves
2534 * a call to the page allocator and the setup of a new slab.
2535 *
2536 * Version of __slab_alloc to use when we know that interrupts are
2537 * already disabled (which is the case for bulk allocation).
2538 */
2539 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2540 unsigned long addr, struct kmem_cache_cpu *c)
2541 {
2542 void *freelist;
2543 struct page *page;
2544
2545 page = c->page;
2546 if (!page)
2547 goto new_slab;
2548 redo:
2549
2550 if (unlikely(!node_match(page, node))) {
2551 int searchnode = node;
2552
2553 if (node != NUMA_NO_NODE && !node_present_pages(node))
2554 searchnode = node_to_mem_node(node);
2555
2556 if (unlikely(!node_match(page, searchnode))) {
2557 stat(s, ALLOC_NODE_MISMATCH);
2558 deactivate_slab(s, page, c->freelist, c);
2559 goto new_slab;
2560 }
2561 }
2562
2563 /*
2564 * By rights, we should be searching for a slab page that was
2565 * PFMEMALLOC but right now, we are losing the pfmemalloc
2566 * information when the page leaves the per-cpu allocator
2567 */
2568 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2569 deactivate_slab(s, page, c->freelist, c);
2570 goto new_slab;
2571 }
2572
2573 /* must check again c->freelist in case of cpu migration or IRQ */
2574 freelist = c->freelist;
2575 if (freelist)
2576 goto load_freelist;
2577
2578 freelist = get_freelist(s, page);
2579
2580 if (!freelist) {
2581 c->page = NULL;
2582 stat(s, DEACTIVATE_BYPASS);
2583 goto new_slab;
2584 }
2585
2586 stat(s, ALLOC_REFILL);
2587
2588 load_freelist:
2589 /*
2590 * freelist is pointing to the list of objects to be used.
2591 * page is pointing to the page from which the objects are obtained.
2592 * That page must be frozen for per cpu allocations to work.
2593 */
2594 VM_BUG_ON(!c->page->frozen);
2595 c->freelist = get_freepointer(s, freelist);
2596 c->tid = next_tid(c->tid);
2597 return freelist;
2598
2599 new_slab:
2600
2601 if (slub_percpu_partial(c)) {
2602 page = c->page = slub_percpu_partial(c);
2603 slub_set_percpu_partial(c, page);
2604 stat(s, CPU_PARTIAL_ALLOC);
2605 goto redo;
2606 }
2607
2608 freelist = new_slab_objects(s, gfpflags, node, &c);
2609
2610 if (unlikely(!freelist)) {
2611 slab_out_of_memory(s, gfpflags, node);
2612 return NULL;
2613 }
2614
2615 page = c->page;
2616 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2617 goto load_freelist;
2618
2619 /* Only entered in the debug case */
2620 if (kmem_cache_debug(s) &&
2621 !alloc_debug_processing(s, page, freelist, addr))
2622 goto new_slab; /* Slab failed checks. Next slab needed */
2623
2624 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2625 return freelist;
2626 }
2627
2628 /*
2629 * Another one that disabled interrupt and compensates for possible
2630 * cpu changes by refetching the per cpu area pointer.
2631 */
2632 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2633 unsigned long addr, struct kmem_cache_cpu *c)
2634 {
2635 void *p;
2636 unsigned long flags;
2637
2638 local_irq_save(flags);
2639 #ifdef CONFIG_PREEMPT
2640 /*
2641 * We may have been preempted and rescheduled on a different
2642 * cpu before disabling interrupts. Need to reload cpu area
2643 * pointer.
2644 */
2645 c = this_cpu_ptr(s->cpu_slab);
2646 #endif
2647
2648 p = ___slab_alloc(s, gfpflags, node, addr, c);
2649 local_irq_restore(flags);
2650 return p;
2651 }
2652
2653 /*
2654 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2655 * have the fastpath folded into their functions. So no function call
2656 * overhead for requests that can be satisfied on the fastpath.
2657 *
2658 * The fastpath works by first checking if the lockless freelist can be used.
2659 * If not then __slab_alloc is called for slow processing.
2660 *
2661 * Otherwise we can simply pick the next object from the lockless free list.
2662 */
2663 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2664 gfp_t gfpflags, int node, unsigned long addr)
2665 {
2666 void *object;
2667 struct kmem_cache_cpu *c;
2668 struct page *page;
2669 unsigned long tid;
2670
2671 s = slab_pre_alloc_hook(s, gfpflags);
2672 if (!s)
2673 return NULL;
2674 redo:
2675 /*
2676 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2677 * enabled. We may switch back and forth between cpus while
2678 * reading from one cpu area. That does not matter as long
2679 * as we end up on the original cpu again when doing the cmpxchg.
2680 *
2681 * We should guarantee that tid and kmem_cache are retrieved on
2682 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2683 * to check if it is matched or not.
2684 */
2685 do {
2686 tid = this_cpu_read(s->cpu_slab->tid);
2687 c = raw_cpu_ptr(s->cpu_slab);
2688 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2689 unlikely(tid != READ_ONCE(c->tid)));
2690
2691 /*
2692 * Irqless object alloc/free algorithm used here depends on sequence
2693 * of fetching cpu_slab's data. tid should be fetched before anything
2694 * on c to guarantee that object and page associated with previous tid
2695 * won't be used with current tid. If we fetch tid first, object and
2696 * page could be one associated with next tid and our alloc/free
2697 * request will be failed. In this case, we will retry. So, no problem.
2698 */
2699 barrier();
2700
2701 /*
2702 * The transaction ids are globally unique per cpu and per operation on
2703 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2704 * occurs on the right processor and that there was no operation on the
2705 * linked list in between.
2706 */
2707
2708 object = c->freelist;
2709 page = c->page;
2710 if (unlikely(!object || !node_match(page, node))) {
2711 object = __slab_alloc(s, gfpflags, node, addr, c);
2712 stat(s, ALLOC_SLOWPATH);
2713 } else {
2714 void *next_object = get_freepointer_safe(s, object);
2715
2716 /*
2717 * The cmpxchg will only match if there was no additional
2718 * operation and if we are on the right processor.
2719 *
2720 * The cmpxchg does the following atomically (without lock
2721 * semantics!)
2722 * 1. Relocate first pointer to the current per cpu area.
2723 * 2. Verify that tid and freelist have not been changed
2724 * 3. If they were not changed replace tid and freelist
2725 *
2726 * Since this is without lock semantics the protection is only
2727 * against code executing on this cpu *not* from access by
2728 * other cpus.
2729 */
2730 if (unlikely(!this_cpu_cmpxchg_double(
2731 s->cpu_slab->freelist, s->cpu_slab->tid,
2732 object, tid,
2733 next_object, next_tid(tid)))) {
2734
2735 note_cmpxchg_failure("slab_alloc", s, tid);
2736 goto redo;
2737 }
2738 prefetch_freepointer(s, next_object);
2739 stat(s, ALLOC_FASTPATH);
2740 }
2741
2742 if (unlikely(gfpflags & __GFP_ZERO) && object)
2743 memset(object, 0, s->object_size);
2744
2745 slab_post_alloc_hook(s, gfpflags, 1, &object);
2746
2747 return object;
2748 }
2749
2750 static __always_inline void *slab_alloc(struct kmem_cache *s,
2751 gfp_t gfpflags, unsigned long addr)
2752 {
2753 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2754 }
2755
2756 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2757 {
2758 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2759
2760 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2761 s->size, gfpflags);
2762
2763 return ret;
2764 }
2765 EXPORT_SYMBOL(kmem_cache_alloc);
2766
2767 #ifdef CONFIG_TRACING
2768 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2769 {
2770 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2771 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2772 kasan_kmalloc(s, ret, size, gfpflags);
2773 return ret;
2774 }
2775 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2776 #endif
2777
2778 #ifdef CONFIG_NUMA
2779 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2780 {
2781 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2782
2783 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2784 s->object_size, s->size, gfpflags, node);
2785
2786 return ret;
2787 }
2788 EXPORT_SYMBOL(kmem_cache_alloc_node);
2789
2790 #ifdef CONFIG_TRACING
2791 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2792 gfp_t gfpflags,
2793 int node, size_t size)
2794 {
2795 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2796
2797 trace_kmalloc_node(_RET_IP_, ret,
2798 size, s->size, gfpflags, node);
2799
2800 kasan_kmalloc(s, ret, size, gfpflags);
2801 return ret;
2802 }
2803 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2804 #endif
2805 #endif
2806
2807 /*
2808 * Slow path handling. This may still be called frequently since objects
2809 * have a longer lifetime than the cpu slabs in most processing loads.
2810 *
2811 * So we still attempt to reduce cache line usage. Just take the slab
2812 * lock and free the item. If there is no additional partial page
2813 * handling required then we can return immediately.
2814 */
2815 static void __slab_free(struct kmem_cache *s, struct page *page,
2816 void *head, void *tail, int cnt,
2817 unsigned long addr)
2818
2819 {
2820 void *prior;
2821 int was_frozen;
2822 struct page new;
2823 unsigned long counters;
2824 struct kmem_cache_node *n = NULL;
2825 unsigned long uninitialized_var(flags);
2826
2827 stat(s, FREE_SLOWPATH);
2828
2829 if (kmem_cache_debug(s) &&
2830 !free_debug_processing(s, page, head, tail, cnt, addr))
2831 return;
2832
2833 do {
2834 if (unlikely(n)) {
2835 spin_unlock_irqrestore(&n->list_lock, flags);
2836 n = NULL;
2837 }
2838 prior = page->freelist;
2839 counters = page->counters;
2840 set_freepointer(s, tail, prior);
2841 new.counters = counters;
2842 was_frozen = new.frozen;
2843 new.inuse -= cnt;
2844 if ((!new.inuse || !prior) && !was_frozen) {
2845
2846 if (kmem_cache_has_cpu_partial(s) && !prior) {
2847
2848 /*
2849 * Slab was on no list before and will be
2850 * partially empty
2851 * We can defer the list move and instead
2852 * freeze it.
2853 */
2854 new.frozen = 1;
2855
2856 } else { /* Needs to be taken off a list */
2857
2858 n = get_node(s, page_to_nid(page));
2859 /*
2860 * Speculatively acquire the list_lock.
2861 * If the cmpxchg does not succeed then we may
2862 * drop the list_lock without any processing.
2863 *
2864 * Otherwise the list_lock will synchronize with
2865 * other processors updating the list of slabs.
2866 */
2867 spin_lock_irqsave(&n->list_lock, flags);
2868
2869 }
2870 }
2871
2872 } while (!cmpxchg_double_slab(s, page,
2873 prior, counters,
2874 head, new.counters,
2875 "__slab_free"));
2876
2877 if (likely(!n)) {
2878
2879 /*
2880 * If we just froze the page then put it onto the
2881 * per cpu partial list.
2882 */
2883 if (new.frozen && !was_frozen) {
2884 put_cpu_partial(s, page, 1);
2885 stat(s, CPU_PARTIAL_FREE);
2886 }
2887 /*
2888 * The list lock was not taken therefore no list
2889 * activity can be necessary.
2890 */
2891 if (was_frozen)
2892 stat(s, FREE_FROZEN);
2893 return;
2894 }
2895
2896 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2897 goto slab_empty;
2898
2899 /*
2900 * Objects left in the slab. If it was not on the partial list before
2901 * then add it.
2902 */
2903 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2904 if (kmem_cache_debug(s))
2905 remove_full(s, n, page);
2906 add_partial(n, page, DEACTIVATE_TO_TAIL);
2907 stat(s, FREE_ADD_PARTIAL);
2908 }
2909 spin_unlock_irqrestore(&n->list_lock, flags);
2910 return;
2911
2912 slab_empty:
2913 if (prior) {
2914 /*
2915 * Slab on the partial list.
2916 */
2917 remove_partial(n, page);
2918 stat(s, FREE_REMOVE_PARTIAL);
2919 } else {
2920 /* Slab must be on the full list */
2921 remove_full(s, n, page);
2922 }
2923
2924 spin_unlock_irqrestore(&n->list_lock, flags);
2925 stat(s, FREE_SLAB);
2926 discard_slab(s, page);
2927 }
2928
2929 /*
2930 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2931 * can perform fastpath freeing without additional function calls.
2932 *
2933 * The fastpath is only possible if we are freeing to the current cpu slab
2934 * of this processor. This typically the case if we have just allocated
2935 * the item before.
2936 *
2937 * If fastpath is not possible then fall back to __slab_free where we deal
2938 * with all sorts of special processing.
2939 *
2940 * Bulk free of a freelist with several objects (all pointing to the
2941 * same page) possible by specifying head and tail ptr, plus objects
2942 * count (cnt). Bulk free indicated by tail pointer being set.
2943 */
2944 static __always_inline void do_slab_free(struct kmem_cache *s,
2945 struct page *page, void *head, void *tail,
2946 int cnt, unsigned long addr)
2947 {
2948 void *tail_obj = tail ? : head;
2949 struct kmem_cache_cpu *c;
2950 unsigned long tid;
2951 redo:
2952 /*
2953 * Determine the currently cpus per cpu slab.
2954 * The cpu may change afterward. However that does not matter since
2955 * data is retrieved via this pointer. If we are on the same cpu
2956 * during the cmpxchg then the free will succeed.
2957 */
2958 do {
2959 tid = this_cpu_read(s->cpu_slab->tid);
2960 c = raw_cpu_ptr(s->cpu_slab);
2961 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2962 unlikely(tid != READ_ONCE(c->tid)));
2963
2964 /* Same with comment on barrier() in slab_alloc_node() */
2965 barrier();
2966
2967 if (likely(page == c->page)) {
2968 set_freepointer(s, tail_obj, c->freelist);
2969
2970 if (unlikely(!this_cpu_cmpxchg_double(
2971 s->cpu_slab->freelist, s->cpu_slab->tid,
2972 c->freelist, tid,
2973 head, next_tid(tid)))) {
2974
2975 note_cmpxchg_failure("slab_free", s, tid);
2976 goto redo;
2977 }
2978 stat(s, FREE_FASTPATH);
2979 } else
2980 __slab_free(s, page, head, tail_obj, cnt, addr);
2981
2982 }
2983
2984 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2985 void *head, void *tail, int cnt,
2986 unsigned long addr)
2987 {
2988 slab_free_freelist_hook(s, head, tail);
2989 /*
2990 * slab_free_freelist_hook() could have put the items into quarantine.
2991 * If so, no need to free them.
2992 */
2993 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2994 return;
2995 do_slab_free(s, page, head, tail, cnt, addr);
2996 }
2997
2998 #ifdef CONFIG_KASAN
2999 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
3000 {
3001 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
3002 }
3003 #endif
3004
3005 void kmem_cache_free(struct kmem_cache *s, void *x)
3006 {
3007 s = cache_from_obj(s, x);
3008 if (!s)
3009 return;
3010 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
3011 trace_kmem_cache_free(_RET_IP_, x);
3012 }
3013 EXPORT_SYMBOL(kmem_cache_free);
3014
3015 struct detached_freelist {
3016 struct page *page;
3017 void *tail;
3018 void *freelist;
3019 int cnt;
3020 struct kmem_cache *s;
3021 };
3022
3023 /*
3024 * This function progressively scans the array with free objects (with
3025 * a limited look ahead) and extract objects belonging to the same
3026 * page. It builds a detached freelist directly within the given
3027 * page/objects. This can happen without any need for
3028 * synchronization, because the objects are owned by running process.
3029 * The freelist is build up as a single linked list in the objects.
3030 * The idea is, that this detached freelist can then be bulk
3031 * transferred to the real freelist(s), but only requiring a single
3032 * synchronization primitive. Look ahead in the array is limited due
3033 * to performance reasons.
3034 */
3035 static inline
3036 int build_detached_freelist(struct kmem_cache *s, size_t size,
3037 void **p, struct detached_freelist *df)
3038 {
3039 size_t first_skipped_index = 0;
3040 int lookahead = 3;
3041 void *object;
3042 struct page *page;
3043
3044 /* Always re-init detached_freelist */
3045 df->page = NULL;
3046
3047 do {
3048 object = p[--size];
3049 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3050 } while (!object && size);
3051
3052 if (!object)
3053 return 0;
3054
3055 page = virt_to_head_page(object);
3056 if (!s) {
3057 /* Handle kalloc'ed objects */
3058 if (unlikely(!PageSlab(page))) {
3059 BUG_ON(!PageCompound(page));
3060 kfree_hook(object);
3061 __free_pages(page, compound_order(page));
3062 p[size] = NULL; /* mark object processed */
3063 return size;
3064 }
3065 /* Derive kmem_cache from object */
3066 df->s = page->slab_cache;
3067 } else {
3068 df->s = cache_from_obj(s, object); /* Support for memcg */
3069 }
3070
3071 /* Start new detached freelist */
3072 df->page = page;
3073 set_freepointer(df->s, object, NULL);
3074 df->tail = object;
3075 df->freelist = object;
3076 p[size] = NULL; /* mark object processed */
3077 df->cnt = 1;
3078
3079 while (size) {
3080 object = p[--size];
3081 if (!object)
3082 continue; /* Skip processed objects */
3083
3084 /* df->page is always set at this point */
3085 if (df->page == virt_to_head_page(object)) {
3086 /* Opportunity build freelist */
3087 set_freepointer(df->s, object, df->freelist);
3088 df->freelist = object;
3089 df->cnt++;
3090 p[size] = NULL; /* mark object processed */
3091
3092 continue;
3093 }
3094
3095 /* Limit look ahead search */
3096 if (!--lookahead)
3097 break;
3098
3099 if (!first_skipped_index)
3100 first_skipped_index = size + 1;
3101 }
3102
3103 return first_skipped_index;
3104 }
3105
3106 /* Note that interrupts must be enabled when calling this function. */
3107 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3108 {
3109 if (WARN_ON(!size))
3110 return;
3111
3112 do {
3113 struct detached_freelist df;
3114
3115 size = build_detached_freelist(s, size, p, &df);
3116 if (!df.page)
3117 continue;
3118
3119 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3120 } while (likely(size));
3121 }
3122 EXPORT_SYMBOL(kmem_cache_free_bulk);
3123
3124 /* Note that interrupts must be enabled when calling this function. */
3125 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3126 void **p)
3127 {
3128 struct kmem_cache_cpu *c;
3129 int i;
3130
3131 /* memcg and kmem_cache debug support */
3132 s = slab_pre_alloc_hook(s, flags);
3133 if (unlikely(!s))
3134 return false;
3135 /*
3136 * Drain objects in the per cpu slab, while disabling local
3137 * IRQs, which protects against PREEMPT and interrupts
3138 * handlers invoking normal fastpath.
3139 */
3140 local_irq_disable();
3141 c = this_cpu_ptr(s->cpu_slab);
3142
3143 for (i = 0; i < size; i++) {
3144 void *object = c->freelist;
3145
3146 if (unlikely(!object)) {
3147 /*
3148 * Invoking slow path likely have side-effect
3149 * of re-populating per CPU c->freelist
3150 */
3151 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3152 _RET_IP_, c);
3153 if (unlikely(!p[i]))
3154 goto error;
3155
3156 c = this_cpu_ptr(s->cpu_slab);
3157 continue; /* goto for-loop */
3158 }
3159 c->freelist = get_freepointer(s, object);
3160 p[i] = object;
3161 }
3162 c->tid = next_tid(c->tid);
3163 local_irq_enable();
3164
3165 /* Clear memory outside IRQ disabled fastpath loop */
3166 if (unlikely(flags & __GFP_ZERO)) {
3167 int j;
3168
3169 for (j = 0; j < i; j++)
3170 memset(p[j], 0, s->object_size);
3171 }
3172
3173 /* memcg and kmem_cache debug support */
3174 slab_post_alloc_hook(s, flags, size, p);
3175 return i;
3176 error:
3177 local_irq_enable();
3178 slab_post_alloc_hook(s, flags, i, p);
3179 __kmem_cache_free_bulk(s, i, p);
3180 return 0;
3181 }
3182 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3183
3184
3185 /*
3186 * Object placement in a slab is made very easy because we always start at
3187 * offset 0. If we tune the size of the object to the alignment then we can
3188 * get the required alignment by putting one properly sized object after
3189 * another.
3190 *
3191 * Notice that the allocation order determines the sizes of the per cpu
3192 * caches. Each processor has always one slab available for allocations.
3193 * Increasing the allocation order reduces the number of times that slabs
3194 * must be moved on and off the partial lists and is therefore a factor in
3195 * locking overhead.
3196 */
3197
3198 /*
3199 * Mininum / Maximum order of slab pages. This influences locking overhead
3200 * and slab fragmentation. A higher order reduces the number of partial slabs
3201 * and increases the number of allocations possible without having to
3202 * take the list_lock.
3203 */
3204 static int slub_min_order;
3205 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3206 static int slub_min_objects;
3207
3208 /*
3209 * Calculate the order of allocation given an slab object size.
3210 *
3211 * The order of allocation has significant impact on performance and other
3212 * system components. Generally order 0 allocations should be preferred since
3213 * order 0 does not cause fragmentation in the page allocator. Larger objects
3214 * be problematic to put into order 0 slabs because there may be too much
3215 * unused space left. We go to a higher order if more than 1/16th of the slab
3216 * would be wasted.
3217 *
3218 * In order to reach satisfactory performance we must ensure that a minimum
3219 * number of objects is in one slab. Otherwise we may generate too much
3220 * activity on the partial lists which requires taking the list_lock. This is
3221 * less a concern for large slabs though which are rarely used.
3222 *
3223 * slub_max_order specifies the order where we begin to stop considering the
3224 * number of objects in a slab as critical. If we reach slub_max_order then
3225 * we try to keep the page order as low as possible. So we accept more waste
3226 * of space in favor of a small page order.
3227 *
3228 * Higher order allocations also allow the placement of more objects in a
3229 * slab and thereby reduce object handling overhead. If the user has
3230 * requested a higher mininum order then we start with that one instead of
3231 * the smallest order which will fit the object.
3232 */
3233 static inline int slab_order(int size, int min_objects,
3234 int max_order, int fract_leftover, int reserved)
3235 {
3236 int order;
3237 int rem;
3238 int min_order = slub_min_order;
3239
3240 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3241 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3242
3243 for (order = max(min_order, get_order(min_objects * size + reserved));
3244 order <= max_order; order++) {
3245
3246 unsigned long slab_size = PAGE_SIZE << order;
3247
3248 rem = (slab_size - reserved) % size;
3249
3250 if (rem <= slab_size / fract_leftover)
3251 break;
3252 }
3253
3254 return order;
3255 }
3256
3257 static inline int calculate_order(int size, int reserved)
3258 {
3259 int order;
3260 int min_objects;
3261 int fraction;
3262 int max_objects;
3263
3264 /*
3265 * Attempt to find best configuration for a slab. This
3266 * works by first attempting to generate a layout with
3267 * the best configuration and backing off gradually.
3268 *
3269 * First we increase the acceptable waste in a slab. Then
3270 * we reduce the minimum objects required in a slab.
3271 */
3272 min_objects = slub_min_objects;
3273 if (!min_objects)
3274 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3275 max_objects = order_objects(slub_max_order, size, reserved);
3276 min_objects = min(min_objects, max_objects);
3277
3278 while (min_objects > 1) {
3279 fraction = 16;
3280 while (fraction >= 4) {
3281 order = slab_order(size, min_objects,
3282 slub_max_order, fraction, reserved);
3283 if (order <= slub_max_order)
3284 return order;
3285 fraction /= 2;
3286 }
3287 min_objects--;
3288 }
3289
3290 /*
3291 * We were unable to place multiple objects in a slab. Now
3292 * lets see if we can place a single object there.
3293 */
3294 order = slab_order(size, 1, slub_max_order, 1, reserved);
3295 if (order <= slub_max_order)
3296 return order;
3297
3298 /*
3299 * Doh this slab cannot be placed using slub_max_order.
3300 */
3301 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3302 if (order < MAX_ORDER)
3303 return order;
3304 return -ENOSYS;
3305 }
3306
3307 static void
3308 init_kmem_cache_node(struct kmem_cache_node *n)
3309 {
3310 n->nr_partial = 0;
3311 spin_lock_init(&n->list_lock);
3312 INIT_LIST_HEAD(&n->partial);
3313 #ifdef CONFIG_SLUB_DEBUG
3314 atomic_long_set(&n->nr_slabs, 0);
3315 atomic_long_set(&n->total_objects, 0);
3316 INIT_LIST_HEAD(&n->full);
3317 #endif
3318 }
3319
3320 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3321 {
3322 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3323 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3324
3325 /*
3326 * Must align to double word boundary for the double cmpxchg
3327 * instructions to work; see __pcpu_double_call_return_bool().
3328 */
3329 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3330 2 * sizeof(void *));
3331
3332 if (!s->cpu_slab)
3333 return 0;
3334
3335 init_kmem_cache_cpus(s);
3336
3337 return 1;
3338 }
3339
3340 static struct kmem_cache *kmem_cache_node;
3341
3342 /*
3343 * No kmalloc_node yet so do it by hand. We know that this is the first
3344 * slab on the node for this slabcache. There are no concurrent accesses
3345 * possible.
3346 *
3347 * Note that this function only works on the kmem_cache_node
3348 * when allocating for the kmem_cache_node. This is used for bootstrapping
3349 * memory on a fresh node that has no slab structures yet.
3350 */
3351 static void early_kmem_cache_node_alloc(int node)
3352 {
3353 struct page *page;
3354 struct kmem_cache_node *n;
3355
3356 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3357
3358 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3359
3360 BUG_ON(!page);
3361 if (page_to_nid(page) != node) {
3362 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3363 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3364 }
3365
3366 n = page->freelist;
3367 BUG_ON(!n);
3368 page->freelist = get_freepointer(kmem_cache_node, n);
3369 page->inuse = 1;
3370 page->frozen = 0;
3371 kmem_cache_node->node[node] = n;
3372 #ifdef CONFIG_SLUB_DEBUG
3373 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3374 init_tracking(kmem_cache_node, n);
3375 #endif
3376 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3377 GFP_KERNEL);
3378 init_kmem_cache_node(n);
3379 inc_slabs_node(kmem_cache_node, node, page->objects);
3380
3381 /*
3382 * No locks need to be taken here as it has just been
3383 * initialized and there is no concurrent access.
3384 */
3385 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3386 }
3387
3388 static void free_kmem_cache_nodes(struct kmem_cache *s)
3389 {
3390 int node;
3391 struct kmem_cache_node *n;
3392
3393 for_each_kmem_cache_node(s, node, n) {
3394 s->node[node] = NULL;
3395 kmem_cache_free(kmem_cache_node, n);
3396 }
3397 }
3398
3399 void __kmem_cache_release(struct kmem_cache *s)
3400 {
3401 cache_random_seq_destroy(s);
3402 free_percpu(s->cpu_slab);
3403 free_kmem_cache_nodes(s);
3404 }
3405
3406 static int init_kmem_cache_nodes(struct kmem_cache *s)
3407 {
3408 int node;
3409
3410 for_each_node_state(node, N_NORMAL_MEMORY) {
3411 struct kmem_cache_node *n;
3412
3413 if (slab_state == DOWN) {
3414 early_kmem_cache_node_alloc(node);
3415 continue;
3416 }
3417 n = kmem_cache_alloc_node(kmem_cache_node,
3418 GFP_KERNEL, node);
3419
3420 if (!n) {
3421 free_kmem_cache_nodes(s);
3422 return 0;
3423 }
3424
3425 init_kmem_cache_node(n);
3426 s->node[node] = n;
3427 }
3428 return 1;
3429 }
3430
3431 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3432 {
3433 if (min < MIN_PARTIAL)
3434 min = MIN_PARTIAL;
3435 else if (min > MAX_PARTIAL)
3436 min = MAX_PARTIAL;
3437 s->min_partial = min;
3438 }
3439
3440 static void set_cpu_partial(struct kmem_cache *s)
3441 {
3442 #ifdef CONFIG_SLUB_CPU_PARTIAL
3443 /*
3444 * cpu_partial determined the maximum number of objects kept in the
3445 * per cpu partial lists of a processor.
3446 *
3447 * Per cpu partial lists mainly contain slabs that just have one
3448 * object freed. If they are used for allocation then they can be
3449 * filled up again with minimal effort. The slab will never hit the
3450 * per node partial lists and therefore no locking will be required.
3451 *
3452 * This setting also determines
3453 *
3454 * A) The number of objects from per cpu partial slabs dumped to the
3455 * per node list when we reach the limit.
3456 * B) The number of objects in cpu partial slabs to extract from the
3457 * per node list when we run out of per cpu objects. We only fetch
3458 * 50% to keep some capacity around for frees.
3459 */
3460 if (!kmem_cache_has_cpu_partial(s))
3461 s->cpu_partial = 0;
3462 else if (s->size >= PAGE_SIZE)
3463 s->cpu_partial = 2;
3464 else if (s->size >= 1024)
3465 s->cpu_partial = 6;
3466 else if (s->size >= 256)
3467 s->cpu_partial = 13;
3468 else
3469 s->cpu_partial = 30;
3470 #endif
3471 }
3472
3473 /*
3474 * calculate_sizes() determines the order and the distribution of data within
3475 * a slab object.
3476 */
3477 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3478 {
3479 unsigned long flags = s->flags;
3480 size_t size = s->object_size;
3481 int order;
3482
3483 /*
3484 * Round up object size to the next word boundary. We can only
3485 * place the free pointer at word boundaries and this determines
3486 * the possible location of the free pointer.
3487 */
3488 size = ALIGN(size, sizeof(void *));
3489
3490 #ifdef CONFIG_SLUB_DEBUG
3491 /*
3492 * Determine if we can poison the object itself. If the user of
3493 * the slab may touch the object after free or before allocation
3494 * then we should never poison the object itself.
3495 */
3496 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3497 !s->ctor)
3498 s->flags |= __OBJECT_POISON;
3499 else
3500 s->flags &= ~__OBJECT_POISON;
3501
3502
3503 /*
3504 * If we are Redzoning then check if there is some space between the
3505 * end of the object and the free pointer. If not then add an
3506 * additional word to have some bytes to store Redzone information.
3507 */
3508 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3509 size += sizeof(void *);
3510 #endif
3511
3512 /*
3513 * With that we have determined the number of bytes in actual use
3514 * by the object. This is the potential offset to the free pointer.
3515 */
3516 s->inuse = size;
3517
3518 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3519 s->ctor)) {
3520 /*
3521 * Relocate free pointer after the object if it is not
3522 * permitted to overwrite the first word of the object on
3523 * kmem_cache_free.
3524 *
3525 * This is the case if we do RCU, have a constructor or
3526 * destructor or are poisoning the objects.
3527 */
3528 s->offset = size;
3529 size += sizeof(void *);
3530 }
3531
3532 #ifdef CONFIG_SLUB_DEBUG
3533 if (flags & SLAB_STORE_USER)
3534 /*
3535 * Need to store information about allocs and frees after
3536 * the object.
3537 */
3538 size += 2 * sizeof(struct track);
3539 #endif
3540
3541 kasan_cache_create(s, &size, &s->flags);
3542 #ifdef CONFIG_SLUB_DEBUG
3543 if (flags & SLAB_RED_ZONE) {
3544 /*
3545 * Add some empty padding so that we can catch
3546 * overwrites from earlier objects rather than let
3547 * tracking information or the free pointer be
3548 * corrupted if a user writes before the start
3549 * of the object.
3550 */
3551 size += sizeof(void *);
3552
3553 s->red_left_pad = sizeof(void *);
3554 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3555 size += s->red_left_pad;
3556 }
3557 #endif
3558
3559 /*
3560 * SLUB stores one object immediately after another beginning from
3561 * offset 0. In order to align the objects we have to simply size
3562 * each object to conform to the alignment.
3563 */
3564 size = ALIGN(size, s->align);
3565 s->size = size;
3566 if (forced_order >= 0)
3567 order = forced_order;
3568 else
3569 order = calculate_order(size, s->reserved);
3570
3571 if (order < 0)
3572 return 0;
3573
3574 s->allocflags = 0;
3575 if (order)
3576 s->allocflags |= __GFP_COMP;
3577
3578 if (s->flags & SLAB_CACHE_DMA)
3579 s->allocflags |= GFP_DMA;
3580
3581 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3582 s->allocflags |= __GFP_RECLAIMABLE;
3583
3584 /*
3585 * Determine the number of objects per slab
3586 */
3587 s->oo = oo_make(order, size, s->reserved);
3588 s->min = oo_make(get_order(size), size, s->reserved);
3589 if (oo_objects(s->oo) > oo_objects(s->max))
3590 s->max = s->oo;
3591
3592 return !!oo_objects(s->oo);
3593 }
3594
3595 static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
3596 {
3597 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3598 s->reserved = 0;
3599 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3600 s->random = get_random_long();
3601 #endif
3602
3603 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3604 s->reserved = sizeof(struct rcu_head);
3605
3606 if (!calculate_sizes(s, -1))
3607 goto error;
3608 if (disable_higher_order_debug) {
3609 /*
3610 * Disable debugging flags that store metadata if the min slab
3611 * order increased.
3612 */
3613 if (get_order(s->size) > get_order(s->object_size)) {
3614 s->flags &= ~DEBUG_METADATA_FLAGS;
3615 s->offset = 0;
3616 if (!calculate_sizes(s, -1))
3617 goto error;
3618 }
3619 }
3620
3621 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3622 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3623 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3624 /* Enable fast mode */
3625 s->flags |= __CMPXCHG_DOUBLE;
3626 #endif
3627
3628 /*
3629 * The larger the object size is, the more pages we want on the partial
3630 * list to avoid pounding the page allocator excessively.
3631 */
3632 set_min_partial(s, ilog2(s->size) / 2);
3633
3634 set_cpu_partial(s);
3635
3636 #ifdef CONFIG_NUMA
3637 s->remote_node_defrag_ratio = 1000;
3638 #endif
3639
3640 /* Initialize the pre-computed randomized freelist if slab is up */
3641 if (slab_state >= UP) {
3642 if (init_cache_random_seq(s))
3643 goto error;
3644 }
3645
3646 if (!init_kmem_cache_nodes(s))
3647 goto error;
3648
3649 if (alloc_kmem_cache_cpus(s))
3650 return 0;
3651
3652 free_kmem_cache_nodes(s);
3653 error:
3654 if (flags & SLAB_PANIC)
3655 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3656 s->name, (unsigned long)s->size, s->size,
3657 oo_order(s->oo), s->offset, flags);
3658 return -EINVAL;
3659 }
3660
3661 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3662 const char *text)
3663 {
3664 #ifdef CONFIG_SLUB_DEBUG
3665 void *addr = page_address(page);
3666 void *p;
3667 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3668 sizeof(long), GFP_ATOMIC);
3669 if (!map)
3670 return;
3671 slab_err(s, page, text, s->name);
3672 slab_lock(page);
3673
3674 get_map(s, page, map);
3675 for_each_object(p, s, addr, page->objects) {
3676
3677 if (!test_bit(slab_index(p, s, addr), map)) {
3678 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3679 print_tracking(s, p);
3680 }
3681 }
3682 slab_unlock(page);
3683 kfree(map);
3684 #endif
3685 }
3686
3687 /*
3688 * Attempt to free all partial slabs on a node.
3689 * This is called from __kmem_cache_shutdown(). We must take list_lock
3690 * because sysfs file might still access partial list after the shutdowning.
3691 */
3692 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3693 {
3694 LIST_HEAD(discard);
3695 struct page *page, *h;
3696
3697 BUG_ON(irqs_disabled());
3698 spin_lock_irq(&n->list_lock);
3699 list_for_each_entry_safe(page, h, &n->partial, lru) {
3700 if (!page->inuse) {
3701 remove_partial(n, page);
3702 list_add(&page->lru, &discard);
3703 } else {
3704 list_slab_objects(s, page,
3705 "Objects remaining in %s on __kmem_cache_shutdown()");
3706 }
3707 }
3708 spin_unlock_irq(&n->list_lock);
3709
3710 list_for_each_entry_safe(page, h, &discard, lru)
3711 discard_slab(s, page);
3712 }
3713
3714 /*
3715 * Release all resources used by a slab cache.
3716 */
3717 int __kmem_cache_shutdown(struct kmem_cache *s)
3718 {
3719 int node;
3720 struct kmem_cache_node *n;
3721
3722 flush_all(s);
3723 /* Attempt to free all objects */
3724 for_each_kmem_cache_node(s, node, n) {
3725 free_partial(s, n);
3726 if (n->nr_partial || slabs_node(s, node))
3727 return 1;
3728 }
3729 sysfs_slab_remove(s);
3730 return 0;
3731 }
3732
3733 /********************************************************************
3734 * Kmalloc subsystem
3735 *******************************************************************/
3736
3737 static int __init setup_slub_min_order(char *str)
3738 {
3739 get_option(&str, &slub_min_order);
3740
3741 return 1;
3742 }
3743
3744 __setup("slub_min_order=", setup_slub_min_order);
3745
3746 static int __init setup_slub_max_order(char *str)
3747 {
3748 get_option(&str, &slub_max_order);
3749 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3750
3751 return 1;
3752 }
3753
3754 __setup("slub_max_order=", setup_slub_max_order);
3755
3756 static int __init setup_slub_min_objects(char *str)
3757 {
3758 get_option(&str, &slub_min_objects);
3759
3760 return 1;
3761 }
3762
3763 __setup("slub_min_objects=", setup_slub_min_objects);
3764
3765 void *__kmalloc(size_t size, gfp_t flags)
3766 {
3767 struct kmem_cache *s;
3768 void *ret;
3769
3770 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3771 return kmalloc_large(size, flags);
3772
3773 s = kmalloc_slab(size, flags);
3774
3775 if (unlikely(ZERO_OR_NULL_PTR(s)))
3776 return s;
3777
3778 ret = slab_alloc(s, flags, _RET_IP_);
3779
3780 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3781
3782 kasan_kmalloc(s, ret, size, flags);
3783
3784 return ret;
3785 }
3786 EXPORT_SYMBOL(__kmalloc);
3787
3788 #ifdef CONFIG_NUMA
3789 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3790 {
3791 struct page *page;
3792 void *ptr = NULL;
3793
3794 flags |= __GFP_COMP | __GFP_NOTRACK;
3795 page = alloc_pages_node(node, flags, get_order(size));
3796 if (page)
3797 ptr = page_address(page);
3798
3799 kmalloc_large_node_hook(ptr, size, flags);
3800 return ptr;
3801 }
3802
3803 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3804 {
3805 struct kmem_cache *s;
3806 void *ret;
3807
3808 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3809 ret = kmalloc_large_node(size, flags, node);
3810
3811 trace_kmalloc_node(_RET_IP_, ret,
3812 size, PAGE_SIZE << get_order(size),
3813 flags, node);
3814
3815 return ret;
3816 }
3817
3818 s = kmalloc_slab(size, flags);
3819
3820 if (unlikely(ZERO_OR_NULL_PTR(s)))
3821 return s;
3822
3823 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3824
3825 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3826
3827 kasan_kmalloc(s, ret, size, flags);
3828
3829 return ret;
3830 }
3831 EXPORT_SYMBOL(__kmalloc_node);
3832 #endif
3833
3834 #ifdef CONFIG_HARDENED_USERCOPY
3835 /*
3836 * Rejects objects that are incorrectly sized.
3837 *
3838 * Returns NULL if check passes, otherwise const char * to name of cache
3839 * to indicate an error.
3840 */
3841 const char *__check_heap_object(const void *ptr, unsigned long n,
3842 struct page *page)
3843 {
3844 struct kmem_cache *s;
3845 unsigned long offset;
3846 size_t object_size;
3847
3848 /* Find object and usable object size. */
3849 s = page->slab_cache;
3850 object_size = slab_ksize(s);
3851
3852 /* Reject impossible pointers. */
3853 if (ptr < page_address(page))
3854 return s->name;
3855
3856 /* Find offset within object. */
3857 offset = (ptr - page_address(page)) % s->size;
3858
3859 /* Adjust for redzone and reject if within the redzone. */
3860 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3861 if (offset < s->red_left_pad)
3862 return s->name;
3863 offset -= s->red_left_pad;
3864 }
3865
3866 /* Allow address range falling entirely within object size. */
3867 if (offset <= object_size && n <= object_size - offset)
3868 return NULL;
3869
3870 return s->name;
3871 }
3872 #endif /* CONFIG_HARDENED_USERCOPY */
3873
3874 static size_t __ksize(const void *object)
3875 {
3876 struct page *page;
3877
3878 if (unlikely(object == ZERO_SIZE_PTR))
3879 return 0;
3880
3881 page = virt_to_head_page(object);
3882
3883 if (unlikely(!PageSlab(page))) {
3884 WARN_ON(!PageCompound(page));
3885 return PAGE_SIZE << compound_order(page);
3886 }
3887
3888 return slab_ksize(page->slab_cache);
3889 }
3890
3891 size_t ksize(const void *object)
3892 {
3893 size_t size = __ksize(object);
3894 /* We assume that ksize callers could use whole allocated area,
3895 * so we need to unpoison this area.
3896 */
3897 kasan_unpoison_shadow(object, size);
3898 return size;
3899 }
3900 EXPORT_SYMBOL(ksize);
3901
3902 void kfree(const void *x)
3903 {
3904 struct page *page;
3905 void *object = (void *)x;
3906
3907 trace_kfree(_RET_IP_, x);
3908
3909 if (unlikely(ZERO_OR_NULL_PTR(x)))
3910 return;
3911
3912 page = virt_to_head_page(x);
3913 if (unlikely(!PageSlab(page))) {
3914 BUG_ON(!PageCompound(page));
3915 kfree_hook(x);
3916 __free_pages(page, compound_order(page));
3917 return;
3918 }
3919 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3920 }
3921 EXPORT_SYMBOL(kfree);
3922
3923 #define SHRINK_PROMOTE_MAX 32
3924
3925 /*
3926 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3927 * up most to the head of the partial lists. New allocations will then
3928 * fill those up and thus they can be removed from the partial lists.
3929 *
3930 * The slabs with the least items are placed last. This results in them
3931 * being allocated from last increasing the chance that the last objects
3932 * are freed in them.
3933 */
3934 int __kmem_cache_shrink(struct kmem_cache *s)
3935 {
3936 int node;
3937 int i;
3938 struct kmem_cache_node *n;
3939 struct page *page;
3940 struct page *t;
3941 struct list_head discard;
3942 struct list_head promote[SHRINK_PROMOTE_MAX];
3943 unsigned long flags;
3944 int ret = 0;
3945
3946 flush_all(s);
3947 for_each_kmem_cache_node(s, node, n) {
3948 INIT_LIST_HEAD(&discard);
3949 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3950 INIT_LIST_HEAD(promote + i);
3951
3952 spin_lock_irqsave(&n->list_lock, flags);
3953
3954 /*
3955 * Build lists of slabs to discard or promote.
3956 *
3957 * Note that concurrent frees may occur while we hold the
3958 * list_lock. page->inuse here is the upper limit.
3959 */
3960 list_for_each_entry_safe(page, t, &n->partial, lru) {
3961 int free = page->objects - page->inuse;
3962
3963 /* Do not reread page->inuse */
3964 barrier();
3965
3966 /* We do not keep full slabs on the list */
3967 BUG_ON(free <= 0);
3968
3969 if (free == page->objects) {
3970 list_move(&page->lru, &discard);
3971 n->nr_partial--;
3972 } else if (free <= SHRINK_PROMOTE_MAX)
3973 list_move(&page->lru, promote + free - 1);
3974 }
3975
3976 /*
3977 * Promote the slabs filled up most to the head of the
3978 * partial list.
3979 */
3980 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3981 list_splice(promote + i, &n->partial);
3982
3983 spin_unlock_irqrestore(&n->list_lock, flags);
3984
3985 /* Release empty slabs */
3986 list_for_each_entry_safe(page, t, &discard, lru)
3987 discard_slab(s, page);
3988
3989 if (slabs_node(s, node))
3990 ret = 1;
3991 }
3992
3993 return ret;
3994 }
3995
3996 #ifdef CONFIG_MEMCG
3997 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3998 {
3999 /*
4000 * Called with all the locks held after a sched RCU grace period.
4001 * Even if @s becomes empty after shrinking, we can't know that @s
4002 * doesn't have allocations already in-flight and thus can't
4003 * destroy @s until the associated memcg is released.
4004 *
4005 * However, let's remove the sysfs files for empty caches here.
4006 * Each cache has a lot of interface files which aren't
4007 * particularly useful for empty draining caches; otherwise, we can
4008 * easily end up with millions of unnecessary sysfs files on
4009 * systems which have a lot of memory and transient cgroups.
4010 */
4011 if (!__kmem_cache_shrink(s))
4012 sysfs_slab_remove(s);
4013 }
4014
4015 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4016 {
4017 /*
4018 * Disable empty slabs caching. Used to avoid pinning offline
4019 * memory cgroups by kmem pages that can be freed.
4020 */
4021 slub_set_cpu_partial(s, 0);
4022 s->min_partial = 0;
4023
4024 /*
4025 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4026 * we have to make sure the change is visible before shrinking.
4027 */
4028 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4029 }
4030 #endif
4031
4032 static int slab_mem_going_offline_callback(void *arg)
4033 {
4034 struct kmem_cache *s;
4035
4036 mutex_lock(&slab_mutex);
4037 list_for_each_entry(s, &slab_caches, list)
4038 __kmem_cache_shrink(s);
4039 mutex_unlock(&slab_mutex);
4040
4041 return 0;
4042 }
4043
4044 static void slab_mem_offline_callback(void *arg)
4045 {
4046 struct kmem_cache_node *n;
4047 struct kmem_cache *s;
4048 struct memory_notify *marg = arg;
4049 int offline_node;
4050
4051 offline_node = marg->status_change_nid_normal;
4052
4053 /*
4054 * If the node still has available memory. we need kmem_cache_node
4055 * for it yet.
4056 */
4057 if (offline_node < 0)
4058 return;
4059
4060 mutex_lock(&slab_mutex);
4061 list_for_each_entry(s, &slab_caches, list) {
4062 n = get_node(s, offline_node);
4063 if (n) {
4064 /*
4065 * if n->nr_slabs > 0, slabs still exist on the node
4066 * that is going down. We were unable to free them,
4067 * and offline_pages() function shouldn't call this
4068 * callback. So, we must fail.
4069 */
4070 BUG_ON(slabs_node(s, offline_node));
4071
4072 s->node[offline_node] = NULL;
4073 kmem_cache_free(kmem_cache_node, n);
4074 }
4075 }
4076 mutex_unlock(&slab_mutex);
4077 }
4078
4079 static int slab_mem_going_online_callback(void *arg)
4080 {
4081 struct kmem_cache_node *n;
4082 struct kmem_cache *s;
4083 struct memory_notify *marg = arg;
4084 int nid = marg->status_change_nid_normal;
4085 int ret = 0;
4086
4087 /*
4088 * If the node's memory is already available, then kmem_cache_node is
4089 * already created. Nothing to do.
4090 */
4091 if (nid < 0)
4092 return 0;
4093
4094 /*
4095 * We are bringing a node online. No memory is available yet. We must
4096 * allocate a kmem_cache_node structure in order to bring the node
4097 * online.
4098 */
4099 mutex_lock(&slab_mutex);
4100 list_for_each_entry(s, &slab_caches, list) {
4101 /*
4102 * XXX: kmem_cache_alloc_node will fallback to other nodes
4103 * since memory is not yet available from the node that
4104 * is brought up.
4105 */
4106 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4107 if (!n) {
4108 ret = -ENOMEM;
4109 goto out;
4110 }
4111 init_kmem_cache_node(n);
4112 s->node[nid] = n;
4113 }
4114 out:
4115 mutex_unlock(&slab_mutex);
4116 return ret;
4117 }
4118
4119 static int slab_memory_callback(struct notifier_block *self,
4120 unsigned long action, void *arg)
4121 {
4122 int ret = 0;
4123
4124 switch (action) {
4125 case MEM_GOING_ONLINE:
4126 ret = slab_mem_going_online_callback(arg);
4127 break;
4128 case MEM_GOING_OFFLINE:
4129 ret = slab_mem_going_offline_callback(arg);
4130 break;
4131 case MEM_OFFLINE:
4132 case MEM_CANCEL_ONLINE:
4133 slab_mem_offline_callback(arg);
4134 break;
4135 case MEM_ONLINE:
4136 case MEM_CANCEL_OFFLINE:
4137 break;
4138 }
4139 if (ret)
4140 ret = notifier_from_errno(ret);
4141 else
4142 ret = NOTIFY_OK;
4143 return ret;
4144 }
4145
4146 static struct notifier_block slab_memory_callback_nb = {
4147 .notifier_call = slab_memory_callback,
4148 .priority = SLAB_CALLBACK_PRI,
4149 };
4150
4151 /********************************************************************
4152 * Basic setup of slabs
4153 *******************************************************************/
4154
4155 /*
4156 * Used for early kmem_cache structures that were allocated using
4157 * the page allocator. Allocate them properly then fix up the pointers
4158 * that may be pointing to the wrong kmem_cache structure.
4159 */
4160
4161 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4162 {
4163 int node;
4164 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4165 struct kmem_cache_node *n;
4166
4167 memcpy(s, static_cache, kmem_cache->object_size);
4168
4169 /*
4170 * This runs very early, and only the boot processor is supposed to be
4171 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4172 * IPIs around.
4173 */
4174 __flush_cpu_slab(s, smp_processor_id());
4175 for_each_kmem_cache_node(s, node, n) {
4176 struct page *p;
4177
4178 list_for_each_entry(p, &n->partial, lru)
4179 p->slab_cache = s;
4180
4181 #ifdef CONFIG_SLUB_DEBUG
4182 list_for_each_entry(p, &n->full, lru)
4183 p->slab_cache = s;
4184 #endif
4185 }
4186 slab_init_memcg_params(s);
4187 list_add(&s->list, &slab_caches);
4188 memcg_link_cache(s);
4189 return s;
4190 }
4191
4192 void __init kmem_cache_init(void)
4193 {
4194 static __initdata struct kmem_cache boot_kmem_cache,
4195 boot_kmem_cache_node;
4196
4197 if (debug_guardpage_minorder())
4198 slub_max_order = 0;
4199
4200 kmem_cache_node = &boot_kmem_cache_node;
4201 kmem_cache = &boot_kmem_cache;
4202
4203 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4204 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
4205
4206 register_hotmemory_notifier(&slab_memory_callback_nb);
4207
4208 /* Able to allocate the per node structures */
4209 slab_state = PARTIAL;
4210
4211 create_boot_cache(kmem_cache, "kmem_cache",
4212 offsetof(struct kmem_cache, node) +
4213 nr_node_ids * sizeof(struct kmem_cache_node *),
4214 SLAB_HWCACHE_ALIGN);
4215
4216 kmem_cache = bootstrap(&boot_kmem_cache);
4217
4218 /*
4219 * Allocate kmem_cache_node properly from the kmem_cache slab.
4220 * kmem_cache_node is separately allocated so no need to
4221 * update any list pointers.
4222 */
4223 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4224
4225 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4226 setup_kmalloc_cache_index_table();
4227 create_kmalloc_caches(0);
4228
4229 /* Setup random freelists for each cache */
4230 init_freelist_randomization();
4231
4232 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4233 slub_cpu_dead);
4234
4235 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
4236 cache_line_size(),
4237 slub_min_order, slub_max_order, slub_min_objects,
4238 nr_cpu_ids, nr_node_ids);
4239 }
4240
4241 void __init kmem_cache_init_late(void)
4242 {
4243 }
4244
4245 struct kmem_cache *
4246 __kmem_cache_alias(const char *name, size_t size, size_t align,
4247 unsigned long flags, void (*ctor)(void *))
4248 {
4249 struct kmem_cache *s, *c;
4250
4251 s = find_mergeable(size, align, flags, name, ctor);
4252 if (s) {
4253 s->refcount++;
4254
4255 /*
4256 * Adjust the object sizes so that we clear
4257 * the complete object on kzalloc.
4258 */
4259 s->object_size = max(s->object_size, (int)size);
4260 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4261
4262 for_each_memcg_cache(c, s) {
4263 c->object_size = s->object_size;
4264 c->inuse = max_t(int, c->inuse,
4265 ALIGN(size, sizeof(void *)));
4266 }
4267
4268 if (sysfs_slab_alias(s, name)) {
4269 s->refcount--;
4270 s = NULL;
4271 }
4272 }
4273
4274 return s;
4275 }
4276
4277 int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
4278 {
4279 int err;
4280
4281 err = kmem_cache_open(s, flags);
4282 if (err)
4283 return err;
4284
4285 /* Mutex is not taken during early boot */
4286 if (slab_state <= UP)
4287 return 0;
4288
4289 memcg_propagate_slab_attrs(s);
4290 err = sysfs_slab_add(s);
4291 if (err)
4292 __kmem_cache_release(s);
4293
4294 return err;
4295 }
4296
4297 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4298 {
4299 struct kmem_cache *s;
4300 void *ret;
4301
4302 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4303 return kmalloc_large(size, gfpflags);
4304
4305 s = kmalloc_slab(size, gfpflags);
4306
4307 if (unlikely(ZERO_OR_NULL_PTR(s)))
4308 return s;
4309
4310 ret = slab_alloc(s, gfpflags, caller);
4311
4312 /* Honor the call site pointer we received. */
4313 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4314
4315 return ret;
4316 }
4317
4318 #ifdef CONFIG_NUMA
4319 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4320 int node, unsigned long caller)
4321 {
4322 struct kmem_cache *s;
4323 void *ret;
4324
4325 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4326 ret = kmalloc_large_node(size, gfpflags, node);
4327
4328 trace_kmalloc_node(caller, ret,
4329 size, PAGE_SIZE << get_order(size),
4330 gfpflags, node);
4331
4332 return ret;
4333 }
4334
4335 s = kmalloc_slab(size, gfpflags);
4336
4337 if (unlikely(ZERO_OR_NULL_PTR(s)))
4338 return s;
4339
4340 ret = slab_alloc_node(s, gfpflags, node, caller);
4341
4342 /* Honor the call site pointer we received. */
4343 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4344
4345 return ret;
4346 }
4347 #endif
4348
4349 #ifdef CONFIG_SYSFS
4350 static int count_inuse(struct page *page)
4351 {
4352 return page->inuse;
4353 }
4354
4355 static int count_total(struct page *page)
4356 {
4357 return page->objects;
4358 }
4359 #endif
4360
4361 #ifdef CONFIG_SLUB_DEBUG
4362 static int validate_slab(struct kmem_cache *s, struct page *page,
4363 unsigned long *map)
4364 {
4365 void *p;
4366 void *addr = page_address(page);
4367
4368 if (!check_slab(s, page) ||
4369 !on_freelist(s, page, NULL))
4370 return 0;
4371
4372 /* Now we know that a valid freelist exists */
4373 bitmap_zero(map, page->objects);
4374
4375 get_map(s, page, map);
4376 for_each_object(p, s, addr, page->objects) {
4377 if (test_bit(slab_index(p, s, addr), map))
4378 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4379 return 0;
4380 }
4381
4382 for_each_object(p, s, addr, page->objects)
4383 if (!test_bit(slab_index(p, s, addr), map))
4384 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4385 return 0;
4386 return 1;
4387 }
4388
4389 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4390 unsigned long *map)
4391 {
4392 slab_lock(page);
4393 validate_slab(s, page, map);
4394 slab_unlock(page);
4395 }
4396
4397 static int validate_slab_node(struct kmem_cache *s,
4398 struct kmem_cache_node *n, unsigned long *map)
4399 {
4400 unsigned long count = 0;
4401 struct page *page;
4402 unsigned long flags;
4403
4404 spin_lock_irqsave(&n->list_lock, flags);
4405
4406 list_for_each_entry(page, &n->partial, lru) {
4407 validate_slab_slab(s, page, map);
4408 count++;
4409 }
4410 if (count != n->nr_partial)
4411 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4412 s->name, count, n->nr_partial);
4413
4414 if (!(s->flags & SLAB_STORE_USER))
4415 goto out;
4416
4417 list_for_each_entry(page, &n->full, lru) {
4418 validate_slab_slab(s, page, map);
4419 count++;
4420 }
4421 if (count != atomic_long_read(&n->nr_slabs))
4422 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4423 s->name, count, atomic_long_read(&n->nr_slabs));
4424
4425 out:
4426 spin_unlock_irqrestore(&n->list_lock, flags);
4427 return count;
4428 }
4429
4430 static long validate_slab_cache(struct kmem_cache *s)
4431 {
4432 int node;
4433 unsigned long count = 0;
4434 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4435 sizeof(unsigned long), GFP_KERNEL);
4436 struct kmem_cache_node *n;
4437
4438 if (!map)
4439 return -ENOMEM;
4440
4441 flush_all(s);
4442 for_each_kmem_cache_node(s, node, n)
4443 count += validate_slab_node(s, n, map);
4444 kfree(map);
4445 return count;
4446 }
4447 /*
4448 * Generate lists of code addresses where slabcache objects are allocated
4449 * and freed.
4450 */
4451
4452 struct location {
4453 unsigned long count;
4454 unsigned long addr;
4455 long long sum_time;
4456 long min_time;
4457 long max_time;
4458 long min_pid;
4459 long max_pid;
4460 DECLARE_BITMAP(cpus, NR_CPUS);
4461 nodemask_t nodes;
4462 };
4463
4464 struct loc_track {
4465 unsigned long max;
4466 unsigned long count;
4467 struct location *loc;
4468 };
4469
4470 static void free_loc_track(struct loc_track *t)
4471 {
4472 if (t->max)
4473 free_pages((unsigned long)t->loc,
4474 get_order(sizeof(struct location) * t->max));
4475 }
4476
4477 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4478 {
4479 struct location *l;
4480 int order;
4481
4482 order = get_order(sizeof(struct location) * max);
4483
4484 l = (void *)__get_free_pages(flags, order);
4485 if (!l)
4486 return 0;
4487
4488 if (t->count) {
4489 memcpy(l, t->loc, sizeof(struct location) * t->count);
4490 free_loc_track(t);
4491 }
4492 t->max = max;
4493 t->loc = l;
4494 return 1;
4495 }
4496
4497 static int add_location(struct loc_track *t, struct kmem_cache *s,
4498 const struct track *track)
4499 {
4500 long start, end, pos;
4501 struct location *l;
4502 unsigned long caddr;
4503 unsigned long age = jiffies - track->when;
4504
4505 start = -1;
4506 end = t->count;
4507
4508 for ( ; ; ) {
4509 pos = start + (end - start + 1) / 2;
4510
4511 /*
4512 * There is nothing at "end". If we end up there
4513 * we need to add something to before end.
4514 */
4515 if (pos == end)
4516 break;
4517
4518 caddr = t->loc[pos].addr;
4519 if (track->addr == caddr) {
4520
4521 l = &t->loc[pos];
4522 l->count++;
4523 if (track->when) {
4524 l->sum_time += age;
4525 if (age < l->min_time)
4526 l->min_time = age;
4527 if (age > l->max_time)
4528 l->max_time = age;
4529
4530 if (track->pid < l->min_pid)
4531 l->min_pid = track->pid;
4532 if (track->pid > l->max_pid)
4533 l->max_pid = track->pid;
4534
4535 cpumask_set_cpu(track->cpu,
4536 to_cpumask(l->cpus));
4537 }
4538 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4539 return 1;
4540 }
4541
4542 if (track->addr < caddr)
4543 end = pos;
4544 else
4545 start = pos;
4546 }
4547
4548 /*
4549 * Not found. Insert new tracking element.
4550 */
4551 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4552 return 0;
4553
4554 l = t->loc + pos;
4555 if (pos < t->count)
4556 memmove(l + 1, l,
4557 (t->count - pos) * sizeof(struct location));
4558 t->count++;
4559 l->count = 1;
4560 l->addr = track->addr;
4561 l->sum_time = age;
4562 l->min_time = age;
4563 l->max_time = age;
4564 l->min_pid = track->pid;
4565 l->max_pid = track->pid;
4566 cpumask_clear(to_cpumask(l->cpus));
4567 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4568 nodes_clear(l->nodes);
4569 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4570 return 1;
4571 }
4572
4573 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4574 struct page *page, enum track_item alloc,
4575 unsigned long *map)
4576 {
4577 void *addr = page_address(page);
4578 void *p;
4579
4580 bitmap_zero(map, page->objects);
4581 get_map(s, page, map);
4582
4583 for_each_object(p, s, addr, page->objects)
4584 if (!test_bit(slab_index(p, s, addr), map))
4585 add_location(t, s, get_track(s, p, alloc));
4586 }
4587
4588 static int list_locations(struct kmem_cache *s, char *buf,
4589 enum track_item alloc)
4590 {
4591 int len = 0;
4592 unsigned long i;
4593 struct loc_track t = { 0, 0, NULL };
4594 int node;
4595 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4596 sizeof(unsigned long), GFP_KERNEL);
4597 struct kmem_cache_node *n;
4598
4599 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4600 GFP_KERNEL)) {
4601 kfree(map);
4602 return sprintf(buf, "Out of memory\n");
4603 }
4604 /* Push back cpu slabs */
4605 flush_all(s);
4606
4607 for_each_kmem_cache_node(s, node, n) {
4608 unsigned long flags;
4609 struct page *page;
4610
4611 if (!atomic_long_read(&n->nr_slabs))
4612 continue;
4613
4614 spin_lock_irqsave(&n->list_lock, flags);
4615 list_for_each_entry(page, &n->partial, lru)
4616 process_slab(&t, s, page, alloc, map);
4617 list_for_each_entry(page, &n->full, lru)
4618 process_slab(&t, s, page, alloc, map);
4619 spin_unlock_irqrestore(&n->list_lock, flags);
4620 }
4621
4622 for (i = 0; i < t.count; i++) {
4623 struct location *l = &t.loc[i];
4624
4625 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4626 break;
4627 len += sprintf(buf + len, "%7ld ", l->count);
4628
4629 if (l->addr)
4630 len += sprintf(buf + len, "%pS", (void *)l->addr);
4631 else
4632 len += sprintf(buf + len, "<not-available>");
4633
4634 if (l->sum_time != l->min_time) {
4635 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4636 l->min_time,
4637 (long)div_u64(l->sum_time, l->count),
4638 l->max_time);
4639 } else
4640 len += sprintf(buf + len, " age=%ld",
4641 l->min_time);
4642
4643 if (l->min_pid != l->max_pid)
4644 len += sprintf(buf + len, " pid=%ld-%ld",
4645 l->min_pid, l->max_pid);
4646 else
4647 len += sprintf(buf + len, " pid=%ld",
4648 l->min_pid);
4649
4650 if (num_online_cpus() > 1 &&
4651 !cpumask_empty(to_cpumask(l->cpus)) &&
4652 len < PAGE_SIZE - 60)
4653 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4654 " cpus=%*pbl",
4655 cpumask_pr_args(to_cpumask(l->cpus)));
4656
4657 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4658 len < PAGE_SIZE - 60)
4659 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4660 " nodes=%*pbl",
4661 nodemask_pr_args(&l->nodes));
4662
4663 len += sprintf(buf + len, "\n");
4664 }
4665
4666 free_loc_track(&t);
4667 kfree(map);
4668 if (!t.count)
4669 len += sprintf(buf, "No data\n");
4670 return len;
4671 }
4672 #endif
4673
4674 #ifdef SLUB_RESILIENCY_TEST
4675 static void __init resiliency_test(void)
4676 {
4677 u8 *p;
4678
4679 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4680
4681 pr_err("SLUB resiliency testing\n");
4682 pr_err("-----------------------\n");
4683 pr_err("A. Corruption after allocation\n");
4684
4685 p = kzalloc(16, GFP_KERNEL);
4686 p[16] = 0x12;
4687 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4688 p + 16);
4689
4690 validate_slab_cache(kmalloc_caches[4]);
4691
4692 /* Hmmm... The next two are dangerous */
4693 p = kzalloc(32, GFP_KERNEL);
4694 p[32 + sizeof(void *)] = 0x34;
4695 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4696 p);
4697 pr_err("If allocated object is overwritten then not detectable\n\n");
4698
4699 validate_slab_cache(kmalloc_caches[5]);
4700 p = kzalloc(64, GFP_KERNEL);
4701 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4702 *p = 0x56;
4703 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4704 p);
4705 pr_err("If allocated object is overwritten then not detectable\n\n");
4706 validate_slab_cache(kmalloc_caches[6]);
4707
4708 pr_err("\nB. Corruption after free\n");
4709 p = kzalloc(128, GFP_KERNEL);
4710 kfree(p);
4711 *p = 0x78;
4712 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4713 validate_slab_cache(kmalloc_caches[7]);
4714
4715 p = kzalloc(256, GFP_KERNEL);
4716 kfree(p);
4717 p[50] = 0x9a;
4718 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4719 validate_slab_cache(kmalloc_caches[8]);
4720
4721 p = kzalloc(512, GFP_KERNEL);
4722 kfree(p);
4723 p[512] = 0xab;
4724 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4725 validate_slab_cache(kmalloc_caches[9]);
4726 }
4727 #else
4728 #ifdef CONFIG_SYSFS
4729 static void resiliency_test(void) {};
4730 #endif
4731 #endif
4732
4733 #ifdef CONFIG_SYSFS
4734 enum slab_stat_type {
4735 SL_ALL, /* All slabs */
4736 SL_PARTIAL, /* Only partially allocated slabs */
4737 SL_CPU, /* Only slabs used for cpu caches */
4738 SL_OBJECTS, /* Determine allocated objects not slabs */
4739 SL_TOTAL /* Determine object capacity not slabs */
4740 };
4741
4742 #define SO_ALL (1 << SL_ALL)
4743 #define SO_PARTIAL (1 << SL_PARTIAL)
4744 #define SO_CPU (1 << SL_CPU)
4745 #define SO_OBJECTS (1 << SL_OBJECTS)
4746 #define SO_TOTAL (1 << SL_TOTAL)
4747
4748 #ifdef CONFIG_MEMCG
4749 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4750
4751 static int __init setup_slub_memcg_sysfs(char *str)
4752 {
4753 int v;
4754
4755 if (get_option(&str, &v) > 0)
4756 memcg_sysfs_enabled = v;
4757
4758 return 1;
4759 }
4760
4761 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4762 #endif
4763
4764 static ssize_t show_slab_objects(struct kmem_cache *s,
4765 char *buf, unsigned long flags)
4766 {
4767 unsigned long total = 0;
4768 int node;
4769 int x;
4770 unsigned long *nodes;
4771
4772 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4773 if (!nodes)
4774 return -ENOMEM;
4775
4776 if (flags & SO_CPU) {
4777 int cpu;
4778
4779 for_each_possible_cpu(cpu) {
4780 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4781 cpu);
4782 int node;
4783 struct page *page;
4784
4785 page = READ_ONCE(c->page);
4786 if (!page)
4787 continue;
4788
4789 node = page_to_nid(page);
4790 if (flags & SO_TOTAL)
4791 x = page->objects;
4792 else if (flags & SO_OBJECTS)
4793 x = page->inuse;
4794 else
4795 x = 1;
4796
4797 total += x;
4798 nodes[node] += x;
4799
4800 page = slub_percpu_partial_read_once(c);
4801 if (page) {
4802 node = page_to_nid(page);
4803 if (flags & SO_TOTAL)
4804 WARN_ON_ONCE(1);
4805 else if (flags & SO_OBJECTS)
4806 WARN_ON_ONCE(1);
4807 else
4808 x = page->pages;
4809 total += x;
4810 nodes[node] += x;
4811 }
4812 }
4813 }
4814
4815 get_online_mems();
4816 #ifdef CONFIG_SLUB_DEBUG
4817 if (flags & SO_ALL) {
4818 struct kmem_cache_node *n;
4819
4820 for_each_kmem_cache_node(s, node, n) {
4821
4822 if (flags & SO_TOTAL)
4823 x = atomic_long_read(&n->total_objects);
4824 else if (flags & SO_OBJECTS)
4825 x = atomic_long_read(&n->total_objects) -
4826 count_partial(n, count_free);
4827 else
4828 x = atomic_long_read(&n->nr_slabs);
4829 total += x;
4830 nodes[node] += x;
4831 }
4832
4833 } else
4834 #endif
4835 if (flags & SO_PARTIAL) {
4836 struct kmem_cache_node *n;
4837
4838 for_each_kmem_cache_node(s, node, n) {
4839 if (flags & SO_TOTAL)
4840 x = count_partial(n, count_total);
4841 else if (flags & SO_OBJECTS)
4842 x = count_partial(n, count_inuse);
4843 else
4844 x = n->nr_partial;
4845 total += x;
4846 nodes[node] += x;
4847 }
4848 }
4849 x = sprintf(buf, "%lu", total);
4850 #ifdef CONFIG_NUMA
4851 for (node = 0; node < nr_node_ids; node++)
4852 if (nodes[node])
4853 x += sprintf(buf + x, " N%d=%lu",
4854 node, nodes[node]);
4855 #endif
4856 put_online_mems();
4857 kfree(nodes);
4858 return x + sprintf(buf + x, "\n");
4859 }
4860
4861 #ifdef CONFIG_SLUB_DEBUG
4862 static int any_slab_objects(struct kmem_cache *s)
4863 {
4864 int node;
4865 struct kmem_cache_node *n;
4866
4867 for_each_kmem_cache_node(s, node, n)
4868 if (atomic_long_read(&n->total_objects))
4869 return 1;
4870
4871 return 0;
4872 }
4873 #endif
4874
4875 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4876 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4877
4878 struct slab_attribute {
4879 struct attribute attr;
4880 ssize_t (*show)(struct kmem_cache *s, char *buf);
4881 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4882 };
4883
4884 #define SLAB_ATTR_RO(_name) \
4885 static struct slab_attribute _name##_attr = \
4886 __ATTR(_name, 0400, _name##_show, NULL)
4887
4888 #define SLAB_ATTR(_name) \
4889 static struct slab_attribute _name##_attr = \
4890 __ATTR(_name, 0600, _name##_show, _name##_store)
4891
4892 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4893 {
4894 return sprintf(buf, "%d\n", s->size);
4895 }
4896 SLAB_ATTR_RO(slab_size);
4897
4898 static ssize_t align_show(struct kmem_cache *s, char *buf)
4899 {
4900 return sprintf(buf, "%d\n", s->align);
4901 }
4902 SLAB_ATTR_RO(align);
4903
4904 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4905 {
4906 return sprintf(buf, "%d\n", s->object_size);
4907 }
4908 SLAB_ATTR_RO(object_size);
4909
4910 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4911 {
4912 return sprintf(buf, "%d\n", oo_objects(s->oo));
4913 }
4914 SLAB_ATTR_RO(objs_per_slab);
4915
4916 static ssize_t order_store(struct kmem_cache *s,
4917 const char *buf, size_t length)
4918 {
4919 unsigned long order;
4920 int err;
4921
4922 err = kstrtoul(buf, 10, &order);
4923 if (err)
4924 return err;
4925
4926 if (order > slub_max_order || order < slub_min_order)
4927 return -EINVAL;
4928
4929 calculate_sizes(s, order);
4930 return length;
4931 }
4932
4933 static ssize_t order_show(struct kmem_cache *s, char *buf)
4934 {
4935 return sprintf(buf, "%d\n", oo_order(s->oo));
4936 }
4937 SLAB_ATTR(order);
4938
4939 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4940 {
4941 return sprintf(buf, "%lu\n", s->min_partial);
4942 }
4943
4944 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4945 size_t length)
4946 {
4947 unsigned long min;
4948 int err;
4949
4950 err = kstrtoul(buf, 10, &min);
4951 if (err)
4952 return err;
4953
4954 set_min_partial(s, min);
4955 return length;
4956 }
4957 SLAB_ATTR(min_partial);
4958
4959 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4960 {
4961 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4962 }
4963
4964 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4965 size_t length)
4966 {
4967 unsigned long objects;
4968 int err;
4969
4970 err = kstrtoul(buf, 10, &objects);
4971 if (err)
4972 return err;
4973 if (objects && !kmem_cache_has_cpu_partial(s))
4974 return -EINVAL;
4975
4976 slub_set_cpu_partial(s, objects);
4977 flush_all(s);
4978 return length;
4979 }
4980 SLAB_ATTR(cpu_partial);
4981
4982 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4983 {
4984 if (!s->ctor)
4985 return 0;
4986 return sprintf(buf, "%pS\n", s->ctor);
4987 }
4988 SLAB_ATTR_RO(ctor);
4989
4990 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4991 {
4992 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4993 }
4994 SLAB_ATTR_RO(aliases);
4995
4996 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4997 {
4998 return show_slab_objects(s, buf, SO_PARTIAL);
4999 }
5000 SLAB_ATTR_RO(partial);
5001
5002 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5003 {
5004 return show_slab_objects(s, buf, SO_CPU);
5005 }
5006 SLAB_ATTR_RO(cpu_slabs);
5007
5008 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5009 {
5010 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5011 }
5012 SLAB_ATTR_RO(objects);
5013
5014 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5015 {
5016 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5017 }
5018 SLAB_ATTR_RO(objects_partial);
5019
5020 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5021 {
5022 int objects = 0;
5023 int pages = 0;
5024 int cpu;
5025 int len;
5026
5027 for_each_online_cpu(cpu) {
5028 struct page *page;
5029
5030 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5031
5032 if (page) {
5033 pages += page->pages;
5034 objects += page->pobjects;
5035 }
5036 }
5037
5038 len = sprintf(buf, "%d(%d)", objects, pages);
5039
5040 #ifdef CONFIG_SMP
5041 for_each_online_cpu(cpu) {
5042 struct page *page;
5043
5044 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5045
5046 if (page && len < PAGE_SIZE - 20)
5047 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5048 page->pobjects, page->pages);
5049 }
5050 #endif
5051 return len + sprintf(buf + len, "\n");
5052 }
5053 SLAB_ATTR_RO(slabs_cpu_partial);
5054
5055 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5056 {
5057 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5058 }
5059
5060 static ssize_t reclaim_account_store(struct kmem_cache *s,
5061 const char *buf, size_t length)
5062 {
5063 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5064 if (buf[0] == '1')
5065 s->flags |= SLAB_RECLAIM_ACCOUNT;
5066 return length;
5067 }
5068 SLAB_ATTR(reclaim_account);
5069
5070 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5071 {
5072 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5073 }
5074 SLAB_ATTR_RO(hwcache_align);
5075
5076 #ifdef CONFIG_ZONE_DMA
5077 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5078 {
5079 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5080 }
5081 SLAB_ATTR_RO(cache_dma);
5082 #endif
5083
5084 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5085 {
5086 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5087 }
5088 SLAB_ATTR_RO(destroy_by_rcu);
5089
5090 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5091 {
5092 return sprintf(buf, "%d\n", s->reserved);
5093 }
5094 SLAB_ATTR_RO(reserved);
5095
5096 #ifdef CONFIG_SLUB_DEBUG
5097 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5098 {
5099 return show_slab_objects(s, buf, SO_ALL);
5100 }
5101 SLAB_ATTR_RO(slabs);
5102
5103 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5104 {
5105 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5106 }
5107 SLAB_ATTR_RO(total_objects);
5108
5109 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5110 {
5111 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5112 }
5113
5114 static ssize_t sanity_checks_store(struct kmem_cache *s,
5115 const char *buf, size_t length)
5116 {
5117 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5118 if (buf[0] == '1') {
5119 s->flags &= ~__CMPXCHG_DOUBLE;
5120 s->flags |= SLAB_CONSISTENCY_CHECKS;
5121 }
5122 return length;
5123 }
5124 SLAB_ATTR(sanity_checks);
5125
5126 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5127 {
5128 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5129 }
5130
5131 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5132 size_t length)
5133 {
5134 /*
5135 * Tracing a merged cache is going to give confusing results
5136 * as well as cause other issues like converting a mergeable
5137 * cache into an umergeable one.
5138 */
5139 if (s->refcount > 1)
5140 return -EINVAL;
5141
5142 s->flags &= ~SLAB_TRACE;
5143 if (buf[0] == '1') {
5144 s->flags &= ~__CMPXCHG_DOUBLE;
5145 s->flags |= SLAB_TRACE;
5146 }
5147 return length;
5148 }
5149 SLAB_ATTR(trace);
5150
5151 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5152 {
5153 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5154 }
5155
5156 static ssize_t red_zone_store(struct kmem_cache *s,
5157 const char *buf, size_t length)
5158 {
5159 if (any_slab_objects(s))
5160 return -EBUSY;
5161
5162 s->flags &= ~SLAB_RED_ZONE;
5163 if (buf[0] == '1') {
5164 s->flags |= SLAB_RED_ZONE;
5165 }
5166 calculate_sizes(s, -1);
5167 return length;
5168 }
5169 SLAB_ATTR(red_zone);
5170
5171 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5172 {
5173 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5174 }
5175
5176 static ssize_t poison_store(struct kmem_cache *s,
5177 const char *buf, size_t length)
5178 {
5179 if (any_slab_objects(s))
5180 return -EBUSY;
5181
5182 s->flags &= ~SLAB_POISON;
5183 if (buf[0] == '1') {
5184 s->flags |= SLAB_POISON;
5185 }
5186 calculate_sizes(s, -1);
5187 return length;
5188 }
5189 SLAB_ATTR(poison);
5190
5191 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5192 {
5193 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5194 }
5195
5196 static ssize_t store_user_store(struct kmem_cache *s,
5197 const char *buf, size_t length)
5198 {
5199 if (any_slab_objects(s))
5200 return -EBUSY;
5201
5202 s->flags &= ~SLAB_STORE_USER;
5203 if (buf[0] == '1') {
5204 s->flags &= ~__CMPXCHG_DOUBLE;
5205 s->flags |= SLAB_STORE_USER;
5206 }
5207 calculate_sizes(s, -1);
5208 return length;
5209 }
5210 SLAB_ATTR(store_user);
5211
5212 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5213 {
5214 return 0;
5215 }
5216
5217 static ssize_t validate_store(struct kmem_cache *s,
5218 const char *buf, size_t length)
5219 {
5220 int ret = -EINVAL;
5221
5222 if (buf[0] == '1') {
5223 ret = validate_slab_cache(s);
5224 if (ret >= 0)
5225 ret = length;
5226 }
5227 return ret;
5228 }
5229 SLAB_ATTR(validate);
5230
5231 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5232 {
5233 if (!(s->flags & SLAB_STORE_USER))
5234 return -ENOSYS;
5235 return list_locations(s, buf, TRACK_ALLOC);
5236 }
5237 SLAB_ATTR_RO(alloc_calls);
5238
5239 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5240 {
5241 if (!(s->flags & SLAB_STORE_USER))
5242 return -ENOSYS;
5243 return list_locations(s, buf, TRACK_FREE);
5244 }
5245 SLAB_ATTR_RO(free_calls);
5246 #endif /* CONFIG_SLUB_DEBUG */
5247
5248 #ifdef CONFIG_FAILSLAB
5249 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5250 {
5251 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5252 }
5253
5254 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5255 size_t length)
5256 {
5257 if (s->refcount > 1)
5258 return -EINVAL;
5259
5260 s->flags &= ~SLAB_FAILSLAB;
5261 if (buf[0] == '1')
5262 s->flags |= SLAB_FAILSLAB;
5263 return length;
5264 }
5265 SLAB_ATTR(failslab);
5266 #endif
5267
5268 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5269 {
5270 return 0;
5271 }
5272
5273 static ssize_t shrink_store(struct kmem_cache *s,
5274 const char *buf, size_t length)
5275 {
5276 if (buf[0] == '1')
5277 kmem_cache_shrink(s);
5278 else
5279 return -EINVAL;
5280 return length;
5281 }
5282 SLAB_ATTR(shrink);
5283
5284 #ifdef CONFIG_NUMA
5285 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5286 {
5287 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5288 }
5289
5290 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5291 const char *buf, size_t length)
5292 {
5293 unsigned long ratio;
5294 int err;
5295
5296 err = kstrtoul(buf, 10, &ratio);
5297 if (err)
5298 return err;
5299
5300 if (ratio <= 100)
5301 s->remote_node_defrag_ratio = ratio * 10;
5302
5303 return length;
5304 }
5305 SLAB_ATTR(remote_node_defrag_ratio);
5306 #endif
5307
5308 #ifdef CONFIG_SLUB_STATS
5309 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5310 {
5311 unsigned long sum = 0;
5312 int cpu;
5313 int len;
5314 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5315
5316 if (!data)
5317 return -ENOMEM;
5318
5319 for_each_online_cpu(cpu) {
5320 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5321
5322 data[cpu] = x;
5323 sum += x;
5324 }
5325
5326 len = sprintf(buf, "%lu", sum);
5327
5328 #ifdef CONFIG_SMP
5329 for_each_online_cpu(cpu) {
5330 if (data[cpu] && len < PAGE_SIZE - 20)
5331 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5332 }
5333 #endif
5334 kfree(data);
5335 return len + sprintf(buf + len, "\n");
5336 }
5337
5338 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5339 {
5340 int cpu;
5341
5342 for_each_online_cpu(cpu)
5343 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5344 }
5345
5346 #define STAT_ATTR(si, text) \
5347 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5348 { \
5349 return show_stat(s, buf, si); \
5350 } \
5351 static ssize_t text##_store(struct kmem_cache *s, \
5352 const char *buf, size_t length) \
5353 { \
5354 if (buf[0] != '0') \
5355 return -EINVAL; \
5356 clear_stat(s, si); \
5357 return length; \
5358 } \
5359 SLAB_ATTR(text); \
5360
5361 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5362 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5363 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5364 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5365 STAT_ATTR(FREE_FROZEN, free_frozen);
5366 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5367 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5368 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5369 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5370 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5371 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5372 STAT_ATTR(FREE_SLAB, free_slab);
5373 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5374 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5375 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5376 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5377 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5378 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5379 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5380 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5381 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5382 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5383 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5384 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5385 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5386 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5387 #endif
5388
5389 static struct attribute *slab_attrs[] = {
5390 &slab_size_attr.attr,
5391 &object_size_attr.attr,
5392 &objs_per_slab_attr.attr,
5393 &order_attr.attr,
5394 &min_partial_attr.attr,
5395 &cpu_partial_attr.attr,
5396 &objects_attr.attr,
5397 &objects_partial_attr.attr,
5398 &partial_attr.attr,
5399 &cpu_slabs_attr.attr,
5400 &ctor_attr.attr,
5401 &aliases_attr.attr,
5402 &align_attr.attr,
5403 &hwcache_align_attr.attr,
5404 &reclaim_account_attr.attr,
5405 &destroy_by_rcu_attr.attr,
5406 &shrink_attr.attr,
5407 &reserved_attr.attr,
5408 &slabs_cpu_partial_attr.attr,
5409 #ifdef CONFIG_SLUB_DEBUG
5410 &total_objects_attr.attr,
5411 &slabs_attr.attr,
5412 &sanity_checks_attr.attr,
5413 &trace_attr.attr,
5414 &red_zone_attr.attr,
5415 &poison_attr.attr,
5416 &store_user_attr.attr,
5417 &validate_attr.attr,
5418 &alloc_calls_attr.attr,
5419 &free_calls_attr.attr,
5420 #endif
5421 #ifdef CONFIG_ZONE_DMA
5422 &cache_dma_attr.attr,
5423 #endif
5424 #ifdef CONFIG_NUMA
5425 &remote_node_defrag_ratio_attr.attr,
5426 #endif
5427 #ifdef CONFIG_SLUB_STATS
5428 &alloc_fastpath_attr.attr,
5429 &alloc_slowpath_attr.attr,
5430 &free_fastpath_attr.attr,
5431 &free_slowpath_attr.attr,
5432 &free_frozen_attr.attr,
5433 &free_add_partial_attr.attr,
5434 &free_remove_partial_attr.attr,
5435 &alloc_from_partial_attr.attr,
5436 &alloc_slab_attr.attr,
5437 &alloc_refill_attr.attr,
5438 &alloc_node_mismatch_attr.attr,
5439 &free_slab_attr.attr,
5440 &cpuslab_flush_attr.attr,
5441 &deactivate_full_attr.attr,
5442 &deactivate_empty_attr.attr,
5443 &deactivate_to_head_attr.attr,
5444 &deactivate_to_tail_attr.attr,
5445 &deactivate_remote_frees_attr.attr,
5446 &deactivate_bypass_attr.attr,
5447 &order_fallback_attr.attr,
5448 &cmpxchg_double_fail_attr.attr,
5449 &cmpxchg_double_cpu_fail_attr.attr,
5450 &cpu_partial_alloc_attr.attr,
5451 &cpu_partial_free_attr.attr,
5452 &cpu_partial_node_attr.attr,
5453 &cpu_partial_drain_attr.attr,
5454 #endif
5455 #ifdef CONFIG_FAILSLAB
5456 &failslab_attr.attr,
5457 #endif
5458
5459 NULL
5460 };
5461
5462 static const struct attribute_group slab_attr_group = {
5463 .attrs = slab_attrs,
5464 };
5465
5466 static ssize_t slab_attr_show(struct kobject *kobj,
5467 struct attribute *attr,
5468 char *buf)
5469 {
5470 struct slab_attribute *attribute;
5471 struct kmem_cache *s;
5472 int err;
5473
5474 attribute = to_slab_attr(attr);
5475 s = to_slab(kobj);
5476
5477 if (!attribute->show)
5478 return -EIO;
5479
5480 err = attribute->show(s, buf);
5481
5482 return err;
5483 }
5484
5485 static ssize_t slab_attr_store(struct kobject *kobj,
5486 struct attribute *attr,
5487 const char *buf, size_t len)
5488 {
5489 struct slab_attribute *attribute;
5490 struct kmem_cache *s;
5491 int err;
5492
5493 attribute = to_slab_attr(attr);
5494 s = to_slab(kobj);
5495
5496 if (!attribute->store)
5497 return -EIO;
5498
5499 err = attribute->store(s, buf, len);
5500 #ifdef CONFIG_MEMCG
5501 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5502 struct kmem_cache *c;
5503
5504 mutex_lock(&slab_mutex);
5505 if (s->max_attr_size < len)
5506 s->max_attr_size = len;
5507
5508 /*
5509 * This is a best effort propagation, so this function's return
5510 * value will be determined by the parent cache only. This is
5511 * basically because not all attributes will have a well
5512 * defined semantics for rollbacks - most of the actions will
5513 * have permanent effects.
5514 *
5515 * Returning the error value of any of the children that fail
5516 * is not 100 % defined, in the sense that users seeing the
5517 * error code won't be able to know anything about the state of
5518 * the cache.
5519 *
5520 * Only returning the error code for the parent cache at least
5521 * has well defined semantics. The cache being written to
5522 * directly either failed or succeeded, in which case we loop
5523 * through the descendants with best-effort propagation.
5524 */
5525 for_each_memcg_cache(c, s)
5526 attribute->store(c, buf, len);
5527 mutex_unlock(&slab_mutex);
5528 }
5529 #endif
5530 return err;
5531 }
5532
5533 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5534 {
5535 #ifdef CONFIG_MEMCG
5536 int i;
5537 char *buffer = NULL;
5538 struct kmem_cache *root_cache;
5539
5540 if (is_root_cache(s))
5541 return;
5542
5543 root_cache = s->memcg_params.root_cache;
5544
5545 /*
5546 * This mean this cache had no attribute written. Therefore, no point
5547 * in copying default values around
5548 */
5549 if (!root_cache->max_attr_size)
5550 return;
5551
5552 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5553 char mbuf[64];
5554 char *buf;
5555 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5556 ssize_t len;
5557
5558 if (!attr || !attr->store || !attr->show)
5559 continue;
5560
5561 /*
5562 * It is really bad that we have to allocate here, so we will
5563 * do it only as a fallback. If we actually allocate, though,
5564 * we can just use the allocated buffer until the end.
5565 *
5566 * Most of the slub attributes will tend to be very small in
5567 * size, but sysfs allows buffers up to a page, so they can
5568 * theoretically happen.
5569 */
5570 if (buffer)
5571 buf = buffer;
5572 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5573 buf = mbuf;
5574 else {
5575 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5576 if (WARN_ON(!buffer))
5577 continue;
5578 buf = buffer;
5579 }
5580
5581 len = attr->show(root_cache, buf);
5582 if (len > 0)
5583 attr->store(s, buf, len);
5584 }
5585
5586 if (buffer)
5587 free_page((unsigned long)buffer);
5588 #endif
5589 }
5590
5591 static void kmem_cache_release(struct kobject *k)
5592 {
5593 slab_kmem_cache_release(to_slab(k));
5594 }
5595
5596 static const struct sysfs_ops slab_sysfs_ops = {
5597 .show = slab_attr_show,
5598 .store = slab_attr_store,
5599 };
5600
5601 static struct kobj_type slab_ktype = {
5602 .sysfs_ops = &slab_sysfs_ops,
5603 .release = kmem_cache_release,
5604 };
5605
5606 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5607 {
5608 struct kobj_type *ktype = get_ktype(kobj);
5609
5610 if (ktype == &slab_ktype)
5611 return 1;
5612 return 0;
5613 }
5614
5615 static const struct kset_uevent_ops slab_uevent_ops = {
5616 .filter = uevent_filter,
5617 };
5618
5619 static struct kset *slab_kset;
5620
5621 static inline struct kset *cache_kset(struct kmem_cache *s)
5622 {
5623 #ifdef CONFIG_MEMCG
5624 if (!is_root_cache(s))
5625 return s->memcg_params.root_cache->memcg_kset;
5626 #endif
5627 return slab_kset;
5628 }
5629
5630 #define ID_STR_LENGTH 64
5631
5632 /* Create a unique string id for a slab cache:
5633 *
5634 * Format :[flags-]size
5635 */
5636 static char *create_unique_id(struct kmem_cache *s)
5637 {
5638 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5639 char *p = name;
5640
5641 BUG_ON(!name);
5642
5643 *p++ = ':';
5644 /*
5645 * First flags affecting slabcache operations. We will only
5646 * get here for aliasable slabs so we do not need to support
5647 * too many flags. The flags here must cover all flags that
5648 * are matched during merging to guarantee that the id is
5649 * unique.
5650 */
5651 if (s->flags & SLAB_CACHE_DMA)
5652 *p++ = 'd';
5653 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5654 *p++ = 'a';
5655 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5656 *p++ = 'F';
5657 if (!(s->flags & SLAB_NOTRACK))
5658 *p++ = 't';
5659 if (s->flags & SLAB_ACCOUNT)
5660 *p++ = 'A';
5661 if (p != name + 1)
5662 *p++ = '-';
5663 p += sprintf(p, "%07d", s->size);
5664
5665 BUG_ON(p > name + ID_STR_LENGTH - 1);
5666 return name;
5667 }
5668
5669 static void sysfs_slab_remove_workfn(struct work_struct *work)
5670 {
5671 struct kmem_cache *s =
5672 container_of(work, struct kmem_cache, kobj_remove_work);
5673
5674 if (!s->kobj.state_in_sysfs)
5675 /*
5676 * For a memcg cache, this may be called during
5677 * deactivation and again on shutdown. Remove only once.
5678 * A cache is never shut down before deactivation is
5679 * complete, so no need to worry about synchronization.
5680 */
5681 goto out;
5682
5683 #ifdef CONFIG_MEMCG
5684 kset_unregister(s->memcg_kset);
5685 #endif
5686 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5687 kobject_del(&s->kobj);
5688 out:
5689 kobject_put(&s->kobj);
5690 }
5691
5692 static int sysfs_slab_add(struct kmem_cache *s)
5693 {
5694 int err;
5695 const char *name;
5696 struct kset *kset = cache_kset(s);
5697 int unmergeable = slab_unmergeable(s);
5698
5699 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5700
5701 if (!kset) {
5702 kobject_init(&s->kobj, &slab_ktype);
5703 return 0;
5704 }
5705
5706 if (unmergeable) {
5707 /*
5708 * Slabcache can never be merged so we can use the name proper.
5709 * This is typically the case for debug situations. In that
5710 * case we can catch duplicate names easily.
5711 */
5712 sysfs_remove_link(&slab_kset->kobj, s->name);
5713 name = s->name;
5714 } else {
5715 /*
5716 * Create a unique name for the slab as a target
5717 * for the symlinks.
5718 */
5719 name = create_unique_id(s);
5720 }
5721
5722 s->kobj.kset = kset;
5723 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5724 if (err)
5725 goto out;
5726
5727 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5728 if (err)
5729 goto out_del_kobj;
5730
5731 #ifdef CONFIG_MEMCG
5732 if (is_root_cache(s) && memcg_sysfs_enabled) {
5733 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5734 if (!s->memcg_kset) {
5735 err = -ENOMEM;
5736 goto out_del_kobj;
5737 }
5738 }
5739 #endif
5740
5741 kobject_uevent(&s->kobj, KOBJ_ADD);
5742 if (!unmergeable) {
5743 /* Setup first alias */
5744 sysfs_slab_alias(s, s->name);
5745 }
5746 out:
5747 if (!unmergeable)
5748 kfree(name);
5749 return err;
5750 out_del_kobj:
5751 kobject_del(&s->kobj);
5752 goto out;
5753 }
5754
5755 static void sysfs_slab_remove(struct kmem_cache *s)
5756 {
5757 if (slab_state < FULL)
5758 /*
5759 * Sysfs has not been setup yet so no need to remove the
5760 * cache from sysfs.
5761 */
5762 return;
5763
5764 kobject_get(&s->kobj);
5765 schedule_work(&s->kobj_remove_work);
5766 }
5767
5768 void sysfs_slab_release(struct kmem_cache *s)
5769 {
5770 if (slab_state >= FULL)
5771 kobject_put(&s->kobj);
5772 }
5773
5774 /*
5775 * Need to buffer aliases during bootup until sysfs becomes
5776 * available lest we lose that information.
5777 */
5778 struct saved_alias {
5779 struct kmem_cache *s;
5780 const char *name;
5781 struct saved_alias *next;
5782 };
5783
5784 static struct saved_alias *alias_list;
5785
5786 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5787 {
5788 struct saved_alias *al;
5789
5790 if (slab_state == FULL) {
5791 /*
5792 * If we have a leftover link then remove it.
5793 */
5794 sysfs_remove_link(&slab_kset->kobj, name);
5795 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5796 }
5797
5798 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5799 if (!al)
5800 return -ENOMEM;
5801
5802 al->s = s;
5803 al->name = name;
5804 al->next = alias_list;
5805 alias_list = al;
5806 return 0;
5807 }
5808
5809 static int __init slab_sysfs_init(void)
5810 {
5811 struct kmem_cache *s;
5812 int err;
5813
5814 mutex_lock(&slab_mutex);
5815
5816 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5817 if (!slab_kset) {
5818 mutex_unlock(&slab_mutex);
5819 pr_err("Cannot register slab subsystem.\n");
5820 return -ENOSYS;
5821 }
5822
5823 slab_state = FULL;
5824
5825 list_for_each_entry(s, &slab_caches, list) {
5826 err = sysfs_slab_add(s);
5827 if (err)
5828 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5829 s->name);
5830 }
5831
5832 while (alias_list) {
5833 struct saved_alias *al = alias_list;
5834
5835 alias_list = alias_list->next;
5836 err = sysfs_slab_alias(al->s, al->name);
5837 if (err)
5838 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5839 al->name);
5840 kfree(al);
5841 }
5842
5843 mutex_unlock(&slab_mutex);
5844 resiliency_test();
5845 return 0;
5846 }
5847
5848 __initcall(slab_sysfs_init);
5849 #endif /* CONFIG_SYSFS */
5850
5851 /*
5852 * The /proc/slabinfo ABI
5853 */
5854 #ifdef CONFIG_SLABINFO
5855 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5856 {
5857 unsigned long nr_slabs = 0;
5858 unsigned long nr_objs = 0;
5859 unsigned long nr_free = 0;
5860 int node;
5861 struct kmem_cache_node *n;
5862
5863 for_each_kmem_cache_node(s, node, n) {
5864 nr_slabs += node_nr_slabs(n);
5865 nr_objs += node_nr_objs(n);
5866 nr_free += count_partial(n, count_free);
5867 }
5868
5869 sinfo->active_objs = nr_objs - nr_free;
5870 sinfo->num_objs = nr_objs;
5871 sinfo->active_slabs = nr_slabs;
5872 sinfo->num_slabs = nr_slabs;
5873 sinfo->objects_per_slab = oo_objects(s->oo);
5874 sinfo->cache_order = oo_order(s->oo);
5875 }
5876
5877 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5878 {
5879 }
5880
5881 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5882 size_t count, loff_t *ppos)
5883 {
5884 return -EIO;
5885 }
5886 #endif /* CONFIG_SLABINFO */