Merge tag 'seccomp-v4.14-rc2' of git://git.kernel.org/pub/scm/linux/kernel/git/kees...
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / slab.h
1 #ifndef MM_SLAB_H
2 #define MM_SLAB_H
3 /*
4 * Internal slab definitions
5 */
6
7 #ifdef CONFIG_SLOB
8 /*
9 * Common fields provided in kmem_cache by all slab allocators
10 * This struct is either used directly by the allocator (SLOB)
11 * or the allocator must include definitions for all fields
12 * provided in kmem_cache_common in their definition of kmem_cache.
13 *
14 * Once we can do anonymous structs (C11 standard) we could put a
15 * anonymous struct definition in these allocators so that the
16 * separate allocations in the kmem_cache structure of SLAB and
17 * SLUB is no longer needed.
18 */
19 struct kmem_cache {
20 unsigned int object_size;/* The original size of the object */
21 unsigned int size; /* The aligned/padded/added on size */
22 unsigned int align; /* Alignment as calculated */
23 unsigned long flags; /* Active flags on the slab */
24 const char *name; /* Slab name for sysfs */
25 int refcount; /* Use counter */
26 void (*ctor)(void *); /* Called on object slot creation */
27 struct list_head list; /* List of all slab caches on the system */
28 };
29
30 #endif /* CONFIG_SLOB */
31
32 #ifdef CONFIG_SLAB
33 #include <linux/slab_def.h>
34 #endif
35
36 #ifdef CONFIG_SLUB
37 #include <linux/slub_def.h>
38 #endif
39
40 #include <linux/memcontrol.h>
41 #include <linux/fault-inject.h>
42 #include <linux/kmemcheck.h>
43 #include <linux/kasan.h>
44 #include <linux/kmemleak.h>
45 #include <linux/random.h>
46 #include <linux/sched/mm.h>
47
48 /*
49 * State of the slab allocator.
50 *
51 * This is used to describe the states of the allocator during bootup.
52 * Allocators use this to gradually bootstrap themselves. Most allocators
53 * have the problem that the structures used for managing slab caches are
54 * allocated from slab caches themselves.
55 */
56 enum slab_state {
57 DOWN, /* No slab functionality yet */
58 PARTIAL, /* SLUB: kmem_cache_node available */
59 PARTIAL_NODE, /* SLAB: kmalloc size for node struct available */
60 UP, /* Slab caches usable but not all extras yet */
61 FULL /* Everything is working */
62 };
63
64 extern enum slab_state slab_state;
65
66 /* The slab cache mutex protects the management structures during changes */
67 extern struct mutex slab_mutex;
68
69 /* The list of all slab caches on the system */
70 extern struct list_head slab_caches;
71
72 /* The slab cache that manages slab cache information */
73 extern struct kmem_cache *kmem_cache;
74
75 /* A table of kmalloc cache names and sizes */
76 extern const struct kmalloc_info_struct {
77 const char *name;
78 unsigned long size;
79 } kmalloc_info[];
80
81 unsigned long calculate_alignment(unsigned long flags,
82 unsigned long align, unsigned long size);
83
84 #ifndef CONFIG_SLOB
85 /* Kmalloc array related functions */
86 void setup_kmalloc_cache_index_table(void);
87 void create_kmalloc_caches(unsigned long);
88
89 /* Find the kmalloc slab corresponding for a certain size */
90 struct kmem_cache *kmalloc_slab(size_t, gfp_t);
91 #endif
92
93
94 /* Functions provided by the slab allocators */
95 extern int __kmem_cache_create(struct kmem_cache *, unsigned long flags);
96
97 extern struct kmem_cache *create_kmalloc_cache(const char *name, size_t size,
98 unsigned long flags);
99 extern void create_boot_cache(struct kmem_cache *, const char *name,
100 size_t size, unsigned long flags);
101
102 int slab_unmergeable(struct kmem_cache *s);
103 struct kmem_cache *find_mergeable(size_t size, size_t align,
104 unsigned long flags, const char *name, void (*ctor)(void *));
105 #ifndef CONFIG_SLOB
106 struct kmem_cache *
107 __kmem_cache_alias(const char *name, size_t size, size_t align,
108 unsigned long flags, void (*ctor)(void *));
109
110 unsigned long kmem_cache_flags(unsigned long object_size,
111 unsigned long flags, const char *name,
112 void (*ctor)(void *));
113 #else
114 static inline struct kmem_cache *
115 __kmem_cache_alias(const char *name, size_t size, size_t align,
116 unsigned long flags, void (*ctor)(void *))
117 { return NULL; }
118
119 static inline unsigned long kmem_cache_flags(unsigned long object_size,
120 unsigned long flags, const char *name,
121 void (*ctor)(void *))
122 {
123 return flags;
124 }
125 #endif
126
127
128 /* Legal flag mask for kmem_cache_create(), for various configurations */
129 #define SLAB_CORE_FLAGS (SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA | SLAB_PANIC | \
130 SLAB_TYPESAFE_BY_RCU | SLAB_DEBUG_OBJECTS )
131
132 #if defined(CONFIG_DEBUG_SLAB)
133 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
134 #elif defined(CONFIG_SLUB_DEBUG)
135 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
136 SLAB_TRACE | SLAB_CONSISTENCY_CHECKS)
137 #else
138 #define SLAB_DEBUG_FLAGS (0)
139 #endif
140
141 #if defined(CONFIG_SLAB)
142 #define SLAB_CACHE_FLAGS (SLAB_MEM_SPREAD | SLAB_NOLEAKTRACE | \
143 SLAB_RECLAIM_ACCOUNT | SLAB_TEMPORARY | \
144 SLAB_NOTRACK | SLAB_ACCOUNT)
145 #elif defined(CONFIG_SLUB)
146 #define SLAB_CACHE_FLAGS (SLAB_NOLEAKTRACE | SLAB_RECLAIM_ACCOUNT | \
147 SLAB_TEMPORARY | SLAB_NOTRACK | SLAB_ACCOUNT)
148 #else
149 #define SLAB_CACHE_FLAGS (0)
150 #endif
151
152 /* Common flags available with current configuration */
153 #define CACHE_CREATE_MASK (SLAB_CORE_FLAGS | SLAB_DEBUG_FLAGS | SLAB_CACHE_FLAGS)
154
155 /* Common flags permitted for kmem_cache_create */
156 #define SLAB_FLAGS_PERMITTED (SLAB_CORE_FLAGS | \
157 SLAB_RED_ZONE | \
158 SLAB_POISON | \
159 SLAB_STORE_USER | \
160 SLAB_TRACE | \
161 SLAB_CONSISTENCY_CHECKS | \
162 SLAB_MEM_SPREAD | \
163 SLAB_NOLEAKTRACE | \
164 SLAB_RECLAIM_ACCOUNT | \
165 SLAB_TEMPORARY | \
166 SLAB_NOTRACK | \
167 SLAB_ACCOUNT)
168
169 int __kmem_cache_shutdown(struct kmem_cache *);
170 void __kmem_cache_release(struct kmem_cache *);
171 int __kmem_cache_shrink(struct kmem_cache *);
172 void __kmemcg_cache_deactivate(struct kmem_cache *s);
173 void slab_kmem_cache_release(struct kmem_cache *);
174
175 struct seq_file;
176 struct file;
177
178 struct slabinfo {
179 unsigned long active_objs;
180 unsigned long num_objs;
181 unsigned long active_slabs;
182 unsigned long num_slabs;
183 unsigned long shared_avail;
184 unsigned int limit;
185 unsigned int batchcount;
186 unsigned int shared;
187 unsigned int objects_per_slab;
188 unsigned int cache_order;
189 };
190
191 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo);
192 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s);
193 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
194 size_t count, loff_t *ppos);
195
196 /*
197 * Generic implementation of bulk operations
198 * These are useful for situations in which the allocator cannot
199 * perform optimizations. In that case segments of the object listed
200 * may be allocated or freed using these operations.
201 */
202 void __kmem_cache_free_bulk(struct kmem_cache *, size_t, void **);
203 int __kmem_cache_alloc_bulk(struct kmem_cache *, gfp_t, size_t, void **);
204
205 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
206
207 /* List of all root caches. */
208 extern struct list_head slab_root_caches;
209 #define root_caches_node memcg_params.__root_caches_node
210
211 /*
212 * Iterate over all memcg caches of the given root cache. The caller must hold
213 * slab_mutex.
214 */
215 #define for_each_memcg_cache(iter, root) \
216 list_for_each_entry(iter, &(root)->memcg_params.children, \
217 memcg_params.children_node)
218
219 static inline bool is_root_cache(struct kmem_cache *s)
220 {
221 return !s->memcg_params.root_cache;
222 }
223
224 static inline bool slab_equal_or_root(struct kmem_cache *s,
225 struct kmem_cache *p)
226 {
227 return p == s || p == s->memcg_params.root_cache;
228 }
229
230 /*
231 * We use suffixes to the name in memcg because we can't have caches
232 * created in the system with the same name. But when we print them
233 * locally, better refer to them with the base name
234 */
235 static inline const char *cache_name(struct kmem_cache *s)
236 {
237 if (!is_root_cache(s))
238 s = s->memcg_params.root_cache;
239 return s->name;
240 }
241
242 /*
243 * Note, we protect with RCU only the memcg_caches array, not per-memcg caches.
244 * That said the caller must assure the memcg's cache won't go away by either
245 * taking a css reference to the owner cgroup, or holding the slab_mutex.
246 */
247 static inline struct kmem_cache *
248 cache_from_memcg_idx(struct kmem_cache *s, int idx)
249 {
250 struct kmem_cache *cachep;
251 struct memcg_cache_array *arr;
252
253 rcu_read_lock();
254 arr = rcu_dereference(s->memcg_params.memcg_caches);
255
256 /*
257 * Make sure we will access the up-to-date value. The code updating
258 * memcg_caches issues a write barrier to match this (see
259 * memcg_create_kmem_cache()).
260 */
261 cachep = lockless_dereference(arr->entries[idx]);
262 rcu_read_unlock();
263
264 return cachep;
265 }
266
267 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
268 {
269 if (is_root_cache(s))
270 return s;
271 return s->memcg_params.root_cache;
272 }
273
274 static __always_inline int memcg_charge_slab(struct page *page,
275 gfp_t gfp, int order,
276 struct kmem_cache *s)
277 {
278 if (!memcg_kmem_enabled())
279 return 0;
280 if (is_root_cache(s))
281 return 0;
282 return memcg_kmem_charge_memcg(page, gfp, order, s->memcg_params.memcg);
283 }
284
285 static __always_inline void memcg_uncharge_slab(struct page *page, int order,
286 struct kmem_cache *s)
287 {
288 if (!memcg_kmem_enabled())
289 return;
290 memcg_kmem_uncharge(page, order);
291 }
292
293 extern void slab_init_memcg_params(struct kmem_cache *);
294 extern void memcg_link_cache(struct kmem_cache *s);
295 extern void slab_deactivate_memcg_cache_rcu_sched(struct kmem_cache *s,
296 void (*deact_fn)(struct kmem_cache *));
297
298 #else /* CONFIG_MEMCG && !CONFIG_SLOB */
299
300 /* If !memcg, all caches are root. */
301 #define slab_root_caches slab_caches
302 #define root_caches_node list
303
304 #define for_each_memcg_cache(iter, root) \
305 for ((void)(iter), (void)(root); 0; )
306
307 static inline bool is_root_cache(struct kmem_cache *s)
308 {
309 return true;
310 }
311
312 static inline bool slab_equal_or_root(struct kmem_cache *s,
313 struct kmem_cache *p)
314 {
315 return true;
316 }
317
318 static inline const char *cache_name(struct kmem_cache *s)
319 {
320 return s->name;
321 }
322
323 static inline struct kmem_cache *
324 cache_from_memcg_idx(struct kmem_cache *s, int idx)
325 {
326 return NULL;
327 }
328
329 static inline struct kmem_cache *memcg_root_cache(struct kmem_cache *s)
330 {
331 return s;
332 }
333
334 static inline int memcg_charge_slab(struct page *page, gfp_t gfp, int order,
335 struct kmem_cache *s)
336 {
337 return 0;
338 }
339
340 static inline void memcg_uncharge_slab(struct page *page, int order,
341 struct kmem_cache *s)
342 {
343 }
344
345 static inline void slab_init_memcg_params(struct kmem_cache *s)
346 {
347 }
348
349 static inline void memcg_link_cache(struct kmem_cache *s)
350 {
351 }
352
353 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
354
355 static inline struct kmem_cache *cache_from_obj(struct kmem_cache *s, void *x)
356 {
357 struct kmem_cache *cachep;
358 struct page *page;
359
360 /*
361 * When kmemcg is not being used, both assignments should return the
362 * same value. but we don't want to pay the assignment price in that
363 * case. If it is not compiled in, the compiler should be smart enough
364 * to not do even the assignment. In that case, slab_equal_or_root
365 * will also be a constant.
366 */
367 if (!memcg_kmem_enabled() &&
368 !unlikely(s->flags & SLAB_CONSISTENCY_CHECKS))
369 return s;
370
371 page = virt_to_head_page(x);
372 cachep = page->slab_cache;
373 if (slab_equal_or_root(cachep, s))
374 return cachep;
375
376 pr_err("%s: Wrong slab cache. %s but object is from %s\n",
377 __func__, s->name, cachep->name);
378 WARN_ON_ONCE(1);
379 return s;
380 }
381
382 static inline size_t slab_ksize(const struct kmem_cache *s)
383 {
384 #ifndef CONFIG_SLUB
385 return s->object_size;
386
387 #else /* CONFIG_SLUB */
388 # ifdef CONFIG_SLUB_DEBUG
389 /*
390 * Debugging requires use of the padding between object
391 * and whatever may come after it.
392 */
393 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
394 return s->object_size;
395 # endif
396 if (s->flags & SLAB_KASAN)
397 return s->object_size;
398 /*
399 * If we have the need to store the freelist pointer
400 * back there or track user information then we can
401 * only use the space before that information.
402 */
403 if (s->flags & (SLAB_TYPESAFE_BY_RCU | SLAB_STORE_USER))
404 return s->inuse;
405 /*
406 * Else we can use all the padding etc for the allocation
407 */
408 return s->size;
409 #endif
410 }
411
412 static inline struct kmem_cache *slab_pre_alloc_hook(struct kmem_cache *s,
413 gfp_t flags)
414 {
415 flags &= gfp_allowed_mask;
416
417 fs_reclaim_acquire(flags);
418 fs_reclaim_release(flags);
419
420 might_sleep_if(gfpflags_allow_blocking(flags));
421
422 if (should_failslab(s, flags))
423 return NULL;
424
425 if (memcg_kmem_enabled() &&
426 ((flags & __GFP_ACCOUNT) || (s->flags & SLAB_ACCOUNT)))
427 return memcg_kmem_get_cache(s);
428
429 return s;
430 }
431
432 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
433 size_t size, void **p)
434 {
435 size_t i;
436
437 flags &= gfp_allowed_mask;
438 for (i = 0; i < size; i++) {
439 void *object = p[i];
440
441 kmemcheck_slab_alloc(s, flags, object, slab_ksize(s));
442 kmemleak_alloc_recursive(object, s->object_size, 1,
443 s->flags, flags);
444 kasan_slab_alloc(s, object, flags);
445 }
446
447 if (memcg_kmem_enabled())
448 memcg_kmem_put_cache(s);
449 }
450
451 #ifndef CONFIG_SLOB
452 /*
453 * The slab lists for all objects.
454 */
455 struct kmem_cache_node {
456 spinlock_t list_lock;
457
458 #ifdef CONFIG_SLAB
459 struct list_head slabs_partial; /* partial list first, better asm code */
460 struct list_head slabs_full;
461 struct list_head slabs_free;
462 unsigned long total_slabs; /* length of all slab lists */
463 unsigned long free_slabs; /* length of free slab list only */
464 unsigned long free_objects;
465 unsigned int free_limit;
466 unsigned int colour_next; /* Per-node cache coloring */
467 struct array_cache *shared; /* shared per node */
468 struct alien_cache **alien; /* on other nodes */
469 unsigned long next_reap; /* updated without locking */
470 int free_touched; /* updated without locking */
471 #endif
472
473 #ifdef CONFIG_SLUB
474 unsigned long nr_partial;
475 struct list_head partial;
476 #ifdef CONFIG_SLUB_DEBUG
477 atomic_long_t nr_slabs;
478 atomic_long_t total_objects;
479 struct list_head full;
480 #endif
481 #endif
482
483 };
484
485 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
486 {
487 return s->node[node];
488 }
489
490 /*
491 * Iterator over all nodes. The body will be executed for each node that has
492 * a kmem_cache_node structure allocated (which is true for all online nodes)
493 */
494 #define for_each_kmem_cache_node(__s, __node, __n) \
495 for (__node = 0; __node < nr_node_ids; __node++) \
496 if ((__n = get_node(__s, __node)))
497
498 #endif
499
500 void *slab_start(struct seq_file *m, loff_t *pos);
501 void *slab_next(struct seq_file *m, void *p, loff_t *pos);
502 void slab_stop(struct seq_file *m, void *p);
503 void *memcg_slab_start(struct seq_file *m, loff_t *pos);
504 void *memcg_slab_next(struct seq_file *m, void *p, loff_t *pos);
505 void memcg_slab_stop(struct seq_file *m, void *p);
506 int memcg_slab_show(struct seq_file *m, void *p);
507
508 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr);
509
510 #ifdef CONFIG_SLAB_FREELIST_RANDOM
511 int cache_random_seq_create(struct kmem_cache *cachep, unsigned int count,
512 gfp_t gfp);
513 void cache_random_seq_destroy(struct kmem_cache *cachep);
514 #else
515 static inline int cache_random_seq_create(struct kmem_cache *cachep,
516 unsigned int count, gfp_t gfp)
517 {
518 return 0;
519 }
520 static inline void cache_random_seq_destroy(struct kmem_cache *cachep) { }
521 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
522
523 #endif /* MM_SLAB_H */