remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / slab.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/mm/slab.c
4 * Written by Mark Hemment, 1996/97.
5 * (markhe@nextd.demon.co.uk)
6 *
7 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
8 *
9 * Major cleanup, different bufctl logic, per-cpu arrays
10 * (c) 2000 Manfred Spraul
11 *
12 * Cleanup, make the head arrays unconditional, preparation for NUMA
13 * (c) 2002 Manfred Spraul
14 *
15 * An implementation of the Slab Allocator as described in outline in;
16 * UNIX Internals: The New Frontiers by Uresh Vahalia
17 * Pub: Prentice Hall ISBN 0-13-101908-2
18 * or with a little more detail in;
19 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
20 * Jeff Bonwick (Sun Microsystems).
21 * Presented at: USENIX Summer 1994 Technical Conference
22 *
23 * The memory is organized in caches, one cache for each object type.
24 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
25 * Each cache consists out of many slabs (they are small (usually one
26 * page long) and always contiguous), and each slab contains multiple
27 * initialized objects.
28 *
29 * This means, that your constructor is used only for newly allocated
30 * slabs and you must pass objects with the same initializations to
31 * kmem_cache_free.
32 *
33 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
34 * normal). If you need a special memory type, then must create a new
35 * cache for that memory type.
36 *
37 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
38 * full slabs with 0 free objects
39 * partial slabs
40 * empty slabs with no allocated objects
41 *
42 * If partial slabs exist, then new allocations come from these slabs,
43 * otherwise from empty slabs or new slabs are allocated.
44 *
45 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
46 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
47 *
48 * Each cache has a short per-cpu head array, most allocs
49 * and frees go into that array, and if that array overflows, then 1/2
50 * of the entries in the array are given back into the global cache.
51 * The head array is strictly LIFO and should improve the cache hit rates.
52 * On SMP, it additionally reduces the spinlock operations.
53 *
54 * The c_cpuarray may not be read with enabled local interrupts -
55 * it's changed with a smp_call_function().
56 *
57 * SMP synchronization:
58 * constructors and destructors are called without any locking.
59 * Several members in struct kmem_cache and struct slab never change, they
60 * are accessed without any locking.
61 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
62 * and local interrupts are disabled so slab code is preempt-safe.
63 * The non-constant members are protected with a per-cache irq spinlock.
64 *
65 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
66 * in 2000 - many ideas in the current implementation are derived from
67 * his patch.
68 *
69 * Further notes from the original documentation:
70 *
71 * 11 April '97. Started multi-threading - markhe
72 * The global cache-chain is protected by the mutex 'slab_mutex'.
73 * The sem is only needed when accessing/extending the cache-chain, which
74 * can never happen inside an interrupt (kmem_cache_create(),
75 * kmem_cache_shrink() and kmem_cache_reap()).
76 *
77 * At present, each engine can be growing a cache. This should be blocked.
78 *
79 * 15 March 2005. NUMA slab allocator.
80 * Shai Fultheim <shai@scalex86.org>.
81 * Shobhit Dayal <shobhit@calsoftinc.com>
82 * Alok N Kataria <alokk@calsoftinc.com>
83 * Christoph Lameter <christoph@lameter.com>
84 *
85 * Modified the slab allocator to be node aware on NUMA systems.
86 * Each node has its own list of partial, free and full slabs.
87 * All object allocations for a node occur from node specific slab lists.
88 */
89
90 #include <linux/slab.h>
91 #include <linux/mm.h>
92 #include <linux/poison.h>
93 #include <linux/swap.h>
94 #include <linux/cache.h>
95 #include <linux/interrupt.h>
96 #include <linux/init.h>
97 #include <linux/compiler.h>
98 #include <linux/cpuset.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/notifier.h>
102 #include <linux/kallsyms.h>
103 #include <linux/cpu.h>
104 #include <linux/sysctl.h>
105 #include <linux/module.h>
106 #include <linux/rcupdate.h>
107 #include <linux/string.h>
108 #include <linux/uaccess.h>
109 #include <linux/nodemask.h>
110 #include <linux/kmemleak.h>
111 #include <linux/mempolicy.h>
112 #include <linux/mutex.h>
113 #include <linux/fault-inject.h>
114 #include <linux/rtmutex.h>
115 #include <linux/reciprocal_div.h>
116 #include <linux/debugobjects.h>
117 #include <linux/memory.h>
118 #include <linux/prefetch.h>
119 #include <linux/sched/task_stack.h>
120
121 #include <net/sock.h>
122
123 #include <asm/cacheflush.h>
124 #include <asm/tlbflush.h>
125 #include <asm/page.h>
126
127 #include <trace/events/kmem.h>
128
129 #include "internal.h"
130
131 #include "slab.h"
132
133 /*
134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143 #ifdef CONFIG_DEBUG_SLAB
144 #define DEBUG 1
145 #define STATS 1
146 #define FORCED_DEBUG 1
147 #else
148 #define DEBUG 0
149 #define STATS 0
150 #define FORCED_DEBUG 0
151 #endif
152
153 /* Shouldn't this be in a header file somewhere? */
154 #define BYTES_PER_WORD sizeof(void *)
155 #define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
156
157 #ifndef ARCH_KMALLOC_FLAGS
158 #define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159 #endif
160
161 #define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164 #if FREELIST_BYTE_INDEX
165 typedef unsigned char freelist_idx_t;
166 #else
167 typedef unsigned short freelist_idx_t;
168 #endif
169
170 #define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
171
172 /*
173 * struct array_cache
174 *
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184 struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
189 void *entry[]; /*
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
193 */
194 };
195
196 struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199 };
200
201 /*
202 * Need this for bootstrapping a per node allocator.
203 */
204 #define NUM_INIT_LISTS (2 * MAX_NUMNODES)
205 static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
206 #define CACHE_CACHE 0
207 #define SIZE_NODE (MAX_NUMNODES)
208
209 static int drain_freelist(struct kmem_cache *cache,
210 struct kmem_cache_node *n, int tofree);
211 static void free_block(struct kmem_cache *cachep, void **objpp, int len,
212 int node, struct list_head *list);
213 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
214 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
215 static void cache_reap(struct work_struct *unused);
216
217 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219 static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
222 static int slab_early_init = 1;
223
224 #define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
225
226 static void kmem_cache_node_init(struct kmem_cache_node *parent)
227 {
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
231 parent->total_slabs = 0;
232 parent->free_slabs = 0;
233 parent->shared = NULL;
234 parent->alien = NULL;
235 parent->colour_next = 0;
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239 }
240
241 #define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
245 } while (0)
246
247 #define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
253
254 #define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
255 #define CFLGS_OFF_SLAB (0x80000000UL)
256 #define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
257 #define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259 #define BATCHREFILL_LIMIT 16
260 /*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
263 *
264 * OTOH the cpuarrays can contain lots of objects,
265 * which could lock up otherwise freeable slabs.
266 */
267 #define REAPTIMEOUT_AC (2*HZ)
268 #define REAPTIMEOUT_NODE (4*HZ)
269
270 #if STATS
271 #define STATS_INC_ACTIVE(x) ((x)->num_active++)
272 #define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273 #define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274 #define STATS_INC_GROWN(x) ((x)->grown++)
275 #define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
276 #define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
281 #define STATS_INC_ERR(x) ((x)->errors++)
282 #define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
283 #define STATS_INC_NODEFREES(x) ((x)->node_frees++)
284 #define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
285 #define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
290 #define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291 #define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292 #define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293 #define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294 #else
295 #define STATS_INC_ACTIVE(x) do { } while (0)
296 #define STATS_DEC_ACTIVE(x) do { } while (0)
297 #define STATS_INC_ALLOCED(x) do { } while (0)
298 #define STATS_INC_GROWN(x) do { } while (0)
299 #define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
300 #define STATS_SET_HIGH(x) do { } while (0)
301 #define STATS_INC_ERR(x) do { } while (0)
302 #define STATS_INC_NODEALLOCS(x) do { } while (0)
303 #define STATS_INC_NODEFREES(x) do { } while (0)
304 #define STATS_INC_ACOVERFLOW(x) do { } while (0)
305 #define STATS_SET_FREEABLE(x, i) do { } while (0)
306 #define STATS_INC_ALLOCHIT(x) do { } while (0)
307 #define STATS_INC_ALLOCMISS(x) do { } while (0)
308 #define STATS_INC_FREEHIT(x) do { } while (0)
309 #define STATS_INC_FREEMISS(x) do { } while (0)
310 #endif
311
312 #if DEBUG
313
314 /*
315 * memory layout of objects:
316 * 0 : objp
317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
321 * redzone word.
322 * cachep->obj_offset: The real object.
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
325 * [BYTES_PER_WORD long]
326 */
327 static int obj_offset(struct kmem_cache *cachep)
328 {
329 return cachep->obj_offset;
330 }
331
332 static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
333 {
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
337 }
338
339 static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
340 {
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
343 return (unsigned long long *)(objp + cachep->size -
344 sizeof(unsigned long long) -
345 REDZONE_ALIGN);
346 return (unsigned long long *) (objp + cachep->size -
347 sizeof(unsigned long long));
348 }
349
350 static void **dbg_userword(struct kmem_cache *cachep, void *objp)
351 {
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
354 }
355
356 #else
357
358 #define obj_offset(x) 0
359 #define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360 #define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
361 #define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363 #endif
364
365 #ifdef CONFIG_DEBUG_SLAB_LEAK
366
367 static inline bool is_store_user_clean(struct kmem_cache *cachep)
368 {
369 return atomic_read(&cachep->store_user_clean) == 1;
370 }
371
372 static inline void set_store_user_clean(struct kmem_cache *cachep)
373 {
374 atomic_set(&cachep->store_user_clean, 1);
375 }
376
377 static inline void set_store_user_dirty(struct kmem_cache *cachep)
378 {
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
381 }
382
383 #else
384 static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
385
386 #endif
387
388 /*
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
391 */
392 #define SLAB_MAX_ORDER_HI 1
393 #define SLAB_MAX_ORDER_LO 0
394 static int slab_max_order = SLAB_MAX_ORDER_LO;
395 static bool slab_max_order_set __initdata;
396
397 static inline struct kmem_cache *virt_to_cache(const void *obj)
398 {
399 struct page *page = virt_to_head_page(obj);
400 return page->slab_cache;
401 }
402
403 static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
404 unsigned int idx)
405 {
406 return page->s_mem + cache->size * idx;
407 }
408
409 /*
410 * We want to avoid an expensive divide : (offset / cache->size)
411 * Using the fact that size is a constant for a particular cache,
412 * we can replace (offset / cache->size) by
413 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
414 */
415 static inline unsigned int obj_to_index(const struct kmem_cache *cache,
416 const struct page *page, void *obj)
417 {
418 u32 offset = (obj - page->s_mem);
419 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
420 }
421
422 #define BOOT_CPUCACHE_ENTRIES 1
423 /* internal cache of cache description objs */
424 static struct kmem_cache kmem_cache_boot = {
425 .batchcount = 1,
426 .limit = BOOT_CPUCACHE_ENTRIES,
427 .shared = 1,
428 .size = sizeof(struct kmem_cache),
429 .name = "kmem_cache",
430 };
431
432 static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
433
434 static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
435 {
436 return this_cpu_ptr(cachep->cpu_cache);
437 }
438
439 /*
440 * Calculate the number of objects and left-over bytes for a given buffer size.
441 */
442 static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
443 unsigned long flags, size_t *left_over)
444 {
445 unsigned int num;
446 size_t slab_size = PAGE_SIZE << gfporder;
447
448 /*
449 * The slab management structure can be either off the slab or
450 * on it. For the latter case, the memory allocated for a
451 * slab is used for:
452 *
453 * - @buffer_size bytes for each object
454 * - One freelist_idx_t for each object
455 *
456 * We don't need to consider alignment of freelist because
457 * freelist will be at the end of slab page. The objects will be
458 * at the correct alignment.
459 *
460 * If the slab management structure is off the slab, then the
461 * alignment will already be calculated into the size. Because
462 * the slabs are all pages aligned, the objects will be at the
463 * correct alignment when allocated.
464 */
465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
466 num = slab_size / buffer_size;
467 *left_over = slab_size % buffer_size;
468 } else {
469 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
470 *left_over = slab_size %
471 (buffer_size + sizeof(freelist_idx_t));
472 }
473
474 return num;
475 }
476
477 #if DEBUG
478 #define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
479
480 static void __slab_error(const char *function, struct kmem_cache *cachep,
481 char *msg)
482 {
483 pr_err("slab error in %s(): cache `%s': %s\n",
484 function, cachep->name, msg);
485 dump_stack();
486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
487 }
488 #endif
489
490 /*
491 * By default on NUMA we use alien caches to stage the freeing of
492 * objects allocated from other nodes. This causes massive memory
493 * inefficiencies when using fake NUMA setup to split memory into a
494 * large number of small nodes, so it can be disabled on the command
495 * line
496 */
497
498 static int use_alien_caches __read_mostly = 1;
499 static int __init noaliencache_setup(char *s)
500 {
501 use_alien_caches = 0;
502 return 1;
503 }
504 __setup("noaliencache", noaliencache_setup);
505
506 static int __init slab_max_order_setup(char *str)
507 {
508 get_option(&str, &slab_max_order);
509 slab_max_order = slab_max_order < 0 ? 0 :
510 min(slab_max_order, MAX_ORDER - 1);
511 slab_max_order_set = true;
512
513 return 1;
514 }
515 __setup("slab_max_order=", slab_max_order_setup);
516
517 #ifdef CONFIG_NUMA
518 /*
519 * Special reaping functions for NUMA systems called from cache_reap().
520 * These take care of doing round robin flushing of alien caches (containing
521 * objects freed on different nodes from which they were allocated) and the
522 * flushing of remote pcps by calling drain_node_pages.
523 */
524 static DEFINE_PER_CPU(unsigned long, slab_reap_node);
525
526 static void init_reap_node(int cpu)
527 {
528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 node_online_map);
530 }
531
532 static void next_reap_node(void)
533 {
534 int node = __this_cpu_read(slab_reap_node);
535
536 node = next_node_in(node, node_online_map);
537 __this_cpu_write(slab_reap_node, node);
538 }
539
540 #else
541 #define init_reap_node(cpu) do { } while (0)
542 #define next_reap_node(void) do { } while (0)
543 #endif
544
545 /*
546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
547 * via the workqueue/eventd.
548 * Add the CPU number into the expiration time to minimize the possibility of
549 * the CPUs getting into lockstep and contending for the global cache chain
550 * lock.
551 */
552 static void start_cpu_timer(int cpu)
553 {
554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
555
556 if (reap_work->work.func == NULL) {
557 init_reap_node(cpu);
558 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
559 schedule_delayed_work_on(cpu, reap_work,
560 __round_jiffies_relative(HZ, cpu));
561 }
562 }
563
564 static void init_arraycache(struct array_cache *ac, int limit, int batch)
565 {
566 if (ac) {
567 ac->avail = 0;
568 ac->limit = limit;
569 ac->batchcount = batch;
570 ac->touched = 0;
571 }
572 }
573
574 static struct array_cache *alloc_arraycache(int node, int entries,
575 int batchcount, gfp_t gfp)
576 {
577 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
578 struct array_cache *ac = NULL;
579
580 ac = kmalloc_node(memsize, gfp, node);
581 /*
582 * The array_cache structures contain pointers to free object.
583 * However, when such objects are allocated or transferred to another
584 * cache the pointers are not cleared and they could be counted as
585 * valid references during a kmemleak scan. Therefore, kmemleak must
586 * not scan such objects.
587 */
588 kmemleak_no_scan(ac);
589 init_arraycache(ac, entries, batchcount);
590 return ac;
591 }
592
593 static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 struct page *page, void *objp)
595 {
596 struct kmem_cache_node *n;
597 int page_node;
598 LIST_HEAD(list);
599
600 page_node = page_to_nid(page);
601 n = get_node(cachep, page_node);
602
603 spin_lock(&n->list_lock);
604 free_block(cachep, &objp, 1, page_node, &list);
605 spin_unlock(&n->list_lock);
606
607 slabs_destroy(cachep, &list);
608 }
609
610 /*
611 * Transfer objects in one arraycache to another.
612 * Locking must be handled by the caller.
613 *
614 * Return the number of entries transferred.
615 */
616 static int transfer_objects(struct array_cache *to,
617 struct array_cache *from, unsigned int max)
618 {
619 /* Figure out how many entries to transfer */
620 int nr = min3(from->avail, max, to->limit - to->avail);
621
622 if (!nr)
623 return 0;
624
625 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 sizeof(void *) *nr);
627
628 from->avail -= nr;
629 to->avail += nr;
630 return nr;
631 }
632
633 #ifndef CONFIG_NUMA
634
635 #define drain_alien_cache(cachep, alien) do { } while (0)
636 #define reap_alien(cachep, n) do { } while (0)
637
638 static inline struct alien_cache **alloc_alien_cache(int node,
639 int limit, gfp_t gfp)
640 {
641 return NULL;
642 }
643
644 static inline void free_alien_cache(struct alien_cache **ac_ptr)
645 {
646 }
647
648 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649 {
650 return 0;
651 }
652
653 static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 gfp_t flags)
655 {
656 return NULL;
657 }
658
659 static inline void *____cache_alloc_node(struct kmem_cache *cachep,
660 gfp_t flags, int nodeid)
661 {
662 return NULL;
663 }
664
665 static inline gfp_t gfp_exact_node(gfp_t flags)
666 {
667 return flags & ~__GFP_NOFAIL;
668 }
669
670 #else /* CONFIG_NUMA */
671
672 static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
673 static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
674
675 static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 int batch, gfp_t gfp)
677 {
678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
679 struct alien_cache *alc = NULL;
680
681 alc = kmalloc_node(memsize, gfp, node);
682 if (alc) {
683 kmemleak_no_scan(alc);
684 init_arraycache(&alc->ac, entries, batch);
685 spin_lock_init(&alc->lock);
686 }
687 return alc;
688 }
689
690 static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
691 {
692 struct alien_cache **alc_ptr;
693 size_t memsize = sizeof(void *) * nr_node_ids;
694 int i;
695
696 if (limit > 1)
697 limit = 12;
698 alc_ptr = kzalloc_node(memsize, gfp, node);
699 if (!alc_ptr)
700 return NULL;
701
702 for_each_node(i) {
703 if (i == node || !node_online(i))
704 continue;
705 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
706 if (!alc_ptr[i]) {
707 for (i--; i >= 0; i--)
708 kfree(alc_ptr[i]);
709 kfree(alc_ptr);
710 return NULL;
711 }
712 }
713 return alc_ptr;
714 }
715
716 static void free_alien_cache(struct alien_cache **alc_ptr)
717 {
718 int i;
719
720 if (!alc_ptr)
721 return;
722 for_each_node(i)
723 kfree(alc_ptr[i]);
724 kfree(alc_ptr);
725 }
726
727 static void __drain_alien_cache(struct kmem_cache *cachep,
728 struct array_cache *ac, int node,
729 struct list_head *list)
730 {
731 struct kmem_cache_node *n = get_node(cachep, node);
732
733 if (ac->avail) {
734 spin_lock(&n->list_lock);
735 /*
736 * Stuff objects into the remote nodes shared array first.
737 * That way we could avoid the overhead of putting the objects
738 * into the free lists and getting them back later.
739 */
740 if (n->shared)
741 transfer_objects(n->shared, ac, ac->limit);
742
743 free_block(cachep, ac->entry, ac->avail, node, list);
744 ac->avail = 0;
745 spin_unlock(&n->list_lock);
746 }
747 }
748
749 /*
750 * Called from cache_reap() to regularly drain alien caches round robin.
751 */
752 static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
753 {
754 int node = __this_cpu_read(slab_reap_node);
755
756 if (n->alien) {
757 struct alien_cache *alc = n->alien[node];
758 struct array_cache *ac;
759
760 if (alc) {
761 ac = &alc->ac;
762 if (ac->avail && spin_trylock_irq(&alc->lock)) {
763 LIST_HEAD(list);
764
765 __drain_alien_cache(cachep, ac, node, &list);
766 spin_unlock_irq(&alc->lock);
767 slabs_destroy(cachep, &list);
768 }
769 }
770 }
771 }
772
773 static void drain_alien_cache(struct kmem_cache *cachep,
774 struct alien_cache **alien)
775 {
776 int i = 0;
777 struct alien_cache *alc;
778 struct array_cache *ac;
779 unsigned long flags;
780
781 for_each_online_node(i) {
782 alc = alien[i];
783 if (alc) {
784 LIST_HEAD(list);
785
786 ac = &alc->ac;
787 spin_lock_irqsave(&alc->lock, flags);
788 __drain_alien_cache(cachep, ac, i, &list);
789 spin_unlock_irqrestore(&alc->lock, flags);
790 slabs_destroy(cachep, &list);
791 }
792 }
793 }
794
795 static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
796 int node, int page_node)
797 {
798 struct kmem_cache_node *n;
799 struct alien_cache *alien = NULL;
800 struct array_cache *ac;
801 LIST_HEAD(list);
802
803 n = get_node(cachep, node);
804 STATS_INC_NODEFREES(cachep);
805 if (n->alien && n->alien[page_node]) {
806 alien = n->alien[page_node];
807 ac = &alien->ac;
808 spin_lock(&alien->lock);
809 if (unlikely(ac->avail == ac->limit)) {
810 STATS_INC_ACOVERFLOW(cachep);
811 __drain_alien_cache(cachep, ac, page_node, &list);
812 }
813 ac->entry[ac->avail++] = objp;
814 spin_unlock(&alien->lock);
815 slabs_destroy(cachep, &list);
816 } else {
817 n = get_node(cachep, page_node);
818 spin_lock(&n->list_lock);
819 free_block(cachep, &objp, 1, page_node, &list);
820 spin_unlock(&n->list_lock);
821 slabs_destroy(cachep, &list);
822 }
823 return 1;
824 }
825
826 static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
827 {
828 int page_node = page_to_nid(virt_to_page(objp));
829 int node = numa_mem_id();
830 /*
831 * Make sure we are not freeing a object from another node to the array
832 * cache on this cpu.
833 */
834 if (likely(node == page_node))
835 return 0;
836
837 return __cache_free_alien(cachep, objp, node, page_node);
838 }
839
840 /*
841 * Construct gfp mask to allocate from a specific node but do not reclaim or
842 * warn about failures.
843 */
844 static inline gfp_t gfp_exact_node(gfp_t flags)
845 {
846 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
847 }
848 #endif
849
850 static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
851 {
852 struct kmem_cache_node *n;
853
854 /*
855 * Set up the kmem_cache_node for cpu before we can
856 * begin anything. Make sure some other cpu on this
857 * node has not already allocated this
858 */
859 n = get_node(cachep, node);
860 if (n) {
861 spin_lock_irq(&n->list_lock);
862 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
863 cachep->num;
864 spin_unlock_irq(&n->list_lock);
865
866 return 0;
867 }
868
869 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
870 if (!n)
871 return -ENOMEM;
872
873 kmem_cache_node_init(n);
874 n->next_reap = jiffies + REAPTIMEOUT_NODE +
875 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
876
877 n->free_limit =
878 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
879
880 /*
881 * The kmem_cache_nodes don't come and go as CPUs
882 * come and go. slab_mutex is sufficient
883 * protection here.
884 */
885 cachep->node[node] = n;
886
887 return 0;
888 }
889
890 #if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
891 /*
892 * Allocates and initializes node for a node on each slab cache, used for
893 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
894 * will be allocated off-node since memory is not yet online for the new node.
895 * When hotplugging memory or a cpu, existing node are not replaced if
896 * already in use.
897 *
898 * Must hold slab_mutex.
899 */
900 static int init_cache_node_node(int node)
901 {
902 int ret;
903 struct kmem_cache *cachep;
904
905 list_for_each_entry(cachep, &slab_caches, list) {
906 ret = init_cache_node(cachep, node, GFP_KERNEL);
907 if (ret)
908 return ret;
909 }
910
911 return 0;
912 }
913 #endif
914
915 static int setup_kmem_cache_node(struct kmem_cache *cachep,
916 int node, gfp_t gfp, bool force_change)
917 {
918 int ret = -ENOMEM;
919 struct kmem_cache_node *n;
920 struct array_cache *old_shared = NULL;
921 struct array_cache *new_shared = NULL;
922 struct alien_cache **new_alien = NULL;
923 LIST_HEAD(list);
924
925 if (use_alien_caches) {
926 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
927 if (!new_alien)
928 goto fail;
929 }
930
931 if (cachep->shared) {
932 new_shared = alloc_arraycache(node,
933 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
934 if (!new_shared)
935 goto fail;
936 }
937
938 ret = init_cache_node(cachep, node, gfp);
939 if (ret)
940 goto fail;
941
942 n = get_node(cachep, node);
943 spin_lock_irq(&n->list_lock);
944 if (n->shared && force_change) {
945 free_block(cachep, n->shared->entry,
946 n->shared->avail, node, &list);
947 n->shared->avail = 0;
948 }
949
950 if (!n->shared || force_change) {
951 old_shared = n->shared;
952 n->shared = new_shared;
953 new_shared = NULL;
954 }
955
956 if (!n->alien) {
957 n->alien = new_alien;
958 new_alien = NULL;
959 }
960
961 spin_unlock_irq(&n->list_lock);
962 slabs_destroy(cachep, &list);
963
964 /*
965 * To protect lockless access to n->shared during irq disabled context.
966 * If n->shared isn't NULL in irq disabled context, accessing to it is
967 * guaranteed to be valid until irq is re-enabled, because it will be
968 * freed after synchronize_sched().
969 */
970 if (old_shared && force_change)
971 synchronize_sched();
972
973 fail:
974 kfree(old_shared);
975 kfree(new_shared);
976 free_alien_cache(new_alien);
977
978 return ret;
979 }
980
981 #ifdef CONFIG_SMP
982
983 static void cpuup_canceled(long cpu)
984 {
985 struct kmem_cache *cachep;
986 struct kmem_cache_node *n = NULL;
987 int node = cpu_to_mem(cpu);
988 const struct cpumask *mask = cpumask_of_node(node);
989
990 list_for_each_entry(cachep, &slab_caches, list) {
991 struct array_cache *nc;
992 struct array_cache *shared;
993 struct alien_cache **alien;
994 LIST_HEAD(list);
995
996 n = get_node(cachep, node);
997 if (!n)
998 continue;
999
1000 spin_lock_irq(&n->list_lock);
1001
1002 /* Free limit for this kmem_cache_node */
1003 n->free_limit -= cachep->batchcount;
1004
1005 /* cpu is dead; no one can alloc from it. */
1006 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1007 if (nc) {
1008 free_block(cachep, nc->entry, nc->avail, node, &list);
1009 nc->avail = 0;
1010 }
1011
1012 if (!cpumask_empty(mask)) {
1013 spin_unlock_irq(&n->list_lock);
1014 goto free_slab;
1015 }
1016
1017 shared = n->shared;
1018 if (shared) {
1019 free_block(cachep, shared->entry,
1020 shared->avail, node, &list);
1021 n->shared = NULL;
1022 }
1023
1024 alien = n->alien;
1025 n->alien = NULL;
1026
1027 spin_unlock_irq(&n->list_lock);
1028
1029 kfree(shared);
1030 if (alien) {
1031 drain_alien_cache(cachep, alien);
1032 free_alien_cache(alien);
1033 }
1034
1035 free_slab:
1036 slabs_destroy(cachep, &list);
1037 }
1038 /*
1039 * In the previous loop, all the objects were freed to
1040 * the respective cache's slabs, now we can go ahead and
1041 * shrink each nodelist to its limit.
1042 */
1043 list_for_each_entry(cachep, &slab_caches, list) {
1044 n = get_node(cachep, node);
1045 if (!n)
1046 continue;
1047 drain_freelist(cachep, n, INT_MAX);
1048 }
1049 }
1050
1051 static int cpuup_prepare(long cpu)
1052 {
1053 struct kmem_cache *cachep;
1054 int node = cpu_to_mem(cpu);
1055 int err;
1056
1057 /*
1058 * We need to do this right in the beginning since
1059 * alloc_arraycache's are going to use this list.
1060 * kmalloc_node allows us to add the slab to the right
1061 * kmem_cache_node and not this cpu's kmem_cache_node
1062 */
1063 err = init_cache_node_node(node);
1064 if (err < 0)
1065 goto bad;
1066
1067 /*
1068 * Now we can go ahead with allocating the shared arrays and
1069 * array caches
1070 */
1071 list_for_each_entry(cachep, &slab_caches, list) {
1072 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1073 if (err)
1074 goto bad;
1075 }
1076
1077 return 0;
1078 bad:
1079 cpuup_canceled(cpu);
1080 return -ENOMEM;
1081 }
1082
1083 int slab_prepare_cpu(unsigned int cpu)
1084 {
1085 int err;
1086
1087 mutex_lock(&slab_mutex);
1088 err = cpuup_prepare(cpu);
1089 mutex_unlock(&slab_mutex);
1090 return err;
1091 }
1092
1093 /*
1094 * This is called for a failed online attempt and for a successful
1095 * offline.
1096 *
1097 * Even if all the cpus of a node are down, we don't free the
1098 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1099 * a kmalloc allocation from another cpu for memory from the node of
1100 * the cpu going down. The list3 structure is usually allocated from
1101 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1102 */
1103 int slab_dead_cpu(unsigned int cpu)
1104 {
1105 mutex_lock(&slab_mutex);
1106 cpuup_canceled(cpu);
1107 mutex_unlock(&slab_mutex);
1108 return 0;
1109 }
1110 #endif
1111
1112 static int slab_online_cpu(unsigned int cpu)
1113 {
1114 start_cpu_timer(cpu);
1115 return 0;
1116 }
1117
1118 static int slab_offline_cpu(unsigned int cpu)
1119 {
1120 /*
1121 * Shutdown cache reaper. Note that the slab_mutex is held so
1122 * that if cache_reap() is invoked it cannot do anything
1123 * expensive but will only modify reap_work and reschedule the
1124 * timer.
1125 */
1126 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1127 /* Now the cache_reaper is guaranteed to be not running. */
1128 per_cpu(slab_reap_work, cpu).work.func = NULL;
1129 return 0;
1130 }
1131
1132 #if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1133 /*
1134 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1135 * Returns -EBUSY if all objects cannot be drained so that the node is not
1136 * removed.
1137 *
1138 * Must hold slab_mutex.
1139 */
1140 static int __meminit drain_cache_node_node(int node)
1141 {
1142 struct kmem_cache *cachep;
1143 int ret = 0;
1144
1145 list_for_each_entry(cachep, &slab_caches, list) {
1146 struct kmem_cache_node *n;
1147
1148 n = get_node(cachep, node);
1149 if (!n)
1150 continue;
1151
1152 drain_freelist(cachep, n, INT_MAX);
1153
1154 if (!list_empty(&n->slabs_full) ||
1155 !list_empty(&n->slabs_partial)) {
1156 ret = -EBUSY;
1157 break;
1158 }
1159 }
1160 return ret;
1161 }
1162
1163 static int __meminit slab_memory_callback(struct notifier_block *self,
1164 unsigned long action, void *arg)
1165 {
1166 struct memory_notify *mnb = arg;
1167 int ret = 0;
1168 int nid;
1169
1170 nid = mnb->status_change_nid;
1171 if (nid < 0)
1172 goto out;
1173
1174 switch (action) {
1175 case MEM_GOING_ONLINE:
1176 mutex_lock(&slab_mutex);
1177 ret = init_cache_node_node(nid);
1178 mutex_unlock(&slab_mutex);
1179 break;
1180 case MEM_GOING_OFFLINE:
1181 mutex_lock(&slab_mutex);
1182 ret = drain_cache_node_node(nid);
1183 mutex_unlock(&slab_mutex);
1184 break;
1185 case MEM_ONLINE:
1186 case MEM_OFFLINE:
1187 case MEM_CANCEL_ONLINE:
1188 case MEM_CANCEL_OFFLINE:
1189 break;
1190 }
1191 out:
1192 return notifier_from_errno(ret);
1193 }
1194 #endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1195
1196 /*
1197 * swap the static kmem_cache_node with kmalloced memory
1198 */
1199 static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
1200 int nodeid)
1201 {
1202 struct kmem_cache_node *ptr;
1203
1204 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
1205 BUG_ON(!ptr);
1206
1207 memcpy(ptr, list, sizeof(struct kmem_cache_node));
1208 /*
1209 * Do not assume that spinlocks can be initialized via memcpy:
1210 */
1211 spin_lock_init(&ptr->list_lock);
1212
1213 MAKE_ALL_LISTS(cachep, ptr, nodeid);
1214 cachep->node[nodeid] = ptr;
1215 }
1216
1217 /*
1218 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1219 * size of kmem_cache_node.
1220 */
1221 static void __init set_up_node(struct kmem_cache *cachep, int index)
1222 {
1223 int node;
1224
1225 for_each_online_node(node) {
1226 cachep->node[node] = &init_kmem_cache_node[index + node];
1227 cachep->node[node]->next_reap = jiffies +
1228 REAPTIMEOUT_NODE +
1229 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1230 }
1231 }
1232
1233 /*
1234 * Initialisation. Called after the page allocator have been initialised and
1235 * before smp_init().
1236 */
1237 void __init kmem_cache_init(void)
1238 {
1239 int i;
1240
1241 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1242 sizeof(struct rcu_head));
1243 kmem_cache = &kmem_cache_boot;
1244
1245 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
1246 use_alien_caches = 0;
1247
1248 for (i = 0; i < NUM_INIT_LISTS; i++)
1249 kmem_cache_node_init(&init_kmem_cache_node[i]);
1250
1251 /*
1252 * Fragmentation resistance on low memory - only use bigger
1253 * page orders on machines with more than 32MB of memory if
1254 * not overridden on the command line.
1255 */
1256 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
1257 slab_max_order = SLAB_MAX_ORDER_HI;
1258
1259 /* Bootstrap is tricky, because several objects are allocated
1260 * from caches that do not exist yet:
1261 * 1) initialize the kmem_cache cache: it contains the struct
1262 * kmem_cache structures of all caches, except kmem_cache itself:
1263 * kmem_cache is statically allocated.
1264 * Initially an __init data area is used for the head array and the
1265 * kmem_cache_node structures, it's replaced with a kmalloc allocated
1266 * array at the end of the bootstrap.
1267 * 2) Create the first kmalloc cache.
1268 * The struct kmem_cache for the new cache is allocated normally.
1269 * An __init data area is used for the head array.
1270 * 3) Create the remaining kmalloc caches, with minimally sized
1271 * head arrays.
1272 * 4) Replace the __init data head arrays for kmem_cache and the first
1273 * kmalloc cache with kmalloc allocated arrays.
1274 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
1275 * the other cache's with kmalloc allocated memory.
1276 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1277 */
1278
1279 /* 1) create the kmem_cache */
1280
1281 /*
1282 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
1283 */
1284 create_boot_cache(kmem_cache, "kmem_cache",
1285 offsetof(struct kmem_cache, node) +
1286 nr_node_ids * sizeof(struct kmem_cache_node *),
1287 SLAB_HWCACHE_ALIGN);
1288 list_add(&kmem_cache->list, &slab_caches);
1289 memcg_link_cache(kmem_cache);
1290 slab_state = PARTIAL;
1291
1292 /*
1293 * Initialize the caches that provide memory for the kmem_cache_node
1294 * structures first. Without this, further allocations will bug.
1295 */
1296 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1297 kmalloc_info[INDEX_NODE].name,
1298 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
1299 slab_state = PARTIAL_NODE;
1300 setup_kmalloc_cache_index_table();
1301
1302 slab_early_init = 0;
1303
1304 /* 5) Replace the bootstrap kmem_cache_node */
1305 {
1306 int nid;
1307
1308 for_each_online_node(nid) {
1309 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
1310
1311 init_list(kmalloc_caches[INDEX_NODE],
1312 &init_kmem_cache_node[SIZE_NODE + nid], nid);
1313 }
1314 }
1315
1316 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
1317 }
1318
1319 void __init kmem_cache_init_late(void)
1320 {
1321 struct kmem_cache *cachep;
1322
1323 slab_state = UP;
1324
1325 /* 6) resize the head arrays to their final sizes */
1326 mutex_lock(&slab_mutex);
1327 list_for_each_entry(cachep, &slab_caches, list)
1328 if (enable_cpucache(cachep, GFP_NOWAIT))
1329 BUG();
1330 mutex_unlock(&slab_mutex);
1331
1332 /* Done! */
1333 slab_state = FULL;
1334
1335 #ifdef CONFIG_NUMA
1336 /*
1337 * Register a memory hotplug callback that initializes and frees
1338 * node.
1339 */
1340 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1341 #endif
1342
1343 /*
1344 * The reap timers are started later, with a module init call: That part
1345 * of the kernel is not yet operational.
1346 */
1347 }
1348
1349 static int __init cpucache_init(void)
1350 {
1351 int ret;
1352
1353 /*
1354 * Register the timers that return unneeded pages to the page allocator
1355 */
1356 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1357 slab_online_cpu, slab_offline_cpu);
1358 WARN_ON(ret < 0);
1359
1360 /* Done! */
1361 slab_state = FULL;
1362 return 0;
1363 }
1364 __initcall(cpucache_init);
1365
1366 static noinline void
1367 slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1368 {
1369 #if DEBUG
1370 struct kmem_cache_node *n;
1371 unsigned long flags;
1372 int node;
1373 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1374 DEFAULT_RATELIMIT_BURST);
1375
1376 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1377 return;
1378
1379 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1380 nodeid, gfpflags, &gfpflags);
1381 pr_warn(" cache: %s, object size: %d, order: %d\n",
1382 cachep->name, cachep->size, cachep->gfporder);
1383
1384 for_each_kmem_cache_node(cachep, node, n) {
1385 unsigned long total_slabs, free_slabs, free_objs;
1386
1387 spin_lock_irqsave(&n->list_lock, flags);
1388 total_slabs = n->total_slabs;
1389 free_slabs = n->free_slabs;
1390 free_objs = n->free_objects;
1391 spin_unlock_irqrestore(&n->list_lock, flags);
1392
1393 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1394 node, total_slabs - free_slabs, total_slabs,
1395 (total_slabs * cachep->num) - free_objs,
1396 total_slabs * cachep->num);
1397 }
1398 #endif
1399 }
1400
1401 /*
1402 * Interface to system's page allocator. No need to hold the
1403 * kmem_cache_node ->list_lock.
1404 *
1405 * If we requested dmaable memory, we will get it. Even if we
1406 * did not request dmaable memory, we might get it, but that
1407 * would be relatively rare and ignorable.
1408 */
1409 static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1410 int nodeid)
1411 {
1412 struct page *page;
1413 int nr_pages;
1414
1415 flags |= cachep->allocflags;
1416 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1417 flags |= __GFP_RECLAIMABLE;
1418
1419 page = __alloc_pages_node(nodeid, flags, cachep->gfporder);
1420 if (!page) {
1421 slab_out_of_memory(cachep, flags, nodeid);
1422 return NULL;
1423 }
1424
1425 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1426 __free_pages(page, cachep->gfporder);
1427 return NULL;
1428 }
1429
1430 nr_pages = (1 << cachep->gfporder);
1431 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1432 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
1433 else
1434 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
1435
1436 __SetPageSlab(page);
1437 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1438 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
1439 SetPageSlabPfmemalloc(page);
1440
1441 return page;
1442 }
1443
1444 /*
1445 * Interface to system's page release.
1446 */
1447 static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1448 {
1449 int order = cachep->gfporder;
1450 unsigned long nr_freed = (1 << order);
1451
1452 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1453 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
1454 else
1455 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
1456
1457 BUG_ON(!PageSlab(page));
1458 __ClearPageSlabPfmemalloc(page);
1459 __ClearPageSlab(page);
1460 page_mapcount_reset(page);
1461 page->mapping = NULL;
1462
1463 if (current->reclaim_state)
1464 current->reclaim_state->reclaimed_slab += nr_freed;
1465 memcg_uncharge_slab(page, order, cachep);
1466 __free_pages(page, order);
1467 }
1468
1469 static void kmem_rcu_free(struct rcu_head *head)
1470 {
1471 struct kmem_cache *cachep;
1472 struct page *page;
1473
1474 page = container_of(head, struct page, rcu_head);
1475 cachep = page->slab_cache;
1476
1477 kmem_freepages(cachep, page);
1478 }
1479
1480 #if DEBUG
1481 static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1482 {
1483 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1484 (cachep->size % PAGE_SIZE) == 0)
1485 return true;
1486
1487 return false;
1488 }
1489
1490 #ifdef CONFIG_DEBUG_PAGEALLOC
1491 static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
1492 unsigned long caller)
1493 {
1494 int size = cachep->object_size;
1495
1496 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1497
1498 if (size < 5 * sizeof(unsigned long))
1499 return;
1500
1501 *addr++ = 0x12345678;
1502 *addr++ = caller;
1503 *addr++ = smp_processor_id();
1504 size -= 3 * sizeof(unsigned long);
1505 {
1506 unsigned long *sptr = &caller;
1507 unsigned long svalue;
1508
1509 while (!kstack_end(sptr)) {
1510 svalue = *sptr++;
1511 if (kernel_text_address(svalue)) {
1512 *addr++ = svalue;
1513 size -= sizeof(unsigned long);
1514 if (size <= sizeof(unsigned long))
1515 break;
1516 }
1517 }
1518
1519 }
1520 *addr++ = 0x87654321;
1521 }
1522
1523 static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1524 int map, unsigned long caller)
1525 {
1526 if (!is_debug_pagealloc_cache(cachep))
1527 return;
1528
1529 if (caller)
1530 store_stackinfo(cachep, objp, caller);
1531
1532 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1533 }
1534
1535 #else
1536 static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1537 int map, unsigned long caller) {}
1538
1539 #endif
1540
1541 static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1542 {
1543 int size = cachep->object_size;
1544 addr = &((char *)addr)[obj_offset(cachep)];
1545
1546 memset(addr, val, size);
1547 *(unsigned char *)(addr + size - 1) = POISON_END;
1548 }
1549
1550 static void dump_line(char *data, int offset, int limit)
1551 {
1552 int i;
1553 unsigned char error = 0;
1554 int bad_count = 0;
1555
1556 pr_err("%03x: ", offset);
1557 for (i = 0; i < limit; i++) {
1558 if (data[offset + i] != POISON_FREE) {
1559 error = data[offset + i];
1560 bad_count++;
1561 }
1562 }
1563 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1564 &data[offset], limit, 1);
1565
1566 if (bad_count == 1) {
1567 error ^= POISON_FREE;
1568 if (!(error & (error - 1))) {
1569 pr_err("Single bit error detected. Probably bad RAM.\n");
1570 #ifdef CONFIG_X86
1571 pr_err("Run memtest86+ or a similar memory test tool.\n");
1572 #else
1573 pr_err("Run a memory test tool.\n");
1574 #endif
1575 }
1576 }
1577 }
1578 #endif
1579
1580 #if DEBUG
1581
1582 static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1583 {
1584 int i, size;
1585 char *realobj;
1586
1587 if (cachep->flags & SLAB_RED_ZONE) {
1588 pr_err("Redzone: 0x%llx/0x%llx\n",
1589 *dbg_redzone1(cachep, objp),
1590 *dbg_redzone2(cachep, objp));
1591 }
1592
1593 if (cachep->flags & SLAB_STORE_USER) {
1594 pr_err("Last user: [<%p>](%pSR)\n",
1595 *dbg_userword(cachep, objp),
1596 *dbg_userword(cachep, objp));
1597 }
1598 realobj = (char *)objp + obj_offset(cachep);
1599 size = cachep->object_size;
1600 for (i = 0; i < size && lines; i += 16, lines--) {
1601 int limit;
1602 limit = 16;
1603 if (i + limit > size)
1604 limit = size - i;
1605 dump_line(realobj, i, limit);
1606 }
1607 }
1608
1609 static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1610 {
1611 char *realobj;
1612 int size, i;
1613 int lines = 0;
1614
1615 if (is_debug_pagealloc_cache(cachep))
1616 return;
1617
1618 realobj = (char *)objp + obj_offset(cachep);
1619 size = cachep->object_size;
1620
1621 for (i = 0; i < size; i++) {
1622 char exp = POISON_FREE;
1623 if (i == size - 1)
1624 exp = POISON_END;
1625 if (realobj[i] != exp) {
1626 int limit;
1627 /* Mismatch ! */
1628 /* Print header */
1629 if (lines == 0) {
1630 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1631 print_tainted(), cachep->name,
1632 realobj, size);
1633 print_objinfo(cachep, objp, 0);
1634 }
1635 /* Hexdump the affected line */
1636 i = (i / 16) * 16;
1637 limit = 16;
1638 if (i + limit > size)
1639 limit = size - i;
1640 dump_line(realobj, i, limit);
1641 i += 16;
1642 lines++;
1643 /* Limit to 5 lines */
1644 if (lines > 5)
1645 break;
1646 }
1647 }
1648 if (lines != 0) {
1649 /* Print some data about the neighboring objects, if they
1650 * exist:
1651 */
1652 struct page *page = virt_to_head_page(objp);
1653 unsigned int objnr;
1654
1655 objnr = obj_to_index(cachep, page, objp);
1656 if (objnr) {
1657 objp = index_to_obj(cachep, page, objnr - 1);
1658 realobj = (char *)objp + obj_offset(cachep);
1659 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1660 print_objinfo(cachep, objp, 2);
1661 }
1662 if (objnr + 1 < cachep->num) {
1663 objp = index_to_obj(cachep, page, objnr + 1);
1664 realobj = (char *)objp + obj_offset(cachep);
1665 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1666 print_objinfo(cachep, objp, 2);
1667 }
1668 }
1669 }
1670 #endif
1671
1672 #if DEBUG
1673 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1674 struct page *page)
1675 {
1676 int i;
1677
1678 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1679 poison_obj(cachep, page->freelist - obj_offset(cachep),
1680 POISON_FREE);
1681 }
1682
1683 for (i = 0; i < cachep->num; i++) {
1684 void *objp = index_to_obj(cachep, page, i);
1685
1686 if (cachep->flags & SLAB_POISON) {
1687 check_poison_obj(cachep, objp);
1688 slab_kernel_map(cachep, objp, 1, 0);
1689 }
1690 if (cachep->flags & SLAB_RED_ZONE) {
1691 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
1692 slab_error(cachep, "start of a freed object was overwritten");
1693 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
1694 slab_error(cachep, "end of a freed object was overwritten");
1695 }
1696 }
1697 }
1698 #else
1699 static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1700 struct page *page)
1701 {
1702 }
1703 #endif
1704
1705 /**
1706 * slab_destroy - destroy and release all objects in a slab
1707 * @cachep: cache pointer being destroyed
1708 * @page: page pointer being destroyed
1709 *
1710 * Destroy all the objs in a slab page, and release the mem back to the system.
1711 * Before calling the slab page must have been unlinked from the cache. The
1712 * kmem_cache_node ->list_lock is not held/needed.
1713 */
1714 static void slab_destroy(struct kmem_cache *cachep, struct page *page)
1715 {
1716 void *freelist;
1717
1718 freelist = page->freelist;
1719 slab_destroy_debugcheck(cachep, page);
1720 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
1721 call_rcu(&page->rcu_head, kmem_rcu_free);
1722 else
1723 kmem_freepages(cachep, page);
1724
1725 /*
1726 * From now on, we don't use freelist
1727 * although actual page can be freed in rcu context
1728 */
1729 if (OFF_SLAB(cachep))
1730 kmem_cache_free(cachep->freelist_cache, freelist);
1731 }
1732
1733 static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1734 {
1735 struct page *page, *n;
1736
1737 list_for_each_entry_safe(page, n, list, lru) {
1738 list_del(&page->lru);
1739 slab_destroy(cachep, page);
1740 }
1741 }
1742
1743 /**
1744 * calculate_slab_order - calculate size (page order) of slabs
1745 * @cachep: pointer to the cache that is being created
1746 * @size: size of objects to be created in this cache.
1747 * @flags: slab allocation flags
1748 *
1749 * Also calculates the number of objects per slab.
1750 *
1751 * This could be made much more intelligent. For now, try to avoid using
1752 * high order pages for slabs. When the gfp() functions are more friendly
1753 * towards high-order requests, this should be changed.
1754 */
1755 static size_t calculate_slab_order(struct kmem_cache *cachep,
1756 size_t size, unsigned long flags)
1757 {
1758 size_t left_over = 0;
1759 int gfporder;
1760
1761 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
1762 unsigned int num;
1763 size_t remainder;
1764
1765 num = cache_estimate(gfporder, size, flags, &remainder);
1766 if (!num)
1767 continue;
1768
1769 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1770 if (num > SLAB_OBJ_MAX_NUM)
1771 break;
1772
1773 if (flags & CFLGS_OFF_SLAB) {
1774 struct kmem_cache *freelist_cache;
1775 size_t freelist_size;
1776
1777 freelist_size = num * sizeof(freelist_idx_t);
1778 freelist_cache = kmalloc_slab(freelist_size, 0u);
1779 if (!freelist_cache)
1780 continue;
1781
1782 /*
1783 * Needed to avoid possible looping condition
1784 * in cache_grow_begin()
1785 */
1786 if (OFF_SLAB(freelist_cache))
1787 continue;
1788
1789 /* check if off slab has enough benefit */
1790 if (freelist_cache->size > cachep->size / 2)
1791 continue;
1792 }
1793
1794 /* Found something acceptable - save it away */
1795 cachep->num = num;
1796 cachep->gfporder = gfporder;
1797 left_over = remainder;
1798
1799 /*
1800 * A VFS-reclaimable slab tends to have most allocations
1801 * as GFP_NOFS and we really don't want to have to be allocating
1802 * higher-order pages when we are unable to shrink dcache.
1803 */
1804 if (flags & SLAB_RECLAIM_ACCOUNT)
1805 break;
1806
1807 /*
1808 * Large number of objects is good, but very large slabs are
1809 * currently bad for the gfp()s.
1810 */
1811 if (gfporder >= slab_max_order)
1812 break;
1813
1814 /*
1815 * Acceptable internal fragmentation?
1816 */
1817 if (left_over * 8 <= (PAGE_SIZE << gfporder))
1818 break;
1819 }
1820 return left_over;
1821 }
1822
1823 static struct array_cache __percpu *alloc_kmem_cache_cpus(
1824 struct kmem_cache *cachep, int entries, int batchcount)
1825 {
1826 int cpu;
1827 size_t size;
1828 struct array_cache __percpu *cpu_cache;
1829
1830 size = sizeof(void *) * entries + sizeof(struct array_cache);
1831 cpu_cache = __alloc_percpu(size, sizeof(void *));
1832
1833 if (!cpu_cache)
1834 return NULL;
1835
1836 for_each_possible_cpu(cpu) {
1837 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1838 entries, batchcount);
1839 }
1840
1841 return cpu_cache;
1842 }
1843
1844 static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
1845 {
1846 if (slab_state >= FULL)
1847 return enable_cpucache(cachep, gfp);
1848
1849 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1850 if (!cachep->cpu_cache)
1851 return 1;
1852
1853 if (slab_state == DOWN) {
1854 /* Creation of first cache (kmem_cache). */
1855 set_up_node(kmem_cache, CACHE_CACHE);
1856 } else if (slab_state == PARTIAL) {
1857 /* For kmem_cache_node */
1858 set_up_node(cachep, SIZE_NODE);
1859 } else {
1860 int node;
1861
1862 for_each_online_node(node) {
1863 cachep->node[node] = kmalloc_node(
1864 sizeof(struct kmem_cache_node), gfp, node);
1865 BUG_ON(!cachep->node[node]);
1866 kmem_cache_node_init(cachep->node[node]);
1867 }
1868 }
1869
1870 cachep->node[numa_mem_id()]->next_reap =
1871 jiffies + REAPTIMEOUT_NODE +
1872 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
1873
1874 cpu_cache_get(cachep)->avail = 0;
1875 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1876 cpu_cache_get(cachep)->batchcount = 1;
1877 cpu_cache_get(cachep)->touched = 0;
1878 cachep->batchcount = 1;
1879 cachep->limit = BOOT_CPUCACHE_ENTRIES;
1880 return 0;
1881 }
1882
1883 unsigned long kmem_cache_flags(unsigned long object_size,
1884 unsigned long flags, const char *name,
1885 void (*ctor)(void *))
1886 {
1887 return flags;
1888 }
1889
1890 struct kmem_cache *
1891 __kmem_cache_alias(const char *name, size_t size, size_t align,
1892 unsigned long flags, void (*ctor)(void *))
1893 {
1894 struct kmem_cache *cachep;
1895
1896 cachep = find_mergeable(size, align, flags, name, ctor);
1897 if (cachep) {
1898 cachep->refcount++;
1899
1900 /*
1901 * Adjust the object sizes so that we clear
1902 * the complete object on kzalloc.
1903 */
1904 cachep->object_size = max_t(int, cachep->object_size, size);
1905 }
1906 return cachep;
1907 }
1908
1909 static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1910 size_t size, unsigned long flags)
1911 {
1912 size_t left;
1913
1914 cachep->num = 0;
1915
1916 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
1917 return false;
1918
1919 left = calculate_slab_order(cachep, size,
1920 flags | CFLGS_OBJFREELIST_SLAB);
1921 if (!cachep->num)
1922 return false;
1923
1924 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1925 return false;
1926
1927 cachep->colour = left / cachep->colour_off;
1928
1929 return true;
1930 }
1931
1932 static bool set_off_slab_cache(struct kmem_cache *cachep,
1933 size_t size, unsigned long flags)
1934 {
1935 size_t left;
1936
1937 cachep->num = 0;
1938
1939 /*
1940 * Always use on-slab management when SLAB_NOLEAKTRACE
1941 * to avoid recursive calls into kmemleak.
1942 */
1943 if (flags & SLAB_NOLEAKTRACE)
1944 return false;
1945
1946 /*
1947 * Size is large, assume best to place the slab management obj
1948 * off-slab (should allow better packing of objs).
1949 */
1950 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1951 if (!cachep->num)
1952 return false;
1953
1954 /*
1955 * If the slab has been placed off-slab, and we have enough space then
1956 * move it on-slab. This is at the expense of any extra colouring.
1957 */
1958 if (left >= cachep->num * sizeof(freelist_idx_t))
1959 return false;
1960
1961 cachep->colour = left / cachep->colour_off;
1962
1963 return true;
1964 }
1965
1966 static bool set_on_slab_cache(struct kmem_cache *cachep,
1967 size_t size, unsigned long flags)
1968 {
1969 size_t left;
1970
1971 cachep->num = 0;
1972
1973 left = calculate_slab_order(cachep, size, flags);
1974 if (!cachep->num)
1975 return false;
1976
1977 cachep->colour = left / cachep->colour_off;
1978
1979 return true;
1980 }
1981
1982 /**
1983 * __kmem_cache_create - Create a cache.
1984 * @cachep: cache management descriptor
1985 * @flags: SLAB flags
1986 *
1987 * Returns a ptr to the cache on success, NULL on failure.
1988 * Cannot be called within a int, but can be interrupted.
1989 * The @ctor is run when new pages are allocated by the cache.
1990 *
1991 * The flags are
1992 *
1993 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
1994 * to catch references to uninitialised memory.
1995 *
1996 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
1997 * for buffer overruns.
1998 *
1999 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2000 * cacheline. This can be beneficial if you're counting cycles as closely
2001 * as davem.
2002 */
2003 int
2004 __kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
2005 {
2006 size_t ralign = BYTES_PER_WORD;
2007 gfp_t gfp;
2008 int err;
2009 size_t size = cachep->size;
2010
2011 #if DEBUG
2012 #if FORCED_DEBUG
2013 /*
2014 * Enable redzoning and last user accounting, except for caches with
2015 * large objects, if the increased size would increase the object size
2016 * above the next power of two: caches with object sizes just above a
2017 * power of two have a significant amount of internal fragmentation.
2018 */
2019 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2020 2 * sizeof(unsigned long long)))
2021 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
2022 if (!(flags & SLAB_TYPESAFE_BY_RCU))
2023 flags |= SLAB_POISON;
2024 #endif
2025 #endif
2026
2027 /*
2028 * Check that size is in terms of words. This is needed to avoid
2029 * unaligned accesses for some archs when redzoning is used, and makes
2030 * sure any on-slab bufctl's are also correctly aligned.
2031 */
2032 size = ALIGN(size, BYTES_PER_WORD);
2033
2034 if (flags & SLAB_RED_ZONE) {
2035 ralign = REDZONE_ALIGN;
2036 /* If redzoning, ensure that the second redzone is suitably
2037 * aligned, by adjusting the object size accordingly. */
2038 size = ALIGN(size, REDZONE_ALIGN);
2039 }
2040
2041 /* 3) caller mandated alignment */
2042 if (ralign < cachep->align) {
2043 ralign = cachep->align;
2044 }
2045 /* disable debug if necessary */
2046 if (ralign > __alignof__(unsigned long long))
2047 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2048 /*
2049 * 4) Store it.
2050 */
2051 cachep->align = ralign;
2052 cachep->colour_off = cache_line_size();
2053 /* Offset must be a multiple of the alignment. */
2054 if (cachep->colour_off < cachep->align)
2055 cachep->colour_off = cachep->align;
2056
2057 if (slab_is_available())
2058 gfp = GFP_KERNEL;
2059 else
2060 gfp = GFP_NOWAIT;
2061
2062 #if DEBUG
2063
2064 /*
2065 * Both debugging options require word-alignment which is calculated
2066 * into align above.
2067 */
2068 if (flags & SLAB_RED_ZONE) {
2069 /* add space for red zone words */
2070 cachep->obj_offset += sizeof(unsigned long long);
2071 size += 2 * sizeof(unsigned long long);
2072 }
2073 if (flags & SLAB_STORE_USER) {
2074 /* user store requires one word storage behind the end of
2075 * the real object. But if the second red zone needs to be
2076 * aligned to 64 bits, we must allow that much space.
2077 */
2078 if (flags & SLAB_RED_ZONE)
2079 size += REDZONE_ALIGN;
2080 else
2081 size += BYTES_PER_WORD;
2082 }
2083 #endif
2084
2085 kasan_cache_create(cachep, &size, &flags);
2086
2087 size = ALIGN(size, cachep->align);
2088 /*
2089 * We should restrict the number of objects in a slab to implement
2090 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2091 */
2092 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2093 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2094
2095 #if DEBUG
2096 /*
2097 * To activate debug pagealloc, off-slab management is necessary
2098 * requirement. In early phase of initialization, small sized slab
2099 * doesn't get initialized so it would not be possible. So, we need
2100 * to check size >= 256. It guarantees that all necessary small
2101 * sized slab is initialized in current slab initialization sequence.
2102 */
2103 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
2104 size >= 256 && cachep->object_size > cache_line_size()) {
2105 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2106 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2107
2108 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2109 flags |= CFLGS_OFF_SLAB;
2110 cachep->obj_offset += tmp_size - size;
2111 size = tmp_size;
2112 goto done;
2113 }
2114 }
2115 }
2116 #endif
2117
2118 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2119 flags |= CFLGS_OBJFREELIST_SLAB;
2120 goto done;
2121 }
2122
2123 if (set_off_slab_cache(cachep, size, flags)) {
2124 flags |= CFLGS_OFF_SLAB;
2125 goto done;
2126 }
2127
2128 if (set_on_slab_cache(cachep, size, flags))
2129 goto done;
2130
2131 return -E2BIG;
2132
2133 done:
2134 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
2135 cachep->flags = flags;
2136 cachep->allocflags = __GFP_COMP;
2137 if (flags & SLAB_CACHE_DMA)
2138 cachep->allocflags |= GFP_DMA;
2139 cachep->size = size;
2140 cachep->reciprocal_buffer_size = reciprocal_value(size);
2141
2142 #if DEBUG
2143 /*
2144 * If we're going to use the generic kernel_map_pages()
2145 * poisoning, then it's going to smash the contents of
2146 * the redzone and userword anyhow, so switch them off.
2147 */
2148 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2149 (cachep->flags & SLAB_POISON) &&
2150 is_debug_pagealloc_cache(cachep))
2151 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2152 #endif
2153
2154 if (OFF_SLAB(cachep)) {
2155 cachep->freelist_cache =
2156 kmalloc_slab(cachep->freelist_size, 0u);
2157 }
2158
2159 err = setup_cpu_cache(cachep, gfp);
2160 if (err) {
2161 __kmem_cache_release(cachep);
2162 return err;
2163 }
2164
2165 return 0;
2166 }
2167
2168 #if DEBUG
2169 static void check_irq_off(void)
2170 {
2171 BUG_ON(!irqs_disabled());
2172 }
2173
2174 static void check_irq_on(void)
2175 {
2176 BUG_ON(irqs_disabled());
2177 }
2178
2179 static void check_mutex_acquired(void)
2180 {
2181 BUG_ON(!mutex_is_locked(&slab_mutex));
2182 }
2183
2184 static void check_spinlock_acquired(struct kmem_cache *cachep)
2185 {
2186 #ifdef CONFIG_SMP
2187 check_irq_off();
2188 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
2189 #endif
2190 }
2191
2192 static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
2193 {
2194 #ifdef CONFIG_SMP
2195 check_irq_off();
2196 assert_spin_locked(&get_node(cachep, node)->list_lock);
2197 #endif
2198 }
2199
2200 #else
2201 #define check_irq_off() do { } while(0)
2202 #define check_irq_on() do { } while(0)
2203 #define check_mutex_acquired() do { } while(0)
2204 #define check_spinlock_acquired(x) do { } while(0)
2205 #define check_spinlock_acquired_node(x, y) do { } while(0)
2206 #endif
2207
2208 static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2209 int node, bool free_all, struct list_head *list)
2210 {
2211 int tofree;
2212
2213 if (!ac || !ac->avail)
2214 return;
2215
2216 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2217 if (tofree > ac->avail)
2218 tofree = (ac->avail + 1) / 2;
2219
2220 free_block(cachep, ac->entry, tofree, node, list);
2221 ac->avail -= tofree;
2222 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2223 }
2224
2225 static void do_drain(void *arg)
2226 {
2227 struct kmem_cache *cachep = arg;
2228 struct array_cache *ac;
2229 int node = numa_mem_id();
2230 struct kmem_cache_node *n;
2231 LIST_HEAD(list);
2232
2233 check_irq_off();
2234 ac = cpu_cache_get(cachep);
2235 n = get_node(cachep, node);
2236 spin_lock(&n->list_lock);
2237 free_block(cachep, ac->entry, ac->avail, node, &list);
2238 spin_unlock(&n->list_lock);
2239 slabs_destroy(cachep, &list);
2240 ac->avail = 0;
2241 }
2242
2243 static void drain_cpu_caches(struct kmem_cache *cachep)
2244 {
2245 struct kmem_cache_node *n;
2246 int node;
2247 LIST_HEAD(list);
2248
2249 on_each_cpu(do_drain, cachep, 1);
2250 check_irq_on();
2251 for_each_kmem_cache_node(cachep, node, n)
2252 if (n->alien)
2253 drain_alien_cache(cachep, n->alien);
2254
2255 for_each_kmem_cache_node(cachep, node, n) {
2256 spin_lock_irq(&n->list_lock);
2257 drain_array_locked(cachep, n->shared, node, true, &list);
2258 spin_unlock_irq(&n->list_lock);
2259
2260 slabs_destroy(cachep, &list);
2261 }
2262 }
2263
2264 /*
2265 * Remove slabs from the list of free slabs.
2266 * Specify the number of slabs to drain in tofree.
2267 *
2268 * Returns the actual number of slabs released.
2269 */
2270 static int drain_freelist(struct kmem_cache *cache,
2271 struct kmem_cache_node *n, int tofree)
2272 {
2273 struct list_head *p;
2274 int nr_freed;
2275 struct page *page;
2276
2277 nr_freed = 0;
2278 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
2279
2280 spin_lock_irq(&n->list_lock);
2281 p = n->slabs_free.prev;
2282 if (p == &n->slabs_free) {
2283 spin_unlock_irq(&n->list_lock);
2284 goto out;
2285 }
2286
2287 page = list_entry(p, struct page, lru);
2288 list_del(&page->lru);
2289 n->free_slabs--;
2290 n->total_slabs--;
2291 /*
2292 * Safe to drop the lock. The slab is no longer linked
2293 * to the cache.
2294 */
2295 n->free_objects -= cache->num;
2296 spin_unlock_irq(&n->list_lock);
2297 slab_destroy(cache, page);
2298 nr_freed++;
2299 }
2300 out:
2301 return nr_freed;
2302 }
2303
2304 int __kmem_cache_shrink(struct kmem_cache *cachep)
2305 {
2306 int ret = 0;
2307 int node;
2308 struct kmem_cache_node *n;
2309
2310 drain_cpu_caches(cachep);
2311
2312 check_irq_on();
2313 for_each_kmem_cache_node(cachep, node, n) {
2314 drain_freelist(cachep, n, INT_MAX);
2315
2316 ret += !list_empty(&n->slabs_full) ||
2317 !list_empty(&n->slabs_partial);
2318 }
2319 return (ret ? 1 : 0);
2320 }
2321
2322 #ifdef CONFIG_MEMCG
2323 void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2324 {
2325 __kmem_cache_shrink(cachep);
2326 }
2327 #endif
2328
2329 int __kmem_cache_shutdown(struct kmem_cache *cachep)
2330 {
2331 return __kmem_cache_shrink(cachep);
2332 }
2333
2334 void __kmem_cache_release(struct kmem_cache *cachep)
2335 {
2336 int i;
2337 struct kmem_cache_node *n;
2338
2339 cache_random_seq_destroy(cachep);
2340
2341 free_percpu(cachep->cpu_cache);
2342
2343 /* NUMA: free the node structures */
2344 for_each_kmem_cache_node(cachep, i, n) {
2345 kfree(n->shared);
2346 free_alien_cache(n->alien);
2347 kfree(n);
2348 cachep->node[i] = NULL;
2349 }
2350 }
2351
2352 /*
2353 * Get the memory for a slab management obj.
2354 *
2355 * For a slab cache when the slab descriptor is off-slab, the
2356 * slab descriptor can't come from the same cache which is being created,
2357 * Because if it is the case, that means we defer the creation of
2358 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2359 * And we eventually call down to __kmem_cache_create(), which
2360 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2361 * This is a "chicken-and-egg" problem.
2362 *
2363 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2364 * which are all initialized during kmem_cache_init().
2365 */
2366 static void *alloc_slabmgmt(struct kmem_cache *cachep,
2367 struct page *page, int colour_off,
2368 gfp_t local_flags, int nodeid)
2369 {
2370 void *freelist;
2371 void *addr = page_address(page);
2372
2373 page->s_mem = addr + colour_off;
2374 page->active = 0;
2375
2376 if (OBJFREELIST_SLAB(cachep))
2377 freelist = NULL;
2378 else if (OFF_SLAB(cachep)) {
2379 /* Slab management obj is off-slab. */
2380 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
2381 local_flags, nodeid);
2382 if (!freelist)
2383 return NULL;
2384 } else {
2385 /* We will use last bytes at the slab for freelist */
2386 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2387 cachep->freelist_size;
2388 }
2389
2390 return freelist;
2391 }
2392
2393 static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
2394 {
2395 return ((freelist_idx_t *)page->freelist)[idx];
2396 }
2397
2398 static inline void set_free_obj(struct page *page,
2399 unsigned int idx, freelist_idx_t val)
2400 {
2401 ((freelist_idx_t *)(page->freelist))[idx] = val;
2402 }
2403
2404 static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
2405 {
2406 #if DEBUG
2407 int i;
2408
2409 for (i = 0; i < cachep->num; i++) {
2410 void *objp = index_to_obj(cachep, page, i);
2411
2412 if (cachep->flags & SLAB_STORE_USER)
2413 *dbg_userword(cachep, objp) = NULL;
2414
2415 if (cachep->flags & SLAB_RED_ZONE) {
2416 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2417 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2418 }
2419 /*
2420 * Constructors are not allowed to allocate memory from the same
2421 * cache which they are a constructor for. Otherwise, deadlock.
2422 * They must also be threaded.
2423 */
2424 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2425 kasan_unpoison_object_data(cachep,
2426 objp + obj_offset(cachep));
2427 cachep->ctor(objp + obj_offset(cachep));
2428 kasan_poison_object_data(
2429 cachep, objp + obj_offset(cachep));
2430 }
2431
2432 if (cachep->flags & SLAB_RED_ZONE) {
2433 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
2434 slab_error(cachep, "constructor overwrote the end of an object");
2435 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
2436 slab_error(cachep, "constructor overwrote the start of an object");
2437 }
2438 /* need to poison the objs? */
2439 if (cachep->flags & SLAB_POISON) {
2440 poison_obj(cachep, objp, POISON_FREE);
2441 slab_kernel_map(cachep, objp, 0, 0);
2442 }
2443 }
2444 #endif
2445 }
2446
2447 #ifdef CONFIG_SLAB_FREELIST_RANDOM
2448 /* Hold information during a freelist initialization */
2449 union freelist_init_state {
2450 struct {
2451 unsigned int pos;
2452 unsigned int *list;
2453 unsigned int count;
2454 };
2455 struct rnd_state rnd_state;
2456 };
2457
2458 /*
2459 * Initialize the state based on the randomization methode available.
2460 * return true if the pre-computed list is available, false otherwize.
2461 */
2462 static bool freelist_state_initialize(union freelist_init_state *state,
2463 struct kmem_cache *cachep,
2464 unsigned int count)
2465 {
2466 bool ret;
2467 unsigned int rand;
2468
2469 /* Use best entropy available to define a random shift */
2470 rand = get_random_int();
2471
2472 /* Use a random state if the pre-computed list is not available */
2473 if (!cachep->random_seq) {
2474 prandom_seed_state(&state->rnd_state, rand);
2475 ret = false;
2476 } else {
2477 state->list = cachep->random_seq;
2478 state->count = count;
2479 state->pos = rand % count;
2480 ret = true;
2481 }
2482 return ret;
2483 }
2484
2485 /* Get the next entry on the list and randomize it using a random shift */
2486 static freelist_idx_t next_random_slot(union freelist_init_state *state)
2487 {
2488 if (state->pos >= state->count)
2489 state->pos = 0;
2490 return state->list[state->pos++];
2491 }
2492
2493 /* Swap two freelist entries */
2494 static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2495 {
2496 swap(((freelist_idx_t *)page->freelist)[a],
2497 ((freelist_idx_t *)page->freelist)[b]);
2498 }
2499
2500 /*
2501 * Shuffle the freelist initialization state based on pre-computed lists.
2502 * return true if the list was successfully shuffled, false otherwise.
2503 */
2504 static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2505 {
2506 unsigned int objfreelist = 0, i, rand, count = cachep->num;
2507 union freelist_init_state state;
2508 bool precomputed;
2509
2510 if (count < 2)
2511 return false;
2512
2513 precomputed = freelist_state_initialize(&state, cachep, count);
2514
2515 /* Take a random entry as the objfreelist */
2516 if (OBJFREELIST_SLAB(cachep)) {
2517 if (!precomputed)
2518 objfreelist = count - 1;
2519 else
2520 objfreelist = next_random_slot(&state);
2521 page->freelist = index_to_obj(cachep, page, objfreelist) +
2522 obj_offset(cachep);
2523 count--;
2524 }
2525
2526 /*
2527 * On early boot, generate the list dynamically.
2528 * Later use a pre-computed list for speed.
2529 */
2530 if (!precomputed) {
2531 for (i = 0; i < count; i++)
2532 set_free_obj(page, i, i);
2533
2534 /* Fisher-Yates shuffle */
2535 for (i = count - 1; i > 0; i--) {
2536 rand = prandom_u32_state(&state.rnd_state);
2537 rand %= (i + 1);
2538 swap_free_obj(page, i, rand);
2539 }
2540 } else {
2541 for (i = 0; i < count; i++)
2542 set_free_obj(page, i, next_random_slot(&state));
2543 }
2544
2545 if (OBJFREELIST_SLAB(cachep))
2546 set_free_obj(page, cachep->num - 1, objfreelist);
2547
2548 return true;
2549 }
2550 #else
2551 static inline bool shuffle_freelist(struct kmem_cache *cachep,
2552 struct page *page)
2553 {
2554 return false;
2555 }
2556 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
2557
2558 static void cache_init_objs(struct kmem_cache *cachep,
2559 struct page *page)
2560 {
2561 int i;
2562 void *objp;
2563 bool shuffled;
2564
2565 cache_init_objs_debug(cachep, page);
2566
2567 /* Try to randomize the freelist if enabled */
2568 shuffled = shuffle_freelist(cachep, page);
2569
2570 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
2571 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2572 obj_offset(cachep);
2573 }
2574
2575 for (i = 0; i < cachep->num; i++) {
2576 objp = index_to_obj(cachep, page, i);
2577 kasan_init_slab_obj(cachep, objp);
2578
2579 /* constructor could break poison info */
2580 if (DEBUG == 0 && cachep->ctor) {
2581 kasan_unpoison_object_data(cachep, objp);
2582 cachep->ctor(objp);
2583 kasan_poison_object_data(cachep, objp);
2584 }
2585
2586 if (!shuffled)
2587 set_free_obj(page, i, i);
2588 }
2589 }
2590
2591 static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
2592 {
2593 void *objp;
2594
2595 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
2596 page->active++;
2597
2598 #if DEBUG
2599 if (cachep->flags & SLAB_STORE_USER)
2600 set_store_user_dirty(cachep);
2601 #endif
2602
2603 return objp;
2604 }
2605
2606 static void slab_put_obj(struct kmem_cache *cachep,
2607 struct page *page, void *objp)
2608 {
2609 unsigned int objnr = obj_to_index(cachep, page, objp);
2610 #if DEBUG
2611 unsigned int i;
2612
2613 /* Verify double free bug */
2614 for (i = page->active; i < cachep->num; i++) {
2615 if (get_free_obj(page, i) == objnr) {
2616 pr_err("slab: double free detected in cache '%s', objp %p\n",
2617 cachep->name, objp);
2618 BUG();
2619 }
2620 }
2621 #endif
2622 page->active--;
2623 if (!page->freelist)
2624 page->freelist = objp + obj_offset(cachep);
2625
2626 set_free_obj(page, page->active, objnr);
2627 }
2628
2629 /*
2630 * Map pages beginning at addr to the given cache and slab. This is required
2631 * for the slab allocator to be able to lookup the cache and slab of a
2632 * virtual address for kfree, ksize, and slab debugging.
2633 */
2634 static void slab_map_pages(struct kmem_cache *cache, struct page *page,
2635 void *freelist)
2636 {
2637 page->slab_cache = cache;
2638 page->freelist = freelist;
2639 }
2640
2641 /*
2642 * Grow (by 1) the number of slabs within a cache. This is called by
2643 * kmem_cache_alloc() when there are no active objs left in a cache.
2644 */
2645 static struct page *cache_grow_begin(struct kmem_cache *cachep,
2646 gfp_t flags, int nodeid)
2647 {
2648 void *freelist;
2649 size_t offset;
2650 gfp_t local_flags;
2651 int page_node;
2652 struct kmem_cache_node *n;
2653 struct page *page;
2654
2655 /*
2656 * Be lazy and only check for valid flags here, keeping it out of the
2657 * critical path in kmem_cache_alloc().
2658 */
2659 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
2660 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
2661 flags &= ~GFP_SLAB_BUG_MASK;
2662 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2663 invalid_mask, &invalid_mask, flags, &flags);
2664 dump_stack();
2665 }
2666 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
2667
2668 check_irq_off();
2669 if (gfpflags_allow_blocking(local_flags))
2670 local_irq_enable();
2671
2672 /*
2673 * Get mem for the objs. Attempt to allocate a physical page from
2674 * 'nodeid'.
2675 */
2676 page = kmem_getpages(cachep, local_flags, nodeid);
2677 if (!page)
2678 goto failed;
2679
2680 page_node = page_to_nid(page);
2681 n = get_node(cachep, page_node);
2682
2683 /* Get colour for the slab, and cal the next value. */
2684 n->colour_next++;
2685 if (n->colour_next >= cachep->colour)
2686 n->colour_next = 0;
2687
2688 offset = n->colour_next;
2689 if (offset >= cachep->colour)
2690 offset = 0;
2691
2692 offset *= cachep->colour_off;
2693
2694 /* Get slab management. */
2695 freelist = alloc_slabmgmt(cachep, page, offset,
2696 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
2697 if (OFF_SLAB(cachep) && !freelist)
2698 goto opps1;
2699
2700 slab_map_pages(cachep, page, freelist);
2701
2702 kasan_poison_slab(page);
2703 cache_init_objs(cachep, page);
2704
2705 if (gfpflags_allow_blocking(local_flags))
2706 local_irq_disable();
2707
2708 return page;
2709
2710 opps1:
2711 kmem_freepages(cachep, page);
2712 failed:
2713 if (gfpflags_allow_blocking(local_flags))
2714 local_irq_disable();
2715 return NULL;
2716 }
2717
2718 static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2719 {
2720 struct kmem_cache_node *n;
2721 void *list = NULL;
2722
2723 check_irq_off();
2724
2725 if (!page)
2726 return;
2727
2728 INIT_LIST_HEAD(&page->lru);
2729 n = get_node(cachep, page_to_nid(page));
2730
2731 spin_lock(&n->list_lock);
2732 n->total_slabs++;
2733 if (!page->active) {
2734 list_add_tail(&page->lru, &(n->slabs_free));
2735 n->free_slabs++;
2736 } else
2737 fixup_slab_list(cachep, n, page, &list);
2738
2739 STATS_INC_GROWN(cachep);
2740 n->free_objects += cachep->num - page->active;
2741 spin_unlock(&n->list_lock);
2742
2743 fixup_objfreelist_debug(cachep, &list);
2744 }
2745
2746 #if DEBUG
2747
2748 /*
2749 * Perform extra freeing checks:
2750 * - detect bad pointers.
2751 * - POISON/RED_ZONE checking
2752 */
2753 static void kfree_debugcheck(const void *objp)
2754 {
2755 if (!virt_addr_valid(objp)) {
2756 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
2757 (unsigned long)objp);
2758 BUG();
2759 }
2760 }
2761
2762 static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2763 {
2764 unsigned long long redzone1, redzone2;
2765
2766 redzone1 = *dbg_redzone1(cache, obj);
2767 redzone2 = *dbg_redzone2(cache, obj);
2768
2769 /*
2770 * Redzone is ok.
2771 */
2772 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2773 return;
2774
2775 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2776 slab_error(cache, "double free detected");
2777 else
2778 slab_error(cache, "memory outside object was overwritten");
2779
2780 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2781 obj, redzone1, redzone2);
2782 }
2783
2784 static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
2785 unsigned long caller)
2786 {
2787 unsigned int objnr;
2788 struct page *page;
2789
2790 BUG_ON(virt_to_cache(objp) != cachep);
2791
2792 objp -= obj_offset(cachep);
2793 kfree_debugcheck(objp);
2794 page = virt_to_head_page(objp);
2795
2796 if (cachep->flags & SLAB_RED_ZONE) {
2797 verify_redzone_free(cachep, objp);
2798 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2799 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2800 }
2801 if (cachep->flags & SLAB_STORE_USER) {
2802 set_store_user_dirty(cachep);
2803 *dbg_userword(cachep, objp) = (void *)caller;
2804 }
2805
2806 objnr = obj_to_index(cachep, page, objp);
2807
2808 BUG_ON(objnr >= cachep->num);
2809 BUG_ON(objp != index_to_obj(cachep, page, objnr));
2810
2811 if (cachep->flags & SLAB_POISON) {
2812 poison_obj(cachep, objp, POISON_FREE);
2813 slab_kernel_map(cachep, objp, 0, caller);
2814 }
2815 return objp;
2816 }
2817
2818 #else
2819 #define kfree_debugcheck(x) do { } while(0)
2820 #define cache_free_debugcheck(x,objp,z) (objp)
2821 #endif
2822
2823 static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2824 void **list)
2825 {
2826 #if DEBUG
2827 void *next = *list;
2828 void *objp;
2829
2830 while (next) {
2831 objp = next - obj_offset(cachep);
2832 next = *(void **)next;
2833 poison_obj(cachep, objp, POISON_FREE);
2834 }
2835 #endif
2836 }
2837
2838 static inline void fixup_slab_list(struct kmem_cache *cachep,
2839 struct kmem_cache_node *n, struct page *page,
2840 void **list)
2841 {
2842 /* move slabp to correct slabp list: */
2843 list_del(&page->lru);
2844 if (page->active == cachep->num) {
2845 list_add(&page->lru, &n->slabs_full);
2846 if (OBJFREELIST_SLAB(cachep)) {
2847 #if DEBUG
2848 /* Poisoning will be done without holding the lock */
2849 if (cachep->flags & SLAB_POISON) {
2850 void **objp = page->freelist;
2851
2852 *objp = *list;
2853 *list = objp;
2854 }
2855 #endif
2856 page->freelist = NULL;
2857 }
2858 } else
2859 list_add(&page->lru, &n->slabs_partial);
2860 }
2861
2862 /* Try to find non-pfmemalloc slab if needed */
2863 static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
2864 struct page *page, bool pfmemalloc)
2865 {
2866 if (!page)
2867 return NULL;
2868
2869 if (pfmemalloc)
2870 return page;
2871
2872 if (!PageSlabPfmemalloc(page))
2873 return page;
2874
2875 /* No need to keep pfmemalloc slab if we have enough free objects */
2876 if (n->free_objects > n->free_limit) {
2877 ClearPageSlabPfmemalloc(page);
2878 return page;
2879 }
2880
2881 /* Move pfmemalloc slab to the end of list to speed up next search */
2882 list_del(&page->lru);
2883 if (!page->active) {
2884 list_add_tail(&page->lru, &n->slabs_free);
2885 n->free_slabs++;
2886 } else
2887 list_add_tail(&page->lru, &n->slabs_partial);
2888
2889 list_for_each_entry(page, &n->slabs_partial, lru) {
2890 if (!PageSlabPfmemalloc(page))
2891 return page;
2892 }
2893
2894 n->free_touched = 1;
2895 list_for_each_entry(page, &n->slabs_free, lru) {
2896 if (!PageSlabPfmemalloc(page)) {
2897 n->free_slabs--;
2898 return page;
2899 }
2900 }
2901
2902 return NULL;
2903 }
2904
2905 static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
2906 {
2907 struct page *page;
2908
2909 assert_spin_locked(&n->list_lock);
2910 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
2911 if (!page) {
2912 n->free_touched = 1;
2913 page = list_first_entry_or_null(&n->slabs_free, struct page,
2914 lru);
2915 if (page)
2916 n->free_slabs--;
2917 }
2918
2919 if (sk_memalloc_socks())
2920 page = get_valid_first_slab(n, page, pfmemalloc);
2921
2922 return page;
2923 }
2924
2925 static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2926 struct kmem_cache_node *n, gfp_t flags)
2927 {
2928 struct page *page;
2929 void *obj;
2930 void *list = NULL;
2931
2932 if (!gfp_pfmemalloc_allowed(flags))
2933 return NULL;
2934
2935 spin_lock(&n->list_lock);
2936 page = get_first_slab(n, true);
2937 if (!page) {
2938 spin_unlock(&n->list_lock);
2939 return NULL;
2940 }
2941
2942 obj = slab_get_obj(cachep, page);
2943 n->free_objects--;
2944
2945 fixup_slab_list(cachep, n, page, &list);
2946
2947 spin_unlock(&n->list_lock);
2948 fixup_objfreelist_debug(cachep, &list);
2949
2950 return obj;
2951 }
2952
2953 /*
2954 * Slab list should be fixed up by fixup_slab_list() for existing slab
2955 * or cache_grow_end() for new slab
2956 */
2957 static __always_inline int alloc_block(struct kmem_cache *cachep,
2958 struct array_cache *ac, struct page *page, int batchcount)
2959 {
2960 /*
2961 * There must be at least one object available for
2962 * allocation.
2963 */
2964 BUG_ON(page->active >= cachep->num);
2965
2966 while (page->active < cachep->num && batchcount--) {
2967 STATS_INC_ALLOCED(cachep);
2968 STATS_INC_ACTIVE(cachep);
2969 STATS_SET_HIGH(cachep);
2970
2971 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2972 }
2973
2974 return batchcount;
2975 }
2976
2977 static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
2978 {
2979 int batchcount;
2980 struct kmem_cache_node *n;
2981 struct array_cache *ac, *shared;
2982 int node;
2983 void *list = NULL;
2984 struct page *page;
2985
2986 check_irq_off();
2987 node = numa_mem_id();
2988
2989 ac = cpu_cache_get(cachep);
2990 batchcount = ac->batchcount;
2991 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
2992 /*
2993 * If there was little recent activity on this cache, then
2994 * perform only a partial refill. Otherwise we could generate
2995 * refill bouncing.
2996 */
2997 batchcount = BATCHREFILL_LIMIT;
2998 }
2999 n = get_node(cachep, node);
3000
3001 BUG_ON(ac->avail > 0 || !n);
3002 shared = READ_ONCE(n->shared);
3003 if (!n->free_objects && (!shared || !shared->avail))
3004 goto direct_grow;
3005
3006 spin_lock(&n->list_lock);
3007 shared = READ_ONCE(n->shared);
3008
3009 /* See if we can refill from the shared array */
3010 if (shared && transfer_objects(ac, shared, batchcount)) {
3011 shared->touched = 1;
3012 goto alloc_done;
3013 }
3014
3015 while (batchcount > 0) {
3016 /* Get slab alloc is to come from. */
3017 page = get_first_slab(n, false);
3018 if (!page)
3019 goto must_grow;
3020
3021 check_spinlock_acquired(cachep);
3022
3023 batchcount = alloc_block(cachep, ac, page, batchcount);
3024 fixup_slab_list(cachep, n, page, &list);
3025 }
3026
3027 must_grow:
3028 n->free_objects -= ac->avail;
3029 alloc_done:
3030 spin_unlock(&n->list_lock);
3031 fixup_objfreelist_debug(cachep, &list);
3032
3033 direct_grow:
3034 if (unlikely(!ac->avail)) {
3035 /* Check if we can use obj in pfmemalloc slab */
3036 if (sk_memalloc_socks()) {
3037 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3038
3039 if (obj)
3040 return obj;
3041 }
3042
3043 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
3044
3045 /*
3046 * cache_grow_begin() can reenable interrupts,
3047 * then ac could change.
3048 */
3049 ac = cpu_cache_get(cachep);
3050 if (!ac->avail && page)
3051 alloc_block(cachep, ac, page, batchcount);
3052 cache_grow_end(cachep, page);
3053
3054 if (!ac->avail)
3055 return NULL;
3056 }
3057 ac->touched = 1;
3058
3059 return ac->entry[--ac->avail];
3060 }
3061
3062 static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3063 gfp_t flags)
3064 {
3065 might_sleep_if(gfpflags_allow_blocking(flags));
3066 }
3067
3068 #if DEBUG
3069 static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
3070 gfp_t flags, void *objp, unsigned long caller)
3071 {
3072 if (!objp)
3073 return objp;
3074 if (cachep->flags & SLAB_POISON) {
3075 check_poison_obj(cachep, objp);
3076 slab_kernel_map(cachep, objp, 1, 0);
3077 poison_obj(cachep, objp, POISON_INUSE);
3078 }
3079 if (cachep->flags & SLAB_STORE_USER)
3080 *dbg_userword(cachep, objp) = (void *)caller;
3081
3082 if (cachep->flags & SLAB_RED_ZONE) {
3083 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3084 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
3085 slab_error(cachep, "double free, or memory outside object was overwritten");
3086 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3087 objp, *dbg_redzone1(cachep, objp),
3088 *dbg_redzone2(cachep, objp));
3089 }
3090 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3091 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3092 }
3093
3094 objp += obj_offset(cachep);
3095 if (cachep->ctor && cachep->flags & SLAB_POISON)
3096 cachep->ctor(objp);
3097 if (ARCH_SLAB_MINALIGN &&
3098 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
3099 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
3100 objp, (int)ARCH_SLAB_MINALIGN);
3101 }
3102 return objp;
3103 }
3104 #else
3105 #define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3106 #endif
3107
3108 static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3109 {
3110 void *objp;
3111 struct array_cache *ac;
3112
3113 check_irq_off();
3114
3115 ac = cpu_cache_get(cachep);
3116 if (likely(ac->avail)) {
3117 ac->touched = 1;
3118 objp = ac->entry[--ac->avail];
3119
3120 STATS_INC_ALLOCHIT(cachep);
3121 goto out;
3122 }
3123
3124 STATS_INC_ALLOCMISS(cachep);
3125 objp = cache_alloc_refill(cachep, flags);
3126 /*
3127 * the 'ac' may be updated by cache_alloc_refill(),
3128 * and kmemleak_erase() requires its correct value.
3129 */
3130 ac = cpu_cache_get(cachep);
3131
3132 out:
3133 /*
3134 * To avoid a false negative, if an object that is in one of the
3135 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3136 * treat the array pointers as a reference to the object.
3137 */
3138 if (objp)
3139 kmemleak_erase(&ac->entry[ac->avail]);
3140 return objp;
3141 }
3142
3143 #ifdef CONFIG_NUMA
3144 /*
3145 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
3146 *
3147 * If we are in_interrupt, then process context, including cpusets and
3148 * mempolicy, may not apply and should not be used for allocation policy.
3149 */
3150 static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3151 {
3152 int nid_alloc, nid_here;
3153
3154 if (in_interrupt() || (flags & __GFP_THISNODE))
3155 return NULL;
3156 nid_alloc = nid_here = numa_mem_id();
3157 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
3158 nid_alloc = cpuset_slab_spread_node();
3159 else if (current->mempolicy)
3160 nid_alloc = mempolicy_slab_node();
3161 if (nid_alloc != nid_here)
3162 return ____cache_alloc_node(cachep, flags, nid_alloc);
3163 return NULL;
3164 }
3165
3166 /*
3167 * Fallback function if there was no memory available and no objects on a
3168 * certain node and fall back is permitted. First we scan all the
3169 * available node for available objects. If that fails then we
3170 * perform an allocation without specifying a node. This allows the page
3171 * allocator to do its reclaim / fallback magic. We then insert the
3172 * slab into the proper nodelist and then allocate from it.
3173 */
3174 static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
3175 {
3176 struct zonelist *zonelist;
3177 struct zoneref *z;
3178 struct zone *zone;
3179 enum zone_type high_zoneidx = gfp_zone(flags);
3180 void *obj = NULL;
3181 struct page *page;
3182 int nid;
3183 unsigned int cpuset_mems_cookie;
3184
3185 if (flags & __GFP_THISNODE)
3186 return NULL;
3187
3188 retry_cpuset:
3189 cpuset_mems_cookie = read_mems_allowed_begin();
3190 zonelist = node_zonelist(mempolicy_slab_node(), flags);
3191
3192 retry:
3193 /*
3194 * Look through allowed nodes for objects available
3195 * from existing per node queues.
3196 */
3197 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3198 nid = zone_to_nid(zone);
3199
3200 if (cpuset_zone_allowed(zone, flags) &&
3201 get_node(cache, nid) &&
3202 get_node(cache, nid)->free_objects) {
3203 obj = ____cache_alloc_node(cache,
3204 gfp_exact_node(flags), nid);
3205 if (obj)
3206 break;
3207 }
3208 }
3209
3210 if (!obj) {
3211 /*
3212 * This allocation will be performed within the constraints
3213 * of the current cpuset / memory policy requirements.
3214 * We may trigger various forms of reclaim on the allowed
3215 * set and go into memory reserves if necessary.
3216 */
3217 page = cache_grow_begin(cache, flags, numa_mem_id());
3218 cache_grow_end(cache, page);
3219 if (page) {
3220 nid = page_to_nid(page);
3221 obj = ____cache_alloc_node(cache,
3222 gfp_exact_node(flags), nid);
3223
3224 /*
3225 * Another processor may allocate the objects in
3226 * the slab since we are not holding any locks.
3227 */
3228 if (!obj)
3229 goto retry;
3230 }
3231 }
3232
3233 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
3234 goto retry_cpuset;
3235 return obj;
3236 }
3237
3238 /*
3239 * A interface to enable slab creation on nodeid
3240 */
3241 static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
3242 int nodeid)
3243 {
3244 struct page *page;
3245 struct kmem_cache_node *n;
3246 void *obj = NULL;
3247 void *list = NULL;
3248
3249 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
3250 n = get_node(cachep, nodeid);
3251 BUG_ON(!n);
3252
3253 check_irq_off();
3254 spin_lock(&n->list_lock);
3255 page = get_first_slab(n, false);
3256 if (!page)
3257 goto must_grow;
3258
3259 check_spinlock_acquired_node(cachep, nodeid);
3260
3261 STATS_INC_NODEALLOCS(cachep);
3262 STATS_INC_ACTIVE(cachep);
3263 STATS_SET_HIGH(cachep);
3264
3265 BUG_ON(page->active == cachep->num);
3266
3267 obj = slab_get_obj(cachep, page);
3268 n->free_objects--;
3269
3270 fixup_slab_list(cachep, n, page, &list);
3271
3272 spin_unlock(&n->list_lock);
3273 fixup_objfreelist_debug(cachep, &list);
3274 return obj;
3275
3276 must_grow:
3277 spin_unlock(&n->list_lock);
3278 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
3279 if (page) {
3280 /* This slab isn't counted yet so don't update free_objects */
3281 obj = slab_get_obj(cachep, page);
3282 }
3283 cache_grow_end(cachep, page);
3284
3285 return obj ? obj : fallback_alloc(cachep, flags);
3286 }
3287
3288 static __always_inline void *
3289 slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
3290 unsigned long caller)
3291 {
3292 unsigned long save_flags;
3293 void *ptr;
3294 int slab_node = numa_mem_id();
3295
3296 flags &= gfp_allowed_mask;
3297 cachep = slab_pre_alloc_hook(cachep, flags);
3298 if (unlikely(!cachep))
3299 return NULL;
3300
3301 cache_alloc_debugcheck_before(cachep, flags);
3302 local_irq_save(save_flags);
3303
3304 if (nodeid == NUMA_NO_NODE)
3305 nodeid = slab_node;
3306
3307 if (unlikely(!get_node(cachep, nodeid))) {
3308 /* Node not bootstrapped yet */
3309 ptr = fallback_alloc(cachep, flags);
3310 goto out;
3311 }
3312
3313 if (nodeid == slab_node) {
3314 /*
3315 * Use the locally cached objects if possible.
3316 * However ____cache_alloc does not allow fallback
3317 * to other nodes. It may fail while we still have
3318 * objects on other nodes available.
3319 */
3320 ptr = ____cache_alloc(cachep, flags);
3321 if (ptr)
3322 goto out;
3323 }
3324 /* ___cache_alloc_node can fall back to other nodes */
3325 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3326 out:
3327 local_irq_restore(save_flags);
3328 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3329
3330 if (unlikely(flags & __GFP_ZERO) && ptr)
3331 memset(ptr, 0, cachep->object_size);
3332
3333 slab_post_alloc_hook(cachep, flags, 1, &ptr);
3334 return ptr;
3335 }
3336
3337 static __always_inline void *
3338 __do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3339 {
3340 void *objp;
3341
3342 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
3343 objp = alternate_node_alloc(cache, flags);
3344 if (objp)
3345 goto out;
3346 }
3347 objp = ____cache_alloc(cache, flags);
3348
3349 /*
3350 * We may just have run out of memory on the local node.
3351 * ____cache_alloc_node() knows how to locate memory on other nodes
3352 */
3353 if (!objp)
3354 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
3355
3356 out:
3357 return objp;
3358 }
3359 #else
3360
3361 static __always_inline void *
3362 __do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3363 {
3364 return ____cache_alloc(cachep, flags);
3365 }
3366
3367 #endif /* CONFIG_NUMA */
3368
3369 static __always_inline void *
3370 slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
3371 {
3372 unsigned long save_flags;
3373 void *objp;
3374
3375 flags &= gfp_allowed_mask;
3376 cachep = slab_pre_alloc_hook(cachep, flags);
3377 if (unlikely(!cachep))
3378 return NULL;
3379
3380 cache_alloc_debugcheck_before(cachep, flags);
3381 local_irq_save(save_flags);
3382 objp = __do_cache_alloc(cachep, flags);
3383 local_irq_restore(save_flags);
3384 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3385 prefetchw(objp);
3386
3387 if (unlikely(flags & __GFP_ZERO) && objp)
3388 memset(objp, 0, cachep->object_size);
3389
3390 slab_post_alloc_hook(cachep, flags, 1, &objp);
3391 return objp;
3392 }
3393
3394 /*
3395 * Caller needs to acquire correct kmem_cache_node's list_lock
3396 * @list: List of detached free slabs should be freed by caller
3397 */
3398 static void free_block(struct kmem_cache *cachep, void **objpp,
3399 int nr_objects, int node, struct list_head *list)
3400 {
3401 int i;
3402 struct kmem_cache_node *n = get_node(cachep, node);
3403 struct page *page;
3404
3405 n->free_objects += nr_objects;
3406
3407 for (i = 0; i < nr_objects; i++) {
3408 void *objp;
3409 struct page *page;
3410
3411 objp = objpp[i];
3412
3413 page = virt_to_head_page(objp);
3414 list_del(&page->lru);
3415 check_spinlock_acquired_node(cachep, node);
3416 slab_put_obj(cachep, page, objp);
3417 STATS_DEC_ACTIVE(cachep);
3418
3419 /* fixup slab chains */
3420 if (page->active == 0) {
3421 list_add(&page->lru, &n->slabs_free);
3422 n->free_slabs++;
3423 } else {
3424 /* Unconditionally move a slab to the end of the
3425 * partial list on free - maximum time for the
3426 * other objects to be freed, too.
3427 */
3428 list_add_tail(&page->lru, &n->slabs_partial);
3429 }
3430 }
3431
3432 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3433 n->free_objects -= cachep->num;
3434
3435 page = list_last_entry(&n->slabs_free, struct page, lru);
3436 list_move(&page->lru, list);
3437 n->free_slabs--;
3438 n->total_slabs--;
3439 }
3440 }
3441
3442 static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
3443 {
3444 int batchcount;
3445 struct kmem_cache_node *n;
3446 int node = numa_mem_id();
3447 LIST_HEAD(list);
3448
3449 batchcount = ac->batchcount;
3450
3451 check_irq_off();
3452 n = get_node(cachep, node);
3453 spin_lock(&n->list_lock);
3454 if (n->shared) {
3455 struct array_cache *shared_array = n->shared;
3456 int max = shared_array->limit - shared_array->avail;
3457 if (max) {
3458 if (batchcount > max)
3459 batchcount = max;
3460 memcpy(&(shared_array->entry[shared_array->avail]),
3461 ac->entry, sizeof(void *) * batchcount);
3462 shared_array->avail += batchcount;
3463 goto free_done;
3464 }
3465 }
3466
3467 free_block(cachep, ac->entry, batchcount, node, &list);
3468 free_done:
3469 #if STATS
3470 {
3471 int i = 0;
3472 struct page *page;
3473
3474 list_for_each_entry(page, &n->slabs_free, lru) {
3475 BUG_ON(page->active);
3476
3477 i++;
3478 }
3479 STATS_SET_FREEABLE(cachep, i);
3480 }
3481 #endif
3482 spin_unlock(&n->list_lock);
3483 slabs_destroy(cachep, &list);
3484 ac->avail -= batchcount;
3485 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
3486 }
3487
3488 /*
3489 * Release an obj back to its cache. If the obj has a constructed state, it must
3490 * be in this state _before_ it is released. Called with disabled ints.
3491 */
3492 static inline void __cache_free(struct kmem_cache *cachep, void *objp,
3493 unsigned long caller)
3494 {
3495 /* Put the object into the quarantine, don't touch it for now. */
3496 if (kasan_slab_free(cachep, objp))
3497 return;
3498
3499 ___cache_free(cachep, objp, caller);
3500 }
3501
3502 void ___cache_free(struct kmem_cache *cachep, void *objp,
3503 unsigned long caller)
3504 {
3505 struct array_cache *ac = cpu_cache_get(cachep);
3506
3507 check_irq_off();
3508 kmemleak_free_recursive(objp, cachep->flags);
3509 objp = cache_free_debugcheck(cachep, objp, caller);
3510
3511 /*
3512 * Skip calling cache_free_alien() when the platform is not numa.
3513 * This will avoid cache misses that happen while accessing slabp (which
3514 * is per page memory reference) to get nodeid. Instead use a global
3515 * variable to skip the call, which is mostly likely to be present in
3516 * the cache.
3517 */
3518 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
3519 return;
3520
3521 if (ac->avail < ac->limit) {
3522 STATS_INC_FREEHIT(cachep);
3523 } else {
3524 STATS_INC_FREEMISS(cachep);
3525 cache_flusharray(cachep, ac);
3526 }
3527
3528 if (sk_memalloc_socks()) {
3529 struct page *page = virt_to_head_page(objp);
3530
3531 if (unlikely(PageSlabPfmemalloc(page))) {
3532 cache_free_pfmemalloc(cachep, page, objp);
3533 return;
3534 }
3535 }
3536
3537 ac->entry[ac->avail++] = objp;
3538 }
3539
3540 /**
3541 * kmem_cache_alloc - Allocate an object
3542 * @cachep: The cache to allocate from.
3543 * @flags: See kmalloc().
3544 *
3545 * Allocate an object from this cache. The flags are only relevant
3546 * if the cache has no available objects.
3547 */
3548 void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3549 {
3550 void *ret = slab_alloc(cachep, flags, _RET_IP_);
3551
3552 kasan_slab_alloc(cachep, ret, flags);
3553 trace_kmem_cache_alloc(_RET_IP_, ret,
3554 cachep->object_size, cachep->size, flags);
3555
3556 return ret;
3557 }
3558 EXPORT_SYMBOL(kmem_cache_alloc);
3559
3560 static __always_inline void
3561 cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3562 size_t size, void **p, unsigned long caller)
3563 {
3564 size_t i;
3565
3566 for (i = 0; i < size; i++)
3567 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3568 }
3569
3570 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3571 void **p)
3572 {
3573 size_t i;
3574
3575 s = slab_pre_alloc_hook(s, flags);
3576 if (!s)
3577 return 0;
3578
3579 cache_alloc_debugcheck_before(s, flags);
3580
3581 local_irq_disable();
3582 for (i = 0; i < size; i++) {
3583 void *objp = __do_cache_alloc(s, flags);
3584
3585 if (unlikely(!objp))
3586 goto error;
3587 p[i] = objp;
3588 }
3589 local_irq_enable();
3590
3591 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3592
3593 /* Clear memory outside IRQ disabled section */
3594 if (unlikely(flags & __GFP_ZERO))
3595 for (i = 0; i < size; i++)
3596 memset(p[i], 0, s->object_size);
3597
3598 slab_post_alloc_hook(s, flags, size, p);
3599 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3600 return size;
3601 error:
3602 local_irq_enable();
3603 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
3604 slab_post_alloc_hook(s, flags, i, p);
3605 __kmem_cache_free_bulk(s, i, p);
3606 return 0;
3607 }
3608 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3609
3610 #ifdef CONFIG_TRACING
3611 void *
3612 kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
3613 {
3614 void *ret;
3615
3616 ret = slab_alloc(cachep, flags, _RET_IP_);
3617
3618 kasan_kmalloc(cachep, ret, size, flags);
3619 trace_kmalloc(_RET_IP_, ret,
3620 size, cachep->size, flags);
3621 return ret;
3622 }
3623 EXPORT_SYMBOL(kmem_cache_alloc_trace);
3624 #endif
3625
3626 #ifdef CONFIG_NUMA
3627 /**
3628 * kmem_cache_alloc_node - Allocate an object on the specified node
3629 * @cachep: The cache to allocate from.
3630 * @flags: See kmalloc().
3631 * @nodeid: node number of the target node.
3632 *
3633 * Identical to kmem_cache_alloc but it will allocate memory on the given
3634 * node, which can improve the performance for cpu bound structures.
3635 *
3636 * Fallback to other node is possible if __GFP_THISNODE is not set.
3637 */
3638 void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3639 {
3640 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3641
3642 kasan_slab_alloc(cachep, ret, flags);
3643 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3644 cachep->object_size, cachep->size,
3645 flags, nodeid);
3646
3647 return ret;
3648 }
3649 EXPORT_SYMBOL(kmem_cache_alloc_node);
3650
3651 #ifdef CONFIG_TRACING
3652 void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
3653 gfp_t flags,
3654 int nodeid,
3655 size_t size)
3656 {
3657 void *ret;
3658
3659 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
3660
3661 kasan_kmalloc(cachep, ret, size, flags);
3662 trace_kmalloc_node(_RET_IP_, ret,
3663 size, cachep->size,
3664 flags, nodeid);
3665 return ret;
3666 }
3667 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
3668 #endif
3669
3670 static __always_inline void *
3671 __do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
3672 {
3673 struct kmem_cache *cachep;
3674 void *ret;
3675
3676 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3677 return NULL;
3678 cachep = kmalloc_slab(size, flags);
3679 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3680 return cachep;
3681 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
3682 kasan_kmalloc(cachep, ret, size, flags);
3683
3684 return ret;
3685 }
3686
3687 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3688 {
3689 return __do_kmalloc_node(size, flags, node, _RET_IP_);
3690 }
3691 EXPORT_SYMBOL(__kmalloc_node);
3692
3693 void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
3694 int node, unsigned long caller)
3695 {
3696 return __do_kmalloc_node(size, flags, node, caller);
3697 }
3698 EXPORT_SYMBOL(__kmalloc_node_track_caller);
3699 #endif /* CONFIG_NUMA */
3700
3701 /**
3702 * __do_kmalloc - allocate memory
3703 * @size: how many bytes of memory are required.
3704 * @flags: the type of memory to allocate (see kmalloc).
3705 * @caller: function caller for debug tracking of the caller
3706 */
3707 static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
3708 unsigned long caller)
3709 {
3710 struct kmem_cache *cachep;
3711 void *ret;
3712
3713 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3714 return NULL;
3715 cachep = kmalloc_slab(size, flags);
3716 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3717 return cachep;
3718 ret = slab_alloc(cachep, flags, caller);
3719
3720 kasan_kmalloc(cachep, ret, size, flags);
3721 trace_kmalloc(caller, ret,
3722 size, cachep->size, flags);
3723
3724 return ret;
3725 }
3726
3727 void *__kmalloc(size_t size, gfp_t flags)
3728 {
3729 return __do_kmalloc(size, flags, _RET_IP_);
3730 }
3731 EXPORT_SYMBOL(__kmalloc);
3732
3733 void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
3734 {
3735 return __do_kmalloc(size, flags, caller);
3736 }
3737 EXPORT_SYMBOL(__kmalloc_track_caller);
3738
3739 /**
3740 * kmem_cache_free - Deallocate an object
3741 * @cachep: The cache the allocation was from.
3742 * @objp: The previously allocated object.
3743 *
3744 * Free an object which was previously allocated from this
3745 * cache.
3746 */
3747 void kmem_cache_free(struct kmem_cache *cachep, void *objp)
3748 {
3749 unsigned long flags;
3750 cachep = cache_from_obj(cachep, objp);
3751 if (!cachep)
3752 return;
3753
3754 local_irq_save(flags);
3755 debug_check_no_locks_freed(objp, cachep->object_size);
3756 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
3757 debug_check_no_obj_freed(objp, cachep->object_size);
3758 __cache_free(cachep, objp, _RET_IP_);
3759 local_irq_restore(flags);
3760
3761 trace_kmem_cache_free(_RET_IP_, objp);
3762 }
3763 EXPORT_SYMBOL(kmem_cache_free);
3764
3765 void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3766 {
3767 struct kmem_cache *s;
3768 size_t i;
3769
3770 local_irq_disable();
3771 for (i = 0; i < size; i++) {
3772 void *objp = p[i];
3773
3774 if (!orig_s) /* called via kfree_bulk */
3775 s = virt_to_cache(objp);
3776 else
3777 s = cache_from_obj(orig_s, objp);
3778
3779 debug_check_no_locks_freed(objp, s->object_size);
3780 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3781 debug_check_no_obj_freed(objp, s->object_size);
3782
3783 __cache_free(s, objp, _RET_IP_);
3784 }
3785 local_irq_enable();
3786
3787 /* FIXME: add tracing */
3788 }
3789 EXPORT_SYMBOL(kmem_cache_free_bulk);
3790
3791 /**
3792 * kfree - free previously allocated memory
3793 * @objp: pointer returned by kmalloc.
3794 *
3795 * If @objp is NULL, no operation is performed.
3796 *
3797 * Don't free memory not originally allocated by kmalloc()
3798 * or you will run into trouble.
3799 */
3800 void kfree(const void *objp)
3801 {
3802 struct kmem_cache *c;
3803 unsigned long flags;
3804
3805 trace_kfree(_RET_IP_, objp);
3806
3807 if (unlikely(ZERO_OR_NULL_PTR(objp)))
3808 return;
3809 local_irq_save(flags);
3810 kfree_debugcheck(objp);
3811 c = virt_to_cache(objp);
3812 debug_check_no_locks_freed(objp, c->object_size);
3813
3814 debug_check_no_obj_freed(objp, c->object_size);
3815 __cache_free(c, (void *)objp, _RET_IP_);
3816 local_irq_restore(flags);
3817 }
3818 EXPORT_SYMBOL(kfree);
3819
3820 /*
3821 * This initializes kmem_cache_node or resizes various caches for all nodes.
3822 */
3823 static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
3824 {
3825 int ret;
3826 int node;
3827 struct kmem_cache_node *n;
3828
3829 for_each_online_node(node) {
3830 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3831 if (ret)
3832 goto fail;
3833
3834 }
3835
3836 return 0;
3837
3838 fail:
3839 if (!cachep->list.next) {
3840 /* Cache is not active yet. Roll back what we did */
3841 node--;
3842 while (node >= 0) {
3843 n = get_node(cachep, node);
3844 if (n) {
3845 kfree(n->shared);
3846 free_alien_cache(n->alien);
3847 kfree(n);
3848 cachep->node[node] = NULL;
3849 }
3850 node--;
3851 }
3852 }
3853 return -ENOMEM;
3854 }
3855
3856 /* Always called with the slab_mutex held */
3857 static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
3858 int batchcount, int shared, gfp_t gfp)
3859 {
3860 struct array_cache __percpu *cpu_cache, *prev;
3861 int cpu;
3862
3863 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3864 if (!cpu_cache)
3865 return -ENOMEM;
3866
3867 prev = cachep->cpu_cache;
3868 cachep->cpu_cache = cpu_cache;
3869 /*
3870 * Without a previous cpu_cache there's no need to synchronize remote
3871 * cpus, so skip the IPIs.
3872 */
3873 if (prev)
3874 kick_all_cpus_sync();
3875
3876 check_irq_on();
3877 cachep->batchcount = batchcount;
3878 cachep->limit = limit;
3879 cachep->shared = shared;
3880
3881 if (!prev)
3882 goto setup_node;
3883
3884 for_each_online_cpu(cpu) {
3885 LIST_HEAD(list);
3886 int node;
3887 struct kmem_cache_node *n;
3888 struct array_cache *ac = per_cpu_ptr(prev, cpu);
3889
3890 node = cpu_to_mem(cpu);
3891 n = get_node(cachep, node);
3892 spin_lock_irq(&n->list_lock);
3893 free_block(cachep, ac->entry, ac->avail, node, &list);
3894 spin_unlock_irq(&n->list_lock);
3895 slabs_destroy(cachep, &list);
3896 }
3897 free_percpu(prev);
3898
3899 setup_node:
3900 return setup_kmem_cache_nodes(cachep, gfp);
3901 }
3902
3903 static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3904 int batchcount, int shared, gfp_t gfp)
3905 {
3906 int ret;
3907 struct kmem_cache *c;
3908
3909 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3910
3911 if (slab_state < FULL)
3912 return ret;
3913
3914 if ((ret < 0) || !is_root_cache(cachep))
3915 return ret;
3916
3917 lockdep_assert_held(&slab_mutex);
3918 for_each_memcg_cache(c, cachep) {
3919 /* return value determined by the root cache only */
3920 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
3921 }
3922
3923 return ret;
3924 }
3925
3926 /* Called with slab_mutex held always */
3927 static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
3928 {
3929 int err;
3930 int limit = 0;
3931 int shared = 0;
3932 int batchcount = 0;
3933
3934 err = cache_random_seq_create(cachep, cachep->num, gfp);
3935 if (err)
3936 goto end;
3937
3938 if (!is_root_cache(cachep)) {
3939 struct kmem_cache *root = memcg_root_cache(cachep);
3940 limit = root->limit;
3941 shared = root->shared;
3942 batchcount = root->batchcount;
3943 }
3944
3945 if (limit && shared && batchcount)
3946 goto skip_setup;
3947 /*
3948 * The head array serves three purposes:
3949 * - create a LIFO ordering, i.e. return objects that are cache-warm
3950 * - reduce the number of spinlock operations.
3951 * - reduce the number of linked list operations on the slab and
3952 * bufctl chains: array operations are cheaper.
3953 * The numbers are guessed, we should auto-tune as described by
3954 * Bonwick.
3955 */
3956 if (cachep->size > 131072)
3957 limit = 1;
3958 else if (cachep->size > PAGE_SIZE)
3959 limit = 8;
3960 else if (cachep->size > 1024)
3961 limit = 24;
3962 else if (cachep->size > 256)
3963 limit = 54;
3964 else
3965 limit = 120;
3966
3967 /*
3968 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
3969 * allocation behaviour: Most allocs on one cpu, most free operations
3970 * on another cpu. For these cases, an efficient object passing between
3971 * cpus is necessary. This is provided by a shared array. The array
3972 * replaces Bonwick's magazine layer.
3973 * On uniprocessor, it's functionally equivalent (but less efficient)
3974 * to a larger limit. Thus disabled by default.
3975 */
3976 shared = 0;
3977 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
3978 shared = 8;
3979
3980 #if DEBUG
3981 /*
3982 * With debugging enabled, large batchcount lead to excessively long
3983 * periods with disabled local interrupts. Limit the batchcount
3984 */
3985 if (limit > 32)
3986 limit = 32;
3987 #endif
3988 batchcount = (limit + 1) / 2;
3989 skip_setup:
3990 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3991 end:
3992 if (err)
3993 pr_err("enable_cpucache failed for %s, error %d\n",
3994 cachep->name, -err);
3995 return err;
3996 }
3997
3998 /*
3999 * Drain an array if it contains any elements taking the node lock only if
4000 * necessary. Note that the node listlock also protects the array_cache
4001 * if drain_array() is used on the shared array.
4002 */
4003 static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
4004 struct array_cache *ac, int node)
4005 {
4006 LIST_HEAD(list);
4007
4008 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4009 check_mutex_acquired();
4010
4011 if (!ac || !ac->avail)
4012 return;
4013
4014 if (ac->touched) {
4015 ac->touched = 0;
4016 return;
4017 }
4018
4019 spin_lock_irq(&n->list_lock);
4020 drain_array_locked(cachep, ac, node, false, &list);
4021 spin_unlock_irq(&n->list_lock);
4022
4023 slabs_destroy(cachep, &list);
4024 }
4025
4026 /**
4027 * cache_reap - Reclaim memory from caches.
4028 * @w: work descriptor
4029 *
4030 * Called from workqueue/eventd every few seconds.
4031 * Purpose:
4032 * - clear the per-cpu caches for this CPU.
4033 * - return freeable pages to the main free memory pool.
4034 *
4035 * If we cannot acquire the cache chain mutex then just give up - we'll try
4036 * again on the next iteration.
4037 */
4038 static void cache_reap(struct work_struct *w)
4039 {
4040 struct kmem_cache *searchp;
4041 struct kmem_cache_node *n;
4042 int node = numa_mem_id();
4043 struct delayed_work *work = to_delayed_work(w);
4044
4045 if (!mutex_trylock(&slab_mutex))
4046 /* Give up. Setup the next iteration. */
4047 goto out;
4048
4049 list_for_each_entry(searchp, &slab_caches, list) {
4050 check_irq_on();
4051
4052 /*
4053 * We only take the node lock if absolutely necessary and we
4054 * have established with reasonable certainty that
4055 * we can do some work if the lock was obtained.
4056 */
4057 n = get_node(searchp, node);
4058
4059 reap_alien(searchp, n);
4060
4061 drain_array(searchp, n, cpu_cache_get(searchp), node);
4062
4063 /*
4064 * These are racy checks but it does not matter
4065 * if we skip one check or scan twice.
4066 */
4067 if (time_after(n->next_reap, jiffies))
4068 goto next;
4069
4070 n->next_reap = jiffies + REAPTIMEOUT_NODE;
4071
4072 drain_array(searchp, n, n->shared, node);
4073
4074 if (n->free_touched)
4075 n->free_touched = 0;
4076 else {
4077 int freed;
4078
4079 freed = drain_freelist(searchp, n, (n->free_limit +
4080 5 * searchp->num - 1) / (5 * searchp->num));
4081 STATS_ADD_REAPED(searchp, freed);
4082 }
4083 next:
4084 cond_resched();
4085 }
4086 check_irq_on();
4087 mutex_unlock(&slab_mutex);
4088 next_reap_node();
4089 out:
4090 /* Set up the next iteration */
4091 schedule_delayed_work_on(smp_processor_id(), work,
4092 round_jiffies_relative(REAPTIMEOUT_AC));
4093 }
4094
4095 #ifdef CONFIG_SLABINFO
4096 void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
4097 {
4098 unsigned long active_objs, num_objs, active_slabs;
4099 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4100 unsigned long free_slabs = 0;
4101 int node;
4102 struct kmem_cache_node *n;
4103
4104 for_each_kmem_cache_node(cachep, node, n) {
4105 check_irq_on();
4106 spin_lock_irq(&n->list_lock);
4107
4108 total_slabs += n->total_slabs;
4109 free_slabs += n->free_slabs;
4110 free_objs += n->free_objects;
4111
4112 if (n->shared)
4113 shared_avail += n->shared->avail;
4114
4115 spin_unlock_irq(&n->list_lock);
4116 }
4117 num_objs = total_slabs * cachep->num;
4118 active_slabs = total_slabs - free_slabs;
4119 active_objs = num_objs - free_objs;
4120
4121 sinfo->active_objs = active_objs;
4122 sinfo->num_objs = num_objs;
4123 sinfo->active_slabs = active_slabs;
4124 sinfo->num_slabs = total_slabs;
4125 sinfo->shared_avail = shared_avail;
4126 sinfo->limit = cachep->limit;
4127 sinfo->batchcount = cachep->batchcount;
4128 sinfo->shared = cachep->shared;
4129 sinfo->objects_per_slab = cachep->num;
4130 sinfo->cache_order = cachep->gfporder;
4131 }
4132
4133 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4134 {
4135 #if STATS
4136 { /* node stats */
4137 unsigned long high = cachep->high_mark;
4138 unsigned long allocs = cachep->num_allocations;
4139 unsigned long grown = cachep->grown;
4140 unsigned long reaped = cachep->reaped;
4141 unsigned long errors = cachep->errors;
4142 unsigned long max_freeable = cachep->max_freeable;
4143 unsigned long node_allocs = cachep->node_allocs;
4144 unsigned long node_frees = cachep->node_frees;
4145 unsigned long overflows = cachep->node_overflow;
4146
4147 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
4148 allocs, high, grown,
4149 reaped, errors, max_freeable, node_allocs,
4150 node_frees, overflows);
4151 }
4152 /* cpu stats */
4153 {
4154 unsigned long allochit = atomic_read(&cachep->allochit);
4155 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4156 unsigned long freehit = atomic_read(&cachep->freehit);
4157 unsigned long freemiss = atomic_read(&cachep->freemiss);
4158
4159 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
4160 allochit, allocmiss, freehit, freemiss);
4161 }
4162 #endif
4163 }
4164
4165 #define MAX_SLABINFO_WRITE 128
4166 /**
4167 * slabinfo_write - Tuning for the slab allocator
4168 * @file: unused
4169 * @buffer: user buffer
4170 * @count: data length
4171 * @ppos: unused
4172 */
4173 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
4174 size_t count, loff_t *ppos)
4175 {
4176 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
4177 int limit, batchcount, shared, res;
4178 struct kmem_cache *cachep;
4179
4180 if (count > MAX_SLABINFO_WRITE)
4181 return -EINVAL;
4182 if (copy_from_user(&kbuf, buffer, count))
4183 return -EFAULT;
4184 kbuf[MAX_SLABINFO_WRITE] = '\0';
4185
4186 tmp = strchr(kbuf, ' ');
4187 if (!tmp)
4188 return -EINVAL;
4189 *tmp = '\0';
4190 tmp++;
4191 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4192 return -EINVAL;
4193
4194 /* Find the cache in the chain of caches. */
4195 mutex_lock(&slab_mutex);
4196 res = -EINVAL;
4197 list_for_each_entry(cachep, &slab_caches, list) {
4198 if (!strcmp(cachep->name, kbuf)) {
4199 if (limit < 1 || batchcount < 1 ||
4200 batchcount > limit || shared < 0) {
4201 res = 0;
4202 } else {
4203 res = do_tune_cpucache(cachep, limit,
4204 batchcount, shared,
4205 GFP_KERNEL);
4206 }
4207 break;
4208 }
4209 }
4210 mutex_unlock(&slab_mutex);
4211 if (res >= 0)
4212 res = count;
4213 return res;
4214 }
4215
4216 #ifdef CONFIG_DEBUG_SLAB_LEAK
4217
4218 static inline int add_caller(unsigned long *n, unsigned long v)
4219 {
4220 unsigned long *p;
4221 int l;
4222 if (!v)
4223 return 1;
4224 l = n[1];
4225 p = n + 2;
4226 while (l) {
4227 int i = l/2;
4228 unsigned long *q = p + 2 * i;
4229 if (*q == v) {
4230 q[1]++;
4231 return 1;
4232 }
4233 if (*q > v) {
4234 l = i;
4235 } else {
4236 p = q + 2;
4237 l -= i + 1;
4238 }
4239 }
4240 if (++n[1] == n[0])
4241 return 0;
4242 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4243 p[0] = v;
4244 p[1] = 1;
4245 return 1;
4246 }
4247
4248 static void handle_slab(unsigned long *n, struct kmem_cache *c,
4249 struct page *page)
4250 {
4251 void *p;
4252 int i, j;
4253 unsigned long v;
4254
4255 if (n[0] == n[1])
4256 return;
4257 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
4258 bool active = true;
4259
4260 for (j = page->active; j < c->num; j++) {
4261 if (get_free_obj(page, j) == i) {
4262 active = false;
4263 break;
4264 }
4265 }
4266
4267 if (!active)
4268 continue;
4269
4270 /*
4271 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4272 * mapping is established when actual object allocation and
4273 * we could mistakenly access the unmapped object in the cpu
4274 * cache.
4275 */
4276 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4277 continue;
4278
4279 if (!add_caller(n, v))
4280 return;
4281 }
4282 }
4283
4284 static void show_symbol(struct seq_file *m, unsigned long address)
4285 {
4286 #ifdef CONFIG_KALLSYMS
4287 unsigned long offset, size;
4288 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
4289
4290 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
4291 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
4292 if (modname[0])
4293 seq_printf(m, " [%s]", modname);
4294 return;
4295 }
4296 #endif
4297 seq_printf(m, "%p", (void *)address);
4298 }
4299
4300 static int leaks_show(struct seq_file *m, void *p)
4301 {
4302 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
4303 struct page *page;
4304 struct kmem_cache_node *n;
4305 const char *name;
4306 unsigned long *x = m->private;
4307 int node;
4308 int i;
4309
4310 if (!(cachep->flags & SLAB_STORE_USER))
4311 return 0;
4312 if (!(cachep->flags & SLAB_RED_ZONE))
4313 return 0;
4314
4315 /*
4316 * Set store_user_clean and start to grab stored user information
4317 * for all objects on this cache. If some alloc/free requests comes
4318 * during the processing, information would be wrong so restart
4319 * whole processing.
4320 */
4321 do {
4322 set_store_user_clean(cachep);
4323 drain_cpu_caches(cachep);
4324
4325 x[1] = 0;
4326
4327 for_each_kmem_cache_node(cachep, node, n) {
4328
4329 check_irq_on();
4330 spin_lock_irq(&n->list_lock);
4331
4332 list_for_each_entry(page, &n->slabs_full, lru)
4333 handle_slab(x, cachep, page);
4334 list_for_each_entry(page, &n->slabs_partial, lru)
4335 handle_slab(x, cachep, page);
4336 spin_unlock_irq(&n->list_lock);
4337 }
4338 } while (!is_store_user_clean(cachep));
4339
4340 name = cachep->name;
4341 if (x[0] == x[1]) {
4342 /* Increase the buffer size */
4343 mutex_unlock(&slab_mutex);
4344 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
4345 if (!m->private) {
4346 /* Too bad, we are really out */
4347 m->private = x;
4348 mutex_lock(&slab_mutex);
4349 return -ENOMEM;
4350 }
4351 *(unsigned long *)m->private = x[0] * 2;
4352 kfree(x);
4353 mutex_lock(&slab_mutex);
4354 /* Now make sure this entry will be retried */
4355 m->count = m->size;
4356 return 0;
4357 }
4358 for (i = 0; i < x[1]; i++) {
4359 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4360 show_symbol(m, x[2*i+2]);
4361 seq_putc(m, '\n');
4362 }
4363
4364 return 0;
4365 }
4366
4367 static const struct seq_operations slabstats_op = {
4368 .start = slab_start,
4369 .next = slab_next,
4370 .stop = slab_stop,
4371 .show = leaks_show,
4372 };
4373
4374 static int slabstats_open(struct inode *inode, struct file *file)
4375 {
4376 unsigned long *n;
4377
4378 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4379 if (!n)
4380 return -ENOMEM;
4381
4382 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4383
4384 return 0;
4385 }
4386
4387 static const struct file_operations proc_slabstats_operations = {
4388 .open = slabstats_open,
4389 .read = seq_read,
4390 .llseek = seq_lseek,
4391 .release = seq_release_private,
4392 };
4393 #endif
4394
4395 static int __init slab_proc_init(void)
4396 {
4397 #ifdef CONFIG_DEBUG_SLAB_LEAK
4398 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
4399 #endif
4400 return 0;
4401 }
4402 module_init(slab_proc_init);
4403 #endif
4404
4405 #ifdef CONFIG_HARDENED_USERCOPY
4406 /*
4407 * Rejects objects that are incorrectly sized.
4408 *
4409 * Returns NULL if check passes, otherwise const char * to name of cache
4410 * to indicate an error.
4411 */
4412 const char *__check_heap_object(const void *ptr, unsigned long n,
4413 struct page *page)
4414 {
4415 struct kmem_cache *cachep;
4416 unsigned int objnr;
4417 unsigned long offset;
4418
4419 /* Find and validate object. */
4420 cachep = page->slab_cache;
4421 objnr = obj_to_index(cachep, page, (void *)ptr);
4422 BUG_ON(objnr >= cachep->num);
4423
4424 /* Find offset within object. */
4425 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4426
4427 /* Allow address range falling entirely within object size. */
4428 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4429 return NULL;
4430
4431 return cachep->name;
4432 }
4433 #endif /* CONFIG_HARDENED_USERCOPY */
4434
4435 /**
4436 * ksize - get the actual amount of memory allocated for a given object
4437 * @objp: Pointer to the object
4438 *
4439 * kmalloc may internally round up allocations and return more memory
4440 * than requested. ksize() can be used to determine the actual amount of
4441 * memory allocated. The caller may use this additional memory, even though
4442 * a smaller amount of memory was initially specified with the kmalloc call.
4443 * The caller must guarantee that objp points to a valid object previously
4444 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4445 * must not be freed during the duration of the call.
4446 */
4447 size_t ksize(const void *objp)
4448 {
4449 size_t size;
4450
4451 BUG_ON(!objp);
4452 if (unlikely(objp == ZERO_SIZE_PTR))
4453 return 0;
4454
4455 size = virt_to_cache(objp)->object_size;
4456 /* We assume that ksize callers could use the whole allocated area,
4457 * so we need to unpoison this area.
4458 */
4459 kasan_unpoison_shadow(objp, size);
4460
4461 return size;
4462 }
4463 EXPORT_SYMBOL(ksize);