remove libdss from Makefile
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / mm / readahead.c
1 /*
2 * mm/readahead.c - address_space-level file readahead.
3 *
4 * Copyright (C) 2002, Linus Torvalds
5 *
6 * 09Apr2002 Andrew Morton
7 * Initial version.
8 */
9
10 #include <linux/kernel.h>
11 #include <linux/dax.h>
12 #include <linux/gfp.h>
13 #include <linux/export.h>
14 #include <linux/blkdev.h>
15 #include <linux/backing-dev.h>
16 #include <linux/task_io_accounting_ops.h>
17 #include <linux/pagevec.h>
18 #include <linux/pagemap.h>
19 #include <linux/syscalls.h>
20 #include <linux/file.h>
21 #include <linux/mm_inline.h>
22
23 #include "internal.h"
24
25 /*
26 * Initialise a struct file's readahead state. Assumes that the caller has
27 * memset *ra to zero.
28 */
29 void
30 file_ra_state_init(struct file_ra_state *ra, struct address_space *mapping)
31 {
32 ra->ra_pages = inode_to_bdi(mapping->host)->ra_pages;
33 ra->prev_pos = -1;
34 }
35 EXPORT_SYMBOL_GPL(file_ra_state_init);
36
37 /*
38 * see if a page needs releasing upon read_cache_pages() failure
39 * - the caller of read_cache_pages() may have set PG_private or PG_fscache
40 * before calling, such as the NFS fs marking pages that are cached locally
41 * on disk, thus we need to give the fs a chance to clean up in the event of
42 * an error
43 */
44 static void read_cache_pages_invalidate_page(struct address_space *mapping,
45 struct page *page)
46 {
47 if (page_has_private(page)) {
48 if (!trylock_page(page))
49 BUG();
50 page->mapping = mapping;
51 do_invalidatepage(page, 0, PAGE_SIZE);
52 page->mapping = NULL;
53 unlock_page(page);
54 }
55 put_page(page);
56 }
57
58 /*
59 * release a list of pages, invalidating them first if need be
60 */
61 static void read_cache_pages_invalidate_pages(struct address_space *mapping,
62 struct list_head *pages)
63 {
64 struct page *victim;
65
66 while (!list_empty(pages)) {
67 victim = lru_to_page(pages);
68 list_del(&victim->lru);
69 read_cache_pages_invalidate_page(mapping, victim);
70 }
71 }
72
73 /**
74 * read_cache_pages - populate an address space with some pages & start reads against them
75 * @mapping: the address_space
76 * @pages: The address of a list_head which contains the target pages. These
77 * pages have their ->index populated and are otherwise uninitialised.
78 * @filler: callback routine for filling a single page.
79 * @data: private data for the callback routine.
80 *
81 * Hides the details of the LRU cache etc from the filesystems.
82 */
83 int read_cache_pages(struct address_space *mapping, struct list_head *pages,
84 int (*filler)(struct file *, struct page *), void *data)
85 {
86 struct page *page;
87 int ret = 0;
88
89 while (!list_empty(pages)) {
90 page = lru_to_page(pages);
91 list_del(&page->lru);
92 if (add_to_page_cache_lru(page, mapping, page->index,
93 readahead_gfp_mask(mapping))) {
94 read_cache_pages_invalidate_page(mapping, page);
95 continue;
96 }
97 put_page(page);
98
99 ret = filler(data, page);
100 if (unlikely(ret)) {
101 read_cache_pages_invalidate_pages(mapping, pages);
102 break;
103 }
104 task_io_account_read(PAGE_SIZE);
105 }
106 return ret;
107 }
108
109 EXPORT_SYMBOL(read_cache_pages);
110
111 static int read_pages(struct address_space *mapping, struct file *filp,
112 struct list_head *pages, unsigned int nr_pages, gfp_t gfp)
113 {
114 struct blk_plug plug;
115 unsigned page_idx;
116 int ret;
117
118 blk_start_plug(&plug);
119
120 if (mapping->a_ops->readpages) {
121 ret = mapping->a_ops->readpages(filp, mapping, pages, nr_pages);
122 /* Clean up the remaining pages */
123 put_pages_list(pages);
124 goto out;
125 }
126
127 for (page_idx = 0; page_idx < nr_pages; page_idx++) {
128 struct page *page = lru_to_page(pages);
129 list_del(&page->lru);
130 if (!add_to_page_cache_lru(page, mapping, page->index, gfp))
131 mapping->a_ops->readpage(filp, page);
132 put_page(page);
133 }
134 ret = 0;
135
136 out:
137 blk_finish_plug(&plug);
138
139 return ret;
140 }
141
142 /*
143 * __do_page_cache_readahead() actually reads a chunk of disk. It allocates all
144 * the pages first, then submits them all for I/O. This avoids the very bad
145 * behaviour which would occur if page allocations are causing VM writeback.
146 * We really don't want to intermingle reads and writes like that.
147 *
148 * Returns the number of pages requested, or the maximum amount of I/O allowed.
149 */
150 int __do_page_cache_readahead(struct address_space *mapping, struct file *filp,
151 pgoff_t offset, unsigned long nr_to_read,
152 unsigned long lookahead_size)
153 {
154 struct inode *inode = mapping->host;
155 struct page *page;
156 unsigned long end_index; /* The last page we want to read */
157 LIST_HEAD(page_pool);
158 int page_idx;
159 int ret = 0;
160 loff_t isize = i_size_read(inode);
161 gfp_t gfp_mask = readahead_gfp_mask(mapping);
162
163 if (isize == 0)
164 goto out;
165
166 end_index = ((isize - 1) >> PAGE_SHIFT);
167
168 /*
169 * Preallocate as many pages as we will need.
170 */
171 for (page_idx = 0; page_idx < nr_to_read; page_idx++) {
172 pgoff_t page_offset = offset + page_idx;
173
174 if (page_offset > end_index)
175 break;
176
177 rcu_read_lock();
178 page = radix_tree_lookup(&mapping->page_tree, page_offset);
179 rcu_read_unlock();
180 if (page && !radix_tree_exceptional_entry(page))
181 continue;
182
183 page = __page_cache_alloc(gfp_mask);
184 if (!page)
185 break;
186 page->index = page_offset;
187 list_add(&page->lru, &page_pool);
188 if (page_idx == nr_to_read - lookahead_size)
189 SetPageReadahead(page);
190 ret++;
191 }
192
193 /*
194 * Now start the IO. We ignore I/O errors - if the page is not
195 * uptodate then the caller will launch readpage again, and
196 * will then handle the error.
197 */
198 if (ret)
199 read_pages(mapping, filp, &page_pool, ret, gfp_mask);
200 BUG_ON(!list_empty(&page_pool));
201 out:
202 return ret;
203 }
204
205 /*
206 * Chunk the readahead into 2 megabyte units, so that we don't pin too much
207 * memory at once.
208 */
209 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
210 pgoff_t offset, unsigned long nr_to_read)
211 {
212 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
213 struct file_ra_state *ra = &filp->f_ra;
214 unsigned long max_pages;
215
216 if (unlikely(!mapping->a_ops->readpage && !mapping->a_ops->readpages))
217 return -EINVAL;
218
219 /*
220 * If the request exceeds the readahead window, allow the read to
221 * be up to the optimal hardware IO size
222 */
223 max_pages = max_t(unsigned long, bdi->io_pages, ra->ra_pages);
224 nr_to_read = min(nr_to_read, max_pages);
225 while (nr_to_read) {
226 int err;
227
228 unsigned long this_chunk = (2 * 1024 * 1024) / PAGE_SIZE;
229
230 if (this_chunk > nr_to_read)
231 this_chunk = nr_to_read;
232 err = __do_page_cache_readahead(mapping, filp,
233 offset, this_chunk, 0);
234 if (err < 0)
235 return err;
236
237 offset += this_chunk;
238 nr_to_read -= this_chunk;
239 }
240 return 0;
241 }
242
243 /*
244 * Set the initial window size, round to next power of 2 and square
245 * for small size, x 4 for medium, and x 2 for large
246 * for 128k (32 page) max ra
247 * 1-8 page = 32k initial, > 8 page = 128k initial
248 */
249 static unsigned long get_init_ra_size(unsigned long size, unsigned long max)
250 {
251 unsigned long newsize = roundup_pow_of_two(size);
252
253 if (newsize <= max / 32)
254 newsize = newsize * 4;
255 else if (newsize <= max / 4)
256 newsize = newsize * 2;
257 else
258 newsize = max;
259
260 return newsize;
261 }
262
263 /*
264 * Get the previous window size, ramp it up, and
265 * return it as the new window size.
266 */
267 static unsigned long get_next_ra_size(struct file_ra_state *ra,
268 unsigned long max)
269 {
270 unsigned long cur = ra->size;
271 unsigned long newsize;
272
273 if (cur < max / 16)
274 newsize = 4 * cur;
275 else
276 newsize = 2 * cur;
277
278 return min(newsize, max);
279 }
280
281 /*
282 * On-demand readahead design.
283 *
284 * The fields in struct file_ra_state represent the most-recently-executed
285 * readahead attempt:
286 *
287 * |<----- async_size ---------|
288 * |------------------- size -------------------->|
289 * |==================#===========================|
290 * ^start ^page marked with PG_readahead
291 *
292 * To overlap application thinking time and disk I/O time, we do
293 * `readahead pipelining': Do not wait until the application consumed all
294 * readahead pages and stalled on the missing page at readahead_index;
295 * Instead, submit an asynchronous readahead I/O as soon as there are
296 * only async_size pages left in the readahead window. Normally async_size
297 * will be equal to size, for maximum pipelining.
298 *
299 * In interleaved sequential reads, concurrent streams on the same fd can
300 * be invalidating each other's readahead state. So we flag the new readahead
301 * page at (start+size-async_size) with PG_readahead, and use it as readahead
302 * indicator. The flag won't be set on already cached pages, to avoid the
303 * readahead-for-nothing fuss, saving pointless page cache lookups.
304 *
305 * prev_pos tracks the last visited byte in the _previous_ read request.
306 * It should be maintained by the caller, and will be used for detecting
307 * small random reads. Note that the readahead algorithm checks loosely
308 * for sequential patterns. Hence interleaved reads might be served as
309 * sequential ones.
310 *
311 * There is a special-case: if the first page which the application tries to
312 * read happens to be the first page of the file, it is assumed that a linear
313 * read is about to happen and the window is immediately set to the initial size
314 * based on I/O request size and the max_readahead.
315 *
316 * The code ramps up the readahead size aggressively at first, but slow down as
317 * it approaches max_readhead.
318 */
319
320 /*
321 * Count contiguously cached pages from @offset-1 to @offset-@max,
322 * this count is a conservative estimation of
323 * - length of the sequential read sequence, or
324 * - thrashing threshold in memory tight systems
325 */
326 static pgoff_t count_history_pages(struct address_space *mapping,
327 pgoff_t offset, unsigned long max)
328 {
329 pgoff_t head;
330
331 rcu_read_lock();
332 head = page_cache_prev_hole(mapping, offset - 1, max);
333 rcu_read_unlock();
334
335 return offset - 1 - head;
336 }
337
338 /*
339 * page cache context based read-ahead
340 */
341 static int try_context_readahead(struct address_space *mapping,
342 struct file_ra_state *ra,
343 pgoff_t offset,
344 unsigned long req_size,
345 unsigned long max)
346 {
347 pgoff_t size;
348
349 size = count_history_pages(mapping, offset, max);
350
351 /*
352 * not enough history pages:
353 * it could be a random read
354 */
355 if (size <= req_size)
356 return 0;
357
358 /*
359 * starts from beginning of file:
360 * it is a strong indication of long-run stream (or whole-file-read)
361 */
362 if (size >= offset)
363 size *= 2;
364
365 ra->start = offset;
366 ra->size = min(size + req_size, max);
367 ra->async_size = 1;
368
369 return 1;
370 }
371
372 /*
373 * A minimal readahead algorithm for trivial sequential/random reads.
374 */
375 static unsigned long
376 ondemand_readahead(struct address_space *mapping,
377 struct file_ra_state *ra, struct file *filp,
378 bool hit_readahead_marker, pgoff_t offset,
379 unsigned long req_size)
380 {
381 struct backing_dev_info *bdi = inode_to_bdi(mapping->host);
382 unsigned long max_pages = ra->ra_pages;
383 unsigned long add_pages;
384 pgoff_t prev_offset;
385
386 /*
387 * If the request exceeds the readahead window, allow the read to
388 * be up to the optimal hardware IO size
389 */
390 if (req_size > max_pages && bdi->io_pages > max_pages)
391 max_pages = min(req_size, bdi->io_pages);
392
393 /*
394 * start of file
395 */
396 if (!offset)
397 goto initial_readahead;
398
399 /*
400 * It's the expected callback offset, assume sequential access.
401 * Ramp up sizes, and push forward the readahead window.
402 */
403 if ((offset == (ra->start + ra->size - ra->async_size) ||
404 offset == (ra->start + ra->size))) {
405 ra->start += ra->size;
406 ra->size = get_next_ra_size(ra, max_pages);
407 ra->async_size = ra->size;
408 goto readit;
409 }
410
411 /*
412 * Hit a marked page without valid readahead state.
413 * E.g. interleaved reads.
414 * Query the pagecache for async_size, which normally equals to
415 * readahead size. Ramp it up and use it as the new readahead size.
416 */
417 if (hit_readahead_marker) {
418 pgoff_t start;
419
420 rcu_read_lock();
421 start = page_cache_next_hole(mapping, offset + 1, max_pages);
422 rcu_read_unlock();
423
424 if (!start || start - offset > max_pages)
425 return 0;
426
427 ra->start = start;
428 ra->size = start - offset; /* old async_size */
429 ra->size += req_size;
430 ra->size = get_next_ra_size(ra, max_pages);
431 ra->async_size = ra->size;
432 goto readit;
433 }
434
435 /*
436 * oversize read
437 */
438 if (req_size > max_pages)
439 goto initial_readahead;
440
441 /*
442 * sequential cache miss
443 * trivial case: (offset - prev_offset) == 1
444 * unaligned reads: (offset - prev_offset) == 0
445 */
446 prev_offset = (unsigned long long)ra->prev_pos >> PAGE_SHIFT;
447 if (offset - prev_offset <= 1UL)
448 goto initial_readahead;
449
450 /*
451 * Query the page cache and look for the traces(cached history pages)
452 * that a sequential stream would leave behind.
453 */
454 if (try_context_readahead(mapping, ra, offset, req_size, max_pages))
455 goto readit;
456
457 /*
458 * standalone, small random read
459 * Read as is, and do not pollute the readahead state.
460 */
461 return __do_page_cache_readahead(mapping, filp, offset, req_size, 0);
462
463 initial_readahead:
464 ra->start = offset;
465 ra->size = get_init_ra_size(req_size, max_pages);
466 ra->async_size = ra->size > req_size ? ra->size - req_size : ra->size;
467
468 readit:
469 /*
470 * Will this read hit the readahead marker made by itself?
471 * If so, trigger the readahead marker hit now, and merge
472 * the resulted next readahead window into the current one.
473 * Take care of maximum IO pages as above.
474 */
475 if (offset == ra->start && ra->size == ra->async_size) {
476 add_pages = get_next_ra_size(ra, max_pages);
477 if (ra->size + add_pages <= max_pages) {
478 ra->async_size = add_pages;
479 ra->size += add_pages;
480 } else {
481 ra->size = max_pages;
482 ra->async_size = max_pages >> 1;
483 }
484 }
485
486 return ra_submit(ra, mapping, filp);
487 }
488
489 /**
490 * page_cache_sync_readahead - generic file readahead
491 * @mapping: address_space which holds the pagecache and I/O vectors
492 * @ra: file_ra_state which holds the readahead state
493 * @filp: passed on to ->readpage() and ->readpages()
494 * @offset: start offset into @mapping, in pagecache page-sized units
495 * @req_size: hint: total size of the read which the caller is performing in
496 * pagecache pages
497 *
498 * page_cache_sync_readahead() should be called when a cache miss happened:
499 * it will submit the read. The readahead logic may decide to piggyback more
500 * pages onto the read request if access patterns suggest it will improve
501 * performance.
502 */
503 void page_cache_sync_readahead(struct address_space *mapping,
504 struct file_ra_state *ra, struct file *filp,
505 pgoff_t offset, unsigned long req_size)
506 {
507 /* no read-ahead */
508 if (!ra->ra_pages)
509 return;
510
511 /* be dumb */
512 if (filp && (filp->f_mode & FMODE_RANDOM)) {
513 force_page_cache_readahead(mapping, filp, offset, req_size);
514 return;
515 }
516
517 /* do read-ahead */
518 ondemand_readahead(mapping, ra, filp, false, offset, req_size);
519 }
520 EXPORT_SYMBOL_GPL(page_cache_sync_readahead);
521
522 /**
523 * page_cache_async_readahead - file readahead for marked pages
524 * @mapping: address_space which holds the pagecache and I/O vectors
525 * @ra: file_ra_state which holds the readahead state
526 * @filp: passed on to ->readpage() and ->readpages()
527 * @page: the page at @offset which has the PG_readahead flag set
528 * @offset: start offset into @mapping, in pagecache page-sized units
529 * @req_size: hint: total size of the read which the caller is performing in
530 * pagecache pages
531 *
532 * page_cache_async_readahead() should be called when a page is used which
533 * has the PG_readahead flag; this is a marker to suggest that the application
534 * has used up enough of the readahead window that we should start pulling in
535 * more pages.
536 */
537 void
538 page_cache_async_readahead(struct address_space *mapping,
539 struct file_ra_state *ra, struct file *filp,
540 struct page *page, pgoff_t offset,
541 unsigned long req_size)
542 {
543 /* no read-ahead */
544 if (!ra->ra_pages)
545 return;
546
547 /*
548 * Same bit is used for PG_readahead and PG_reclaim.
549 */
550 if (PageWriteback(page))
551 return;
552
553 ClearPageReadahead(page);
554
555 /*
556 * Defer asynchronous read-ahead on IO congestion.
557 */
558 if (inode_read_congested(mapping->host))
559 return;
560
561 /* do read-ahead */
562 ondemand_readahead(mapping, ra, filp, true, offset, req_size);
563 }
564 EXPORT_SYMBOL_GPL(page_cache_async_readahead);
565
566 static ssize_t
567 do_readahead(struct address_space *mapping, struct file *filp,
568 pgoff_t index, unsigned long nr)
569 {
570 if (!mapping || !mapping->a_ops)
571 return -EINVAL;
572
573 /*
574 * Readahead doesn't make sense for DAX inodes, but we don't want it
575 * to report a failure either. Instead, we just return success and
576 * don't do any work.
577 */
578 if (dax_mapping(mapping))
579 return 0;
580
581 return force_page_cache_readahead(mapping, filp, index, nr);
582 }
583
584 SYSCALL_DEFINE3(readahead, int, fd, loff_t, offset, size_t, count)
585 {
586 ssize_t ret;
587 struct fd f;
588
589 ret = -EBADF;
590 f = fdget(fd);
591 if (f.file) {
592 if (f.file->f_mode & FMODE_READ) {
593 struct address_space *mapping = f.file->f_mapping;
594 pgoff_t start = offset >> PAGE_SHIFT;
595 pgoff_t end = (offset + count - 1) >> PAGE_SHIFT;
596 unsigned long len = end - start + 1;
597 ret = do_readahead(mapping, f.file, start, len);
598 }
599 fdput(f);
600 }
601 return ret;
602 }